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Abstract
We investigate the problem of conservative rewrita-
bility of a TBox T in a description logic (DL)
L into a TBox T ′ in a weaker DL L′. We fo-
cus on model-conservative rewritability (T ′ entails
T and all models of T are expandable to mod-
els of T ′), subsumption-conservative rewritability
(T ′ entails T and all subsumptions in the signa-
ture of T entailed by T ′ are entailed by T ), and
standard DLs between ALC and ALCQI. We
give model-theoretic characterizations of conserva-
tive rewritability via bisimulations, inverse p-mor-
phisms and generated subinterpretations, and use
them to obtain a few rewriting algorithms and com-
plexity results for deciding rewritability.

1 Introduction
Over the past 30 years, a multitude of description logics
(DLs) have been designed, investigated, and used in practice
as ontology languages. The introduction of new DLs has been
driven by (i) the need for additional expressive power (e.g.,
transitive roles in the 1990s), and (ii) applications that require
efficient reasoning of a novel type (e.g., ontology-based data
access in the 2000s). While the resulting flexibility in choos-
ing DLs has had the positive effect of making DLs available
for a large number of domains and applications, it has also
led to the development of ontologies with language construc-
tors that are not really required to represent their knowledge.
A ‘not required’ constructor can mean different things here,
ranging from the high-level ‘this domain can be represented
in an adequate way in a weaker DL’ to the very concrete ‘this
ontology is logically equivalent to an ontology in a weaker
DL’. In this paper, we take the latter understanding as a start-
ing point. Equivalent rewritability of a DL ontology (TBox)
to a weaker language has been investigated by Lutz, Piro, and
Wolter [2011] who established model-theoretic characteriza-
tions in terms of (various types of) global bisimilations and
applied them to the problem of deciding equivalent rewritabil-
ity. However, equivalent rewritability seems to be an unneces-
sarily strong condition for multiple applications where fresh
symbols can be used in rewritings.

Therefore, in this paper, we propose a more flexible no-
tion of conservative rewritability that allows the use of fresh

symbols in a rewriting T ′ of a given TBox T . We demand
that T ′ entails T . On the other hand, to avoid uncontrolled
additional consequences of T ′, we also require that (i) it does
not entail any new subsumptions in the signature of T , or
even that (ii) every model of T can be expanded to a model
of T ′. The latter type of conservative rewriting is known as
model-conservative extension [Konev et al., 2013], and we
call a TBox T model-conservatively L-rewritable if there is a
model-conservative extension of T in the DL L. The former
type is known as a subsumption or deductive conservative ex-
tension [Ghilardi, Lutz, and Wolter, 2006] and, given a DL L,
an L TBox T and a weaker DL L′, we call T subsumption-
conservatively L′-rewritable if there is a TBox T ′ in L′ such
that T ′ entails the same L-subsumptions in the signature of
T as T . Model-conservative rewritability is a more robust
notion as it is language-independent and not only leaves un-
changed the entailed subsumptions of the original TBox but
also, for example, certain answers in case the ontologies are
used to access data.

The main aim of this paper is to show that, for many impor-
tant DLs, model- and subsumption-conservative rewritabili-
ties can be characterized in terms of natural model-theoretic
preservation conditions. In fact, the role played by global
bisimilations for equivalent rewritability is now played by
generated subinterpretations and p-morphisms (or bounded
morphisms), that is, functional bisimilations introduced in
modal logic as basic truth-preserving operations on Kripke
frames and models [Goranko and Otto, 2006]. We also ob-
serve that, in some cases, these characterizations give rise
to rewriting algorithms and complexity bounds for decid-
ing conservative rewritability. The latter results are in sharp
contrast to the fact that it is typically undecidable whether
a given TBox is a model-conservative rewriting of another
TBox [Lutz and Wolter, 2010; Konev et al., 2013]. We focus
on standard DLs between ALC and ALCQI, but also briefly
consider rewritings into the lightweight DL DL-Litehorn.

Our model-theoretic characterizations are summarized in
Table 1, where the criteria for equivalent rewritability are
taken from [Lutz, Piro, and Wolter, 2011]. Thus, for example,
model-conservative ALCI-to-ALC rewritability coincides
with subsumption-conservative ALCI-to-ALC-rewritability,
and both are characterized by preservation under gener-
ated subinterpretations or, equivalently, inverse p-morphisms.
In contrast, model-conservative ALCQ-to-ALC rewritabil-



Rewritability Equivalent Model Conservative Subsumption Conservative
ALCI-to-ALC global bisimulations generated subinterpretations/p-morphisms−1

ALCQI-to-ALCQ global counting bisimulations counting p-morphisms−1

ALCQ-to-ALC global bisimulations p-morphisms−1

ALCQI-to-ALCI global i-bisimulations ? i-p-morphisms−1

ALCQI-to-ALC global bisimulations ? p-morphisms−1

ALCI-to-DL-Litehorn products and succ-simulations

Table 1: Model-theoretic characterizations of rewritability.

ity coincides with equivalent ALCQ-to-ALC rewritabil-
ity, but not with subsumption-conservative ALCQ-to-ALC
rewritability. The situation is yet again different for ALCI-
to-DL-Litehorn rewritability, in which case all three notions
coincide. The question marks indicate two cases where char-
acterizations are unknown.

An in-depth exploration of the applicability of our model-
theoretic characterizations is beyond the scope of this paper.
We only mention in passing three cases that come naturally
along with the preservation criteria. Thus, we show that
the preservation conditions for ALCI-to-ALC rewritabil-
ity are decidable in EXPTIME and give an algorithm con-
structing polynomial-size rewritings, while those for model-
conservative and subsumption-conservative ALCQ-to-ALC
rewritabilities give rise to 2EXPTIME decision algorithms.

Related work. Conservative rewritings of TBoxes are
ubiquitous in DL research. For example, transforma-
tions of TBoxes into normal forms are often model-conser-
vative [Baader, Brandt, and Lutz, 2005; Kazakov, 2009]. We
note, however, that some well known DL rewritings introduc-
ing fresh symbols that are used as a pre-processing step in rea-
soning [Ding, Haarslev, and Wu, 2007; Carral et al., 2014b;
2014a] or to prove complexity results for reasoning [De Gi-
acomo, 1995] are not conservative rewritings but only sat-
isfiability preserving. There has been significant work on
rewritings of ontology-mediated queries (OMQs), which pre-
serve their certain answers, into datalog or OMQs in weaker
DLs [Kaminski and Cuenca Grau, 2013; Bienvenu et al.,
2014]. It seems that, from a technical viewpoint, rewritability
of OMQs is not related to TBox conservative rewritability.
Baader [1996] considers the expressive power of DLs and
corresponding notions of rewritability based on a variant of
model-conservative extension and discusses the relationship
to subsumption-conservative extensions. Another closely re-
lated problem is TBox approximation. In this case, rather
than aiming at a conservative rewriting, the aim is to com-
pute a TBox in a weaker DL that approximates the conse-
quences of the original TBox [Ren, Pan, and Zhao, 2010;
Console et al., 2014].

Detailed proofs can be found in [Konev et al., 2016].

2 Conservative Rewritability
In DLs, concepts and roles are defined inductively starting
from countably infinite sets NC of concept names and NR of
role names and using a set of constructors. The constructors
available in ALCQI are shown in the table below, where the

formation of inverse roles is the only role constructor and the
remaining four are concept constructors. The third column
defines the extensions of roles and concepts with these
constructors in an interpretation I = (∆I , ·I), where ·I
maps each concept name A to a subset AI of the domain ∆I

of I, and each role name r to rI ⊆ ∆I × ∆I . In the table,
r stands for a role (i.e., a role name or its inverse), A,B for
concept names, and C,D for (possibly compound) concepts;
rI(d) = {d′ | (d, d′) ∈ rI} and |∆| is the cardinality of a
set ∆. As usual, we define >, ⊥, t, → and ↔ as standard
Boolean abbreviations, ∃r.C (existential restriction) as an
abbreviation for (> 1 r C), and ∀r.C (universal restriction)
for (6 0 r ¬C). In the sublanguage ALCQ of ALCQI,
inverse roles are disallowed; in ALCI, at-least and at-most
restrictions are limited to ∃r.C and ∀r.C; and ALC is the
common part of ALCQ and ALCI.
constructor syntax semantics

inverse role r− (rI)−1 = {(d, e) | (e, d) ∈ rI}
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

at-least restriction (> n r C) {d ∈ ∆I | |rI(d) ∩ CI | ≥ n}
at-most restriction (6 n r C) {d ∈ ∆I | |rI(d) ∩ CI | ≤ n}

An L TBox, T , for a DL L is a finite set of concept in-
clusions (CI) of the form C v D, where C and D are L-
concepts. We write I |= C v D if CI ⊆ DI and I |= T
if this holds for all CIs in T , in which case I is said to be a
model of T . T is consistent if it has a model. By a signature,
Σ, we mean any set of concept and role names. The signature
sig(T ) of a TBox T is the set of concept and role names oc-
curring in T . By sub(T ) we denote the closure under single
negation of the set of subconcepts of concepts in T .

Now we define three notions of TBox rewritability for DLs
L and L′, where L is typically more expressive than L′.
Definition 1 An L′ TBox T ′ is an equivalent L′-rewriting
of an L TBox T if T and T ′ have the same models. T is
equivalentlyL′-rewritable if it has an equivalentL′-rewriting.

Equivalent L-to-L′ rewritability was studied by Lutz, Piro,
and Wolter [2011], who gave the semantic characterizations
in the first column of Table 1. For example, if L is ALCQI,
ALCI or ALCQ and L′ is ALC, then an L TBox is equiva-
lently L′-rewritable iff its class of models is preserved under
global bisimulations, which are defined as follows. Given
a signature Σ, a Σ-bisimulation between interpretations I1

and I2 is a relation S ⊆ ∆I1 ×∆I2 that satisfies conditions



[Atom], [Forth] and [Back] in the table below, for r,A ∈ Σ.
In [Back] and elsewhere, ‘dual’ refers to swapping the rôles
of I1, d1, d

′
1 and I2, d2, d

′
2. The relation S is a global Σ-

bisimulation between I1 and I2 if ∆I1 is the domain of S
and ∆I2 its range. I1 and I2 are globally Σ-bisimilar if there
is a global Σ-bisimulation between them. If Σ = NC ∪ NR,
we omit Σ and say simply ‘(global) bisimulation.’ A TBox T
is preserved under global bisimulations if any interpretation
that is globally bisimilar to a model of T is a model of T .

[Atom] for all (d1, d2) ∈ S, d1 ∈ AI1 iff d2 ∈ AI2

[Forth] if (d1, d2) ∈ S and d′1 ∈ rI1(d1), r ∈ NR, then
there is a d′2 ∈ rI2(d2) with (d′1, d

′
2) ∈ S.

[Back] dual of [Forth]
[QForth] if (d1, d2) ∈ S and D1 ⊆ rI1(d1) is finite, r ∈ NR,

then there is a D2 ⊆ rI2(d2) such that S contains
a bijection between D1 and D2.

[QBack] dual of [QForth]

Example 1 The ALCI TBox {∃r−.B v A} can be equiv-
alently rewritten to the ALC TBox {B v ∀r.A}. However,
the ALCI TBox T = {∃r−.B u ∃s−.B v A} is not equiv-
alently ALC-rewritable. Indeed, the interpretation I in the
picture below is a model of T and globally bisimilar to the
interpretation J , which is not a model of T .

B B

r s

B B

r s

IJ

Equivalent ALCQI-to-ALCQ rewritability is character-
ized by counting bisimulations defined but replacing [Forth]
and [Back] in the definition of bisimulations with [QForth]
and [QBack]. For equivalent ALCQI-to-ALCI rewritabil-
ity, we need i-bisimulations, that is, bisimulations for which
[Forth] and [Back] hold for inverse roles as well.

We now introduce two subtler notions of TBox rewritabil-
ity, which allow the use of fresh concept and role names in
rewritings. For an interpretation I and a signature Σ, the Σ-
reduct of I is the interpretation I|Σ coinciding with I on Σ

and having XI|Σ = ∅ for X /∈ Σ. We say that interpretations
I and J coincide on Σ and write I =Σ J if the Σ-reducts of
I and J coincide. A TBox T ′ is called a model-conservative
(or m-conservative) extension of T if T ′ |= T and, for every
I |= T , there is I ′ |= T ′ such that I =sig(T ) I ′.
Definition 2 An L′ TBox T ′ is called an m-conservative L′-
rewriting of an L TBox T if T ′ is an m-conservative exten-
sion of T . An L TBox T is m-conservatively L′-rewritable
if it has an m-conservative L′-rewriting.

Any equivalent L′-rewriting of a TBox T is also an m-
conservative L′-rewriting of T , but not the other way round:
Example 2 The ALCI TBox {∃r−.B u ∃s−.B v A} from
Example 1 is m-conservatively ALC-rewritable to

{B v ∀r.B∃r−.B , B v ∀s.B∃s−.B , B∃r−.BuB∃s−.B v A},
where B∃r−.B , B∃s−.B are fresh concept names.

A TBox T ′ is a subsumption-conservative (s-conservative)
extension of an L TBox T if T ′ |= T and T ′ |= C v D
implies T |= C v D, for any L-CI C v D given in sig(T ).

Definition 3 An L′ TBox T ′ is an s-conservative L′-
rewriting of an L TBox T if T ′ is an s-conservative extension
of T . An L TBox T is s-conservatively L′-rewritable if it has
an s-conservative L′-rewriting.

Note that it makes sense to speak about an s-conservative
L′-rewriting of a TBox T only if the language of T is under-
stood. For example, the ALC TBox {> v ∃r.A u ∃r.¬A} is
an s-conservative rewriting of T = {> v ∃r.>} when T is
regarded as an ALC TBox, but not as an ALCQ TBox.

Every m-conservatively L′-rewritable TBox T is s-con-
servatively L′-rewritable, but not the converse:
Example 3 The ALCQ TBox T = {A v ≥ 2 r.B} is s-
conservatively ALC-rewritable to

T ′ = {A v ∃r.B1, A v ∃r.B2, B1 v ¬B2, B1tB2 v B},

where B1 and B2 are fresh concept names. To show this,
note first that T ′ |= T . Second, recall that ALCQ TBoxes
are complete for ditree interpretations, that is, interpretations
I such that rI ∩ sI = ∅ for r 6= s and the directed graph
with nodes ∆I and edges (d, d′) ∈

⋃
r∈NR

rI is a directed
tree. Thus, if T 6|= C v D, for an ALCQ-CI C v D in
sig(T ), then there is a ditree model I of T with I 6|= C v D.
Clearly, there exists a model J of T ′ with J =sig(T ) I. But
then J 6|= C v D, and so T ′ 6|= C v D, as required.

However, T ′ is not an m-conservative rewriting of T be-
cause (in contrast to ditree models of T ) the model I of T
shown below is not the sig(T )-reduct of any model of T ′.

A A A

B B B

r
r r

r

It is not difficult to generalize this argument to prove that
there is no m-conservative ALC-rewriting of T .

In our examples so far, we used fresh concept names but no
fresh role names. This is no accident: for the DLs considered
in this paper, fresh role names in conservative rewritings are
not required. Say that a DL L reflects disjoint unions if, for
any L TBox T , whenever the disjoint union

⋃
i∈I Ii of inter-

pretations Ii is a model of T , then each Ii, i ∈ I , is a model
of T . All of our DLs are known to reflect disjoint unions.
Theorem 1 Let L be a DL reflecting disjoint unions, T an
L TBox, and let L′ ∈ {ALCQ,ALCI,ALC}. If T is m-
conservatively (or s-conservatively) L′-rewritable, then T
has a m-conservative (or, respectively, s-conservative) L′-
rewriting not using role names outside sig(T ).
Proof. To illustrate the idea, consider an m-conservative
ALC-rewriting T ′ of T . For any C ∈ sub(T ′) of the form
∃r.C ′ or ∀r.C ′ with r 6∈ sig(T ), take a fresh concept name
BC and denote by D] the result of replacing all top-most oc-
currences of such C in D ∈ sub(T ′) by BC . The required
m-conservative ALC-rewriting T † is given by the inclusions
u
C∈t

C] v ⊥, where t ranges over maximal subsets of sub(T )

such that u
C∈t

C is not satisfiable with respect to T ′. Indeed,

for any I |= T , there is J |= T † with J =sig(T ) I. To
show T † |= T , suppose I |= T † and I 6|= T , with rI = ∅
for r 6∈ sig(T ). By the definition of T †, for every d ∈ ∆I ,



there is a ditree model Id of T ′ with root d (and no other
shared elements) such that d ∈ (C])I iff d ∈ CId , for
C ∈ sub(T ′). We remove all (d, d′) ∈ rId with r ∈ sig(T )
from Id, d ∈ ∆I , and take the union J of the resulting in-
terpretations with I. Then J |= T ′ but J 6|= T (because
T reflects disjoint unions and J|sig(T ) is the disjoint union of
the sig(T )-reduct of I and the sig(T )-reducts of Id with d
removed), which is a contradiction. o

Note that the size of T † is exponential in |T |. It is an in-
teresting open problem whether a polynomial rewriting ex-
ists. To see why reflection of disjoint unions is essential, con-
sider the ALCU TBox T = {> v ∃u.A} with the universal
role u, which is a logical symbol and not part of the signa-
ture of T [Krötzsch, Simančı́k, and Horrocks, 2012]. Then
{> v ∃r.A} is an m-conservative ALC-rewriting of T but
no such rewriting without fresh role names exists.

3 Rewriting Inverse Roles
In this section, we investigate conservative TBox rewritability
from DLs with inverse roles to the corresponding DLs with-
out them. First, we give a natural characterization of m- and
s-conservative ALC-rewritability of ALCI-TBoxes in terms
of generated subinterpretations. Motivated by the observa-
tion that preservation under generated subinterpretations does
not characterize conservative ALCQI-to-ALCQ rewritabil-
ity, we then give an alternative characterization of conserva-
tiveALCI-to-ALC rewritability in terms of p-morphisms. In
contrast to generated subinterpretations, p-morphisms can be
lifted to ALCQI, and we show that m- and s-conservative
ALCQI-to-ALCQ rewritability is characterized in terms of
counting p-morphisms.

An interpretation I is a subinterpretation of J if ∆I ⊆
∆J , AI = AJ ∩∆I , and rI = rJ ∩ (∆I ×∆I) for all A
and r. I is a generated subinterpretation of J if, in addition,
d ∈ ∆I and (d, d′) ∈ rJ imply d′ ∈ ∆I . A TBox T is pre-
served under generated subinterpretations if every generated
subinterpretation of a model of T is also a model of T . As
well known, all ALC TBoxes enjoy this property.

Suppose we want to construct an m-conservative ALC-
rewriting of an ALCI TBox T . Without loss of generality,
we can assume that T uses the concept constructors ¬, u and
∃ only. For any role name r in T , take a fresh role name
r̄. Then, for any ∃r.C in sub(T ), where r is a role (a role
name or its inverse), take a fresh concept name B∃r.C . De-
note by D] theALC-concept obtained from any D ∈ sub(T )
by replacing every top-most occurrence of a subconcept of
the form ∃r.C in D with B∃r.C . Now, let T † be an ALC
TBox containing C] v D], for C v D ∈ T , and for r ∈ NR,

C] v ∀r̄.B∃r.C , B∃r.C ≡ ∃r.C], for ∃r.C ∈ sub(T ),

C] v ∀r.B∃r−.C , B∃r−.C ≡ ∃r̄.C], for ∃r−.C ∈ sub(T ).

Clearly, T † can be constructed in polynomial time in |T |.
Theorem 2 The following conditions are equivalent for any
ALCI TBox T :

(1) T is m-conservatively ALC-rewritable;
(2) T is s-conservatively ALC-rewritable;

(3) T is preserved under generated subinterpretations;
(4) T † is an m-conservative ALC-rewriting of T .

Proof. We only briefly discuss the proof of (3) ⇒ (4) here.
Assume (3). Clearly, for every model I of T , there is a model
J of T † with J =sig(T ) I. It remains to show that T † |= T .
Suppose I |= T †. The extension I1 of I in which the inter-
pretation of every r̄ is extended by the inverse of rI is also
a model of T †. Let I2 be I1 with every d ∈ ∆I1 renamed
to d′. Take the disjoint union J of I1 and I2, and replace
each (d, e) ∈ r̄J such that d, e ∈ ∆I1 and (e, d) /∈ rJ with
(e′, d) ∈ rJ and (d, e′) ∈ r̄J , and add (e′, d′) ∈ rJ for
any (d′, e′) ∈ r̄J with d′, e′ ∈ ∆I2 and (e′, d′) /∈ rJ . Then
J |= T , with the sig(T )-reduct of I being a generated subin-
terpretation of the sig(T )-reduct of J . Thus I |= T . o

It is open whether a polynomial-size rewriting without ad-
ditional role names exists. The proof above shows that to
decide whether T is m-conservatively ALC-rewritable, it is
enough to check whether T † |= T , which can be done in EX-
PTIME [Baader et al., 2003]. A matching EXPTIME lower
bound is obtained by reduction of ALCI TBox satisfiability.

Corollary 1 Deciding m-conservative ALCI-to-ALC rew-
ritability is EXPTIME-complete.

The next example shows that preservation under generated
subinterpretations does not guarantee conservative ALCQI-
to-ALCQ rewritability.

Example 4 Any subinterpretation of a model of theALCQI
TBox T = {A v (≤ 1 r−.>)} is also a model of T , and so
T is preserved under generated subinterpretations. We prove
below that T is not m-conservatively ALCQ rewritable.

The reason why T cannot be conservatively rewritten into
an ALCQ TBox is that, without inverse roles, one cannot re-
strict the number of r-predecessors. To capture this intuition,
we introduce a functional version of (counting) bisimulations.

Definition 4 A (counting) Σ-p-morphism from I1 to I2 is
any global (counting) Σ-bisimulation S between I1 and I2

such that S is a function. If Σ = NC ∪ NR, we refer to S
as a (counting) p-morphism. A TBox T is preserved under
inverse (counting) p-morphisms if I |= T whenever there is
a (counting) p-morphism from I to a model of T .

A fundamental property of p-morphisms is established by

Lemma 1 Suppose T is an ALC (or ALCQ) TBox, Σ con-
tains all role names in sig(T ), and there is a (counting) Σ-p-
morphism f from an interpretation I to some model I ′ of T .
Then there is a model J of T such that J =Σ I.

Proof. We define J in the same way as I except that we set
AJ = f−1(AI

′
) for A ∈ sig(T ) \ Σ. Then f is a (counting)

sig(T )-bisimulation from J to I ′, and so J |= T . o

It follows that if an ALCI (or ALCQI) TBox T is m-
conservatively ALC- (or ALCQ-) rewritable, then T is pre-
served under inverse (counting) p-morphisms. Indeed, let
f : I1 → I2 be a p-morphism and T ′ an m-conservative
ALC-rewriting of T . By Theorem 1, we may assume that the
role names in sig(T ′) belong to sig(T ). By Lemma 1, there
is a model J1 of T ′ with J1 =sig(T ) I1, from which I1 |= T .



Example 5 The map f : I1 → I2 below is a counting p-
morphism. Since I2 is a model of T from Example 4 but I1

is not, T is not m-conservatively ALCQ-rewritable.

A

r r

A

r I2I1 f

Note that if a TBox T reflects disjoint unions and is pre-
served under inverse p-morphisms, then it is preserved un-
der generated subinterpretations. Indeed, let I be a gener-
ated subinterpretation of J |= T . Take the disjoint union
I ′ = (I×{0})∪(J ×{1}) of I and J . The map f : I ′ → J
defined by setting f(d, i) = d for i = 0, 1 is a p-morphism.
Then I ′ |= T , and so I |= T . Thus, we obtain:
Theorem 3 An ALCI TBox is m-conservatively (and s-
conservatively) ALC-rewritable iff it is preserved under in-
verse p-morphisms.

Counting p-morphisms characterize both m- and s-conser-
vative ALCQ-rewritabilities:
Theorem 4 The following conditions are equivalent for any
ALCQI TBox T :
(1) T is m-conservatively ALCQ-rewritable;
(2) T is s-conservatively ALCQ-rewritable;
(3) T is preserved under inverse counting p-morphisms.

Proof. We sketch the proof of (3)⇒ (1) where, unlike The-
orem 2, we construct an infinite rewriting T ′ from which a
finite one is obtained by compactness. T ′ is defined by brute
force: given T , it includes all C] v D] with T |= C v D,
where C,D are ALCQI concepts over sig(T ) and C], D]

are the results of replacing uniformly any top-most qualified
number restriction with inverse role by a fresh concept name.
The crucial step now is to prove that T ′ |= T if T is pre-
served under inverse counting morphisms. Suppose this is
not so. Take an ω-saturated model I of T ′ that is not a model
of T [Chang and Keisler, 1990, p. 100]. By unraveling I
into a tree-shaped interpretation and using preservation under
inverse counting p-morphisms, we construct a new I ′ with
I ′ |= T ′ and I ′ 6|= T , in which no node has more than one
r-predecessor (r a role name) satisfying the same ALCQ-
concepts; cf. Example 5. Now we construct a model J of T
containing I ′ as a generated subinterpretation, contrary to T
being preserved under inverse counting p-morphisms. o

The decidability of rewritability and the size of rewritings
in Theorem 4 remain open.

4 Rewriting Number Restrictions
Now we consider TBox rewritability from DLs with qual-
ified number restrictions to the corresponding DLs with-
out them. We first characterize s-conservative ALCQ-to-
ALC rewritability and ALCQI-to-ALCI rewritability in
terms of p-morphisms and, respectively, i-p-morphisms. We
then generalize Example 3 and show that m-conservative
ALCQ-to-ALC rewritability coincides with equivalentALC-
rewritability by characterizing it in terms of preservation un-
der global bisimulations. Finally, we show that this is not the
case for m-conservative ALCQI-to-ALCI rewritability.

The next lemma shows that s-conservativeALCQ-to-ALC
rewritability can be regarded as a principled approximation of
m-conservative rewritability (cf. Example 3).

Lemma 2 An ALC TBox T ′ is an s-conservative rewriting
of anALCQ TBox T iff T ′ is an m-conservative rewriting of
T over ditree interpretations of finite outdegree.

Suppose we need an s-conservative ALC-rewriting of an
ALCQ-TBox T . As before, we assume that T is built us-
ing ¬, u and (> n r C) only. Take fresh concept names
BD, B

D
1 , . . . , B

D
n , for D = (> n r C) ∈ sub(T ), and

let Σ be sig(T ) together with the fresh concept names. For
C ∈ sub(T ), let C] be theALC-concept obtained from C by
replacing all top-most occurrences of D = (> n r D′) in C
with BD. Let T † be the infinite TBox containing C] v D],
for C v D ∈ T , and for D = (> n r C) ∈ sub(T ),

– BDi v ¬BDj for i 6= j,

– BD v ∃r.(C] uBD1 ) u · · · u ∃r.(C] uBDn ),

– u
1≤i≤n

(∃r.(C] u C]i u u
j 6=i
¬C]j)) v BD, for any ALC-

concepts Ci with sig(Ci) ⊆ Σ.

Theorem 5 The following conditions are equivalent for any
ALCQ TBox T :
(1) T is s-conservatively ALC-rewritable;
(2) T † is an s-conservative (infinite) ALC-rewriting of T ;
(3) T is preserved under inverse p-morphisms.

Proof. We sketch (3)⇒ (2). The interesting step is to prove
that T † |= T . Suppose this is not the case. We find an ω-
saturated model I of T † such that I 6|= T . Let J be the quo-
tient I/∼, where d ∼ d′ if (d, d′) is contained in the largest
Σ-bisimulation on I. The map that sends each d ∈ ∆I to
its equivalence class d/∼ in J is a Σ-p-morphism, and by
carefully analysing T † one can show that J |= T . By (2),
I |= T , which is a contradiction. o

Although we do not know how to decide preservation un-
der inverse counting p-morphisms from Theorem 4, preser-
vation under inverse p-morphisms of ALCQ TBoxes can be
decided in 2EXPTIME (with numbers coded in unary). The
algorithm uses a type elimination argument similar to the
one employed for deciding equivalent ALC-rewritability of
ALCI TBoxes [Lutz, Piro, and Wolter, 2011]. So we have:
Theorem 6 The problem of s-conservative ALC-
rewritability of ALCQ TBoxes is decidable in 2EXPTIME.

Thus, given an ALCQ TBox T , one can first decide s-
conservativeALC-rewritability and then, in case of a positive
answer, effectively construct a rewriting by going through the
finite subsets of T † in a systematic way until a finite T ′ ⊆ T †
with T ′ |= T is found, which must exist by compactness.

Our analysis of s-conservative ALC-rewritability of
ALCQ TBoxes can be lifted to s-conservative ALCI-
rewritability of ALCQI TBoxes by replacing (i) ditree in-
terpretations with tree interpretations (in which rI ∩ sI = ∅
for all roles r 6= s, and the undirected graph with nodes ∆I

and edges {d, d′} for (d, d′) ∈
⋃
r∈NR

rI is a tree); (ii) p-
morphisms with i-p-morphisms (functional i-bisimulations);
and (iii) using fresh concept names BD for qualified number



restrictions D with inverse roles as well. These modifications
give the required generalizations of Lemma 2 and Theorem 5.
However, decidability of s-conservative ALCI-rewritability
of ALCQI TBoxes remains open.

As to m-conservative ALCQ-to-ALC rewritability, Exam-
ple 3 shows that the straightforward s-conservative ALC-
rewriting T ′ of T = {A v ≥ 2 r.B} is not an m-conservative
rewriting because there is a non-tree interpretation I for
which no J |= T ′ with J =sig(T ) I exists. A generaliza-
tion of this argument shows that onlyALCQ TBoxes that are
preserved under global bisimulations are m-conservatively
ALC-rewritable. Thus, we obain:

Theorem 7 An ALCQ TBox is m-conservatively ALC-
rewritable iff it is equivalently ALC-rewritable.

Using type elimination, one can prove that deciding preser-
vation of ALCQ TBoxes under global bisimulations is in
2EXPTIME. Thus, m-conservative ALC-rewritability of
ALCQ TBoxes is decidable in 2EXPTIME.

Surprisingly, the situation is different for m-conservative
ALCQI-to-ALCI rewritability, where one would also ex-
pect that only equivalently ALCI-rewritable TBoxes (those
that are preserved under global i-bisimulations) are m-
conservativelyALCI-rewritable. However, the following ex-
ample shows that this is not the case:

Example 6 The TBox T = {∃r.> v ∃r.(≥ 2r−.>)} in
ALCQI has the m-conservative ALCI-rewriting T ′ =
{∃r.> v ∃r.(∃r−.B u ∃r−.¬B)}. No equivalent ALCI-
rewriting of T exists because it is not preserved under global
i-bisimulations. The proof that, for every I |= T , there is
J |= T ′ with J =sig(T ) I relies on the observation that non-
tree shaped counterexamples such as the one in Example 3 do
not exist because of the interaction between T ’s constraints
for r-successors and r−-successors.

We do not have any conjecture as to a natural seman-
tic characterization of m-conservative ALCQI-to-ALCI
rewritability. In fact, Theorem 7 and Example 6 together sug-
gest that such a characterization does not exist.

5 ALCQI-to-ALC Rewritability
At first sight,ALCQI-to-ALC rewritability easily reduces to
the two-step ALCQI-to-ALCQ-to-ALC rewritability. Note,
however, that the first step introduces fresh concept names
that are not regarded as auxiliary in the second step. In fact,
to smoothly compose the two steps, a more general notion
of rewritability with a distinguished set of symbols in the
input TBox is needed. Call a TBox T m-conservatively L
rewritable relative to a signature Σ ⊆ sig(T ) if there exists
an L-TBox T ′ such that {I|Σ | I |= T } = {I|Σ | I |= T ′}.
Investigating this notion is beyond the scope of this paper. We
only mention one unexpected result, which can be proved by
reduction of the undecidable problem whether anALC TBox
is an m-conservative rewriting of the empty TBox [Konev et
al., 2013] (cf. Corollary 1):

Theorem 8 The problem of m-conservative ALCI-to-ALC
rewritability relative to a signature Σ is undecidable.

AsALC-rewritableALCQI TBoxes are not preserved un-
der global bisimulations (see Example 2), we cannot simply
put together the corresponding characterizations from the pre-
vious two sections in order to characterize m-conservative
ALC-rewritability of ALCQI TBoxes. Nevertheless, by
applying the s-conservative ALCQ rewriting above to the
rewriting in the proof of Theorem 4, we obtain an s-conser-
vative ALC-rewriting of an input ALCQI TBox T iff T is
preserved under inverse p-morphisms iff such a rewriting ex-
ists at all.
Theorem 9 An ALCQI TBox is s-conservatively ALC-
rewritable iff it is preserved under inverse p-morphisms.

For m-conservative rewritability, we have:
Theorem 10 If an ALCQI TBox is preserved under global
i-bisimulations and inverse p-morphisms, then it is m-con-
servatively ALC-rewritable.
Proof. From preservation under global i-bisimulations of
T follows the existence of an equivalent ALCI TBox T ′.
Then T is m-conservatively ALC-rewritable iff T ′ is m-
conservatively ALC-rewritable iff T ′ is preserved under in-
verse p-morphisms (Theorem 3). o

We conjecture that the converse also holds. By Lemma 1,
m-conservatively ALC-rewritable ALCQI TBoxes are pre-
served under inverse p-morphims. Thus, the conjecture
would follow from preservation under global i-bisimulations.

6 Discussion and Future Work
Up to now, our focus has been on rewritability between
expressive DLs. However, rewritability to the lightweight
DLs from the DL-Lite and EL families is of great inter-
est as well. Table 1 gives our model-theoretic characteri-
zation of rewritability from ALCI to DL-Litehorn (without
role inclusions) [Calvanese et al., 2007; Artale et al., 2009].
The characterization of equivalent rewritability in terms of
products and succ-simulations was given by Lutz, Piro, and
Wolter [2011]. It is straightforward to prove that it also ap-
plies to m- and s-conservative rewritability ofALCI TBoxes
by first showing that Theorem 1 holds for rewritings into
DL-Litehorn as well:
Theorem 11 For ALCI TBoxes, equivalent DL-Litehorn-
rewritability, m-conservative DL-Litehorn-rewritability, as
well as s-conservative DL-Litehorn-rewritability coincide and
are EXPTIME-complete.

Rewritability into DL-Lite dialects with role inclusions
(where Theorem 1 does not hold) and into EL appear to be
much more challenging and a detailed study remains for fu-
ture work. More generally, at the moment we only fully
understand conservative ALCI-to-ALC-rewritability; in all
other cases, it remains to determine the optimal size of rewrit-
ings, the complexity of computing them, as well as tight
bounds for the complexity of deciding rewritability. Based
on the resulting algorithms, it would be of great interest to
study conservative rewritability in practice and, in particular,
determine the rewritability status of real-world ontologies.
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A Proofs for Section 2
We prove an extension of Theorem 1 that covers DL-Litehorn
as well.

Theorem 12 Let L be a DL reflecting disjoint unions, T an
L TBox, and let L′ ∈ {ALCQ,ALCI, ALC, DL-Litehorn}.
If T is m-conservatively (or s-conservatively) L′-rewritable,
then T has a m-conservative (or, respectively, s-conservative)
L′-rewriting not using role names outside sig(T ).

Proof. The proof forALC is given in the paper and the proofs
for ALCQ and ALCI are straightforward extensions of the
proof for ALC. Thus, we give the proof for DL-Litehorn.
Let T ′ be a DL-Litehorn-rewriting (it does not matter whether
model or s-conservative) of T using fresh role names. De-
fine T ′′ as follows: introduce for every role name r ∈
sig(T ′)\sig(T ) fresh concept namesA∃r.> andA∃r−.>. De-
note by D∗ the result of replacing any basic concept ∃s.> in
D by A∃s.>. Define T ′′ by taking

• C∗ v D∗ for all C v D ∈ T ′;
• A∃s.> v ⊥ whenever ∃s.> occurs in T ′, s does not

occur in T , and ∃s.> is not satisfiable in a model of T ′.
We show that T ′′ is an m-conservative (respectively, s-
conservative) DL-Litehorn-rewriting of T without additional
role names.

It is sufficient to show that T ′′ |= T . Assume this is not
the case. Let I be a model of T ′′ which is not a model of
T . We may assume that rI = ∅ for all r 6∈ sigR(T ). Now
define J as follows: for every d ∈ ∆I and ∃r.> ∈ sub(T ′)
such that d ∈ AI∃r.> take a universal model Id,∃r.> of T ′ and
∃r−.> satisfying ∃r−.> in its root ed,∃r.>. Now define J by
taking I and connecting d to ed,∃r.> using r. One can show
the following:

For all d ∈ ∆I and all C ∈ sub(T ′): d ∈ (C∗)I iff d ∈ CJ .

It follows that J is a model of T ′. Clearly, J refutes T
since I refutes T . We have derived a contradiction to the
assumption that T ′ |= T . o

B ALCI to ALC Rewritability
We prove Theorem 2 in a number of steps.

Theorem 13 An ALCI TBox T is m-conservatively ALC-
rewritable iff T is preserved generated subinterpretations.
Moreover, if T is m-conservatively ALC-rewritable, then T †
is a model-conservative ALC-rewriting.

Proof. We show the following:

1. If an ALCI TBox T is m-conservatively ALC-
rewritable, then T is preserved under generated subin-
terpretations;

2. If anALCI TBox T is preserved under generated subin-
terpretations, then T † is a m-conservative rewriting of
T .

1. Assume that T ′ is a m-conservative ALC-rewriting of
T . By Theorem 1, we can assume that all role names in T ′
also occur in T . Assume for a proof by contradiction that

T is not preserved under generated subinterpretations. Then
there is a model J of T and a generated subinterpretation I
of J that is not a model of T . We also have a model J ′ of T ′
such that J =sig(T ) J ′. Let I ′ be the restriction of J ′ to ∆I .
Since all role names in T ′ also occur in T , we may assume
that rJ

′
= ∅ for all roles r that are not in T . Consequently, I ′

is a generated subinterpretation of J ′ and, therefore, a model
of T ′. We have I ′ =sig(T ) I, and so I is a model of T , which
is a contradiction.

2. Suppose T is preserved under generated subinterpreta-
tions. We show that T † is a m-conservative rewriting of T
(Claim 2 below). We first show an auxiliary claim. An inter-
pretation I is called proper if r̄I = {(d, e) | (e, d) ∈ rI},
for all fresh role names r̄, and BI∃r.C = (∃r.C)I , for all fresh
concept names B∃r.C .

Claim 1. A proper interpretation is a model of T iff it is a
model of T †.
Proof sketch. Let I be proper. It is not hard to show that
CI = (C])I for all C ∈ sub(T ). This makes both the ‘if’
and the ‘only if’ directions easy to verify.

Claim 2. An interpretation I is a model of T iff there exists
a model I ′ of T † such that I =sig(T ) I ′.
Proof. (⇒) Let I be a model of T . Extend I to an interpre-
tation I ′ by setting BI

′

∃r.C = (∃r.C)I for every fresh concept
name B∃r.C and r̄I

′
= (r−)I for every fresh role name r̄.

Then I ′ is proper and, by Claim 1, a model of T †. Moreover,
we clearly have I =sig(T ) I ′.

(⇐) Let I ′ be a model of T † such that I =sig(T ) I ′. Ex-
tend I ′ by setting r̄I

′
= r̄I

′ ∪ {(d, e) | (e, d) ∈ rI
′} for

every fresh role name r̄, and denote the extended interpreta-
tion by I ′′. It can be verified that I ′′ is still a model of T †.
As an example, consider the CI C] v ∀r̄.B∃r.C . Assume that
(d, e) ∈ r̄I

′′ \ r̄I′ and d ∈ (C])I
′′

. Then d ∈ (C])I
′
. It

suffices to show that e ∈ BI′∃r.C , which follows from the facts
that (e, d) ∈ rI′ and I ′ |= ∃r.C] v B∃r.C . We also note that
I =sig(T ) I ′′.

We now further modify I ′′ to an interpretation J . Let I0

be the disjoint copy of I ′′ in which every d ∈ ∆I
′′

is re-
named to d′. Then J is constructed by starting with the dis-
joint union of I ′′ and I0 and then

1. replacing each edge (d, e) ∈ r̄J such that d, e ∈ ∆I
′′

and (e, d) /∈ rJ with the two edges (e′, d) ∈ rJ and
(d, e′) ∈ r̄J ;

2. for each edge (d′, e′) ∈ r̄J such that d′, e′ ∈ ∆I0 and
(e′, d′) /∈ rJ , adding the edge (e′, d′) ∈ rJ .

It can be verified that J is still a model of T †. Consequently,
J is proper and, by Claim 1, a model of T . Now let J ′ be
obtained fromJ by setting sJ

′
for all role names s that do not

occur in T (including the role names r̄). Clearly, J ′ is also
a model of T . Moreover, I =sig(T ) I ′ and the construction
of J imply that I is a generated submodel of J ′. Since T is
preserved under generated subinterpretations, we have I |=
T as required. o



We now show that s-conservative ALCI-to-ALC
rewritability coincides with m-conservative ALCI-to-ALC
rewritablity. We employ robustness under replacement of
ALCI, which can be formulated as follows [Konev et al.,
2009, Theorem 4] (we formulate the result for the pair
ALCQI and ALCQ as well as we need it later):

Theorem 14 Let T ′ be a s-conservativeALC-rewriting of an
ALCI TBox T not using role names not in sig(T ). Let T ′′
and C v D be in ALCI with sig(T ′′, C v D) ∩ (sig(T ′) \
sig(T )) = ∅. Then T ′∪T ′′ |= C v D iff T ∪T ′′ |= C v D.

The same result holds if ALCI and ALC are replaced by
ALCQI and ALCQ, respectively.

In what follows we denote by sigR(T ) the set of role names
in T .
Theorem 15 An ALCI-TBox T is s-conservatively ALC-
rewritable iff T is m-conservatively ALC-rewritable.
Proof. For a concept name A, we define inductively a rela-
tivization C|A of an ALCI concept C to A by taking:

B|A = B uA,
(¬C)|A = A u ¬C|A,

(C uD)|A = C|A uD|A,
(∃r.C)|A = A u ∃r.(A u C|A).

For an interpretation I with AI 6= ∅, we denote by I|A the
subinterpretation of I with domain AI . We employ the fol-
lowing easily proved

Claim. For any interpretation I, any ALCI concept C and
any concept name A not in C, the following holds:
• I|A is a generated subinterpretation of I iff I |= A v
∀r.A for all r ∈ NR;
• for all d ∈ ∆I , we have d ∈ (C|A)I iff d ∈ CI|A .

Now suppose T has a s-conservative ALC-rewriting T ′, but
is not preserved under generated subinterpretations. By Theo-
rem 1, we may assume that T ′ uses no additional role names.
Then we have for A ∈ NC \ sig(T ):

T ∪ {A v ∀r.A | r ∈ sigR(T )} 6|= C|A v D|A,
for some (C v D) ∈ T . Thus, by Theorem 14,

T ′ ∪ {A v ∀r.A | r ∈ sigR(T )} 6|= C|A v D|A.
Take a model I of T ′ ∪ {A v ∀r.A | r ∈ sigR(T )} such
that I 6|= C|A v D|A. Then I|A is a model of T ′ such that
C v D, which is impossible. o

C ω-saturated interpretations and unfoldings
We analyze the relevant properties of ω-saturated interpreta-
tions and unfoldings of interpretations. Given a DL L and a
signature Σ, a LΣ-type t is a maximal satisfiable subset of the
set of LΣ-concepts. For an interpretation I and d ∈ ∆I we
set

tLΣ

I (d) = {C ∈ LΣ | d ∈ CI}
Let r be a role and let t, t′ be LΣ-types. We write t  LΣ

r t′

if

• ∀r.C ∈ t implies C ∈ t′ for all ∀r.C ∈ LΣ;
• ∀r−.C ∈ t′ implies C ∈ t for all ∀r−.C ∈ LΣ.
An interpretation I is counting LΣ-saturated for a role r if

for all d ∈ ∆I and all LΣ-types t: if (≥ n r C) ∈ tLΣ

I (d)
for all C ∈ t then there exist at least n many d′ ∈ ∆I with
(d, d′) ∈ rI and tLΣ

I (d′) = t (in DLs without qualified num-
ber restrictions we use (≥ 1 r C) as an abbreviation for ∃r.C
here).
Lemma 3 Every ω-saturated interpretation is counting LΣ-
saturated for every role r.
Lemma 3 has a number of consequences we use throughout
this paper:
• ifL isALCQ and r is a role name, then any two nodes in

an interpretation I that satisfy the same LΣ-type, have
for any given LΣ-type t either both infinitely many r-
successors satisfying t or have exactly the same number
of r-successors satisfying t.
• if L isALCQI, then this holds for inverse roles as well.

We also use the fact that standard unfoldings of inter-
pretations into tree interpretations preserve counting LΣ-
saturatedness. Here, given an interpretation I, the tree-
unfolding I∗ of I at d0 has as its domain the set ∆I

∗
of all

words d0r1d1 · · · rndn such that the ri are roles and
• (di, di+1) ∈ rIi+1 for all i < n;

• (di−1, r
−
i ) 6= (di+1, ri+1) for all i < n.

and (tail(w) denotes the last element of word w):

• for every concept name A, w ∈ AI∗ iff tail(w) ∈ AI ;

• for every role name s, (w,wrd) ∈ sI∗ iff r = s is a role
name and (tail(w), d) ∈ rI or r = s− is an inverse role
and (d, tail(w)) ∈ rI .

D ALCQI to ALCQ-Rewritability
We present the proof of Theorem 4.

We first define the rewriting T ′ in more detail. Assume an
ALCQI TBox T is given. We assume all qualified number
restrictions are of the form (≤ n r C), with r a role. We
use ∃r.C, ∀r.C, (≥ n r C) as abbreviations. Introduce for
each ALCQIsig(T ) concept D = (≤ n r− D′) with r a role
name a fresh concept name BD and denote by Σ the set of all
concept and role names in sig(T ) and the additional BD. For
any concept C in ALCQIsig(T ) we denote by C↑ the result
of replacing any top-most occurrence of D = (≤ n r− D′)
in C by BD. Conversely, by C↓ we denote the result when
all BD are replaced by D. For any type t we set

t↑ = {D↑ | D ∈ t}
and similarly for t↓.

Now define T ′ as the set of CIs C↑ v D↑ such that T |=
C v D.

We show that T ′ is a model-conservative rewriting of T if
T is preserved under inverse p-morphisms. Clearly for ev-
ery model I of T there exists a model J of T ′ such that
J =sig(T ) I. For the proof of T ′ |= T the following rela-
tionship between T and T ′ is fundamental.



Lemma 4 Let t1 and t2 be ALCQIsig(T )-types. Then the
following hold:

• t1 is satisfiable relative to T iff t↑1 is satisfiable relative
to T ′;
• for all roles r:

t1  
ALCQIsig(T )
r t2 ⇔ t↑1  

ALCQΣ
r t↑2

Let t1 and t2 be ALCQΣ-types. Then the following hold:

• t1 is satisfiable relative to T ′ iff t↓1 is satisfiable relative
to T ;
• for all roles r:

t1  
ALCQΣ
r t2 ⇔ t↓1  

ALCQIsig(T )
r t↓2

We now prove a series of lemmata that allow us to prove
that T ′ |= T .

Lemma 5 Assume I is a model of T ′ such that (∗) for every
d ∈ ∆I and ALCQΣ-type t that is satisfiable relative T ′
with

tALCQΣ

I (d) ALCQΣ

r− t

there exists exactly one d′ with (d′, d) ∈ rI such that
tALCQΣ

I (d′) = t. Then there exists a model J of T such
that I is a generated subinterpretation of J .

Proof. For each d ∈ ∆I consider the type td = tALCQΣ

I (d)
and take an unfolding of an ω-saturated model Id of T satis-
fying t↓d in a node dt. Remove from Id
• all rId -successors (together with their subtrees) of dt,

for any role name r;
• for each role name r and eachALCQIsig(T )-type t with

t↓d  
ALCQIsig(T )

r− t

exactly one rId -predecessor (together with its subtree)
of dt satisfying t.

Denote the resulting interpretation by I ′d and hook it to I by
identifying dt and d. The resulting interpretation, J , is a
model of T . To see this it is sufficient to show the following:

Claim 1. For every D = (≤ n r C) and d ∈ ∆I : d ∈ DJ
iff d ∈ BID.

The proof of Claim 1 is straightforward and uses Lemma 3
and Lemma 4. o

The following result shows that the assumption T ′ 6|= T leads
to a contradiction if T is preserved under inverse counting p-
morphisms.
Lemma 6 Assume T ′ 6|= T and T is preserved under in-
verse counting p-morphisms. Then there exists a model of T ′
satisfying (∗) that is not a model of T .
Proof. Assume T ′ 6|= T . By taking an ω-saturated witness
and unfolding it we obtain a model I of T ′ that is not a model
of T such that
• I is counting ALCQΣ-saturated for every role r;
• I is counting ALCQIsig(T )-saturated for every role r.

We can next ensure that I satisfies the following version (∗∞)
of (∗):

(∗∞) for every d ∈ ∆I and ALCQΣ-type t that is satisfi-
able relative T ′ with

tALCQΣ

I (d) ALCQΣ

r− t

there exist infinitely many d′ with (d′, d) ∈ rI such that
tALCQΣ

I (d′) = t.

For each d ∈ ∆I consider the type td = tALCQΣ

I (d) and
take an unfolding of an ω-saturated model Id of T satisfying
t↓d in a node dt. Remove from Id all rId -successors (together
with their subtrees) of dt, for any role name r. Extend the
resulting interpretation by setting BIdD = DId and hook it to
I by identifying dt and d. The resulting interpretation I ′ is a
model of T ′ but still not a model of T since I is a generated
subinterpretation of I ′. We can do the same construction ω
times and obtain an interpretation with (∗∞).

It is now straightforward to manipulate the interpretation
in such a way that in addition the following holds:

(=t) any two nodes satisfying the same ALCQΣ-types
have exactly the same number of r-successors satisfying a
given ALCQΣ-type.

We are now in the position to define an interpretation Ip
satisfying (∗) such that there is a counting p-morphism from
I to Ip. We may assume that for

<=
⋃
r a role

rI

the graph (∆I , <) is a tree (of possibly uncountable outde-
gree) with root d0 and rI ∩ sI = ∅ for any two distinct roles
r, s. Denote by ∆I=n the nodes of distance n from d0 and by
∆I≤n the nodes of distance at most n from d0.

We define Ip inductively. Let Γ0 = {d0}, and assume
Γn ⊆ ∆I≤n has been defined. We include Γn in Γn+1 and, in
addition, for each d ∈ Γn ∩∆I=n and role name r we include
in Γn+1

• all d′ with d < d′ and (d, d′) ∈ rI ;
• for each ALCQΣ-type t with

tALCQΣ

I (d) ALCQΣ

r− t

exactly one d′ with (d′, d) ∈ rI and tALCQΣ

I (d′) = t. If
there exists such a d′ with d′ < d, then d′ is contained in
Γn already and no additional d′ is added to Γn+1.

Now let Ip be the subinterpretation of I induced by Γ =⋃
n<ω Γn. Clearly it still satisfies T ′. To show that it does

not satisfy T , we construct a bounded counting p-morphism
f from I onto Ip. We construct f as the union

⋃
n≥0 fn of

mappings fn with domain ∆I≤n as follows: We set f0(d0) =

d0. Assume fn has been defined on ∆I≤n and assume fn has
the following properties for all d, d′ ∈ ∆I≤n:

• tALCQΣ

I (d) = tALCQΣ

I (fn(d));

• if (d, d′) ∈ rI , then (fn(d), fn(d′)) ∈ rIp .



For each d ∈ ∆I=n and role name r let fr,d be a bijection from
the rI-successors of d onto the rIp -successors of fn(d) such
that tALCQΣ

I (e) = tALCQΣ

I (fr,d(e)) for all e. Note that all
rI-successors of fn(d) are in ∆Ip and that if fn(d′) has been
defined already for an rI-successor d′ of d, then d′ < d (and
so there is at most one such d′) and we set fr,d(d′) = fn(d).

For each r−-successor d′ of d there exists by construc-
tion exactly one r−-successor e of fn(d) in ∆Ip such that
tALCQΣ

I (d′) = tALCQΣ

I (e). Let fr−,d(d′) = e. We set

fn+1 = fn ∪
⋃

d∈∆
I1
≤n

fr,d ∪ fr−,d.

Finally, let f =
⋃
n≥0 fn. o

We have thus established the following result.
Theorem 16 If T is preserved under inverse counting p-
morphisms, then T ′ is a m-conservative rewriting of T .

Our aim now is to establish the following result.
Theorem 17 Let T be an ALCQI TBox. If T
is s-conservatively ALCQ-rewritable, then T is m-
conservatively ALCQ-rewritable.
Let T ∗ be a s-conservative ALCQ-rewriting of T . We may
assume that T ∗ uses no fresh role names. To prove Theo-
rem 17 it is sufficient to prove that T ′ |= T . We show this by
proving the following:
• T is preserved under generated subinterpretations;
• Lemma 5 still holds;
• Assume T ′ 6|= T . Then there exists a model of T ′ satis-

fying (∗) that is not a model of T .
Point 1 can be proved using Theorem 14. Point 2 holds be-
cause in the proof of Lemma 5 only preservation under gen-
erated subinterpretations of T was used. For Point 3 we con-
sider the proof of Lemma 6. We have a counting p-morphism
f from the model I of T ′ to Ip, where I 6|= T . Thus, if we
can show

(†) there exists a model I∗p of T ∗ such that I∗p =sig(T ) Ip
we are done: using f we obtain that there exists a model

I∗ of T ∗ such that I∗ =sig(T ) I. But then, since T ∗ |= T ,
we have that I is a model of T , a contradiction. To prove
(†), observe that the proof of Lemma 5 show that there exists
a model J of T that is counting ALCQIsig(T )-saturated for
every role r such that Ip is a generated subinterpretation of
J . Since T ∗ is preserved under generated subinterpretations
it is therefore sufficient to prove:
Lemma 7 Let J be a tree-model of T that is counting
ALCQIsig(T )-saturated for every role r. Then there exists
a model J ∗ to T ∗ such that J ∗ =sig(T ) J .

Proof. Let d be a root of J . The type tALCQIΣ

J (d) is satis-
fiable relative to T ∗. Thus we find an ω-saturated model J ′
of T ∗ such that J is a subinterpretation of J ′ and for each
d′ ∈ ∆I , tALCQIΣ

J (d) = tALCQIΣ

J ′ (d). We can assume (by
unfolding) that J ′ is a tree-interpretation as well. Now one
can use selective filtration over the subconcepts of T ∗ to con-
struct a J ∗ with the required properties. o

E ALCQ to ALC-rewritability
Lemma 2 An ALC TBox T ′ is a s-conservative rewriting of
an ALCQ TBox T iff T ′ is a m-conservative rewriting of T
over the class of ditree interpretations of finite outdegree.

Proof. (⇐) We have to show that T |= C v D iff T ′ |=
C v D for allALCQ-concepts C,D in the signature sig(T ).
In the ‘if’ direction, T 6|= C v D implies that there is a model
I of T with I 6|= C v D. We can always assume that I is a
ditree interpretation of finite outdegree. Consequently, there
is a directed tree model J of T ′ with I =sig(T ) J . Thus,
J 6|= C v D, and so T ′ 6|= C v D. The converse direction
is similar.

(⇒) Let I be a ditree model of T of finite outdegree with
root d0. We have to show that there is a model J of T ′ with
I =sig(T ) J . For every d ∈ ∆I and i ≥ 0, set

C0
d = u

A∈sig(T ),d∈AI
A u u

A∈sig(T ),d/∈AI
¬A,

Ci+1
d = Cid u u

r∈sig(T ),(d,e)∈rI
(= nd,r,Cie rC

i
e) u

u
r∈sig(T )

∀r. t
(d,e)∈rI

Cie,

where nd,r,C is the cardinality of {(d, e) ∈ rI | e ∈ CI}.
Let ΓI = {Cid0

| i ≥ 0}. One can show that a tree interpre-
tation J satisfies ΓI at the root iff J |=sig(T ) I. Since T ′
is a s-conservative rewriting of T and by compactness, Γd is
satisfiable w.r.t. T ′. Clearly, any ditree model J of T ′ that
satisfies Γd at the root is as required. The converse direction
is similar. o

We split the proof of Theorem 5 into two parts.

Lemma 8 An ALCQ TBox T is s-conservatively ALC-
rewritable iff T is preserved under inverse p-morphisms
over the class of ditree interpretations of finite outdegree.
Moreover, if T is s-conservatively ALC-rewritable (over this
class), then T † is an (infinite) rewriting.

Proof. (⇒) Suppose T has a s-conservative ALC-rewriting
T ′, which only contains fresh concept names, but no fresh
role names. Let I1 and I2 be ditree interpretations of finite
outdegree such that there is p-morphism f from I1 to I2 and
I2 is a model of T . We have to show that I1 is a model of T .
By Lemma 2, there is a model J2 of T ′ with J2 =sig(T ) I2.
Clearly, f is also a p-morphism f from I1 toJ2. By Lemma 1
and since T ′ contains only fresh concept names, we find a
model J1 of T ′ such that J1 =sig(T ) I1. Consequently, I1 is
a model of T .

(⇐) Assume that T is preserved under inverse p-
morphisms on the class of ditree interpretations of finite out-
degree. We show the following, which clearly implies that
T † is an (infinite) ALC-rewriting of T .

1. if T † |= C v D then T |= C v D for all ALCQ
inclusions C v D in sig(T );

2. T † |= T .

To obtain a finite ALC-rewriting of T , it then remains to in-
voke compactness: there is a finite subset T ‡ of T † such that
T ‡ |= T . Clearly, T ‡ is as required.



Proof of Point 1. Assume T 6|= C v D for some ALCQ
inclusion C v D over sig(T ). We find a ditree interpretation
I that is a model of T such that I 6|= C v D. Define I ′
in the same way as I except that BI

′

D = DI for all D = (>
n r C) ∈ sub(T ) and that for d ∈ DI we makeBD1 , . . . , B

D
n

true in distinct r-successor of d in whichC holds. It is readily
checked that I ′ is a model of T †. Thus, T † 6|= C v D.

Proof of Point 2. Assume that T † 6|= T . Take a ditree
interpretation I satisfying T † and refuting T in its root. First
we manipulate I so that it has finite outdegree.

Clearly, we find a subinterpretation I ′ of I of finite outde-
gree that refutes T . We have to be careful, however, to ensure
that it still satisfies T †. In particular, we have to ensure that no
non-bisimilar successor nodes are introduced when removing
nodes from I.

We define I ′ as the limit of a sequence I0, I1, . . . of inter-
pretations:

• Set I0 := I;

• Assume In has been defined. Let ∼n be the Σ-
bisimulation relation on points of level n in In. Let
[d]∼n be the equivalence class of d w.r.t.∼n. Choose for
every D = (> m r C) ∈ sub(T ) and e ∈ DIn of level
n in In, m r-successors d1, . . . , dm ∈ CIn and include
all Idi in In+1. Also, choose for every e ∈ BInD of level
n in In r-successors d′i ∈ (BDi u C)In for 1 ≤ i ≤ m
and include all Id′i in In+1.
Finally, select for every e ∈ [d]∼n and every selected r-
successor f of e for every e′ ∈ [d]∼n an r-successor f ′
of e′ that is Σ-bisimilar to f and include If ′ in In+1 as
well. This concludes the definition of In+1.

Let I ′ be the intersection over all In. I ′ has finite outdegree
and clearly refutes T . It remains to show that it is a model
of T †. The interesting inclusions are u

1≤i≤n
(∃r.(C u Ci u

u
j 6=i
¬Cj)) v BD. To show that these are still true in I ′ it is

sufficient to show that if d, d′ are Σ-bisimilar r-successor of
d in I and are included in ∆I

′
, then they are Σ-bisimilar in

I ′. But this is the case by construction.

We now define an interpretation J as the image of
I ′ under a p-morphism. Let [d] denote the set of all
nodes of the same level as d that are Σ-bisimilar d. The
domain of J consists of all words [d0]r1[d1] · · · rn[dn],
where d0 is the root of I ′ and for all i there exist
ei ∈ [di] and ei+1 ∈ [di+1] such that (ei, ei+1) ∈
rI
′

i+1. Set [d0]r1[d1] · · · rn[dn] ∈ AJ iff dn ∈ AI
′

and
set ([d0]r1[d1] · · · rn[dn], [d0]r1[d1] · · · rn[dn]rn+1[dn+1]) ∈
rJ iff r = rn+1 and there exists en ∈ [dn] and en+1 ∈ [dn+1]

such that (en, en+1) ∈ rI
′
. This defines J . Now one can

show

• f : d 7→ [d] is a p-morphism from I ′ to J ;

• in J , any Σ-bisimilar r-successors of a node are identi-
cal;

• J |= T †;
• J |= T .

The first three points are straightforward. Now for the final
Point: we show by induction that BJD = DJ for all D =

(> n r C) ∈ sub(T ). If d ∈ BJD , then d ∈ DJ holds
since J is a model of T † and the the first set of inclusions
in T †. Conversely, assume d ∈ DJ . Then d has n distinct
r-successors d1, . . . , dn ∈ CJ . None of them is Σ-bisimilar,
by Point 2. Thus, there are concepts C1, . . . , Cn in ALC and
using symbols from Σ such that di ∈ CJ

′

j iff j = i. By the
final set of inclusions in T † we have d ∈ BJD .

We obtain that I ′ is a model of T since J is a model of T .
But that is a contradiction. o

Theorem 5 The following conditions are equivalent for any
ALCQ TBox T :

1. T is s-conservatively ALC-rewritable;
2. T is preserved under inverse p-morphisms;
3. T † is a s-conservative rewriting of T .

Proof. It remains to prove (1) ⇒ (2). Suppose an ALCQ
TBox T is s-conservatively ALC-rewritable. Consider in-
terpretations I1 and I2 such that I2 |= T and there is a p-
morphism f from I1 to I2. We have to show that I1 |= T .
Let I†1 and I†2 be the unfoldings of I1 and I2, respectively.
Note that Ii |= T iff I†i |= T and that we can lift f to a
p-morphism f† from I†1 to I†2 . It is therefore sufficient to
show I†1 |= T . By Theorem 8, T † |= T , and so I†1 |= T if
there exists a model J1 of T † such that J1 =sig(T ) I†1 . By
Lemma 1, such a model J1 exists if there exists a model J2

of T † with J2 =sig(T ) I†2 . But the latter is straightforward
using that I†2 is a model of T . o

E.1 Proof of Theorem 7
We start with a sketch of the proof of Theorem 7 and then give
a detailed proof. Assume, for a proof by contradiction, that T
is anALCQ TBox which is not preserved under global bisim-
ulations but has a model-conservative ALC-rewriting T ′. By
Theorem 1, we may also assume that T ′ contains no new role
names. It follows that there is a model I of T and an inter-
pretation J , which is not a model of T , such that I and J
are globally bisimilar. Then one can show the following:
(∗) there exist ditree interpretations I and J that a globally

bisimilar such that I is a model of T , J is not a model
of T , and, for any d ∈ ∆I , there are no distinct d1, d2

with (d, d1) ∈ rI and (d, d2) ∈ rI such that (I, d1) and
(I, d2) are bisimilar.

Observe first that (∗) leads to a contradiction. It is easy to
see that any bisimulation S witnessing (∗) gives rise to a p-
morphism f from J to I. Indeed, we may assume that S is
a level-bisimulation in the sense that if (d, e) ∈ S, then the
distance from d to the root of I is the same as the distance of
e to the root of J . The condition for I in (∗) implies then that
S is a function.

We now apply Lemma 1 to the p-morphism f from J to
I. Since I is a model of T , we find I ′ =sig(T ) I such that



I ′ is a model of T ′. Clearly, f is still a p-morphism from J
to I ′. By Lemma 1, there exists a model J ′ of T ′ such that
J ′ =sig(T ) J . But then J is a model of T , and we have
obtained a contradiction.

To illustrate the idea behind property (∗), consider the in-
terpretations I and J in the picture below, assuming that I is
a model of an ALCQ TBox T .

a b

I
r r r

J
ρu1u2

ρu1u3
ρu2u3

u1 u2 u3

I∗ . . .

. . .

r r rr rr

The model I does not satisfy (∗) because (I, a) and (I, b) are
bisimilar. To find a model of T for which (∗) holds, we con-
struct the interpretation I∗ shown on the right-hand side of
the picture, where each pair of distinct ui, uj from an infinite
set U = {u1, u2, . . . } has its own ‘r-root’ ρuiuj . Clearly,
I∗ is a model of T , and so there exists J ∗ =sig(T ) I∗ such
that J ∗ is a model of the ALC TBox T ′. Now, since U is
infinite, there exist two ui, uj ∈ U that are instances in J ∗
of the same concept names in T ′. The restriction of J ∗ to
{ρui,uj , ui, uj} is a model of T ′, which is sig(T ′)-bisimilar
to the restriction I ′ of J ∗ to {ρui,uj , ui}. Thus I ′ is a model
of T satisfying (∗).

We now come to the detailed proof of Theorem 7. A path p
in an interpretation I is a word d0r0 · · · rn−1dn such that di ∈
∆I , ri ∈ NR, and (di, di+1) ∈ rI for all i < n. By tail(p) we
denote the final element of p. If I is a ditree interpretation,
then for every d ∈ ∆I there exists a unique path p starting
from the root ρI of p such that tail(p) = d. We denote this
path by pI(d). Let I andJ be ditree interpretations. A global
bisimulation S between I and J is a level bisimulation if
(d, d′) ∈ S implies that the length of pI(d) equals the length
of pI(d′). For d ∈ ∆I we denote by Id the interpretation
rooted at d.

Lemma 9 Let I and J be globally bisimilar interpretations
such that I is a model of an ALCQ TBox T and J is not a
model of T . Then there are ditree interpretations I ′ and J ′
such that I ′ is a model of T , J ′ is not a model of T and there
is a level bisimulation S between I ′ and J ′. Moreover, we
can assume that the outdegrees of I∗ and J ∗ are finite.

Proof. Assume (I, d) and (J , e) are globally bisimilar and
e ∈ CJ \DJ for some C v D ∈ T . We unfold (I, d) and
(J , e) to I∗ and J ∗ as follows:

• ∆I
∗

is the set of all paths in I starting at d;

• p ∈ AI∗ if tail(p) ∈ AI ;

• (p, p · r · f) ∈ rI∗ if (tail(p), f) ∈ rI .
J ∗ is defined analogously with paths in J starting at e. It is
readily checked that I∗ and J ∗ satisfy the conditions of the
lemma except the bound on the outdegree. Let S be the level
bisimulation.

We now define subinterpretations of I∗ and J ∗ that have
finite outdegree. The construction is by selective filtrations.
We construct pairs (X,Y ), where X ⊆ ∆I

∗
and Y ⊆ ∆J

∗
.

• We start with X = {ρI∗} and Y = {ρJ ∗};

• Assume (X,Y ) has been defined. Let (d, e) ∈ S with
d ∈ X and e ∈ Y such that no successor of d is in
X . We find a subseteq X ′ of the set of successors of d
with |X ′| ≤ mr such that whenever d ∈ (> n r C)I

∗

and (> n r C) ∈ sub(T ), then there are at least n r
successors of d in CI

∗
. Similarly we find such a set

Y ′ of successors of e. Choose for every d′ ∈ X ′ with
(d, d′) ∈ rI∗ an e′ with (e, e′) ∈ rJ ∗ such that (d′, e′) ∈
S and insert it into Y ′′. Also, choose for every e′ ∈ Y ′
with (e, e′) ∈ rJ

∗
a d′ with (d, d′) ∈ rI

∗
such that

(d′, e′) ∈ S and insert it into X ′′. Now set X := X ∪
X ′ ∪X ′′ and Y = Y ∪ Y ′ ∪ Y ′′.

Let I ′ be the restriction of I∗ to X and J ′ be the restriction
of J ∗. It is readily checked that I ′,J ′ are as required. o

Theorem 18 AnALCQ-TBox T is model-projectivelyALC-
rewritable iff it is preserved under global bisimulations (and
thus iff it is equivalent to an ALC TBox).
Proof. Assume T is not preserved under global bisimula-
tions and T ′ is a model-projective ALC rewriting of T . By
Lemma 9, there exist ditree interpretations I and J , both of
finite outdegree, such that I is a model of T , J is not a model
of T , and there is a level bisimulation S between I and J .
We first show the following

Claim 1. There exists a ditree interpretation I ′ that is a model
of T and is globally bisimilar to I such that for any two
bisimilar (I ′, d) and (I ′, d′) with d, d′ points at the same level
in I ′ the interpretations I ′d and I ′d′ are isomorphic.

Proof of Claim 1. We define a sequence I0, I1, . . . of ditree
interpretations as follows:
• I0 := I;
• Assume In has been defined. Let ∼n be the minimal

bisimulation relation on points of level n in In. For any
equivalence class [d]∼n = {d1, . . . , dm} with respect
to ∼n and any role name r in sigR(T ), take m disjoint
copies I1

e , . . . , Ime of every Ie with e an r-successor of
some dj ∈ [d]∼n and attach Iie to di, for all 1 ≤ i ≤ m,
by connecting di and the the root of Iie using r. We as-
sume Ije = Ie. Let In+1 be the resulting interpretation.

Define I ′ as the union of all In (note that In is a subinter-
erpretation of In+1 since we assume Ije = Ie). It is readily
checked that that for any two bisimilar (I ′, d) and (I ′, d′)
with d, d′ points at the same level in I ′ the interpretations I ′d
and I ′d′ are isomorphic.

To prove that I ′ is a model of T observe that there is a
p-morphism f from I ′ to I. Since T ′ is a model conserva-
tive ALC-rewriting of T , there exists a model J of T ′ with
J =sig(T ) I. Thus, by Lemma 1, there exists a model J ′ of
T ′ with J ′ =sig(T ) I ′. Thus I ′ is a model of T . This finishes
the proof of Claim 1.

Claim 2. There exists a ditree interpretation I ′′ which is a
model of T and is globally bisimilar to I ′ such that there
do not exist two distinct globally bisimilar Id1

and Id2
with

d1, d2 r-successors of some d in I ′′.
We construct I ′′ as the limit of a sequence I ′0, I ′1, . . . de-

fined as follows:



• I ′0 := I ′;
• Assume I ′n has been defined. Consider a lowest level oc-

currence of distinct globally bisimilar Id1
and Id2

with
d1, d2 r-successors of some d in I ′n. (If this situation
does not occur, set I ′n+1 := I ′n.) Take such a d with r-
successors d1, . . . , dm, m > 1, such that Id1

, . . . , Idm
are globally bisimilar. By Claim 1 Id1

, . . . , Idm are
isomorphic. We define I ′n+1 as the result of removing
Id2 , . . . , Idm from I ′n.

We show that if I ′n is a model of T , then I ′n+1 is a model of
T .

Let U be a set of cardinality κ > 2ℵ0 and take for every
u ∈ U a copy Iu of the interpretation Id1

. We assume that
the Iu, u ∈ U , are mutually disjoint. For any m-element
subset W = {w1, . . . , wm} of U define an interpretation IW
that is obtained from I ′n by replacing the subinterpretations
Id1 , . . . , Idm by Iw1 , . . . , Iwm , respectively. We assume that
the IW are mutually disjoint except for the nodes in ∆Iu ,
u ∈ U . Note that all IW are isomorphic to I ′n. Let J be
the union of all IW . The point generated subinterpretations
of J are all isomorphic to generated subinterpretations of I ′n.
ThusJ is a model of T since I ′n is a model of T . Hence there
exists a model J ′ of T ′ such that J ′ =sig(T ) J . As U has
cardinality > 2ℵ0 , there is a set W0 = {w1, . . . , wm} ⊆ U
of cardinality m such that the restrictions of J ′ to ∆Iwi are
isomorphic, for all wi ∈W0. Let I ′W0

be the restriction of J ′
to ∆IW0 . The resulting interpretation I ′′W0

after removing all
points in Iw2 , . . . , Iwm from I ′W0

is clearly again a model of
T ′ and I ′′W0

=sig(T ) I ′′n . Thus I ′′n is a model of T .

Define I ′′ as the limit of the sequence I ′0, I ′1, . . .. It is
readily checked that I ′′ is as required. This finishes the proof
of Claim 2.

The interpretation I ′′ obtained in Claim 2 is globally
bisimilar to J . So we have a level bisimulation S between J
and I ′′. From the condition for I ′′ that no node has distinct
bisimilar r-successors we obtain that S is a function, thus a
p-morphism. By Lemma 1 there exists a model J ′ of T ′ such
that J ′ =Σ J . Thus, J is a model of T and we have derived
a contradiction. o

E.2 Proofs of 2EXPTIME upper bounds for ALCQ
to ALC-rewritability

We show that forALCQ TBoxes all three types of rewritabil-
ity into ALC TBoxes can be decided in 2EXPTIME. This
proves Theorem 6 and shows the claim that equivalent and
model-conservative ALCQ to ALC-rewritability can be de-
cided in 2EXPTIME.
Theorem 19 For ALCQ TBoxes the following holds: equiv-
alent ALC-rewritability, m-conservative ALC-rewritabi-
lity, and s-conservative ALC-rewritability are decidable in
2EXPTIME.
Proof. We employ the model-theoretic criteria and use type
elimination procedures.

First we show that it is decidable in 2ExpTime whether a
ALCQ TBox is preserved under global bisimulations. As-
sume a ALCQ TBox T is given. The 2ExpTime algorithm

deciding preservation under global bisimulations is as fol-
lows. Consider the set tp of all types over sub(T ) and its
subset tp(T ) of all types in tp that are satisfiable w.r.t. T .
The following rules are applied recursively to the set E of el-
ements of 2tp × 2tp(T ):

(A) Remove (T, T ′) from E if not all t ∈ T ∪ T ′ contain the
same concept names.

(EX) Remove (T, T ′) from E if there is a role name r such that
there are no interpretations It, t ∈ T ∪T ′, and dt ∈ ∆It

such that

– all It, t ∈ T ′, are models of T ;
– dt satisfies t, for all t ∈ T ∪ T ′;
– for each t0 ∈ T ∪ T ′ and (dt0 , et0) ∈ rIt0 there

exist (dt, et) ∈ rIt for t ∈ (T ∪ T ′) \ {t0}, such
that there exists (S, S′) ∈ E with S the set of types
realized by the nodes et, t ∈ T , and S′ the set of
types realized by the nodels et, t ∈ T ′.

Denote by E0 the remaining set. One can show that E0 is the
set of all (T, T ′) such that there exist models It, t ∈ T ∪ T ′,
and dt ∈ ∆It such that

• all It, t ∈ T ′, are models of T ;

• dt satisfies t, for all t ∈ T ∪ T ′;
• all (It, dt), t ∈ T ∪ T ′, are bisimilar.

It follows that T is not preserved under global bisimulations
iff there exists ({t}, {t′}) ∈ E0 such that t 6∈ tp(T ).

Now we show that it is decidable in 2ExpTime whether
an ALCQ TBox T is preserved under inverse sig(T )-
morphisms. Assume an ALCQ TBox T is given. The 2Exp-
Time algorithm is as follows. The following rules are applied
recursively to the set E of all elements of 2tp × tp(T ):

(A) Remove (T, s) from E if not all t ∈ T ∪ {s} contain the
same concept names.

(EX) Remove (T, s) from E if there is a role name r such that
there are no interpretations It, t ∈ T∪{s}, and dt ∈ ∆It

such that

– Is is a model of T ;
– dt satisfies t, for all t ∈ T ∪ {s};
– for each t ∈ T there is a function ft from the set of
rIt -successors of dt onto the set of rIs -successor
of ds such that for each rIs -successor es of ds there
exists (S, s′) ∈ E such that s′ is the type of es and
S is the set of types realized in

⋃
t∈T f

−1
t (es).

Denote by E0 the remaining set. One can show that E0 is the
set of all (T, s) such that there exist models It, t ∈ T ∪ {s},
and dt ∈ ∆It such that

• Is is a model of T ;

• dt satisfies t, for all t ∈ T ∪ {s};
• there are p-morphisms ft from each It onto Is with
ft(dt) = ds.

It follows that T is not preserved under inverse p-morphisms
iff there exists ({t}, s) ∈ E0 such that t 6∈ tp(T ). o



F ALCQI to ALCI rewritability
Given a ALCQI TBox T , the construction of the ALCI
TBox T † extends the definition of T † from the analysis of
ALCQ to ALC rewritability by introducing concept names
BD for qualified number respiction D with inverse roles as
well. No other changes are required. We aim to prove the
following
Theorem 20 Let T be anALCQI TBox. Then the following
conditions are equivalent:

1. T is s-conservatively ALCI-rewritable;
2. T is preserved under inverse i-p-morphisms.
3. T † is a s-conservative rewriting of T .

The proof is given by a sequence of lemmas. First ob-
serve that we have the following fundamental property of i-
p-morphisms.
Lemma 10 Suppose T is anALCI TBox, Σ contains all role
names in sig(T ), and there is a Σ-i-p-morphism f from an
interpretation I to some model I ′ of T . Then there is a model
J of T such that J =Σ I.

The following lemma proves the direction (2) ⇒ (3) of
Theorem 20.
Lemma 11 If T is preserved under inverse i-p-morphisms,
then T † is a s-conservative ALCQ-rewriting of T .
Proof. Let I be a model of T † that is not a model of T .
We may assume that I is ω-saturated. Define an equivalence
relation ∼ on ∆I by setting d ∼ d′ iff (I, d) is Σ-i-bisimilar
to (I, d′). Denote by [d] the equivalence class of d ∈ ∆I .
Define an interpretation J as follows:
• ∆J = {[d] | d ∈ ∆I};
• [d] ∈ AJ iff d ∈ AI ;
• ([d], [d′]) ∈ rJ iff there are e ∈ [d] and e′ ∈ [d′] such

that (e, e′) ∈ rI .
One can show that f is a Σ-i-p-morphism from I to J . Thus,
J is a model of T † that satisfies each ALCIΣ-type t at most
once. The following can now we proved in a straightforward
way using the construction of T †.
Claim. If a model of T † satisfies eachALCIΣ-type t at most
once, then it is a model of T .

It follows that J is a model of T and, therefore, by preser-
vation of T under inverse i-p-morphisms I is a model of T .
We have obtained a contradiction. o

We note the following analogue of Lemma 7.
Lemma 12 An ALCI TBox T ′ is a s-conservative rewriting
of an ALCQI TBox T iff T ′ is a m-conservative rewriting
of T over the class of tree-interpretations that are counting
ALCQIsig(T )-saturated for every role r (in particular over
the class of tree-interpretations of bounded outdegree).
Proof. The proof of (⇐) follows immediately from the fact
that if T 6|= C v D for anALCQI TBox T and anALCQI-
CIC v D, then there exists a tree interpretation that is count-
ingALCQIsig(T )-saturated for every role r that is a model of
T but refutesC v D. The proof of (⇒) is similar to the proof

of Lemma 7. Let I be a tree-interpretation that is counting
ALCQIsig(T )-saturated for every role r and is a model of T .

Let d be a root of I. The type t
ALCQIsig(T )

I (d) is satisfiable
relative to T ′. Thus we find an ω-saturated model J of T ′
such that I is a subinterpretation of J and for each d′ ∈ ∆I ,
t
ALCQIsig(T )

I (d) = t
ALCQIsig(T )

J (d). We can assume (by un-
folding) that J is a tree-interpretation as well. Now one can
use selective filtration over the subconcepts of T ′ to construct
a model J ′ of T ′ with J ′ =sig(T ) I. o

The following lemma proves the direction (1) ⇒ (2) of
Theorem 20.
Lemma 13 Let T be an ALCQI TBox. If T is s-
conservatively ALCI-rewritable, then T is preserved under
inverse i-p-morphisms.

Proof. Suppose an ALCQI TBox T is s-conservatively
ALCI-rewritable. Let T ′ be an s-conservative ALCI-
rewriting of T . We may assume that T ′ does not use fresh
role names. For a proof by contradiction assume that there
are interpretations I1 and I2 and an i-p-morphism f from I1

to I2 such that I2 |= T and I1 6|= T . We may assume that I1

and I2 are both ω-saturated. Let I†1 and I†2 be the unfoldings
of I1 and I2, respectively. Note that Ii |= T iff I†i |= T and
that we can lift f to an i-p-morphism f† from I†1 to I†2 . We
therefore obtain a contradiction if I†1 |= T . By Lemma 12
there exists a model J2 of T ′ such that J2 =sig(T ) I†2 .
But then, by Lemma 10 there exists a model J1 of T ′ with
J1 =sig(T ) I†1 . Hence I†1 |= T . o

We now prove the claim from Example 6.
Lemma 14 Let

T = {∃r.> v ∃r.(≥ 2r−.>)}.
Then T ′ = {∃r.> v ∃r.(∃r−.B u ∃r−.¬B)} is a model-
conservative ALCI-rewriting of T .

Proof. Clearly, T ′ |= T . Conversely, assume I |= T . We
have to show that there exists a model J of T ′ such that
J ={r} I. We may assume that BI = ∅. We use transifnite
recursion to construct a sequence (Jα,mα) of interpretations
Jα and setsmα ⊆ ∆I of the elements of (∃r.>)I as follows:
Zero case (α = 0) set J0 = I and m0 = ∅.
Assume now all (Jγ ,mγ) with γ < α are defined.
Limit case (α is a limit ordinal) set

Jα =
⋃
γ<α

Jγ , mα =
⋃
α<γ

mα

Successor case (α is a successor ordinal) let α = γ0 + 1.
If d ∈ mα for all d ∈ (∃r.>)Jγ0 , set Jα = Jγ0 and
mα = mγ0 .
Otherwise choose d0 ∈ (∃r.>)I with d0 /∈ mγ0 . Let e
and d1 6= d0 be such that (d0, e) ∈ rI and (d1, e) ∈ rI .
Consider cases.
(a) d1 ∈ mγ0

and d1 6∈ BJγ0 . Then set

BJα = BJγ0 ∪ {d0}, mα = mγ0 ∪ {d0}.



(b) case (a) above does not hold but d1 ∈ mγ0 and
d1 ∈ BJγ0 . Then set

BJα = BJγ0 , mα = mγ0
∪ {d0}.

(c) Otherwise, d1 /∈ mγ0 . In this case set

BJα = BJγ0 ∪ {d0}, mα = mγ0
∪ {d0, d1}.

Clearly the sequence (Jα,mα) stabilizes at some ordinal
β. We set J = Jβ . It is readily checked that J is a model of
T ′. o

G ALCQI to ALC rewritability

Theorem 8 Model-conservative ALCI-to-ALC rewritability
relative to a signature Σ is undecidable.

Proof. It is known [Konev et al., 2013] that there exists an
ALC TBox of the form T0 = {> v ∃r.C} and a signature Σ0

not containing r such that it is undecidable whether for every
interpretation I there exists a model J of T0 with J =Σ0 I
(in symbols ∅ ≡Σ0

T0). Consider T = {> v ∃s−.>t∃r.C},
where s is fresh, and set Σ = Σ0 ∪ {s}. We show that T is
model-conservatively ALC-rewritable w.r.t. Σ iff ∅ ≡Σ0

T0:
if ∅ ≡Σ0

T0, then the empty TBox is a model-conservative
ALC-rewriting of T . If ∅ 6≡Σ0

T0, then take an interpretation
I for which there does not exist a model J of T0 with J =Σ0

I. Pick d0 ∈ ∆I and assume w.l.o.g. that sI = {d0} ×∆I .
Clearly I is a model of T . Assume there exists anALC TBox
T ′ that is a model-conservative ALC-rewriting of T w.r.t. Σ.
Let J be a model of T ′ such that J =Σ I. We may assume
that |∆I | > 2|T

′|. Now remove (d0, d) from sJ for some
d 6= d0 such that the T ′-type of d is satisfied in some d′ 6= d.
The resulting interpretation is still a model of T ′ (since T ′ is
an ALC TBox) but it is not a model of T . We have derived a
contradiction. o

Our aim now is prove Theorem 9.
Let T be an ALCQI TBox. We take the ALCQ-rewriting

T ′ of T and then apply the ALC rewriting ·† to T ′. In detail,
let T be an ALCQI TBox and assume that T is built using
¬, u and (> n r C) only. Set

T ′ = {C↑ v D↑ | T |= C v D}
where C↑ replaces the top-most occurrences of qualified
number restrictions D = (≥ n r C) with inverse roles
r by fresh concept names BD. Take fresh concept names
BD, B

D
1 , . . . , B

D
n , for D = (> n r C) ∈ sub(T ′), and

let Σ be sig(T ′) together with the fresh concept names. For
C ∈ sub(T ′), letC] be theALC-concept obtained fromC by
replacing all top-most occurrences of any D = (> n r D′)
in C with BD. Now, define (T ′)† to be the infinite TBox
containing C] v D], for C v D ∈ T ′, and for all
D = (> n r C) ∈ sub(T ′),

– BDi v ¬BDj for i 6= j,

– BD v ∃r.(C] uBD1 ) u · · · u ∃r.(C] uBDn ),

– u
1≤i≤n

(∃r.(C] u C]i u u
j 6=i
¬C]j)) v BD, for any ALC-

concepts Ci with sig(Ci) ⊆ Σ.

Theorem 21 Let T be anALCQI TBox. Then the following
conditions are equivalent:

1. T is s-conservatively ALC-rewritable;

2. T is preserved under inverse p-morphisms.

3. (T ′)† is an s-conservative rewriting of T .

The proof is given by a sequence of lemmas. The following
lemma proves the direction (2)⇒ (3) of Theorem 21.

Lemma 15 If T is preserved under inverse p-morphisms,
then (T ′)† is an s-conservative ALC-rewriting of T .

Proof. We show that (T ′)† |= T . The proof is by contraction.
Let I be a model of (T ′)† that is not a model of T . We may
assume that I is ω-saturated. By the proof of Lemma 11 we
obtain a model I ′ of T ′ that is a p-morphic image of I. We
obtain a contradiction if I ′ is a model of T . But this follows
from T ′ |= T where the latter statement follows from the
proof of Theorem 4 and the assumption that T is preserved
under inverse p-morphims (which implies that T is preserved
under inverse counting p-morphisms). o

The following lemma can be proved similarly to Lemma 12.

Lemma 16 An ALC TBox T ′ is a s-conservative rewriting
of an ALCQI TBox T iff T ′ is a m-conservative rewriting
of T over the class of tree-interpretations that are counting
ALCQIsig(T )-saturated for every role r (in particular over
the class of tree-interpretations of bounded outdegree).

The following lemma proves the direction (1) ⇒ (2) of
Theorem 21.

Lemma 17 Let T be an ALCQI TBox. If T is s-
conservatively ALC-rewritable, then T is preserved under
inverse p-morphisms.

Proof. Suppose an ALCQI TBox T is s-conservatively
ALC-rewritable. Let T ′ be an s-conservative ALC-rewriting
of T . We may assume that T ′ does not use fresh role names.
For a proof by contradiction assume that there are interpre-
tations I1 and I2 and an p-morphism f from I1 to I2 such
that I2 |= T and I1 6|= T . We may assume that I1 and I2

are both ω-saturated. Let I†1 and I†2 be the unfoldings of I1

and I2, respectively. Note that Ii |= T iff I†i |= T and that
we can lift f to a p-morphism f† from a disjoint union I ′1
of copies of I†1 to I†2 . We therefore obtain a contradiction if
I ′1 |= T . By Lemma 16 there exists a model J2 of T ′ such
that J2 =sig(T ) I†2 . But then, by Lemma 1 there exists a
model J1 of T ′ with J1 =sig(T ) I ′1. Hence I ′1 |= T . o

H Proofs for DL-Litehorn
Theorem 22 An any ALCI-TBox T the following condi-
tions are equivalent:

• T is equivalently DL-Litehorn-rewritable;

• T is s-conservatively DL-Litehorn-rewritable;

• T is m-conservatively DL-Litehorn-rewritable.



Proof. Assume T ′ is an s-conservative DL-Litehorn-rewriting
of an ALCI TBox T . By Theorem 1, we may assume that
T ′ does not contain additional role names. Let T ′′ be the set
of DL-Litehorn-inclusions C v D in sig(T ) such that C,D
do not contain redundant conjuncts (and so T ′′ is finite) and
T ′ |= C v D. It is sufficient to show that T ′′ is an equivalent
DL-Litehorn-rewriting of T . Clearly T |= T ′′. Thus, assume
T ′′ 6|= T . Let I be a model of T ′′ that is not a model of T .
We expand I to an interpretation I ′ by setting for any concept
name M 6∈ sig(T ) and d ∈ ∆I , d ∈ MI′ iff T ′ |= D v M ,
where D is the conjunction of all basic DL-Litehorn concepts
B with sig(B) ⊆ sig(T ) and d ∈ BI . Then, since T ′ does
not contain any additional role names, I ′ is a model of T ′.
Thus T ′ 6|= T and we have derived a contradiction. o


