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Abstract

We introduce versions of game-theoretic semantics (GTS) for Alternating-Time
Temporal Logic (ATL). In GTS, truth is defined in terms of existence of a winning
strategy in a semantic evaluation game, and thus the game-theoretic perspective
appears in the framework of ATL on two semantic levels: on the object level, in
the standard semantics of the strategic operators, and on the meta-level, where
game-theoretic logical semantics can be applied to ATL. We unify these two per-
spectives into semantic evaluation games specially designed for ATL. The novel
game-theoretic perspective enables us to identify new variants of the semantics of
ATL, based on limiting the time resources available to the verifier and falsifier in
the semantic evaluation game; we introduce and analyse an unbounded and bounded
GTS and prove these to be equivalent to the standard (Tarski-style) compositional
semantics. We also introduce a non-equivalent finitely bounded semantics and argue
that it is natural from both logical and game-theoretic perspectives.

1 Introduction

Alternating-Time Temporal Logic ATL was introduced in [3] as a multi-agent extension
of the branching-time temporal logic CTL. The semantics of ATL is defined over multi-
agent transition systems, also known as concurrent game models, in which agents take
simultaneous actions at the current state and the resulting collective action determines
the subsequent state transition. The logic ATL and its extensions such as ATL∗ have
gradually become the most popular logical formalisms for reasoning about strategic
abilities of agents in synchronous multi-agent systems.

Game-theoretic semantics (GTS) of logical languages has a complex history going
back to Hintikka [7], Lorenzen [10] and others. For an overview of the topic, see [9]. In
GTS, truth of a logical formula ϕ is determined in a formal debate between two players,
Eloise and Abelard. Eloise is trying to verify ϕ, while Abelard is opposing her. Each
logical operator is associated with a related rule in the game. The framework of GTS
has turned out to be particularly useful for the purpose of defining variants of semantic
approaches to different logics. For example, IF-logic of Hintikka and Sandu [8] is an
extension of first-order logic which was originally developed using GTS. Also, the game-
theoretic approach to semantics has lead to new methods for solving decision problems
of logics, e.g., via using parity games for the µ-calculus.
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In this article we introduce game-theoretic semantics for ATL. In that framework, the
rules corresponding to strategic operators involve scenarios where Eloise and Abelard
are both controlling (or leading) coalitions of agents with opposing objectives. The
perspective offered by GTS enables us to develop novel approaches to ATL based on
different time resources available to the players. In unbounded GTS, a coalition trying
to verify an until-formula is allowed to continue without a time limit, the price of an
infinite play being a loss in the game. In bounded GTS, the coalition must commit to
finishing in finite time by submitting an ordinal number in the beginning of the game;
the ordinal controls available time resources in the game and guarantees a finite play.
In fact, even safety games (for release-formulae) will be determined in finite time, and
thus the bounded and unbounded approaches to GTS are conceptually different.

Despite the differences between the two semantics, we show that they are in fact
equivalent to the standard compositional (i.e., Tarski-style) semantics of ATL and there-
fore to each other. Furthermore, we introduce a restriction of the bounded GTS, called
finitely bounded GTS, where the ordinals controlling time flow must always be finite.
This is a particularly simple system of semantics where the players will always an-
nounce the ultimate (always finite) duration of the game before the game begins. We
show that the finitely bounded GTS is equivalent to the standard ATL semantics on
image finite models, and therefore provides an alternative approach to ATL sufficient for
most practical purposes.

Since the finitely bounded semantics is new, we also develop an equivalent (over all
models) Tarski-style semantics for it. We note that the difference between the finitely
bounded and unbounded semantics is conceptually linked to the difference between for-
loops and while-loops.

For all systems of game-theoretic semantics studied in this paper, we establish that
positional strategies suffice in the perfect information setting for ATL. In the framework
of unbounded semantics, this means that strategies depend on the current state only. In
the case of bounded and finitely bounded semantics, strategies may additionally depend
on the value of the ordinal guiding the time flow of the game.

The main contributions of this paper are twofold: the conceptual and technical
development of game-theoretic semantics for ATL and the introduction of new resource-
sensitive versions of logics for multi-agent strategic reasoning. The latter relates con-
ceptually to the study of other resource-bounded versions of ATL, see [2], [11], [1].

The structure of the paper is as follows. After the preliminaries in Section 2 , we
develop the bounded and unbounded GTS in Section 3 . We analyse the frameworks
in Section 4 , where we show, inter alia, that the two game-theoretic frameworks are
equivalent. In Section 5 , we compare the game-theoretic and standard Tarski-style
semantics and establish the equivalences between them stated above.

It is worth pointing out that some of our technical results could be derived using
more general alternative methods from coalgebraic modal logic. We will discuss this
matter in more detail in the concluding section 5.3 .

2 Preliminaries

In this section we define concurrent game models as well as the syntax and standard
compositional semantics of ATL.

Definition 2.1. A concurrent game model (CGM) M is a tuple (Agt,St,Π,Act, d, o, v)
which consists of the following non-empty sets: agents Agt = {1, . . . , k}, states St,
proposition symbols Π, actions Act, action function d : Agt× St → P(Act) \ {∅}
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assigning a non-empty set of actions available to each agent at each state, and a tran-

sition function o assigning a unique outcome state o(q, ~α) to each state q ∈ St and
action profile (a tuple of actions ~α = (α1, . . . , αk) such that αi ∈ d(i, q) for each
i ∈ Agt), and a valuation function v : Π → P(St).

Sets of agents A ⊆ Agt are also called coalitions. The complement A = Agt \A of
a coalition A is called the opposing coalition (of A). We also define the set of action
tuples that are available to coalition A at a state q ∈ St: action(A, q) := {(αi)i∈A | αi ∈
d(i, q) for each i ∈ A}.

Definition 2.2. Let M = (Agt,St,Π,Act, d, o, v) be a concurrent game model. A strat-

egy1 for an agent a ∈ Agt is a function sa : St → Act such that sa(q) ∈ d(a, q) for each
q ∈ St. A collective strategy SA for A ⊆ Agt is a tuple of individual strategies, one
for each agent in A. A path in M is a sequence of states Λ s.t. Λ[n+1] = o(Λ[n], ~α)
for some admissible action profile ~α, where Λ[n] is the n-th state in Λ (n ∈ N). The
function paths(q, SA) returns the set of all paths that can be formed when the agents in
A play according to SA, beginning from the state q.

The full Alternating-time temporal logic ATL∗ introduced in [3], is a logic,
suitable for specifying and verifying qualitative objectives of players and coalitions in
concurrent game models. The main syntactic construct of ATL∗ is a formula of type
〈〈A〉〉Φ, intuitively meaning that the coalition A has a collective strategy to guarantee
the satisfaction of the objective Φ on every play enabled by that strategy. Formally, ATL∗

is a multi-agent extension of the branching time logic CTL∗ with strategic quantifiers
〈〈A〉〉 indexed with sets (coalitions) A of players. ATL∗ has two sorts of formulae. State
formulae are evaluated at states, and path formulae are evaluated on plays. The syntax
is defined as follows:

State formulae: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Φ,
Path formulae: Φ ::= ϕ | ¬Φ | Φ ∨ Φ | XΦ | ΦUΦ | ΦRΦ.

Here A ⊆ Agt and p ∈ Π. In this paper, we will focus on the semantically simpler and
computationally better behaved fragment ATL, which is essentially the state-formulae
fragment of ATL∗ and can also be viewed as the multi-agent analogue of CTL, only
involving state formulae defined as follows, for any A ⊆ Agt, p ∈ Π:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | 〈〈A〉〉Xϕ | 〈〈A〉〉 (ϕUϕ) | 〈〈A〉〉 (ϕRϕ)

Other Boolean connectives are defined as usual, and the combined operators 〈〈A〉〉Fϕ
and 〈〈A〉〉Gϕ are defined respectively by 〈〈A〉〉⊤Uϕ and 〈〈A〉〉⊥Rϕ.

Definition 2.3. Let M = (Agt,St,Π,Act, d, o, v) be a CGM, q ∈ St a state and ϕ an
ATL-formula. Truth of ϕ in M and q, denoted by M, q |= ϕ, is defined as follows:

• M, q |= p iff q ∈ v(p) (for p ∈ Π ).

• M, q |= ¬ψ iff M, q 6|= ψ.

• M, q |= ψ ∨ θ iff M, q |= ψ or M, q |= θ.

• M, q |= 〈〈A〉〉Xψ iff there exists SA such that for each Λ ∈ paths(q, SA), we have
M,Λ[1] |= ψ.

1Unless otherwise specified, a ‘strategy’ hereafter will mean a positional and deterministic strategy.
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• M, q |= 〈〈A〉〉ψ U θ iff there exists SA such that for each Λ ∈ paths(q, SA), there is
i ≥ 0 such that M,Λ[i] |= θ and M,Λ[j] |= ψ for every j < i.

• M, q |= 〈〈A〉〉ψ R θ iff there exists SA such that for each Λ ∈ paths(q, SA) and i ≥ 0,
we have M,Λ[i] |= θ or there is j < i such that M,Λ[j] |= ψ.

3 Game-theoretic semantics

In this section we will introduce unbounded, bounded and finitely bounded evaluation
games for ATL. By defining the truth of a formula as the existence of a winning strategy
for the verifier in the corresponding evaluation game, these variants of evaluation games
lead to three different versions of game-theoretic semantics for ATL.

3.1 Unbounded evaluation games

Given a CGM M, a state qin and a formula ϕ, the evaluation game G(M, qin, ϕ) is
intuitively an argument between two opponents, Eloise (E) and Abelard (A), about
whether the formula ϕ is true at the state qin in the model M. Eloise claims that ϕ is
true, so she adopts (initially) the role of a verifier in the game, and Abelard tries to
prove the formula false, so he is (initially) the falsifier. These roles can swap in the
course of the game when negations are encountered in the formula to be evaluated.

We will often use the following notation: if P ∈ {E,A}, then P denotes the oppo-

nent of P, i.e., P ∈ {E,A} \ {P}.

Definition 3.1. Let M = (Agt,St,Π,Act, d, o, v) be a CGM, qin ∈ St and ϕ an ATL-
formula. The unbounded evaluation game G(M, qin, ϕ) between the players A and
E is defined as follows.

• A position of the game is a tuple Pos=(P, q, ψ) where P ∈ {A,E}, q ∈ St and ψ is
a subformula of ϕ. The initial position of the game is Pos0 := (E, qin, ϕ).

• In every position (P, q, ψ), the player P is called the verifier and P the falsifier for
that position.

• Each position of the game is associated with a rule. The rules for positions where the
related formula is either a proposition symbol or has a Boolean connective as its main
connective, are defined as follows.

1. If Posi = (P, q, p), where p ∈ Π, then Posi is called an ending position of the
evaluation game. If q ∈ v(p), then P wins the game. Else P wins.

2. Let Posi = (P, q,¬ψ). The game then moves to the next position, Posi+1 =
(P, q, ψ).

3. Let Posi = (P, q, ψ ∨ θ). Then the player P decides whether Posi+1 = (P, q, ψ) or
Posi+1 = (P, q, θ).

In order to deal with the strategic operators, we now define a one step game, denoted
by step(P, A, q), where A ⊆ Agt. This game consists of the following two actions.

i) First P chooses an action αi ∈ d(i, q) for each i ∈ A.

ii) Then P chooses an action αi ∈ d(i, q) for each i ∈ A.
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The resulting state of the one step game step(P, A, q) is the state q′ := o(q, α1, . . . , αk)
arising from the combined action of the agents. We now define how the evaluation game
proceeds in positions where the formula is of type 〈〈A〉〉Xψ:

4. Let Posi = (P, q, 〈〈A〉〉Xψ). The next position Posi+1 is (P, q′, ψ), where q′ is the
resulting state of step(P, A, q).

The rules for the other strategic operators are obtained by iterating the one step game.
For this purpose, we now define the embedded game G := g(V,C, A, q0, ψC, ψC

),
where both V,C ∈ {E,A}, A is a coalition, q0 a state, and ψC and ψ

C
are formulae.

The player V is called the verifier (of the embedded game) and C the controller.
These may, but need not be, the same player. We let V and C denote the opponents of
C and V, respectively.

The embedded game G starts from the initial state q0 and proceeds from any state
q according to the following rules, applied in the order below, until an exit position is
reached.

i) C may end the game at the exit position (V, q, ψC).

ii) C may end the game at the exit position (V, q, ψ
C
).

iii) If the game has not ended due to the above rules, the one step game step(V, A, q) is
played to produce a resulting state q′. The embedded game is continued from q′.

If the embedded game G continues an infinite number of rounds, the controller C loses
the entire evaluation game G(M, qin, ϕ). Else the evaluation game resumes from the exit
position of the embedded game.

We now define the rules of the evaluation game for the remaining strategic operators
as follows:

5. Consider a position Posi = (P, q, 〈〈A〉〉ψ U θ). The next position Posi+1 is the exit
position of the embedded game g(P,P, A, q, θ, ψ). (Note the order of the formulae.)

6. Consider a position Posi = (P, q, 〈〈A〉〉ψ R θ). The next position Posi+1 is the exit
position of the embedded game g(P,P, A, q, θ, ψ).

This completes the definition of the evaluation game.

We sometimes say that the embedded game for a formula 〈〈A〉〉ψ U θ is an eventu-

ality game and the embedded game for 〈〈A〉〉ψ R θ is a safety game. The embedded
game g(V,C, A, q, ψC, ψC

) can be seen as a ‘simultaneous reachability game’ where
both players have a goal they are trying to reach before the opponent reaches her/his
goal. The verifier V leads the coalition A and the falsifier V leads the opposing coalition
A. The goal of both V and V is defined by a formula. When V = C, the goal of V is
to verify ψC and the goal of V is to falsify ψ

C
. Note that falsifying ψ

C
, corresponds

to reaching the complement of the set of states where ψ
C

holds. When V 6= C, the
goal of V is to verify ψ

C
and that of V is to falsify ψC. Both players V and V have

the possibility to end the game when they believe that they have reached their goal.
However, the controller is responsible for ending the embedded game in finite time, and
(s)he will lose if the game continues infinitely long. If both players reach their targets
at the same time, the controller C wins, because C gets to make the decision to end the
embedded game first.

It is worth noting that, even though the coalitions in ATL operate concurrently, in
the embedded game the verifier V has the advantage of making the choices for her/his
coalition before V in every round, making the evaluation games fully turn-based.
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3.2 Bounded evaluation games

The difference between bounded and unbounded evaluation games is that in the bounded
case, the embedded games are associated with a time limit. In a bounded evaluation
game, the controller must first announce some possibly infinite ordinal γ which will
decrease in each round. This will guarantee that the embedded game, and in fact the
entire evaluation game, will end after a finite number of rounds.

Bounded evaluation games G(M, qin, ϕ,Γ) have an additional parameter Γ, which
is an ordinal that fixes an upper bound for the ordinals that the players can announce
during the related embedded games. Different parameters Γ give rise to different kinds
of evaluation games and thus lead to different kinds of game theoretic semantics, as we
will see.

Definition 3.2. Let M be a CGM, qin ∈ St, ϕ an ATL-formula and Γ an ordinal.
The bounded evaluation game G(M, qin, ϕ,Γ) is defined as the unbounded evaluation
game G(M, qin, ϕ), the only difference between the two games being the treatment of
until- and release-formulae.

Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game that arises from a position Pos

in G(M, qin, ϕ). In that same position Pos in the bounded evaluation game G(M, qin, ϕ,Γ),
the player C first chooses some ordinal γ0 < Γ as the initial time limit for the em-
bedded game G. This choice leads to a bounded embedded game that is denoted by
G[γ0].

A configuration of G[γ0] is a pair (γ, q), where γ is a (possibly infinite) ordinal
called the current time limit and q ∈ St a state called the current state. The bounded
embedded game G[γ0] starts from the initial configuration (γ0, q0) and proceeds from
any configuration (γ, q) according to the following rules, applied in the given order.

i) If γ = 0, the game ends at the exit position (V, q, ψC).

ii) C may end the game at the exit position (V, q, ψC).

iii) C may end the game at the exit position (V, q, ψ
C
).

iv) If the game has not ended due to the previous rules, then step(V, A, q) is played in
order to produce a resulting state q′. Then the bounded embedded game continues
from the configuration (γ′, q′), where γ′ = γ−1 if γ is a successor ordinal, and if γ
is a limit ordinal, then γ′ is an ordinal smaller than γ and chosen by C.

We denote the set of configurations in G[γ0] by ConfG[γ0]. After the bounded embed-
ded game G[γ0] has reached an exit position—which it will, because ordinals are well-
founded—the evaluation game resumes from the exit position.

It is clear that bounded evaluation games end after a finite number of rounds because
bounded embedded games do. Note that if time limits are infinite ordinals, they do not
directly refer to the number of rounds left in the game, but instead they are related to
the game duration in a more abstract way. Different kinds of ways to use ordinals in
game-theoretic considerations go way back. An important and relatively early reference
is [12] which contains references to even earlier related articles.

It is possible to analyse embedded games as separate entities independent of evalu-
ation games. An embedded game of the form G = g(V,C, A, q0, ψC, ψC

) can be played
without a time limit as in unbounded evaluation games, or it can be given some time
limit γ0 as a parameter, which leads to the related bounded embedded game G[γ0].
When we use the plain notation G (as opposed to G[γ0]), we always assume that the
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embedded game G is not bounded—we may even emphasize this by calling G an un-
bounded embedded game.

Evaluation games of the form G(M, qin, ϕ, ω) constitute a particularly interesting
subclass of bounded evaluation games. We call the games in this class finitely bounded

evaluation games. In these games, only finite time limits are allowed to be announced
for bounded embedded games.

Example I. In the current article, the operators 〈〈A〉〉F and 〈〈A〉〉G are syntactic ab-
breviations, and therefore the above games show explicitly how the associated rules look
like. We next define alternative rules that could be directly given to 〈〈A〉〉F and 〈〈A〉〉G
in the finitely bounded evaluation games without affecting the results of the article.
(The fact that this indeed holds will ultimately be straightforward to observe.) Similar
(but not identical) rules could be given to 〈〈A〉〉F and 〈〈A〉〉G also in the framework based
on unbounded and as well as general bounded games.

• Let Posi = (P, q, 〈〈A〉〉Fψ). First the player P chooses n ∈ N and then the players
iterate step(P, A, q) for at most n times. The player P may decide to stop at the
current state q′ after any number m ≤ n of iterations and continue the evaluation
game from Posi+1 = (P, q′, ψ).

• Let Posi = (P, q, 〈〈A〉〉Gψ). First the player P chooses n ∈ N and then the players
iterate step(P, A, q) for at most n times. The player P may decide to stop at the
current state q′ after any number m ≤ n of iterations and continue the evaluation
game from Posi+1 = (P, q′, ψ).

3.3 Game-theoretic semantics

A strategy for a player P ∈ {A,E} will be defined below to be a function on game
positions; in positions where P is not the player required to make a move, the strategy
of P will output a special value “void”. We occasionally also give the value void to
some other functions when the output is not relevant (e.g., when formulating a winning
strategy, we may assign void for losing positions).

Definition 3.3. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game and P ∈ {A,E}.

A strategy for the player P in G is a function σP whose domain is St and whose
range is specified below. Firstly, for any q ∈ St, it is possible to define σP(q) ∈ {ψC, ψC

};
then σP instructs P to end the game at the state q. Here it is required that if P = C,
then σP(q) = ψC and if P = C, then σP(q) = ψ

C
. If σP(q) 6∈ {ψC, ψC

}, then the
following conditions hold.

• If P = V, then σP(q) is a tuple of actions from action(A, q).

• If P = V, then σP(q) is defined to be a response function f : action(A, q) →
action(A, q) that assigns a tuple of actions for A as a response to any tuple of actions
for A.

Let γ0 be an ordinal. A strategy σP for P in G[γ0] is defined in the same way as a
strategy in G, but the domain of this strategy is the set of all possible configurations
ConfG[γ0].

Note that strategies in embedded games are positional, i.e., they depend only on the
current state in the unbounded case and the current configuration in the bounded case.
We will see later on that if strategies were allowed to depend on more information, such

7



as the sequence of states played, the resulting semantic systems would be equivalent to
the current ones.

Any strategy σP for an unbounded embedded game G can be used also in any
bounded embedded game G[γ0]: we simply use the same action σP(q) for each configu-
ration (γ, q) ∈ ConfG[γ0]. Also note that if a strategy σP for a bounded embedded game
G[γ0] is independent of time limits (and thus depends on states only), it can also be
used in the unbounded embedded game G.

We next define the notion of strategy for evaluation games, using strategies for
embedded games as sub-strategies.

Definition 3.4. Let P ∈ {A,E}. A strategy for player P in an unbounded

evaluation game G = G(M, qin, ϕ) is a function ΣP defined on the set of positions
POS of G (with the range specified below) satisfying the following conditions.

1. If Pos = (P, q, ψ ∨ θ), then ΣP(Pos) ∈ {ψ, θ}.

2. If Pos = (P, q, 〈〈A〉〉Xψ), then ΣP(Pos) is a tuple of actions from action(A, q) for the
one step game step(P, A, q).

3. If Pos = (P, q, 〈〈A〉〉Xψ), then ΣP(Pos) is a response function f : action(A, q) →
action(A, q) for step(P, A, q).

4. Let Pos = (P, q, 〈〈A〉〉ψTθ) or Pos = (P, q, 〈〈A〉〉ψTθ), where T ∈ {U,R }. Then
ΣP(Pos) is a strategy σP for P in the respective embedded game g(V,C, A, q, θ, ψ).

5. In all other cases, ΣP(Pos) = void.

We say that the player P plays according to the strategy ΣP in the evaluation game G if
P makes her/his choices in G according to that strategy. We say that ΣP is a winning

strategy for P in G if P wins all plays of G where (s)he plays according to that strategy.

Definition 3.5. A strategy for player P in a bounded evaluation game G =
G(M, qin, ϕ,Γ) is defined as in Definition 3.4 , with the exception of positions with until-
and release-formulae, which are treated as follows.

4. Let Pos = (P, q, 〈〈A〉〉ψTθ) or Pos = (P, q, 〈〈A〉〉ψTθ), where T ∈ {U ,R }, and let
G = g(V,C, A, q, θ, ψ) denote the embedded game related to Pos. If P = C, then
ΣP(Pos) = (γ0, t, σP) where the following conditions hold.

• γ0 < Γ is an ordinal. It is the choice for the initial time limit that leads to the
bounded embedded game G[γ0].

• t is a function, called timer, on pairs (γ, q), where γ ≤ γ0 is a limit ordinal and
q ∈ St. The timer t gives an instruction how to lower the time limit γ after a
transition to q has been made; the value of t(γ, q) must be an ordinal less than γ.

• σP is a strategy for P in G[γ0].

Finally, if P 6= C, then ΣP(Pos) is a function that maps any ordinal γ0 < Γ to some
strategy σP for P in G[γ0].

In finitely bounded evaluation games, only finite time limits γ0 < ω may be an-
nounced by C. Since no limit ordinal is reached, the timer t can be omitted from the
strategy.

Different choices for time limit bounds Γ give rise to different semantic systems, and
most results in the next section will be proven for an arbitrary choice of Γ. However, in
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this paper we mainly focus on the cases Γ = ω (where ω is the smallest infinite ordinal)
and Γ = 2κ, where κ is the cardinality of the model. Note that when Γ = ω, the
embedded games are finitely bounded. We will prove later that time limit bounds
greater than 2κ are not needed.

Definition 3.6. Let M be a CGM, q ∈ St and ϕ an ATL-formula. Let κ be the cardi-
nality of the model M. We define three different notions of truth of ϕ in M and q based
on three different evaluation games, thereby defining the unbounded, bounded and
finitely bounded semantics (denoted, respectively, by |=g

u, |=
g
b , and |=g

f) as follows.

• M, q |=g
u ϕ iff E has a winning strategy in G(M, q, ϕ).

• M, q |=g
b ϕ iff E has a winning strategy in G(M, q, ϕ, 2κ).

• M, q |=g
f ϕ iff E has a winning strategy in G(M, q, ϕ, ω).

We also write more generally that M, q |=g
Γ ϕ iff E has a winning strategy in G(M, q, ϕ,Γ).

We will prove that both the bounded and unbounded semantics are equivalent to the
standard compositional semantics of Definition 2.3 . The finitely bounded sematics, on
the other hand, is equivalent to a natural variant of the compositional semantics to be
introduced in Section 5 . The following example shows that the finitely bounded GTS

differs from the unbounded and bounded cases. In particular, the fixed point property
of the temporal operator F fails:

Example 3.7. Let M = ({a}, {q0}∪N×N, {p},N, d, o, v), where v(p) = {(i, i) | i ∈ N},
d(a, q0) = N, d(a, (i, j)) = {0}, o(q0, i) = (i, 0) and o((i, j), 0) = (i, j+1). In this model
M, q0 6|=g

f 〈〈∅〉〉F p while M, q0 |=g
f 〈〈∅〉〉X 〈〈∅〉〉F p. This is because for every time limit

n < ω chosen by Eloise, Abelard may select the action n in the first round for the agent
a, so it will take n+1 rounds to reach a state where p is true. But after the first step,
the game will be at a state (i, 0) for some i ∈ N, whence Eloise can choose some time
limit n ≥ i and reach a state where p is true before time runs out.

However, M, q0 |=g
b 〈〈∅〉〉F p, since Eloise can choose ω as the time limit in the

beginning of the game and then lower it to i < ω when the next state (i, 0) is reached.
Also, M, q0 |=

g
u 〈〈∅〉〉F p since a state where p is true will always be reached in finite time.

Still, we will show that the three semantics become equivalent over image finite models.

4 Analysing embedded games

In this section we will examine the properties of different versions of embedded games
that occur as part of evaluation games. We associate each state with a winning time
label which describes how good that state is for the players. Using the optimal labels
will lead to a canonical strategy which will be a winning strategy whenever there exists
one.

With these definitions we can prove positionality and determinacy of the embedded
games. We will also show that if players are allowed to announce sufficiently large
ordinals as time limits, the bounded embedded games become essentially equivalent
with corresponding unbounded embedded games. We will also analyse how the sizes of
the needed ordinals depend on the CGM in which the game is played.
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4.1 Winning time labels

Different values of the time limit bound Γ correspond to different classes of bounded
embedded games G[γ0] where γ0 < Γ. In this section—unless otherwise specified—we
use a fixed value of Γ and assume that all bounded embedded games are part of some
evaluation game G(M, qin, ϕ,Γ). Since Γ could have any ordinal value, our results will
hold for both the bounded and finitely bounded semantics.

Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game and let q ∈ St be a state. We

define G[q] := g(V,C, A, q, ψC, ψC
). We also use the abbreviation G[q, γ] := (G[q])[γ].

This notation is useful, since by the recursive nature of bounded embedded games, any
configuration (γ, q) of G[γ0] (where γ0 < Γ) is the initial configuration of G[q, γ]. Note
that since the players use positional strategies, they do not see any difference between
initial configurations and other configurations.

We next define winning strategies for embedded games. “Winning an embedded
game” means for the player P that (s)he has a winning strategy in the evaluation game
that continues from the exit position of the embedded game.

Definition 4.1. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game and let γ0 < Γ.

1. We say that σP is a winning strategy for the player P in G if infinite plays
are possible with σP only if P 6= C and the equivalence M, q |=g

u ψ ⇔ P = V holds for
all exit positions (V, q, ψ) of G that can be reached with σP.

2. If P = C, we say that the pair (σP, t) is a timed winning strategy for P

in G[γ0] if M, q |=g
Γ ψ ⇔ P = V holds for all exit positions (V, q, ψ) that can be

encountered when P plays using the strategy σP and timer t.
If P 6= C, we say that σP is a winning strategy for P in G[γ0] if M, q |=g

Γ ψ ⇔
P = V holds for all exit positions that can occur when P plays using σP.

If the unbounded (respectively, bounded) embedded game in the above definition
ends in a position where the equivalence M, q |=g

u ψ ⇔ P = V (respectively, M, q |=g
Γ

ψ ⇔ P = V) holds, we also say that P wins the embedded game. In the unbounded
case, C wins also if the play is infinite.

Consider an embedded game G = g(V,C, A, q0, ψC, ψC
). We next define for G so

called winning time labels, LP(q), for each q ∈ St. The labels will indicate how good
the state q is for the player P when different bounded embedded games G[q, γ0] are
played with different time limits γ0 < Γ. If the label is “win” or “lose”, then the state is
a winning (respectively, losing) state for P, regardless of the time limit γ0. If the label
is an ordinal γ < Γ, it means that γ is the “critical time limit” for winning or losing
the game: if P = C, then γ is the least time limit needed for P to win from q, and if
P 6= C, then γ is the least time limit such that P can no longer guarantee that (s)he
will not lose the game from q.

From now on we will often consider separately the cases where the player P is the
controlling player C and where her/his opponent P is the controlling player. The former
case corresponds to the situation where P is the verifier in an eventuality game and the
situation where P the falsifier in a safety game. The latter case means that either P is
the verifier in a safety game or P is the falsifier in an eventuality game.

Definition 4.2. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game and P ∈ {E,A}.

The winning time label LP(q) for P in G at state q ∈ St is defined as follows.

Case 1. Suppose P = C. Let σP be a strategy for P. We first define a strategy label

l(q, σP) as follows.

• Set l(q, σP) := lose if (σP, t) is not a timed winning strategy in G[q, γ] for any timer
t and γ < Γ.

10



• Else, set l(q, σP) := γ, where γ < Γ is the least time limit for which there is a timer
t such that (σP, t) is a timed winning strategy in G[q, γ].

When there exists at least one σP such that l(q, σP) 6= lose, we define

LP(q) := min
{

l(q, σP) | σP is a strategy for P s.t. l(q, σP) is an ordinal
}

.

Else, we define LP(q) := lose.

Case 2. Suppose P 6= C. Let σP be a strategy for P.

• If σP is a winning strategy in G[q, γ] for every time limit γ < Γ, then set l(q, σP) :=
win.

• Else, set l(q, σP) := γ, where γ < Γ is the least time limit such that σP is not a
winning strategy in G[q, γ].

If l(q, σP) = win for some σP, then set LP(q) := win. Else, set LP(q) to be the least
upper bound for the values l(q, σP).

The following claim shows that if the controller has a timed winning strategy in
some embedded game with time limit γ0, then (s)he has a timed winning strategy with
greater time limits as well.

Claim I. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game. Assume that P = C

and that P has a timed winning strategy (σP, t) in G[γ0] for some γ0 < Γ. Then there
is a pair (σ′

P
, t′) which is a timed winning strategy in G[γ] for any time limit γ such

that γ0 ≤ γ < Γ.

Proof. We define the strategy σ′
P
for any configuration (γ, q), where γ < Γ and q ∈ St,

in the following way.

• If (σP, t) is not a timed winning strategy in G[q, γ′] for any γ′ ≤ γ, set σ′
P
(γ, q) =

void.

• Else, set σ′
P
(γ, q) = σP(γ

′, q), where γ′ ≤ γ is the smallest ordinal such that (σP, t)
is a timed winning strategy in G[q, γ′].

We define the timer t′ for any pair (γ, q), where γ < Γ is a limit ordinal and q ∈ St, in
the following way.

• If (σP, t) is not a timed winning strategy in G[q, γ′] for any γ′ < γ, set t′(γ, q) =
void.

• Else t′(γ, q) = γ′, where γ′ is any ordinal such that γ′ < γ and (σP, t) is a timed
winning strategy in G[q, γ′].

We prove by transfinite induction on γ < Γ for every q ∈ St that if (σP, t) is a timed
winning strategy in G[q, δ] for some δ ≤ γ, then (σ′

P
, t′) is a timed winning strategy in

G[q, γ]. The claim follows from this.
Let the induction hypothesis be that the claim holds for every γ′ < γ and suppose

that (σP, t) is a timed winning strategy in G[q, δ] for some δ ≤ γ. Let δ′ < Γ be the
smallest ordinal such that (σP, t) is a timed winning strategy in G[q, δ′]. Now δ′ ≤ δ ≤ γ

and σ′
P
(γ, q) = σP(δ

′, q).
Suppose first that δ′ = 0, whence (σP, t) is a timed winning strategy in G[q, 0]. Now

σ′
P
(γ, q) = σP(0, q) = ψC and thus (σ′

P
, t′) is a timed winning strategy in G[q, γ].
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Suppose then that δ′ > 0, whence we must have σP(δ
′, q) 6= ψC. Let q′ ∈ St be

any possible successor state of q when P follows σP(δ
′, q). Now (σP, t) must be a timed

winning strategy in G[q′, δ′′] for some ordinal δ′′ < δ′ (if δ′ is a limit ordinal, then
δ′′ = t(δ′, q′), and if δ′ is a successor ordinal, then δ′′ = δ′−1). Since δ′ ≤ γ, we have
δ′′ < γ.

Suppose first that γ is a successor ordinal. Since we have δ′′ < γ, we infer by the
induction hypothesis that (σ′

P
, t′) is a timed winning strategy in G[q′, γ−1]. Hence we

see that (σ′
P
, t′) must be a timed winning strategy in G[q, γ]. Suppose then that γ is a

limit ordinal. Since (σP, t) is a timed winning strategy in G[q′, δ′′], the value of t′(γ, q′)
is defined such that t′(γ, q′) < γ and (σP, t) is a timed winning strategy in G[q′, t′(γ, q′)].
Thus, by the induction hypothesis, (σ′

P
, t′) is a timed winning strategy in G[q′, t′(γ, q′)].

Hence we see that (σ′
P
, t′) must be a timed winning strategy in G[q, γ].

The following proposition relates values of winning time labels to durations of em-
bedded games and existence of winning strategies.

Proposition 4.3. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game, P ∈ {E,A}

and q ∈ St.

1. Assume P = C. We have LP(q) = γ < Γ iff there is a pair (σP, t) that is a timed
winning strategy in G[q, γ′] for all γ′ s.t. γ ≤ γ′ < Γ, but there is no timed winning
strategy for P in G[q, γ′] for any γ′ < γ.

We have LP(q) = lose iff there is no timed winning strategy (σP, t) for P in G[q, γ]
for any γ < Γ.

2. Assume P 6= C. We have LP(q) = γ < Γ iff for every γ′ < γ, there is some σP
which is a winning strategy for P in G[q, γ′], but there is no winning strategy for P

in G[q, γ′] for any γ′ such that γ ≤ γ′ < Γ.

We have LP(q) = win iff there is a strategy σP which is a winning strategy in G[q, γ]
for every γ < Γ.

Proof. 1. We first examine the case where P = C:

Suppose first that LP(q) = γ < Γ. By Definition 4.2 there is some strategy σP for
which the strategy label l(q, σP) is γ. Thus there is some timer t such that the pair
(σP, t) is a timed winning strategy for P in G[q, γ]. By Claim I there is a pair (σ′

P
, t′)

which is a timed winning strategy in G[q, γ′] for any γ′ such that γ ≤ γ′ < Γ. If there
existed some timed winning strategy (σ′′

P
, t′′) for P in G[q, γ′] for some γ′ < γ, then we

would have l(q, σ′′
P
) ≤ γ′ and thus LP(q) ≤ γ′ < γ, which is a contradiction.

For the other direction, suppose that there is a pair (σP, q) which is a timed winning
strategy in G[q, γ′] for any γ′ such that γ ≤ γ′ < Γ, but there is no timed winning
strategy for P in G[q, γ′] for any γ′ < γ. Now l(q, σP) = γ, and for any other strategy
σ′
P
, we have either l(q, σ′

P
) = lose or l(q, σ′

P
) ≥ γ. Hence the smallest ordinal value for

the strategy labels at q is γ, and thus we have LP(q) = γ.
If LP(q) = lose, then l(q, σP) = lose for every strategy σP of P. Hence none of the

strategy-timer pairs (σP, t) is a timed winning strategy for P in G[q, γ] for any γ < Γ.
Conversely, if there is no timed winning strategy (σP, t) in G[q, γ] for any γ < Γ, then
we have l(q, σP) = lose for every σP and thus LP(q) = lose.

2. We then examine the case where P 6= C:

If LP(q) = win, then l(q, σP) = win for some strategy σP, i.e., σP is a winning
strategy in G[q, γ] for any time limit γ < Γ. Conversely, if there is some σP which is
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a winning strategy in G[q, γ] for every time limit γ < Γ, then l(q, σP) = win and thus
LP(q) = win.

Suppose that LP(q0) = γ < Γ, i.e., γ is the supremum of the strategy labels l(q, σP).
Suppose first that there is some σP for which l(q0, σP) = γ. Now σP is a winning
strategy in G[q, γ′] for any γ′ < γ. Suppose then that there is no maximum value for
the labels l(q, σP), whence γ must be a limit ordinal. Let γ′ < γ. Since γ is the least
upper bound for the strategy labels l(q, σP), there must be some strategy σ′

P
for which

l(q, σ′
P
) ≥ γ′+1, as otherwise γ′+1 would be a lower upper bound for the strategy labels.

We now observe that σ′
P
is a winning strategy in G[q, γ′].

If there existed a winning strategy σ′
P

for P in G[q, γ′] for some γ′ ≥ γ, then we
would have l(q, σ′

P
) > γ, and thus LP(q) > γ. Hence there cannot be any winning

strategy for P in G[q, γ′] for any γ′ such that γ ≤ γ′ < Γ.
For the other direction, assume that for every γ′ < γ, there exists a winning strategy

for P in G[q, γ′], but there exists no winning strategy for P in G[q, γ′] for any γ′ such
that γ ≤ γ′ < Γ. If we had γ < LP(q0) < Γ, then, by the (already proved) other direction
of the current claim, there would exist a winning strategy for P in G[q, γ], which is a
contradiction. If we had LP(q) = win, we would again end up with a contradiction
by the (already proved) result concerning the label win. If we had LP(q) < γ, then,
once again by the other direction of the current claim, there would not be any winning
strategy for P in G[q,LP(q)], a contradiction. Hence the only possibility left is that
LP(q0) = γ.

Winning time labels LP(q) of an embedded game are either ordinals less than the
time limit bound Γ or labels win, lose. If we increased the value of Γ to some Γ′ > Γ
and considered the values of winning time labels of the corresponding embedded game
within the evaluation game G(M, qin, ϕ,Γ

′), then some of the labels that originally were
win or lose, could now obtain ordinal values γ s.t. Γ ≤ γ < Γ′. Other kinds of changes
of labels would also be possible because the truth sets of the goal formulae ψC and ψ

C

could change. However, it is easy to see that if all ordinal valued labels stay strictly
below Γ in all embedded games when going from Γ to Γ′, then each label in fact remains
the same in the transition.

We say that Γ is stable for an embedded game G if the winning time labels of
the game cannot be altered by increasing Γ. We say that Γ is globally stable for a
concurrent game model M if Γ is stable for all bounded embedded games within all
evaluation games G(M, qin, ϕ,Γ). We will see later that there exists a globally stable
time limit bound for every concurrent game model. When Γ is globally stable, its role
is not so relevant anymore, since players would not benefit from the ability to choose
arbitrarily high time limits. However, for technical reasons, we always need some time
limit bound to avoid strategies becoming proper classes.

4.2 Canonical strategies for embedded games

Here we define so-called canonical strategies. They are guaranteed to be winning strate-
gies whenever a winning strategy exists.

Definition 4.4. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game, let P ∈ {E,A}

and suppose that P = C. We define the canonical strategy τP and canonical timer

tcan for P in G as follows.
If LP(q) = γ, then τP(q) = σP(γ, q) for some strategy σP for which there is a timer t

such that (σP, t) is a timed winning strategy in G[q, γ′] for all γ′ s.t. γ ≤ γ′ < Γ. (Note
that such a strategy exists by Proposition 4.3). If LP(q) = lose, then τP(q) = void.
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We define tcan for any pair (γ, q) (γ < Γ is a limit ordinal and q ∈ St) such that if
LP(q) 6= lose and LP(q) < γ, then tcan(γ, q) = LP(q), and otherwise tcan(γ, q) = void.

We call the pair (τP, tcan) the canonically timed strategy (for the controller).

Note that τP is not necessarily unique since we may have to choose one from several
strategies. However, these choices are all equally good for our purposes. Note that
when P = C, the canonical strategy depends on states only and can thus be used in
both unbounded and bounded embedded games. Also note that τP and tcan are defined
such that they depend neither on the initial state q0 nor the initial time limit γ0. We
will see that if P can win G[γ0] for some γ0 < Γ, then P wins G[γ0] with (τP, tcan).
Since the canonical strategy follows the strategies with the lowest strategy labels, it can
be seen, in some sense, as optimal for winning the game as fast as possible.

Definition 4.5. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game, let P ∈ {E,A}

and assume that P 6= C. We define the canonical strategy τP for P in G[γ0] for all
γ0 < Γ. We define τP at every configuration (γ, q), where γ < Γ and q ∈ St, as follows.

If LP(q) = win, then τP(γ, q) = σP(γ, q) for some strategy σP for which the strategy
label l(q, σP) is win (see Def 4.2). Else, if LP(q) = γ′ and γ′ > γ, then τP(γ, q) =
σP(γ, q) for some σP for which l(q, σP) > γ. Such a strategy exists by Definition 4.2 .
Otherwise τP(γ, q) = void.

We also define, for every n < ω, the n-canonical strategy τn
P

for P in G and the
∞-canonical strategy τ∞

P
for P in G. These are defined for each q ∈ St as follows.

If LP(q) ≥ ω or LP(q) = win, then τn
P
(q) = τP(n, q). Else, if LP(q) = m > 0, then

τn
P
(q) = σP(m−1, q) for some σP for which l(q, σP) = m. Otherwise τn

P
(q) = void.

If LP(q) = win, then τ∞
P
(q) = τP(Γ−1, q), and otherwise τ∞

P
(q) = void. Note that

to be able to define τ∞
P
, we have to assume that Γ is a successor ordinal.

When P 6= C, the canonical strategy τP depends on time limits, and thus it cannot
be used in unbounded embedded games. However, both n-canonical and ∞-canonical
strategies depend on states only. We fix the notation such that from now on τP, τ

n
P
and

τ∞
P

will always denote canonical strategies (of the respective type) for the player P.

Definition 4.6. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game. Let σP be a

strategy in G[γ0] (γ0 < Γ). Suppose that (γ, q) is such a configuration that σP(γ, q) is
either a tuple of actions for A or some response function for A. We say that set Q ⊆ St
is forced by σP(γ, q) if for each q′ ∈ St, it holds that q′ ∈ Q if and only if there is some
play with σP from (γ, q) such that the next configuration is (γ′, q′) for some γ′. We use
the same terminology for the set forced by σP(q) when σP depends on states only.

The following lemma shows that the canonical strategy is guaranteed to be a winning
strategy always when a winning strategy exists. This is quite easy to see since the
canonical strategy follows the optimal winning time labels at each state by its definition.

Lemma 4.7. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game. Let P ∈ {E,A}

and γ0 < Γ.

1. Suppose that P = C. If P has a timed winning strategy (σP, t) in G[γ0], then
(τP, tcan) is a timed winning strategy for P in G[γ0].

2. Suppose that P 6= C. If P has a winning strategy σP in G[γ0], then τP is a winning
strategy for P in G[γ0].
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Proof. We first discuss the case where P = C. We will prove by transfinite induction on
γ < Γ that for every q ∈ St, if P has a timed winning strategy in G[q, γ], then (τP, tcan)
is a timed winning strategy in G[q, γ]. We let the induction hypothesis be that the claim
holds for every γ′ < γ and suppose that P has a timed winning strategy in G[q, γ].

By Proposition 4.3 , we have LP(q) = δ for some δ ≤ γ. Let σ′
P

be a strategy for
which τP(q) = σ′

P
(δ, q) and there is a timer t′ such that (σ′

P
, t′) is a timed winning

strategy in G[q, δ′] for all δ′ such that δ ≤ δ′ < Γ. (Such a strategy exists by the
definition of the canonical strategy τP.) Suppose first that δ = 0, whence (σ′

P
, t′) is a

timed winning strategy in G[q, 0]. Now τP(q) = σ′
P
(0, q) = ψC and thus (τP, tcan) is a

timed winning strategy in G[q, γ].
Suppose then that δ > 0, whence σ′

P
(δ, q) must be either some tuple of actions for

the coalition A or some response function for the coalition A. Let Q ⊆ St be the set of
states that is forced by σ′

P
(δ, q) and let q′ ∈ Q. Since (σ′

P
, t′) is a timed winning strategy

in G[q, δ], there is δ′ < δ such that (σ′
P
, t′) is a timed winning strategy in G[q′, δ′] (if δ

is a limit ordinal, then δ′ = t′(δ, q′), and else δ′ = δ − 1). Since δ ≤ γ, we have δ′ < γ.
Suppose first that γ is a successor ordinal. Since we have δ′ ≤ γ−1, there is a timed

winning strategy (σ′′
P
, t′′) in G[q′, γ−1] by Claim I . Thus, by the induction hypothesis,

(τP, tcan) is a timed winning strategy in G[q′, γ−1]. Since this holds for every q′ ∈ Q,
we see that (τP, tcan) is a timed winning strategy in G[q, γ].

Suppose then that γ is a limit ordinal. Since (σ′
P
, t′) is a timed winning strategy in

G[q′, δ′], by Proposition 4.3 we must have LP(q
′) ≤ δ′ < γ. Thus, by the definition of

the canonical timer, tcan(γ, q
′) = LP(q

′). By proposition 4.3 there is a timed winning
strategy (σ′′

P
, t′′) in G[q′,LP(q

′)]. Thus by the induction hypothesis (τP, tcan) is a timed
winning strategy in G[q′,LP(q

′)]. Since this holds for every q′ ∈ Q and tcan(γ, q
′) =

LP(q
′) for every q′ ∈ Q, we see that (τP, tcan) is a timed winning strategy in G[q, γ].

We then discuss the case where P 6= C. We will prove by transfinite induction on
γ < Γ that for every q ∈ Q, if P has a winning strategy in G[q, γ], then τP is a winning
strategy in G[q, γ].

Suppose first that γ = 0 and that P has a winning strategy σP in G[q, 0]. Now, since
with the time limit 0 the game will end at q immediately, every strategy of P will be a
winning strategy in G[q, 0]. Hence, in particular, τP is a winning strategy in G[q, 0].

Suppose that the claim holds for every γ′ < γ and that P has a winning strategy σP
in G[q, γ]. By Proposition 4.3, we have either LP(q) = win or LP(q) > γ. Assume first
that LP(q) = win. Let σP be a strategy for which l(q, σP) = win and τP(γ, q) = σP(γ, q).
(Such a strategy exists by the definition of τP.) Let Q ⊆ St be the set of states forced
by σP(γ, q) and let q′ ∈ Q. Since l(q, σP) = win, the strategy σP is a winning strategy
in G[q, δ] for every δ < Γ, and therefore, as we have γ < Γ, the strategy σP must also
be a winning strategy in G[q′, γ′] for every γ′ < γ. Thus there is a winning strategy in
G[q′, γ′] for every γ′ < γ and every q′ ∈ Q. Hence, by the induction hypothesis, τP is a
winning strategy in G[q′, γ′] for every γ′ < γ and q′ ∈ Q. Therefore we observe that τP
is also a winning strategy in G[q, γ].

Suppose then that LP(q) = δ > γ. Let σP be a strategy for which l(q, σP) > γ and
τP(γ, q) = σP(γ, q). (Such a strategy exists by the definition of τP.) Let Q ⊆ St be the
set of states that is forced by σP(γ, q) and let q′ ∈ Q. Since σP is a winning strategy
in G[q, δ′] for every δ′ < l(q, σP) and since we have γ < l(q, σP), the strategy σP must
also be a winning strategy in G[q′, γ′] for every γ′ < γ. Hence we can deduce, as before,
that τP is a winning strategy in the games for the configurations over Q that follow the
configuration (γ, q), and thus τP is also a winning strategy in G[q, γ].

By the first claim of the previous proposition, we see that it suffices to consider those
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strategies of player C which are independent of time limits. The following lemma shows
that the same holds for the player C in bounded embedded games with a finite time
limit. The key here will be the use of n-canonical strategies.

Lemma 4.8. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game, let P ∈ {E,A}

and assume that P 6= C.
Let n < ω. Now, if P has a winning strategy σP in G[m] for some m ≤ n, then τn

P

is a winning strategy in G[m].

Proof. We will prove by induction on m ≤ n that for any q ∈ St, if P has winning
strategy in G[q,m], then τn

P
is a winning strategy in G[q,m]. If m = 0 and P has a

winning strategy σP in G[q, 0], then every strategy of P will be a winning strategy in
G[q, 0]. Hence, in particular, τn

P
is a winning strategy in G[q, 0].

Suppose then that the claim holds for m−1 and that P has a winning strategy in
G[q,m]. Thus we have LP(q) > m or LP(q) = win. Suppose first that LP(q) = m′ < ω,
and let σP be a strategy such that l(q, σP) = m′ and τn

P
(q) = σP(m

′−1, q). (Such a
strategy σP exists by the definition of the n-canonical strategy τn

P
.) Let Q ⊆ St be the

set of states forced by σP(m
′−1, q). Since m′ > m, the strategy σP must be a winning

strategy in G[q,m], and thus it will also be a winning strategy in G[q′,m−1] for every
q′ ∈ Q. Thus, by the induction hypothesis, τn

P
is a winning strategy in G[q′,m−1] for

every q′ ∈ Q. Therefore we observe that τn
P
wil also be a winning strategy in G[q′,m].

Suppose then that LP(q) ≥ ω or LP(q) = win, and let σP be a strategy such that
l(q, σP) ∈ {win} ∪ {γ < Γ | γ > n} and τn

P
(q) = τP(n, q) = σP(n, q). (Recall Definition

4.5 ; the strategy σP exists by the definitions of τn
P

and τP.) Let Q ⊆ St be the set of
states that is forced by σP(n, q). Since m ≤ n, the strategy σP is a winning strategy in
G[q,m], and thus it is also a winning strategy in G[q′,m−1] for every q′ ∈ Q. Hence,
by the induction hypothesis, τn

P
is a winning strategy in G[q′,m−1] for every q′ ∈ Q.

Thus we observe that τn
P
is a winning strategy in G[q,m].

Example 4.9. In the cases where L
C
(q) = ω, the player C can win the game with any

time limit n < ω, but there is no single strategy that would win for every n. But if C
knows that the initial time limit is (at most) m, then (s)he knows that the m-canonical
strategy will be her/his winning strategy. Therefore C needs to know the time limit when
selecting the strategy, but not when using it (since n-canonical strategies are independent
of time limits).

We will see later that if the time limit bound Γ is sufficiently large and there exists
a winning strategy for each γ < Γ, then τ∞

P
will be a winning strategy for each γ < Γ.

4.3 Determinacy of embedded games

The following correspondence between the winning time labels of C and C will be the
key for proving determinacy of bounded embedded games.

Proposition 4.10. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game. The equiva-

lence LC(q)=γ iff L
C
(q)=γ holds for each state q ∈ St and each ordinal γ < Γ.

Proof. We prove this claim by transfinite induction on the ordinal γ < Γ. We first prove
the special case where γ = 0. Let q ∈ St and suppose first that LC(q) = 0, whence by
Proposition 4.3 the player C has a timed winning strategy (σC, t) in G[q, 0]. This is
possible only if the exit position (C, q, ψC) is a winning position for C. In that case C

loses G[q, γ′] with any time limit γ′ and thus L
C
(q) = 0. Suppose then that L

C
(q) = 0,
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whence there no winning strategy for C in G[q, 0]. This is possible only if C wins the
game at the exit position (C, q, ψC), whence LC(q) = 0.

We then suppose that γ > 0 and let the induction hypothesis be that the claim holds
for every ordinal γ′ < γ. Suppose first that LC(q) = γ. By Proposition 4.7 there is a
timed winning strategy (σP, t) in G[q, γ]. Thus C cannot have a winning strategy in
G[q, γ] and thus by Proposition 4.3 we must have L

C
(q) ≤ γ. If we had L

C
(q) < γ, then,

by the induction hypothesis, we would have LC(q) = L
C
(q) < γ. This is a contradiction.

Hence L
C
(q) = γ.

Suppose then that L
C
(q) = γ. We will next show that for any strategy σ

C
and any

set Q ⊆ St forced by σ
C
(γ, q), there is a state q′ ∈ Q for which L

C
(q′) < γ. For the

sake of contradiction, suppose that there is a strategy σ
C

such that for the set Q ⊆ St
forced by σC(γ, q), we have L

C
(q′) ≥ γ or L

C
(q′) = win for every q′ ∈ Q. We formulate

the following strategy σ′
C

for C in the embedded game G[q, γ]:

σ′
C
(δ, q) = σ

C
(γ, q) for every δ ≤ γ,

σ′
C
(δ, q′) = τ

C
(δ, q′) for every δ ≤ γ and q′ ∈ St \{q}.

Since L
C
(q′) ≥ γ or L

C
(q′) = win for every q′ ∈ Q, by Proposition 4.3, the canonical

strategy τ
C

is a winning strategy in G[q′, δ] for any q′ ∈ Q and δ < γ. Thus it is easy
to see that σ′

C
is a winning strategy in G[q, γ]. Hence by Proposition 4.3 we must have

L
C
(q) > γ or L

C
(q) = win, which is a contradiction. Therefore, we infer that

For any strategy σ
C

and Q ⊆ St forced by σ
C
(γ, q),

there is some q′ ∈ Q such that L
C
(q′) < γ. (⋆)

Let Q′ := {q′ ∈ St | L
C
(q′) < γ}. By the induction hypothesis, we have LC(q

′) < γ

for every q′ ∈ Q′. We will show that C can play in such a way at q that all possible
successor states will be in Q′. Suppose first that C = V. Since for every ~α ∈ action(q,A)
there is some strategy σ

C
s.t. σ

C
(γ, q) = ~α, we infer by (⋆) that there is some response

function for A which forces the next state to be in Q′.
Suppose then that C = V. If for every ~α ∈ action(q,A) there existed some ~β ∈

action(q,A) such that the outcome state of these actions was not in Q′, then there
would be some strategy σ

C
such that the set forced by σ

C
(γ, q) would not intersect Q′.

This is a contradiction by (⋆), and thus there is some tuple of actions for A at q such
that all possible successor states will be in Q′.

We next formulate a strategy σC for C in G[q, γ]. By the description above, we
can define σC for every configuration (γ′, q), where γ′ ≤ γ, in such a way that the set
forced by σC(γ

′, q) is a subset of Q′. For all configurations (γ′, q′), where γ′ ≤ γ and
q′ ∈ St \{q}, we define σC(γ

′, q′) = τC(q
′).

Since LC(q
′) < γ for every q′ ∈ Q′, we infer that we have tcan(γ, q

′) = LC(q
′)

for every q′ ∈ Q. By Propositions 4.3 and 4.7, (τC, tcan) is a timed winning strategy
in G[q′, tcan(γ, q

′)] for any q′ ∈ Q′. Thus it is easy to see that (σC, tcan) is a timed
winning strategy in G[q, γ]. However, since L

C
(q) = γ, we conclude, using the induction

hypothesis, that there cannot be a timed winning strategy for C in G[q, γ′] for any
γ′ < γ. Hence by Proposition 4.3 we must have LC(q) = γ.

Apart from ordinal values that are less than the bound Γ, the only possible winning
time label for C is the label lose. For C, the only non-ordinal value is win. Hence by
the previous proposition, we also have LC(q) = lose if and only if L

C
(q) = win. We are

now ready to prove that all bounded embedded games are determined.
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Proposition 4.11. The controller C has a timed winning strategy in a bounded em-
bedded game g(V,C, A, q0, ψC, ψC

)[γ0] iff C does not have a winning strategy in that
game.

Proof. If LC(q0) = lose, then L
C
(q0) = win, whence by Proposition 4.3, the player C

has a winning strategy and C does not have a timed winning strategy. Else LC(q0) = γ

for some γ < Γ. Now, by Proposition 4.10, also L
C
(q0) = γ. If γ ≤ γ0, then by

Proposition 4.3 the player C has a timed winning strategy, while C does not have a
winning strategy. Analogously, if γ > γ0, then C has a winning strategy, while C does
not have a timed winning strategy.

4.4 Finding stable time limit bounds

Definition 4.12. Let M be a CGM and let q ∈ St. We define the branching degree of

q, BD(q), as the cardinality of the set of states accessible from q with a single transition:

BD(q) := card({o(q, ~α) | ~α ∈ action(Agt, q)}).

We define the infinite branching bound of M, IBB(M), as the smallest infinite
cardinal κ such that κ > BD(q) for every q ∈ St.

With this definition IBB(M) = ω iff M is image finite. Also note that if for the
of available actions card(Act) < κ, then IBB(M) ≤ κ. We will see that the value of
IBB(M) is closely related to the sizes of a globally stable time limit bounds for M. The
following lemma shows an important correspondence between the canonical strategy and
the winning time labels of the controller.

Lemma 4.13. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game and P = C. Now

the following holds for every q ∈ St: If LP(q) = γ > 0 and Q ⊆ St is forced by τP(q),
we have LP(q

′) < γ for every q′ ∈ Q, and

• max{LP(q
′) | q′ ∈ Q} = γ − 1 if γ is a successor ordinal,

• sup{LP(q
′) | q′ ∈ Q} = γ if γ is a limit ordinal.

Proof. Suppose that LP(q) = γ > 0. Since LP(q) 6= 0, canonically timed strategy
(τP, tcan) is not a timed winning strategy for P in G[q, 0]. Therefore τP(q) is either
some tuple of actions for A or some response function for A. Let Q ⊆ St be the set
of states that is forced by τP(q). We first show that LP(q

′) < γ for every q′ ∈ Q.
Since (τP, tcan) is a timed winning strategy in G[q, γ], it must also be a timed winning
strategy in G[q′, tcan(γ, q

′)] for every q′ ∈ Q. Hence by the definition of canonical timer
γ > tcan(γ, q

′) = LP(q
′) for every q′ ∈ Q.

Suppose first that γ is a successor ordinal. If we would have LP(q
′) < γ−1 for every

q′ ∈ Q, then (τP, tcan) would be a winning strategy in G[q, γ−1], and thus we would have
LP(q) ≤ γ−1. Hence γ > LP(q

′) ≥ γ−1 for some q′ ∈ Q and thus max{LP(q
′) | q′ ∈

Q} = γ−1. Suppose then that γ is a limit ordinal. If γ′ < γ would be an upper bound
for the winning time labels in Q, then we would have LP(q

′) < γ′+1 for every q′ ∈ Q.
Hence (τP, tcan) would be a timed winning strategy in G[q, γ′+1], and thus we would
have LP(q) ≤ γ′+1 < γ. This is impossible and thus sup{LP(q

′) | q′ ∈ Q} = γ.

The following lemma shows that if a certain ordinal valued winning time label exist
for an embedded game, then all the smaller winning time labels must exist for that game
as well.
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Lemma 4.14. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game and γ < Γ an

ordinal. Assume that LP(q) = γ for some q ∈ St and P ∈ {E,A}. Now for every δ ≤ γ

there is a state qδ for which LC(qδ) = δ.

Proof. We prove the claim by transfinite induction on γ < Γ for every q ∈ St. We let the
induction hypothesis be that the claim holds for every γ′ < γ and suppose that either
of the players has winning time label γ at some state q. By Proposition 4.10 , we have
LC(q) = γ.

Assume that δ < γ. If γ is a successor ordinal, then by Lemma 4.13 there is a state
q′ s.t. LC(q

′) = γ−1. Since δ ≤ γ−1, by the induction hypothesis there is a state qδ
for which LC(qδ) = δ. Suppose then that γ is a limit ordinal. By Lemma 4.13 , there
must be a state q′ ∈ St such that LC(q

′) = γ′ for some ordinal γ′ such that δ < γ′ < γ.
Hence by the induction hypothesis there is a state qδ for which LC(qδ) = δ.

Example 4.15. In finite models all winning time labels are strictly smaller than the
cardinality of the model, i.e. if card(M) = n < ω, then n is a globally stable time limit
bound for M. This can be seen by the following reasoning.

If there was some state with a winning time label γ ≥ n, then by Lemma 4.14, there
would be a state q ∈ St for which LC(q) = n. Further, by Lemma 4.14 we would now
find states with winning time labels n−1, n−2, . . . , 0. But since winning time labels are
unique for each state, this would mean that card(M) > n, a contradiction.

This result is quite obvious by the observation that the controller can only win the
embedded game by reaching a state in the truth set of the formula ψC. Hence it would
not be beneficial for the controller to go in cycles.

The following proposition shows how we can find an upper bound for the values of
possible winning time labels by just looking at the infinite branching bound of a model.

Proposition 4.16. Let M be a CGM such that we have IBB(M) = κ. We define an
ordinal Γ as follows:

{

Γ := κ if κ is a regular cardinal,

Γ := κ+(the successor cardinal of κ) otherwise.

Now Γ is a globally stable time limit bound for M.

Proof. For the sake of contradiction, suppose that there is Γ′ > Γ and embedded gameG
within a bounded evaluation game G(M, qin, ϕ,Γ

′) such that in G either of the players
has winning time labels that are greater or equal to Γ. By Lemma 4.14 , there is a state
q ∈ St for which LC(q) = Γ. Let Q ⊆ St be the set of states that is forced by τC(q).
Since IBB(M) = κ, we have card(Q) < κ ≤ Γ. By Lemma 4.13 , LC(q

′) < Γ for every
state q′ ∈ Q, and furthermore, since Γ is a limit ordinal, Γ must be the supremum of
the winning time labels of the states in Q.

Now every winning time label in Q is smaller than Γ and the cardinality of Q is less
than Γ. Because successor cardinals are regular, Γ is necessarily a regular cardinal, and
thus it is equal to its own cofinality. Hence we have sup{LC(q

′) | q′ ∈ Q} < Γ. This is
a contradiction and thus Γ must be a globally stable time limit bound.

The result of the previous proposition cannot be improved, since we can show that
no lower time limit bound is guaranteed to be globally stable. That is, if κ is an infinite
cardinal, Γ ∈ {κ, κ+} as defined above and γ < Γ is an ordinal, then there is some model
M for which IBB(M) ≤ κ and in which the winning time label γ is realized. This is
demonstrated by the following example:
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Example I. Let κ be an infinite cardinal. If κ is regular, let Γ := κ and else let
Γ := κ+. Let γ < Γ be an ordinal. We show by transfinite induction on γ that there
exist a concurrent game model M such that IBB(M) ≤ κ and a state of M that realizes
the winning time label γ for some embedded game in M.

All models that we shall construct in this example will be of the form

M = (Agt,St,Π,Act, d, o, v),

where Agt = {a}, q0 ∈ St, Π = {p} and Act = {δ | δ < Γ is an ordinal}. We will
always consider the winning time label for Eloise at the state q0 in the embedded game
G = (E,E, ∅, q0, p,⊤) (which arises when verifying the formula ϕ = 〈〈∅〉〉F p at q0).

If γ = 0, we define M0 = (Agt,St,Π,Act, d, o, v) where St = {q0}, d(q0, a) = {0},
o(q0, 0) = q0 and v(p) = q0. Since BD(q0) = 1, we have IBB(M0) = ω ≤ κ. Also, clearly
LE(q0) = 0.

Suppose then that γ is a successor ordinal. By the induction hypothesis, there is a
model Mγ−1 s.t. IBB(Mγ−1) ≤ κ and LE(q0) = γ−1. Let M′

γ−1 = (Agt,St′,Π,Act, d′, o′, v′)
be an isomorphic copy of Mγ−1 in which the state q0 is replaced by a new state q′. Let
Mγ = (Agt,St,Π,Act, d, o, v), where we define St := St′ ∪{q0}, d := d′∪{((q0, a), {0})},
o := o′ ∪ {((q0, 0), q

′)} and v := v′. Since BD(q0) = 1, IBB(Mγ) = IBB(M′

γ−1) ≤ κ.
Also, clearly LE(q0) = γ.

Suppose then that γ is a limit ordinal. We next construct a set of ordinals Ψ ⊆ {δ |
δ < γ} such that card(Ψ) < κ and sup(Ψ) = γ. If κ is regular, then we have Γ = κ,
and thus we can define Ψ := {δ | δ < γ}. Since γ < κ, clearly card(Ψ) < κ. If κ is not
regular, then Γ = κ+. Let µ be the cofinality of γ, whence there exists some set Ψ of
ordinals less than γ such that card(Ψ) = µ and sup(Ψ) = γ. Since γ < κ+ and since the
cofinality of any ordinal is always a regural cardinal (which is smaller than the ordinal
itself), we must have µ < κ.

By the induction hypothesis, for every ordinal δ ∈ Ψ, there is a model Mδ for which
IBB(Mδ) ≤ κ and LE(q0) = δ. We build an isomorphic copy

M′

δ = (Agt,Stδ,Π,Act, dδ , oδ, vδ)

of every model Mδ such that
⋂

δ∈Ψ Stδ = ∅ and such that the state q0 is replaced with a
new state qδ in every model M′

δ. Let Mγ = (Agt,St,Π,Act, d, o, v), where we have
St =

⋃

δ∈Ψ Stδ ∪{q0}, d =
⋃

δ∈Ψ dδ ∪ {((q0, a), {δ | δ ∈ Ψ})} and o =
⋃

δ∈Ψ oδ ∪
⋃

δ∈Ψ{((q0, δ), qδ)} and v :=
⋃

δ∈Ψ vδ. Because BD(q0) = card(Ψ) < κ and IBB(Mδ) ≤ κ

for every δ ∈ Ψ, we have IBB(Mγ) ≤ κ. Since sup(Ψ) = γ, it is also easy to see that
LE(q0) = γ.

From this proposition we obtain the following corollary which tells when the time limit
bounds for the bounded and finitely bounded semantics are guaranteed to be stable.

Corollary 4.17. Let M be a CGM . If card(M) = κ, then 2κ is a globally stable time
limit bound for M. If M is image finite, ω is a globally stable time limit bound for M.

Proof. Suppose that card(M)=κ. If κ < ω, then by Example 4.15 , κ is globally stable
for M, whence also 2κ is globally stable for M. Suppose then that κ ≥ ω and let
IBB(M) = µ. Since card(M) = κ, we have BD(q) ≤ κ for every q ∈ St and thus µ ≤ κ+.
If µ = κ+, then µ is regular and thus by Proposition 4.16 µ is globally stable for M.
Suppose then µ < κ+, whence we have µ+ ≤ κ+. By Proposition 4.16 µ+ is globally
stable for M, regardless of whether µ is a regular cardinal or not. Therefore κ+ and
thus also 2κ are globally stable for M.

Suppose then that M is image finite, whence we have IBB(M) = ω. Since ω is a
regular cardinal, by Proposition 4.16 , ω is globally stable for M.
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4.5 Relationship between the unbounded and bounded embedded games

The following lemma shows that if P uses τ∞
P

and begins from a state with label win,
then P will always stay in states with label win. We must make some extra assumptions
on the time limit bound Γ in order to prove this claim.

Lemma 4.18. Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game, P ∈ {E,A} and

P 6= C. Assume that the time limit bound Γ is a successor ordinal and Γ−1 is stable for
G. Now for every q ∈ St, if LP(q) = win and Q ⊆ St is forced by τ∞

P
, then LP(q

′) = win

for every q′ ∈ Q.

Proof. Suppose that LP(q) = win and Q ⊆ St is forced by τ∞
P
(q). Let σP be a strategy

for which l(q, σP) = win and τ∞
P
(q) = σP(Γ−1, q). For the sake of contradiction, suppose

that there is some q′ ∈ Q for which LP(q
′) 6= win and thus LP(q

′) = γ for some γ < Γ.
Since Γ−1 is stable, we must also have γ < Γ−1. Now there is a play of G[q,Γ−1] in
which P is using σP and the configuration (γ, q′) follows (Γ−1, q). But since LP(q

′) = γ,
the strategy σP cannot be a winning strategy in G[q′, γ]. Hence σP is not a winning
strategy in G[q,Γ− 1], which is a contradiction since l(q, σP) = win.

The following proposition shows that when the time limit bound is stable, then bounded
embedded games become essentially equivalent with unbounded embedded games.

Proposition 4.19. Let G = g(V,C, A, q0, ψC, ψC
, ) be an embedded game and suppose

that Γ is stable for G. Now the following equivalences hold:

• If P = C, there is a winning strategy σP in G iff there is γ0 < Γ and a timed winning
strategy (σ′

P
, t) in G[γ0].

• If P 6= C, there is a winning strategy σP in G iff there is σ′
P

which is a winning
strategy in G[γ0] for every γ0 < Γ.

Proof. Suppose first that P = C. If (σ′
P
, t) is a timed winning strategy in G[γ0] for

some time limit γ0 < Γ then then by Proposition 4.7 (τP, tcan) is a winning strategy in
G[γ0]. Now the strategy τP will also be a winning strategy in G (note that infinite plays
are impossible with τP and that τP depends on states only). For the other direction,
suppose that there is a winning strategy σP for P in G. If LP(q0) = γ < Γ for some
ordinal γ, then by Proposition 4.3 there is a timed winning strategy for P in G[γ]. Else
we have LP(q0) = lose, i.e. there no timed winning strategy in G[γ] with any time limit
γ (which does not have to be lower than Γ since Γ is stable). We show that this leads
to a contradiction.

Let Q ⊆ St be the set of states that is forced by σP(q0). Suppose first that LP(q)
has some ordinal value less than Γ for every q ∈ Q. Hence we can formulate a timed
winning strategy (σ′

P
, tcan) for P in G[Γ] by defining σ′

P
(γ, q0) = σP(q0) for every γ < Γ

and using τP for all other cases. This is impossible and thus there must be some q′ ∈ Q

for which LP(q
′) = lose. We can repeat this same argumentation for the set forced by

σP(q
′) to find again a state with winning time label lose. Hence it follows by induction

that after any finite number of transitions by using σP, it is possible end up at a state
that has a winning time label lose. But for σP to be a winning strategy in G, it should
always reach a state with the winning time label 0 in a finite number of rounds.

Suppose then that P 6= C. If there is a winning strategy σP for P in G, then we
can define σ′

P
(γ, q) = σP(q) for every γ < Γ, whence σ′

P
will be a winning strategy

in G[γ0] for every time limit γ0 < Γ. For the other direction, suppose that there is a
strategy σ′

P
which is a winning strategy in G[γ0] for every time limit γ0 < Γ, whence
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by Proposition 4.3 we have LP(q0) = win. We will show that now we can formulate a
winning strategy for P in G.

Let Γ′ := Γ+1. We formulate the ∞-canonical strategy τ∞
P

by using the strategies
that correspond to embedded games with the time limit bound Γ′. Since Γ is stable, the
winning time label of the states will not change, and in particular, the state q will still
have the value win. Now the assumptions of Lemma 4.18 hold, and thus we can use it
to deduce that all (finite) plays of G with τ∞

P
will have the label win at every state that

is reached. But to lose the embedded game at some state, it should have the winning
time label 0. Hence τ∞

P
is a winning strategy for P in G (also note that τ∞

P
depends on

states only).

As bounded embedded games are determined, the previous proposition implies that
also unbounded embedded games are determined. By this result, we see that even if
we defined memory based strategies for bounded or unbounded embedded games, the
semantics so obtained would remain equivalent to the current one. We can now prove
the equivalence of unbounded and bounded game theoretic semantics.

Theorem 4.20. Let M be a CGM , q ∈ St and ϕ an ATL-formula. We have M, q |=g
u

ϕ iff M, q |=g
b ϕ.

Proof. Assume that card(M) = κ. By Corollary 4.17, 2κ is globally stable for M.
Consider an embedded game G. If Eloise is the controller in G, then by Proposition 4.19
she has a winning strategy in G iff there is some γ < 2κ s.t. she has a winning strategy
in G[γ]. If Eloise is not the controller in G, then by Proposition 4.19 , she has a winning
strategy in G iff she has a winning strategy in G[γ] for every γ < 2κ. Hence we can
prove by straightforward induction on ϕ that Eloise has a winning strategy in G(M, q, ϕ)
iff she has a winning strategy in G(M, q, ϕ, 2κ).

Even though the finitely bounded semantics is not equivalent to bounded semantics,
the two systems become equivalent on a natural class of concurrent game models:

Theorem 4.21. Let M be an image finite CGM , q ∈ St and ϕ an ATL-formula. Now
M, q |=g

f ϕ iff M, q |=g
b ϕ.

Proof. By Corollary 4.17 , in image finite models all ordinal valued winning time labels
are finite. Thus the controller would gain nothing from being able to use infinite ordinals
in embedded games. Hence we can prove the claim by a straightforward induction on
the formula ϕ.

5 Comparing game-theoretic and compositional semantics

5.1 Equivalence between unbounded GTS

and compositional semantics

We next establish that the unbounded GTS is equivalent to the standard compositional
semantics of ATL.

Theorem 5.1. Let M be a CGM, qin ∈ St and ϕ an ATL-formula. Now M, qin |= ϕ

iff M, qin |=g
u ϕ.

Proof. Suppose first thatM |=g
u ϕ, i.e., Eloise has a winning strategy ΣE in G(M, qin, ϕ).

We will show that if a position Pos = (P, q, ψ) can be reached in a game when Eloise
plays ΣE, then the following condition holds for Pos:

M, q |= ψ iff P = E. (⋆)
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We can prove this by structural induction on ϕ, since all positions of the game are of
the form (P, q, ψ), where ψ is a subformula of ϕ.

Suppose that a position Pos = (P, q, p) (p ∈ Π) can be reached in the game. Since
ΣE is a winning strategy, we have q ∈ v(p) if and only if P = E. Hence the condition
(⋆) holds for Pos.

Suppose that a position Pos = (P, q,¬ψ) can be reached in the game. If P = E,
the next position is (A, q, ψ), whence by the induction hypothesis M, q 6|= ψ. Hence
M, q |= ¬ψ, and thus (⋆) holds for Pos. If P = A, the next position is (E, q, ψ), whence
by the induction hypothesis M, q |= ψ. Hence M, q 6|= ¬ψ, and thus (⋆) holds for Pos.

Suppose that a position Pos = (P, q, ψ ∨ θ) can be reached in the game. If P = E,
then the strategy ΣE picks either ψ or θ. If ΣE(Pos) = ψ, then the position (E, q, ψ)
can be reached with ΣE, and thus by the induction hypothesis, we have M, q |= ψ. If
ΣE(Pos) = θ, then we analogously have M, q |= θ. Hence M, q |= ψ ∨ θ, and thus (⋆)
holds for Pos.

If P = A, then both of the positions (A, q, ψ) and (A, q, θ) can be reached with ΣE

(since Abelard makes the choice). Thus, by the induction hypothesis, we must have
M, q 6|= ψ and M, q 6|= θ, i.e. M, q 6|= ψ ∨ θ. Hence (⋆) holds for Pos.

Suppose that a position Pos = (P, q, 〈〈A〉〉Xψ) can be reached in the game. If P = E,
then ΣE assigns some tuple of choices for the agents in A. We can now formulate a related
collective stategy SA (recall the definition of the compositional semantics) by using those
choices at q; the choices at other states may be arbitrary. Let Λ ∈ paths(q, SA). Now
Abelard can choose such actions for A that the resulting state is Λ[1]. Thus the position
(E,Λ[1], ψ) can be reached with the winning strategy ΣE, and thus, using the induction
hypothesis, we infer that M,Λ[1] |= ψ. Hence M, q |= 〈〈A〉〉Xψ, and thus (⋆) holds for
Pos.

If P = A, then ΣE assigns some some tuple of actions for A as a response to any tuple
of actions chosen by Abelard. Let SA be any collective strategy for the coalition A. Now,
if Abelard chooses the actions for the agents in A according to SA and Eloise responds
using ΣE(Pos), then the resulting state must be Λ[1] for some Λ ∈ paths(q, SA). Thus
the position (A,Λ[1], ψ) can be reached using ΣE, and thus, by the induction hypothesis,
we have M,Λ[1] 6|= ψ. Hence M, q 6|= 〈〈A〉〉Xψ, and thus (⋆) holds for Pos.

Suppose that a position Pos = (P, q, 〈〈A〉〉ψ U θ) can be reached in the game. If
P = E, then ΣE(Pos) is some strategy σE for the corresponding embedded game. We
can now formulate a collective strategy SA that is related to the strategy σE: For any
state where σE assigns some tuple of actions for agents in A, we define the same actions
for SA. For states where σE instructs to end the game, we may define arbitrary actions
for SA. We will use this same method from now on, when we define collective strategies
SA related to the strategies of V in an embedded game.

Let Λ ∈ paths(q, SA). Now, when Eloise uses σE, there will be actions of Abelard
such that the states of the embedded game are on Λ until some configuration Λ[i] at
which Eloise ends the game at the exit position (E,Λ[i], θ.) (Note that since ΣE is a
winning strategy, Eloise must always end the embedded game after finitely many steps.)
Thus, by the induction hypothesis, M,Λ[i] |= θ. Let then j < i. Since Abelard can
end the game after j rounds at a position (E,Λ[j], ψ), we conclude by the induction
hypothesis that M,Λ[j] |= ψ. Hence M, q |= 〈〈A〉〉ψ U θ, and thus (⋆) holds for Pos.

If P = A, then ΣE(Pos) is some a strategy σE. For the sake of contradiction, suppose
that M, q |= 〈〈A〉〉ψ U θ, i.e., there exists some SA such that for each Λ ∈ paths(q, SA),
there is i ≥ 0 such that M,Λ[i] |= θ and M,Λ[j] |= ψ for every j < i. We define
σA(q

′) = θ for each q′ ∈ St for which M, q′ |= θ. For all other states q′ ∈ St, let
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σA(q
′) be the actions for agents in A determined by SA. Now, if Abelard uses σA and

Eloise σE, then the exit position of the game must be (A,Λ[i], µ), where µ ∈ {ψ, θ},
Λ ∈ paths(q, SA) and i ≥ 0. But for this exit position, the condition (⋆) does not hold,
even thought it is reached by the winning strategy ΣE. This contradicts the induction
hypothesis. Hence we have M, q 6|= 〈〈A〉〉ψ U θ, and thus (⋆) holds for Pos.

Suppose that a position Pos = (P, q, 〈〈A〉〉ψ R θ) can be reached in the game. If
P = E, then ΣE(Pos) is a strategy σE. Let SA be the collective strategy that is related
to σE and let Λ ∈ paths(q, SA). Now, when Eloise uses σE, there exist actions of Abelard
such that the states of the embedded game are on Λ (until a state is reached where Eloise
ends the game – if such a state exists). We need to show that for every i ≥ 0 either
M,Λ[i] |= θ or there is j < i s.t. M,Λ[j] |= ψ. Let i ≥ 0. If Eloise ends the game
before i rounds, the game ends at a exit position (E,Λ[j], ψ) for some j < i, and we
can conclude that M,Λ[j] |= ψ by the induction hypothesis. If Eloise does not end the
game before i rounds have been played, then Abelard can end it the position position
(E,Λ[i], θ). We can then conclude that M,Λ[i] |= θ by the induction hypothesis. Hence
we have M, q |= 〈〈A〉〉ψ R θ, and thus (⋆) holds for Pos.

If P = A, then ΣE(Pos) is some strategy σE. For the sake of contradiction,
suppose that M, q |= 〈〈A〉〉ψ R θ, i.e., there exists a strategy SA such that for each
Λ ∈ paths(q, SA) and i ≥ 0, we have either M,Λ[i] |= θ or there is some j < i such that
M,Λ[j] |= ψ. Let σA(q

′) = ψ for each q′ ∈ St where M, q′ |= ψ, and for all other states
q′ ∈ St, let σA(q

′) be the tuple of actions for agents in A determined by SA. Now, if
Abelard uses σA and Eloise σE, the exit position of the game must be (A,Λ[i], µ), where
µ ∈ {ψ, θ}, Λ ∈ paths(q, SA) and i ≥ 0. But for this exit position the condition (⋆) does
not hold, even thought it is reached using the winning strategy ΣE. This contradicts
the induction hypothesis. Hence we have M, q 6|= 〈〈A〉〉ψ R θ, and thus (⋆) holds for Pos.

We now conclude that the condition (⋆) must hold for the initial position Pos0 =
(E, qin, ϕ). Therefore we have M, qin |= ϕ. This concludes the first direction of the
proof of the current theorem.

Suppose then that M, qin |= ϕ. We will formulate such a strategy ΣE for Eloise that
the condition (⋆) will hold at each position Posi = (P, q, ψ) of the game. The condition
holds in the initial position Pos0 = (E, qin, ϕ) by the assumption. We let the induction
hypothesis be that the condition (⋆) holds in the a position Posi and show that we can
define ΣE(Posi) in such a way that (⋆) holds in the next position Posi+1:

Let Posi = (P, q,¬ψ). If P = E, by the induction hypothesis M, q |= ¬ψ, i.e.,
M, q 6|= ψ. Thus (⋆) holds in the next position Posi+1 = (A, q, ψ). If P = A, then
by the induction hypothesis M, q 6|= ¬ψ, i.e., M, q |= ψ. Thus (⋆) holds in the next
position Posi+1 = (E, q, ψ).

Let Posi = (P, q, ψ ∨ θ). If P = E, then by the induction hypothesis M, q |= ψ ∨ θ,
i.e., M, q |= ψ or M, q |= ψ. If the former holds, we define ΣE(Posi) = ψ and else we
define ΣE(Posi) = θ. Now (⋆) will hold in the next position Posi+1. If P = A, by the
induction hypothesis M, q 6|= ψ ∨ θ, i.e., M, q 6|= ψ and M, q 6|= θ. Thus (⋆) holds in the
next position Posi+1 regardless of the choice made by Abelard.

Let Posi = (P, q, 〈〈A〉〉Xψ). If P = E, by the induction hypothesis M, q |= 〈〈A〉〉Xψ,
i.e., there exists a strategy SA such that for each Λ ∈ paths(q, SA), we have M,Λ[1] |= ψ.
Let ΣE(Posi) be the tuple in action(A, q) which is determined by SA at q. Now, regardless
of the actions chosen by Abelard for the agents in A, the resulting state q′ must be Λ[1]
for some Λ ∈ paths(q, SA). Hence M, q′ |= ψ. Thus (⋆) holds in the next position
Posi+1 = (E, q′, ψ).
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If P = A, by the induction hypothesis M, q 6|= 〈〈A〉〉Xψ, i.e., for each SA, there
exists a path Λ ∈ paths(q, SA) such that M,Λ[1] 6|= ψ. Let ~α ∈ action(A, q), whence
there is some strategy SA that coincides with ~α at the state q. Now there exists some
Λ ∈ paths(q, SA) such that M,Λ[1] 6|= ψ. Hence there is some ~β ∈ action(A, q) such
that when ~α and ~β are chosen, the resulting state q′ is Λ[1]. Thus we can define
ΣE(Posi) to be a response function in such a way that (⋆) will hold in the next position
Posi+1 = (A, q′, ψ).

Let Posi = (P, q, 〈〈A〉〉ψ U θ). If P = E, by the induction hypothesis M, q |=
〈〈A〉〉ψ U θ, i.e., there exists SA such that for each Λ ∈ paths(q, SA), there is some i ≥ 0
such that M,Λ[i] |= θ and M,Λ[j] |= ψ for every j < i. Let ΣE(Posi) be the strategy
σE that is defined as follows: let σE(q

′) = θ for each q′ ∈ St where M, q′ |= θ, and for all
other states q′ ∈ St, let σE(q

′) be the tuple of actions for the agents in A determined by
SA. Now, regardless of the actions of Abelard, all of the states that are reached in the
embedded game must be states Λ[i] for some Λ ∈ paths(q, SA) and i ≥ 0. Thus, when
Eloise uses σE, a state q′ where M, q′ |= θ is reached in a finite number of rounds. If
Abelard ends the game before that at some state q′, then we have M, q′ |= ψ. Hence
(⋆) holds for every possible exit position, and thus it holds in the next position Posi+1.

If P = A, by the induction hypothesis M, q 6|= 〈〈A〉〉ψ U θ, i.e., for every SA, there
exists Λ ∈ paths(q, SA) such that for each i ≥ 0 we have M,Λ[i] 6|= θ or M,Λ[j] 6|= ψ

for some j < i. For the sake of contradiction, suppose that Eloise does not have a
winning strategy in the embedded game g(A,A, A, q, θ, ψ). Since embedded games are
determined, there must be a winning strategy σA for Abelard.

Since σA is a winning strategy for Abelard, for every possible exit position (A, q′, µ)
(where µ ∈ {ψ, θ}) of the embedded game we have M, q′ |=g

u µ. Hence by the other
direction of the claim of the current theorem (which we have proved above), M, q′ |= µ

for every possible exit position (A, q′, µ). Hence we see that the condition (⋆) cannot
hold for any exit position that is reached with σA. Also note that Abelard must end
the game in finite time because he is the controlling player.

Let SA be the collective strategy related to σA. By our earlier observations, there
exists some Λ ∈ paths(q, SA) such that for each i ≥ 0, we have M,Λ[i] 6|= θ or M,Λ[j] 6|=
ψ for some j < i. We see that Eloise can force Abelard on this path when he is using σA.
But now Eloise can play in such a way that the condition (⋆) will hold for all possible
exit positions of the embedded game. This is a contradiction and thus Eloise must have
a winning strategy σE in the embedded game, and we can define ΣE(Posi) = σE. When
she uses σE, the game will either be infinitely long whence she wins the whole evaluation
game, or alternatively M, q′ 6|=g

u µ for every possible exit position (A, q′, µ), whence, by
the other direction of the claim of the current theorem, the condition (⋆) will hold for
the next position Posi+1.

Let Posi = (P, q, 〈〈A〉〉ψ R θ). If P = E, by the induction hypothesis M, q |=
〈〈A〉〉ψ R θ, i.e., there exists a strategy SA such that for each Λ ∈ paths(q, SA) and
i ≥ 0 either M,Λ[i] |= θ or there is j < i such that M,Λ[j] |= ψ. Let ΣE(Posi) be
the strategy σE that is defined such that σE(q

′) = ψ for each q′ ∈ St where M, q′ |= ψ

and for all other states q′ ∈ St, let σE(q
′) be the tuple of actions for the agents in A

determined by SA. Now all states that are reached in the embedded game must be
states Λ[i] for some Λ ∈ paths(q, SA) and i ≥ 0. Thus, when Eloise uses σE, she will
either stay at states q′ where M, q′ |= θ for infinitely long or reach a state q′ where
M, q′ |= ψ at some point. Hence either the embedded game continues infinitely long,
whence Eloise wins the whole evaluation game, or (⋆) holds for the exit position which
is the next position Posi+1.

If P = A, by the induction hypothesis M, q 6|= 〈〈A〉〉ψ R θ, i.e., for every SA, there
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exists Λ ∈ paths(q, SA) and i ≥ 0 such that we have M,Λ[i] 6|= θ and M,Λ[j] 6|= ψ

for every j < i. For the sake of contradiction, suppose that Eloise does not have a
winning strategy in the embedded game g(A,E, A, q, θ, ψ). Since embedded games are
determined, there must be a winning strategy σA for Abelard. Since σA is a winning
strategy for Abelard, by the other direction of the current theorem, we conclude that
the condition (⋆) cannot hold for any exit position that is reached with σA.

Let SA be the collective strategy related to σA. Now there is Λ ∈ paths(q, SA) and
i ≥ 0 such that we have M,Λ[i] 6|= θ and M,Λ[j] 6|= ψ for every j < i. Now Eloise
can force Abelard on this path, when he is playing σA. But now Eloise can play in
such a way that that the the condition (⋆) will hold for all possible exit positions of the
game and she can reach such an exit position in a finite time. This is contradiction and
thus Eloise must have a winning strategy σE in the embedded game and we can define
ΣE(Posi) = σE. If she uses σE, then the embedded game cannot be infinitely long and,
by the other direction of the current theorem, the condition (⋆) will hold for the next
position Posi+1.

Since the strategy ΣE can maintain the condition (⋆) on every position of the game,
it also holds in every ending position Posi = (P, q, p) (p ∈ Π). If P = E, we have
M, q |= p, i.e., q ∈ v(p), whence Eloise wins. If P = A, then M, q 6|= p, i.e., q 6∈ v(p),
whence again Eloise wins. Hence the strategy ΣE is indeed a winning strategy for Eloise
in G(M, qin, ϕ), and thus M, qin |=g

u ϕ.

5.2 Finitely bounded compositional semantics

By our earlier observations, the finitely bounded game-theoretic semantics is not equiv-
alent to the standard compositional semantics of ATL. However, it can be shown equiv-
alent to a natural semantics, to be defined next, which we call finitely bounded com-

positional semantics.

Definition 5.2. Let M = (Agt,St,Π,Act, d, o, v) be a CGM, q ∈ St and ϕ an ATL-
formula. The truth of ϕ in M at q according to finitely bounded semantics, denoted
by M, q |=f ϕ, is defined recursively as follows:

• The semantics for p ∈ Π, ¬ψ, ψ∨θ and 〈〈A〉〉Xψ are as in the standard compositional
semantics of ATL (Def 2.3).

• M, q |=f 〈〈A〉〉ψ U θ iff there exists n < ω and SA such that for each Λ ∈ paths(q, SA),
there is i ≤ n such that M,Λ[i] |=f θ and M,Λ[j] |=f ψ for every j < i.

• M, q |=f 〈〈A〉〉ψ R θ iff for every n < ω, there exists SA,n such that for each Λ ∈
paths(q, SA,n) and i ≤ n, either M,Λ[i] |=f θ or there is j < i such that M,Λ[j] |=f ψ.

For 〈〈A〉〉F and 〈〈A〉〉G we obtain the following semantics:

• M, q |=b 〈〈A〉〉Fψ iff there exists n < ω and SA such that for each Λ ∈ paths(q, SA)
there is i ≤ n such that M,Λ[i] |=f ψ.

• M, q |=f 〈〈A〉〉Gψ iff for every n ≥ 0 there exists SA,n such that for each Λ ∈
paths(q, SA,n) and i ≤ n we have M,Λ[i] |=f ψ.

5.3 Equivalence between finitely bounded compositional and game-

theoretic semantics

To prove the equivalence between the finitely bounded compositional semantics and
finitely bounded GTS, we need to show that it is sufficient to consider only such strategies
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in the embedded games that depend on states only. This property will be needed because
the collective strategies for coalitions in the compositional semantics are of this form.

Lemma 5.3. If Eloise has a winning strategy ΣE in a finitely bounded evaluation game
G(M, qin, ϕ, ω), then she has a winning strategy Σ′

E
which uses in the embedded games

exclusively strategies σE that depend only on states.

Proof. Suppose that ΣE is a winning strategy in a finitely bounded evaluation game
G(M, qin, ϕ, ω). We first observe that since ΣE is a winning strategy, all strategies σE
that are assigned by ΣE must be winning strategies in the corresponding embedded
games.

Let G = g(V,C, A, q0, ψC, ψC
) be an embedded game that is related to some

position Pos in the evaluation game G(M, qin, ϕ, ω). Suppose first E = C, whence
ΣE(Pos) = (n, σE) for some n < ω (the timer t is not used in finitely bounded case, and
thus it can be omitted here). Since ΣE is a winning strategy in the evaluation game,
σE must be winning strategy in the embedded game G[n]. By Proposition 4.7, the
canonical strategy τE is a winning strategy in G[n] (the canonical timer is not needed
here).

Suppose then that E 6= C, whence ΣE(Pos) maps every n < ω to some strategy σE,n.
Since ΣE is a winning strategy in the evaluation game, σE,n must be winning strategy
in the corresponding bounded embedded game G[n]. By Lemma 4.8 , for every n < ω,
the n-canonical strategy τn

E
is a winning strategy in G[n].

By these observations, it is easy to see that we can form a strategy Σ′

E
for Eloise in

such a way that it only uses canonical strategies when E = C and maps all n < ω to
n-canonical strategies when E 6= C. Since these strategies depend on states only, Σ′

E

satisfies the conditions of this claim.

With the help of the previous lemma, we can now prove the equivalence between the
finitely bounded compositional and game-theoretic semantics using a similar induction
as the one in the proof of Theorem 5.1.

Theorem 5.4. Let M be a CGM, qin ∈ St and ϕ an ATL-formula. We have M, qin |=f

ϕ iff M, qin |=g
f ϕ.

Proof. Suppose first thatM |=g
f ϕ, i.e., Eloise has a winning strategy ΣE in G(M, qin, ϕ).

By Lemma 5.3, we may assume that all of the strategies that ΣE assigns for embedded
games depend on states only. This amounts to assuming that their domain is the set of
states instead of configurations. We also recall that timers are not needed in the finitely
bounded case.

We will show that if a position Pos = (P, q, ψ) can be reached in the evaluation game
when Eloise uses ΣE, then the following condition holds for Pos:

M, q |=f ψ iff P = E. (⋆)

We will prove this claim by induction on ϕ.

The cases where Pos = (P, q, p) (p ∈ Π), Pos = (P, q,¬ψ), Pos = (P, q, ψ ∨ θ) or
Pos = (P, q, 〈〈A〉〉Xψ) are treated exactly as in the proof of Theorem 5.1.

Suppose that Pos = (P, q, 〈〈A〉〉ψ U θ) can be reached in the game. If P = E, then
ΣE(Pos) = (n, σE) where n < ω. Let SA be the collective strategy that is related to
the strategy σE (see the corresponding part in the proof of Theorem 5.1). Let Λ ∈
paths(q, SA). Now, when Eloise uses σE, there exist actions of Abelard such that the
states of the embedded game will be on Λ until some configuration (n− i,Λ[i]) (with
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i ≤ n) at which Eloise ends the game at the position (E,Λ[i], θ) (If she does not stop
the game, then the game will automatically end at the exit position (E,Λ[n], θ)). Thus,
by the induction hypothesis, M,Λ[i] |=f θ. Let then j < i. Since Abelard can end the
game after j rounds at the position (E,Λ[j], ψ), by the induction hypothesis, we have
M,Λ[j] |=f ψ. Hence M, q |=f 〈〈A〉〉ψ U θ, and thus (⋆) holds for Pos.

If P = A, then ΣE assigns some strategy σE,n to every n < ω. For the sake of
contradiction, suppose that we have M, q |=f 〈〈A〉〉ψ U θ, i.e., there exist some n′ < ω

and SA such that for each Λ ∈ paths(q, SA), there is some i ≤ n′ such that M,Λ[i] |=f θ

and M,Λ[j] |=f ψ for every j < i. Let σA(q
′) = θ for each q′ ∈ St where M, q′ |=f θ.

For all other states q′ ∈ St, let σA(q
′) be the tuple of actions for the agents in A chosen

according to SA. Now, if Abelard uses σA and Eloise σE,n′ , then the exit position of
the game must be (A,Λ[i], µ) (where µ ∈ {ψ, θ}) for some Λ ∈ paths(q, SA) and i ≤ n′.
But for this exit position, the condition (⋆) does not hold even though the position
is reached using the strategy ΣE. This contradicts the induction hypothesis. Hence
M, q 6|=f 〈〈A〉〉ψ U θ, and thus (⋆) holds for Pos.

Suppose that Pos = (P, q, 〈〈A〉〉ψ R θ) can be reached in the game. If P = E, then
ΣE(Pos) assigns some strategy σE,n for every n < ω. Let n < ω and let SA,n be the
collective strategy that is related to σE,n. Let Λ ∈ paths(q, SA,n). Now, when Eloise
plays using σE,n, there are some actions of Abelard such that the states of the embedded
game are on Λ until Eloise ends the game or n rounds have lapsed. We need to show
that for every i ≤ n either M,Λ[i] |=f θ or there is some j < i s.t. M,Λ[j] |=f ψ.
Let i ≤ n. If Eloise ends the game before i rounds have gone, the game ends at the
position (E,Λ[j], ψ) for some j < i, whence by the induction hypothesis, M,Λ[j] |=f ψ.
If Eloise does not end the game before i rounds have lapsed, then Abelard may end it
at the position (E,Λ[i], θ), whence by the induction hypothesis, M,Λ[i] |=f θ. Hence
M, q |=f 〈〈A〉〉ψ R θ, and thus the condition (⋆) holds for Pos.

If P = A, then ΣE(Pos) = (n′, σE) for some n′ < ω. For the sake of contradiction,
suppose that M, q |=f 〈〈A〉〉ψ R θ, i.e., for every n < ω, there exists SA,n such that for
each Λ ∈ paths(q, SA,n) and i ≤ n, we have either M,Λ[i] |=f θ or there is some j < i

such that M,Λ[j] |=f ψ. Let σA(q′) = θ for each q′ ∈ St where M, q′ |=f θ. For all
other states q′ ∈ St, let σA(q

′) be the tuple of actions for the agents in A according
to SA,n′. Now, if Abelard uses σA and Eloise σE, the exit position of the game must
be (A,Λ[i], µ) (where µ ∈ {ψ, θ}) for some Λ ∈ paths(q, SA) and i ≤ n′. But for this
exit position, the condition (⋆) does not hold even thought it is reached by strategy ΣE.
This is a contradiction. Hence M, q 6|=f 〈〈A〉〉ψ R θ, and thus the condition (⋆) holds for
the position Pos.

We now conclude that the condition (⋆) must hold for the initial position Pos0 =
(E, qin, ϕ). Therefore we have M, qin |=f ϕ. This concludes the first direction of the
proof of the current theorem.

Suppose then that M, qin |=f ϕ. We will formulate such a strategy ΣE for Eloise
that the condition (⋆) holds at each position Posi = (P, q, ψ) of the game. It holds in
the initial position Pos0 = (E, qin, ϕ) by the assumption that M, qin |=f ϕ. We let the
induction hypothesis be that the condition (⋆) holds in the a position Posi, and show
that we can define ΣE(Posi) in such a way that (⋆) will hold in the next position Posi+1.

The cases Posi = (P, q,¬ψ), Posi = (P, q, ψ ∨ θ) and Posi = (P, q, 〈〈A〉〉Xψ) are
treated exactly as in the proof of Theorem 5.1.

Let Posi = (P, q, 〈〈A〉〉ψ U θ). If P = E, then, by the induction hypothesis, M, q |=f

〈〈A〉〉ψ U θ, i.e., there exist some n < ω and SA such that for each Λ ∈ paths(q, SA),
there is some i ≤ n s.t. M,Λ[i] |=f θ and M,Λ[j] |=f ψ for every j < i. Let

28



ΣE(Posi) = (n, σE), where σE(q
′) = θ for each q′ ∈ St where M, q′ |=f θ and for all

other states q′ ∈ St let σE(q
′) be the tuple of actions for the agents in A chosen according

to SA. Now, when Eloise chooses the time limit to be n and uses σE, then, regardless
of the actions of Abelard, all states that are reached in the game must be states Λ[i] for
some Λ ∈ paths(q, SA) and i ≤ n. Thus Eloise can reach a state q′ where M, q′ |=f θ

in n rounds; if Abelard ends the game before that at some state q′, then M, q |=f ψ.
Hence the condition (⋆) holds for the next position Posi+1 in any case.

If P = A, by the induction hypothesis, M, q 6|=f 〈〈A〉〉ψ U θ, i.e., for every n < ω and
collective strategy SA, there exists a path Λ ∈ paths(q, SA) such that for each i ≤ n, we
have either M,Λ[i] 6|=f θ or M,Λ[j] 6|=f ψ for some j < i. For the sake of contradiction,
suppose that there is some n′ < ω (that Abelard can choose) such that Eloise does not
have a winning strategy in the bounded embedded game g(A,A, A, q, θ, ψ)[n′]. Since
bounded embedded games are determined, there must be a winning strategy σA for
Abelard in that game. When Abelard is using σA, we have M, q′ |=g

f µ for every
possible exit position (A, q′, µ). Hence, by the other (already proved) direction of the
current theorem, the condition (⋆) cannot hold for any exit position that is reached
using σA.

Let SA be the collective strategy related to σA. By earlier observations, we know
that there is some Λ ∈ paths(q, SA) s.t. for each i ≤ n′, we have M,Λ[i] 6|=f θ or
M,Λ[j] 6|=f ψ for some j < i. Now Eloise can force Abelard on this path when he is
using σA. But thus Eloise can play in such a way that the the condition (⋆) will hold
for all possible ending positions of the game. This is contradiction and thus Eloise must
have a winning strategy σE,n in the embedded game with any time limit n < ω. Thus
we can define ΣE(Posi) as a function that maps every n < ω to σE,n. Now, if Eloise
plays using to ΣE, then M, q′ 6|=g

f µ for every possible exit position (A, q′, µ). Hence,
by the other direction of the current theorem, the condition (⋆) will hold in any exit
position which will be the next position Posi+1.

Let Posi = (P, q, 〈〈A〉〉ψ R θ). If P = E, then, by the induction hypothesis, M, q |=f

〈〈A〉〉ψ R θ, i.e., for all n < ω, there exists a collective strategy SA,n such that for each
Λ ∈ paths(q, SA,n) and i ≤ n, we have either M,Λ[i] |=f θ or there is some j < i such
that M,Λ[j] |=f ψ. Let ΣE(Posi) be a function that maps every n < ω to σE,n, where
σE,n is defined as follows. Let σE,n(q

′) = ψ for each q′ ∈ St where M, q′ |=f ψ. For
all other states q′ ∈ St, let σE,n(q

′) be the tuple of actions for the agents in A chosen
according to SA,n. Now, when Eloise uses σE,n, all states that can be reached must be
states Λ[i] for some Λ ∈ paths(q, SA) and i ≤ n. Thus Eloise will either stay at states q′

where M, q′ |=f θ for n rounds or reach a state q′ where M, q′ |=f ψ while maintaining
the truth of θ. Hence the condition (⋆) will hold for the exit position which will be the
next position Posi+1.

If P = A, then, by the induction hypothesis, we have M, q 6|=f 〈〈A〉〉ψ R θ, i.e., there
is some n ≥ 0 such that for every SA, there exists a path Λ ∈ paths(q, SA) and some
i ≤ n such that we have M,Λ[i] 6|=f θ and M,Λ[j] 6|=f ψ for every j < i. For the sake
of contradiction, suppose that Eloise does not have a winning strategy in the embedded
game g(A,E, A, q, θ, ψ)[n]. Since embedded games are determined, there must be a
winning strategy σA for Abelard in the game. Hence, by the other direction of the
current theorem, the condition (⋆) cannot hold for any exit position that is reached
when Abelard is using σA.

Let SA be the collective strategy related to σA. Based on our earlier observations,
there is some Λ ∈ paths(q, SA) and i ≤ n such that we haveM,Λ[i] 6|=f θ andM,Λ[j] 6|=f

ψ for every j < i. Now Eloise can force Abelard on this path when he is using σA. Hence
Eloise can play in such a way that that the the condition (⋆) will hold for all possible
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exit positions of the game and she can reach such an exit position in n rounds. This is
contradiction and thus Eloise has a winning strategy σE in the corresponding embedded
game. We can thus define ΣE(Posi) = (n, σE), whence, by the other direction of this
theorem, the condition (⋆) holds for the next position Posi+1.

Since Eloise can maintain the condition (⋆) in every position of the game, it also
holds in every ending position Posi = (P, q, p). If P = E, then M, q |=f p, i.e., q ∈ v(p),
whence Eloise wins the game. And if P = A, then we have M, q 6|=f p, i.e., q 6∈ v(p),
whence again Eloise wins. Hence the strategy we have described is indeed a winning
strategy for Eloise in G(M, qin, ϕ, ω), and thus M, qin |=g

f ϕ.

Concluding remarks

We argue that the systems of GTS for ATL introduced in this article are conceptually
and technically natural from both logical and game-theoretic perspective. They offer
novel complementary approaches to the semantics of ATL. In particular, our bounded
GTS provides a framework where truth of ATL-formulae can be determined in finite time.
In the future we will develop game-theoretic approaches to ATL+, ATL∗ and beyond.
As already argued in the introduction, approaches via GTS have proved their worth in
multiple fields of logic.

As mentioned in the introduction, some of our technical results could have alterna-
tively been derived relatively directly using results for coalgebraic modal logic. This is
because concurrent game models can be viewed as coalgebras for a game functor defined
in [5], and the fixed-point extension of the coalitional coalgebraic modal logic for this
functor links to ATL in a natural way. Game-theoretic semantics has been developed for
coalgebraic fixed-point logics, e.g. in [13, 4, 6] and can be used to obtain some of our
results concerning the unbounded game-theoretic semantics. However, that approach
would be unhelpful for readers not familiar with coalgebras and coalgebraic modal logic,
so the more direct and self-contained approach in this article has its benefits. Moreover,
our work on the bounded and finitely bounded semantics is not directly related to exist-
ing work in coalgebraic modal logic. However, even there some natural shortcuts based
on background theory could have been used. For example, using König’s Lemma, it is
not difficult to see that the finitely bounded and unbounded game-theoretic semantics
are equivalent on image-finite models.
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