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Abstract
Recently, Fontaine has pointed out a connection between consistent query answering (CQA) and
constraint satisfaction problems (CSP) [22]. We investigate this connection more closely, identi-
fying classes of CQA problems based on denial constraints and GAV constraints that correspond
exactly to CSPs in the sense that a complexity classification of the CQA problems in each class is
equivalent (up to FO-reductions) to classifying the complexity of all CSPs. We obtain these classes
by admitting only monadic relations and only a single variable in denial constraints/GAVs and
restricting queries to hypertree UCQs. We also observe that dropping the requirement of UCQs
to be hypertrees corresponds to transitioning from CSP to its logical generalization MMSNP
and identify a further relaxation that corresponds to transitioning from MMSNP to GMSNP
(also know as MMSNP2). Moreover, we use the CSP connection to carry over decidability of
FO-rewritability and Datalog-rewritability to some of the identified classes of CQA problems.
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1 Introduction

In modern applications of database systems, it cannot always be guaranteed that the data is
consistent with the relevant integrity constraints; for example, inconcistency occurs easily
when the data is extracted from the web or integrated from multiple sources. A prominent
approach to address this problem is consistent query answering (CQA) as introduced in [3]
where one returns the certain answers over all minimal repairs of the inconsistent database,
see also the surveys [7, 15, 41]. Since the data complexity of CQA can be coNP-complete or
higher [2, 14, 16, 38], CQA is in general significantly harder than traditional query answering.
This observation has resulted in a lot of research activity aiming to more precisely clarify the
computational complexity of CQA, separating in particular the easy cases from the hard ones.
Here, ‘easy’ might mean different things. The ideal result is that a CQA problem CQA(C, q),
defined by a set C of integrity constraints and a query q, is rewritable into a first-order
logic (FO) query q̂ and thus answers can be computed by a classical RDBMS and in AC0
data complexity [24, 39]. If FO-rewritability is not attainable, one might at least hope for
Datalog-rewritability or PTime data complexity. Ultimate goals of this research programme
would be to classify the exact complexity of every CQA problem and, closely related, to
decide for a given CQA problem whether it is easy in some relevant sense, say whether
it admits an FO-rewriting. Completely classifying the border between PTime and coNP
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2 CQA and CSP

prominently involves solving dichotomy questions: for some important classes of integrity
constraints and queries, it has been conjectured that CQA is in PTime or coNP-hard for
every problem in the class [1, 40, 41]. In fact, with today’s methods one cannot hope to
completely classify the complexity of a class of CQA problems if that class does not have
such a dichotomy.

Despite serious efforts, comprehensive results for dichotomies in CQA have so far been
elusive. For several restricted cases which all require that the query to be answered is
free of self-joins, dichotomies were obtained in [27, 40, 28]. An explanation of why general
dichotomy results for CQA are difficult to obtain was recently given by Fontaine [22], who
linked CQA with the area of constraint satisfaction problems (CSPs). CSPs constitute a
subclass of NP that contains many relevant NP-complete problems such as 3SAT, 3COL,
and integer programming over bounded domains, and it is widely believed that this class is
computationally more well-behaved than NP itself. In particular, a long-standing conjecture
due to Feder and Vardi states that CSPs enjoy a dichotomy between PTime and NP [20].
Massive research efforts in logic, complexity, and algebra have been directed towards proving
this conjecture, and although steady progress has been made, the conjecture is still open. In
contrast, strong results have been obtained on the FO-definability and Datalog-definability
of CSPs, the counterpart of FO- and Datalog-rewritability in CQA: while both problems are
undecidable for the entire class NP, they are decidable and NP-complete for CSPs [30, 5, 23].

Fontaine’s main result in [22] links the Feder-Vardi conjecture to dichotomies in CQA
under GAV constraints by showing that for every CSP problem CSP(A) defined by some
template A, there is a CQA problem CQA(C, q) with C a set of GAV constraints and q a
union of conjunctive queries (UCQ) such that CQA(C, q) and the complement coCSP(A)
of CSP(A) are PTime-equivalent, that is, they have the same complexity up to PTime-
reductions. Consequently, establishing a dichotomy between PTime and coNP for CQA
with GAV constraints and UCQs implies the Feder-Vardi conjecture. The aim of this paper
is to study the CSP-CQA connection in more detail, focussing on denial constraints and GAV
constraints which have both received significant attention in CQA [17, 16, 8, 2, 37, 38, 22].
In particular, we aim to identify classes of CQA problems that exactly correspond to the
class of CSPs in the sense that classifying the complexity of problems from both classes is
equivalent in a strong sense.

Our first main observation is that CSPs correspond to CQA problems whose (denial or
GAV) constraints involve only monadic relation symbols and only a single variable and in
which the query to be answered is a UCQ in which all CQs take the form of a hypertree (all
queries in this paper are Boolean). More specifically, let a monadic disjointness constraint
(MDiC) be of the form ∀x¬(P1(x) ∧ · · · ∧ Pn(x)) and a monadic GAV constraint (MGAV)
be of the form ∀x (P1(x) ∧ · · · ∧ Pn(x) → Q(x)). We use (MDiC, tUCQ) to denote the
class of all CQA problems whose constraints are MDiCs and whose query is a UCQ in
which every CQ is a hypertree in the sense that its incidence graph is a tree (without
multi-edges), and likewise for (MGAV, tUCQ). We then show that (i) for every CSP(A)
there is a problem CQA(C, q) in (MDiC, tUCQ) such that coCSP(A) and CQA(C, q) are
FO-equivalent (that is, they have the same complexity up to FO-reductions), (ii) for every
problem in (MDiC, tUCQ) there is one from (MGAV, tUCQ) that is FO-equivalent, and
(iii) for every problem CQA(C, q) in (MGAV, tUCQ) there is a CSP(A) such that CQA(C, q)
and coCSP(A) are FO-equivalent. This improves upon the main result of [22] in several ways.
First, the CQA problems constructed in [22] involve constraints that contain non-monadic
relations and the UCQs used there are not hypertrees since they include multi-edges; we thus
identify much more restricted CQA classes whose complexity classification is already as hard
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as classifying CSPs; second, we also translate from CQA to CSP and thus show that a PTime
vs. coNP dichotomy for (MDiC, tUCQ) and (MGAV, tUCQ) is equivalent to the Feder-Vardi
conjecture (instead of only implying it); and third, we replace PTime-equivalence with
FO-equivalence which (a) means that not only a PTime vs. (co)NP dichotomy carries over,
but any complexity classification that involves complexity classes closed under FO-reductions
(such as LogSpace), and (b) enables us to transfer results from CSP to the classes of CQA
problems that we have identified.

Regarding (b), we show that for (MDiC, tUCQ) and (MGAV, tUCQ), rewritability into
FO and into Datalog are decidable, referring to the version of Datalog which allows negation in
front of body atoms that use a monadic EDB relation. Our approach yields NExpTime upper
bounds for these problems and we demonstrate that the complexity is indeed high (despite
the fact that we deal with rather restricted CQA problems) by establishing a PSpace lower
bound for FO-rewritability, leaving the exact complexity open. We also transfer Bulatov’s
result that CSPs whose templates have at most three elements enjoy a dichotomy between
PTime and NP [13] to CQA, identifying a (rather restricted) corresponding fragment of
(MDiC, tUCQ) that has a dichotomy between PTime and coNP.

We then investigate the effect of dropping the requirement that queries are hypertrees
while maintaining all restrictions on integrity constraints, which gives rise to the classes
of CQA problems (MDiC,UCQ) and (MGAV,UCQ). We show that this corresponds to
transitioning from CSP to its logical generalization MMSNP, which was introduced by Feder
and Vardi when studying the descriptive complexity of CSP [20] and has received considerable
interest, see e.g. [33, 11]. More precisely, we establish results that exactly parallel (i) to
(iii) above, replacing tUCQs with UCQs and CSP with MMSNP. Again, all reductions
are FO-reductions. The known results that CSP ⊆ MMSNP and that for every MMSNP
problem there is a CSP problem that is PTime-equivalent [20, 29] then also yields that
(MDiC,UCQ) has a dichotomy between PTime and coNP if and only if this is the case for
(MDiC, tUCQ), and likewise for the corresponding CQA classes based on MGAVs. This does
not imply, though, that a full complexity classification of these classes is equivalent since
the relation between CSP and MMSNP in terms of FO-reductions is open. These results
also shed some light on the decidability of FO- and Datalog-rewritability in (MDiC,UCQ)
and (MGAV,UCQ), which is equivalent to the decidability of FO-definability of MMSNP
problems, an open problem. Finally, we generalize (MDiC,UCQ) by giving up the restriction
that integrity constraints are monadic and comprise only a single variable, instead requiring
that every atom in the integrity constraint comprises the same variables in the same order.
We then show that this corresponds to the transition from MMSNP to GMSNP [10] (also
known as MMSNP2 [32]), which means to replace monadicity as stipulated in MMSNP for
certain relations with a guardedness condition.

Some proof details are deferred to the appendix of the long version of this paper available
at http://www.informatik.uni-bremen.de/tdki/research/papers.html.

2 Preliminaries

A schema is a finite collection S = (S1, . . . , Sk) of relation symbols with associated non-zero
arity. A fact over S is an expression of the form S(a1, . . . , an) where S ∈ S is an n-ary
relation symbol, and a1, . . . , an are elements of some fixed, countably infinite set const of
constants. An instance I over S is a finite set of facts over S. The active domain adom(I)
of I is the set of all constants that occur in the facts of I. We will frequently use boldface
notation for tuples, such as in a = a1 · · · an.

ICDT’15



4 CQA and CSP

A conjunctive query (CQ) takes the form q = ∃xϕ(x) where ϕ is a conjunction of
relational atoms, neither constants nor equality allowed. A union of conjunctive queries
(UCQ) is a disjunction of CQs. Note that we consider only Boolean queries for simplicity,
see the conclusion for some further remarks on this issue.

A denial constraint (DC) has the form ∀x¬ϕ(x), where ϕ is a conjunction of relational
atoms. A global as view constraint (GAV) takes the form ∀xϕ(x) → S(x) where ϕ is a
conjunction of relational atoms. Let I be an instance and C a set of constraints. An instance
J is a minimal repair of I w.r.t. C if J satisfies all constraints in C and there is no instance J ′
such that J ′ satisfies all constraints in C and I ∆ J ′ ( I ∆ J , where ‘∆’ denotes symmetric
difference. We generally omit ‘w.r.t. C’ when C is clear from the context. For a query q, we
write I |=C q if every minimal repair J of I satisfies J |= q.

A consistent query answering (CQA) problem, denoted CQA(C, q), is defined by a set
of constraints C and a query q. As input, an S-instance I is given where S is the set of
relation symbols used in C or q. The question is whether I |=C q. We use (DC,UCQ) to
denote the set of problems CQA(C, q) where C is a set of DCs and q a UCQ, and likewise
for (GAV,UCQ) and other combinations of constraint language and query language.

In this paper, all considered decision problems take instances over some fixed schema as
inputs. For two such decision problems P1, P2, we write P1 �p P2 if P1 reduces to P2 by a
polynomial time reduction. We write P1 �FO P2 if P1 reduces to P2 by an FO-reduction,
defined as in [26]. However, most of our FO-reductions are of the following simple form.
For problems P1 and P2 over schemas S1 and S2, a map T that assigns to each S1-instance
I an S2-instance T (I) is FO-definable if for every k-ary relation symbol R in S2, there is
an FO-formula ϕR over S1 (equality and constants allowed) with k free variabes such that
R(a) ∈ T (I) iff I |= ϕR[a], for all a in adom(I). Such a map gives rise to an FO-reduction of
P1 to P2 if for all S1-instances I, we have I ∈ P1 iff T (I) ∈ P2. FO-reductions of this simple
form differ from the general case in that (i) no arithmetic operations are admitted in the
formulas ϕR and (ii) the domain of the T (I) cannot be larger than the domain of I. With
FO-equivalence and PTime-equivalence of two problems P1 and P2, denoted P1 ≈FO P2 and
P1 ≈p P2, we mean that there are reductions between P1 and P2 in both directions. For two
classes of decision probems C1 and C2, we write C1 �FO C2 if for every problem p1 ∈ C1, there
is a problem p2 ∈ C2 such that p1 �FO p2 and p2 �FO p1. We write C1 ≈FO C2 and say that
C1 and C2 are FO-equivalent if C1 �FO C2 and C2 �FO C1. The definition of C1 �p C2 and
C1 ≈p C2 is analogous, but based on polynomial time reductions.

Let A be an instance over schema S. The constraint satisfaction problem CSP(A) is to
decide, given an instance I over S, whether there is a homomorphism from I to A, which
we denote with I → A. In this context, A is called the template of CSP(A). We will
generally and w.l.o.g. assume that the template is a core, that is, every automorphism is an
isomorphism. It is often useful to further assume that the template A admits precoloring,1
that is, for each a ∈ adom(A), there is a unary relation symbol Pa ∈ S such that Pa(b) ∈ A
iff b = a [18]. It is known that for every template A (which is a core), there is a template A′
that admits precoloring such that CSP(A) ≈FO CSP(A′) [31]. We use coCSP(A) to denote
the complement problem of CSP(A) and coCSP to denote the set of all problems coCSP(A)
whose template A admits precoloring.

The logic MMSNP was introduced by Feder and Vardi as a descriptive complexity
counterpart of CSPs [20]. Since we will mostly be concerned with the complement of
MMSNP, we refrain from giving the original definition and directly introduce its complement,

1 This property is also known as ‘full idenpotence’ and ‘pointedness’.
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which can conveniently be defined as (negation-free) monadic disjunctive Datalog [10].
A monadic disjunctive Datalog (MDDLog) rule ρ has the form R1(y1) ∧ · · · ∧ Rn(yn) →
S1(x1)∨· · ·∨Sm(xm) withm ≥ 0, n > 0, and S1, . . . , Sm monadic. Every variable that occurs
in the head S1(x1)∨· · ·∨Sm(xm) of ρ is also required to occur in ρ’s body R1(y1)∧· · ·∧Rn(yn).
Empty rule heads are denoted ⊥. An MDDLog program Π is a finite set of MDDLog rules
with a selected nullary goal relation goal that does not occur in rule bodies and only in
goal rules of the form R1(x1) ∧ · · · ∧Rn(xn)→ goal(). Relation symbols that occur in the
head of at least one rule of Π are intensional (IDB), and all remaining relation symbols
in Π are extensional (EDB). Every MDDLog program Π defines a decision problem: given
an S-instance I, where S is the set of EDB relations in Π, decide whether I |= Π, that is,
whether in every extension of I that satisfies all non-goal rules in Π, the body of at least one
goal rule applies. We use coMMSNP to denote the class of all these decision problems and
MMSNP to denote the class of their complements.

3 Relating CQA and CSP

We identify fragments of (DC,UCQ) and (MGAV,UCQ) that are FO-equivalent to coCSP.
They involve restrictions on the admitted constraints as well as on the admitted queries. A
denial constaint is called a monadic disjointness constraint (MDiC) if all relation symbols
that occur in it are monadic and it contains only a single variable; a GAV is called monadic or
an MGAV if it satisfies the same conditions. MDiCs and MGAVs are clearly rather restricted
classes of constraints. Note, however, that they are useful for speaking about type systems.
For example, the MDiC ∀x¬(person(x) ∧ process(x)) asserts disjointness of the types person
and process while the MGAV ∀x (professor(x)→ person(x)) ensures a subsumption between
the types professor and person.

While we restrict constraints to MDiCs and MGAVs, UCQs are required to contain only
CQs that have the shape of a hypertree. The incidence graph of a CQ q is the bipartite
undirected graph whose nodes are the variables and the atoms in q and whose edges connect
a variable x with each atom R(x) such that x ∈ x. A CQ is a hypertree conjunctive query
(tCQ) if its incidence graph is a tree (without multi-edges). A hypertree UCQ (tUCQ) is
a UCQ in which every CQ is a tCQ. Our notion of hypertree CQ is rather restrictive, see
e.g. [6, 25] for more general forms of hypertrees; our form of hypertrees, though, is known to
be intimately connected to the expressive power of CSPs [34].

Before proceeding, we observe the following connection between MDiCs and MGAVs.

I Lemma 1. (MDiC,Q) �FO (MGAV,Q) for Q ∈ {UCQ, tUCQ}. Moreover, given a problem
CQA(C, q) from (MDiC,Q) one can construct a problem CQA(C ′, q′) in (MGAV,Q) such
that CQA(C, q) ≈FO CQA(C ′, q′) in polynomial time.

Proof. Let CQA(C, q) be a problem from (MDiC,Q) over schema S. Define C ′ = {∀xϕ(x)→
M(x) | ∀x¬ϕ(x) ∈ C} where M is a fresh monadic relation symbol and q′ = q ∨ ∃xM(x).
We show that CQA(C, q) �FO CQA(C ′, q′) and vice versa. For the former, we observe that
for all S-instances I, we have I |=C q iff I |=C′ q′. For the latter, it is easy to show that,
for all S ∪ {M}-instances I, we have I |=C′ q′ iff I |= ∃xM(x) or I |=C q. Clearly, these
reductions can be implemented as FO-reductions. o

Our aim is to show that (MDiC, tUCQ) ≈FO (MGAV, tUCQ) ≈FO coCSP. By Lemma 1,
it suffices to show that coCSP �FO (MDiC, tUCQ) and (MGAV, tUCQ) �FO coCSP. We
start with the former, improving upon a reduction by Fontaine [22] which shows that
coCSP �p (GAV,UCQ). Consider CSP(A) over schema S where A admits precoloring. We

ICDT’15



6 CQA and CSP

construct a problem CQA(CA, qA) from (MDiC, tUCQ) over schema S′ which extends S
with unary relation symbols Qa, a ∈ adom(A) (these symbols should be distinguished from
the monadic relation symbols Pa in S, a ∈ adom(A), which exist since A admits precoloring).
CA contains one monadic disjointness constraint:

∀x¬
∧

a∈adom(A)

Qa(x).

For each a ∈ adom(A), we use cona(x) to denote the conjunction
∧

e∈adom(A)\{a}Qe(x). The
tUCQ qA contains the following tCQ for each R ∈ S of arity n and each a = a1 · · · an ∈
adom(A)n such that R(a) 6∈ A:

∃x1 · · · ∃xn (cona1(x1) ∧ · · · ∧ conan
(xn) ∧R(x1, . . . , xn)).

To understand the construction of CQA(CA, qA), consider the reduction from CSP(A) to
the complement of CQA(CA, qA). Given an S-instance I that is an input to CSP(A), we
construct an S′-instance T ↑(I) by adding Qa(b) for all b ∈ adom(I) and all a ∈ adom(A).
Then each minimal repair J of T ↑(I) must satisfy, for each b ∈ adom(I), J |= cona[b]
for a unique a ∈ adom(A). In this way, J represents a function h that assigns to each
b ∈ adom(I) the unique a ∈ adom(A) such that Qa(b) 6∈ J . If J 6|= qA, then h must clearly
be a homomorphism. Indeed, we show in the appendix that I → A iff T ↑(I) 6|=CA

qA.

I Lemma 2. coCSP(A) �FO CQA(CA, qA) and CQA(CA, qA) �FO coCSP(A).

Proof. The first reduction was already described above. Clearly, T ↑ is FO-definable and
thus the reduction is an FO-reduction. For the converse reduction, let I be an S′-instance.
Denote by X the set of b ∈ adom(I) such that there are at least two distinct a1, a2 ∈ adom(A)
with neither Qa1(b) ∈ I nor Qa2(b) ∈ I. Then T ↓(I) is obtained from I by dropping all facts
that involve a constant from X or a relation symbol in S′ \ S, and adding all facts Pa(b)
such that Qe(b) ∈ I iff e 6= a for all e ∈ adom(A). Note that it is crucial here that A admits
precoloring as we use the relation symbols Pa. Clearly T ↓(I) is FO-definable. We show in
the appendix that I 6|=CA

qA iff T ↓(I)→ A. o

It is easy to see that, given A, we can construct CQA(CA, qA) in polynomial time. We
have thus established the following.

I Theorem 3. For every CSP template A that admits precoloring, there is a problem
CQA(C, q) from (MDiC,tUCQ) that satisfies CQA(C, q) ≈FO coCSP(A) and can be construc-
ted in polynomial time.

We now show that (MGAV, tUCQ) �FO coCSP. Let CQA(C, q0) be over schema S with
C a set of MGAVs and q0 a hypertree UCQ. We use S(1) to denote the restriction of S to
monadic relation symbols and S(>1) for the restriction of S to non-monadic symbols. In the
following, we define a CSP template AC,q0 over schema S′ = S(>1) ∪ {PΓ | Γ ⊆ S(1)}. Note
that there is an obvious natural translation of S-instances into corresponding S′-instances
and vice versa; for example, an S′-instance I is translated to an S-instance J by replacing
every fact PΓ(a) with P (a) for all P ∈ Γ. The change of schema is used to deal with the
complication that the ‘yes’-instances of each CSP are closed under homomorphic pre-images
while the ‘no’-instances of CQA problems from (MGAV, tUCQ) are not (unless the schema
is modified in the described way). For any set Γ ⊆ S(1), we use rep(Γ) to denote the set of all
sets Γ′ ⊆ S(1) such that {P (a) | P ∈ Γ′} is a minimal repair of the instance {P (a) | P ∈ Γ}.

Let Q be the set of all connected subqueries of CQs in q0 (which are again hypertrees) and
of all queries of the form P (x), P ∈ S(1). A place is a pair (q, x) with q ∈ Q and x ∈ var(q).
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A type t is a set of places. The type tpI(a) realized by constant a in instance I is the set of all
places (q, x) such that there is a homomorphism h from q to I that takes x to a. We say that
a type t is realizable if there is an instance I such that I satisfies all constraints in C and t is
realized by some constant in I; we say that t avoids q0 if (q, x) /∈ t for any disjunct q of q0
and x ∈ var(q). For R ∈ S of arity n, we say that a tuple (t1, . . . , tn) of types is R-coherent
if for any instance I and tuples of constants (a1, . . . , an) such that tpI(ai) = ti for 1 ≤ i ≤ n,
after adding to I the fact R(a1, . . . , an), we still have tpI(ai) = ti for 1 ≤ i ≤ n. Now, the
template AC,q0 is defined as follows:

the constants in AC,q0 are the pairs 〈t,Γ〉 with t a realizable type that avoids q0 and
Γ ⊆ S(1) such that t|S(1) ∈ rep(Γ) where t|S(1) is the restriction of t to schema S(1);
AC,q0 contains all facts of the form PΓ(〈t,Γ〉);
AC,q0 contains all facts R(〈t1,Γ1〉, . . . , 〈tn,Γn〉), R of arity n, if (t1, . . . , tn) is R-coherent.

To understand the construction, consider the reduction from the complement of CQA(C, q0)
to CSP(AC,q0) and let I be an S-instance that is an input to the former. We replace I with
the corresponding S′-instance T ↑(I) obtained from I by dropping all facts that involve a
monadic relation and adding PΓa(a) for every element a ∈ I, where Γa = {P | P (a) ∈ I}.
Then, a homomorphism h from T ↑(I) to AC,q0 defines the repair of I that is obtained by
repairing the monadic relations at each a ∈ adom(I) as suggested by h(a) = 〈t,Γ〉, namely
to remove all P (a) with (P (x), x) /∈ t. Indeed, we show in the appendix that I 6|=C q0 iff
T ↑(I) → AC,q0 . It is again easy to see that T ↑(I) is FO-definable. For later use, we note
explicitly that an FO-formula ϕPΓ for defining PΓ in T ↑(I) is given by

ϕPΓ(x) =
∧

P∈Γ
P (x) ∧

∧
P∈S(1)\Γ

¬P (x).

It is also interesting to note that the S-instance IA obtained from the template AC,q0 by
dropping all facts PΓ(〈t,Γ〉) and adding P (〈t,Γ〉) for all (P (x), x) ∈ t is a universal minimal
repair in the following sense: (i) it is a minimal repair of the S-instance that corresponds to
AC,q0 and (ii) any minimal repair of any S-instance homomorphically maps to IA.

I Lemma 4. CQA(C, q0) �FO coCSP(AC,q0) and coCSP(AC,q0) �FO CQA(C, q0).

Proof. The first reduction was described above. Correctness is proved in full detail in the
appendix. For the second reduction, let an S′-instance I be given. If there exists a ∈ adom(I)
with PΓ(a), P∆(a) ∈ I for some Γ 6= ∆, then there is no homomorphism from I to AC,q0 and
“false” is returned. Otherwise define an S-instance T ↓(I) by dropping all facts of the form
PΓ(a) and adding P (a) whenever PΓ(a) ∈ I with P ∈ Γ. We show in the appendix that
T ↓(I)→ AC,q0 iff I 6|=C q0. Clearly T ↓(I) is FO-definable. o

I Theorem 5. For every problem CQA(C, q) from (MGAV,tUCQ), there is a CSP template
A that satisfies coCSP(A) ≈FO CQA(C, q) and can be constructed in single exponential time.

Summarizing Theorems 3 and 5, we thus obtain the following FO-equivalences.

I Corollary 6. (MDiC, tUCQ) ≈FO (MGAV, tUCQ) ≈FO coCSP.

It follows that there is a dichotomy between PTime and coNP for (MDiC, tUCQ) and
(MGAV, tUCQ) if and only if the Feder-Vardi conjecture is true, and more generally that
classifying the complexity of these classes of CQA problems is equivalent to classifying the
complexity of CSPs (up to FO reductions).
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4 FO- and Datalog-Rewritability

We exploit the reductions from the previous section and recent results concerning the FO-
and Datalog-definability of CSPs to show that FO-rewritability and Datalog-rewritability
are decidable in (MDiC, tUCQ) and (MGAV, tUCQ). A problem CQA(C, q) over schema S
is FO-rewritable if there is a Boolean FO-query q̂C,q such that for all S-instances I, we have
I |=C q iff I |= q̂C,q. Thus, FO-rewritability ensures that CQA(C, q) can be implemented
using a conventional RDBMS. Datalog-rewritability is defined accordingly, where we refer to
the version of Datalog that admits negated monadic EDB atoms in rule bodies. Without
such atoms, Datalog-rewritability would be an extremely elusive property, as illustrated by
the trivial problem CQA(C, q) where C = {∀x¬(A1(x) ∧A2(x))} and q = ∃xA1(x), which
can be rewritten into A1(x) ∧ ¬A2(x)→ goal(), but not into any Datalog program without
negated monadic EDB atoms. Note that in constrast to consistent query answering problems,
a class coCSP(A) is Datalog-definable with negated EDB atoms in rule bodies if and only
if it is definable by a negation-free Datalog program [21]. We rely on the following results
from [30, 5, 23].

I Theorem 7. Given a CSP template A, it is NP-complete to decide whether coCSP(A) is
FO-definable. The same is true for Datalog-definability.

Since the reductions between CQA(C, q) and coCSP(AC,q) used in the proof of Theorem 5
are FO-reductions, it follows immediately that CQA(C, q) is FO-rewritable if and only if
coCSP(AC,q) is FO-definable [26]. Given that AC,q can be constructed in single exponential
time, we obtain a NExpTime upper bound for deciding FO-rewritability of CQA problems
in (MDiC, tUCQ) and (MGAV, tUCQ).

I Theorem 8. Given (C, q) such that CQA(C, q) is from (MDiC, tUCQ) or (MGAV, tUCQ),
it is decidable in NExpTime whether CQA(C, q) is FO-rewritable. Both problems are
PSpace-hard.

Proof.(Sketch) The PSpace lower bounds are proved in the appendix by a non-trivial
reduction of the word problem of polynomially space-bounded Turing machines. Similar
reductions have been used to establish PSpace-hardness of boundedness in linear monadic
datalog [19] and of certain FO-rewritability problems in ontology-based data access [9]. The
general idea is to start with a DTM M that solves a PSpace-complete problem and to
first modify it so that M terminates when started in any configuration (which must not
even be reachable from an initial configuration). Then, one crafts a problem CQA(C, q)
such that if M accepts an input x, then any FO-rewriting of CQA(C, q) would have to
query for the existence of unboundedly long paths of facts that represent an accepting
computation of M on x, repeated over and over again. Clearly, this contradicts the locality
of FO-queries. For technical reasons, we actually cannot ensure that the first computation
on the mentioned paths starts with the initial configuration for x. However, M terminates
from any configuration, and the second computation on the paths (as well as all subsequent
ones) are guaranteed to start with the initial configuration for x. Details are given in
the appendix. We note that C consists only of a single constraint, which is of the form
∀x¬(B(x) ∧B′(x)). o

The exact complexity remains open, but we speculate that the problems in Theorem 8 are at
least ExpTime-hard. To obtain complexity bounds for Datalog-rewritability, we inspect the
FO-formulas required to define T ↑(I) and T ↓(I) in the proof of Lemma 4.
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I Lemma 9. Let CQA(C, q0) and AC,q0 be as in Lemma 4. Then CQA(C, q0) is Datalog-
rewritable iff coCSP(AC,q0) is Datalog-definable.

Proof. Let Π be a Datalog program that defines coCSP(AC,q0). Replace in Π all body
atoms PΓ(x) with

∧
P∈Γ P (x) ∧

∧
P∈S(1)\Γ ¬P (x) and denote the resulting program by Π′.

It can be verified using the proof of Lemma 4 that I |=C q0 iff I |= Π′ for all S-instances I.
Thus Π′ is a Datalog-rewriting of CQA(C, q0).

Conversely, assume that Π is a Datalog-rewriting of CQA(C, q0). Replace every rule ρ
in Π by a set of rules as follows. For every variable x in ρ, replace the set S of conjuncts
in the body of ρ that are of the form P (x) and ¬P (x), P ∈ S(1), by any atom PΓ(x) such
that S ⊆ {P (x) | P ∈ Γ} ∪ {¬P (x) | P ∈ S(1) \ Γ}. Moreover, add PΓ(x) ∧ PΛ(x)→ goal()
as a new rule for all Γ,Λ ⊆ S(1) with Γ 6= Λ. Denote the resulting program by Π′. It can be
verified using the proof of Lemma 4 that Π′ defines coCSP(AC,q0). o

The following is a consequence of Lemma 4, Lemma 9, and Theorem 7.

I Theorem 10. Given (C, q) such that CQA(C, q) is from (MDiC, tUCQ) or (MGAV, tUCQ),
it is decidable in NExpTime whether CQA(C, q) is Datalog-rewritable.

We do not have any non-trivial lower bound. Finally, we observe that, thanks to allowing neg-
ation in Datalog-rewritings as described above, FO-rewritability implies Datalog-rewritability.

I Theorem 11. In (MDiC, tUCQ) and (MGAV, tUCQ), FO-rewritability implies (non-
recursive) Datalog-rewritability.

Proof. It was observed by Atserias (and follows from Rossman’s homomorphism preservation
theorem) that for any CSP template A, coCSP(A) being FO-definable implies that coCSP(A)
is UCQ-definable [4, 35]. Thus FO-rewritability of CQA(C, q) implies FO-definability of
coCSP(AC,q). The latter implies UCQ-definability of coCSP(AC,q) which implies (non-
recursive) Datalog-definability of coCSP(AC,q). The latter implies (non-recursive) Datalog-
rewritability of CQA(C, q). o

5 A Dichotomy Result

For restricted classes of CSPs, a dichotomy between PTime and NP has been established.
The most notable results include Schaefer’s famous dichotomy theorem for templates with
at most two elements [36] and its generalization to three element templates obtained much
later by Bulatov [13]. It is natural to ask whether these dichotomies transfer to restricted
classes of CQA problems. In this section, we identify a subclass of (MDiC, tUCQ) for which
this is the case, thus obtaining a dichotomy between PTime and coNP.

We consider the class of problems CQA(C, q0) such that C consists of a single MDiC
of the form ∀x¬(A1(x) ∧ A2(x)) and q0 is a tUCQ such that, in every tCQ in q0, there is
at most one atom with a relation symbol distinct from A1, A2. Let us call a problem of
this form a restricted binary CQA problem where ‘binary’ refers to the number of atoms
allowed in the MDiC. Note that the resulting class r2CQA of CQA problems is not trivial
since a straightforward analysis of the proof of Theorem 3 shows that 2coCSP �FO r2CQA,
where icoCSP is the class of complements of all problems that can be defined by a CSP
template with at most i elements. Consequently, establishing a PTime / coNP dichotomy
for r2CQA implies Schaefer’s theorem; we actually find it remarkable that a class of CQA
problems as simple as 2rCQA turns out to be that complex. In the following, we show that
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10 CQA and CSP

r2CQA �FO 3coCSP and thus obtain a dichotomy between PTime and coNP for r2CQA by
Bulatov’s result.

Let CQA(C, q0) be a restricted binary CQA problem over schema S. We define a CSP
template AC,q0 over schema S′ = (S \ {A1, A2}) ∪ {PΓ | Γ ⊆ {A1, A2}} as follows:
1. the constants in AC,q0 are 0, 1, 2;
2. AC,q0 contains the facts P∅(0), P{A1}(1), P{A2}(2), P{A1,A2}(1), and P{A1,A2}(2);
3. AC,q0 contains the fact R(i1, . . . , ik), R ∈ S \ {A1, A2} and ij ∈ {1, 2}, when q0 does not

evaluate to true on the S-instance {R(i1, . . . , ik)} ∪ {Aij (ij) | 1 ≤ j ≤ k}.
The general idea is the same as in the proof of Theorem 5, that is, a homomorphism h from
an S′-instance J to AC,q0 defines a repair of the corresponding S-instance I. In fact, for any
situation A1(a), A2(a) ∈ I we must have h(a) ∈ {1, 2} and in the repair of I described by h we
then keep Ah(a) and remove A3−h(a). The element 0 in AC,q0 is needed as a homomorphism
target for constants a ∈ adom(I) such that neither A1(a) nor A2(a) are in I.

I Lemma 12. CQA(C, q0) �FO coCSP(AC,q0) and coCSP(AC,q0) �FO CQA(C, q0).

The FO-reductions used for proving Lemma 12 are identical to those in the proof of Lemma 4,
but of course the correctness proofs differ. Details are given in the appendix.

I Theorem 13. Every binary restricted CQA problem is in PTime or coNP-complete.

6 Relating CQA and MMSNP

The classes of CQA problems identified so far all require queries to be hypertree UCQs. We
now show that the transition from hypertree UCQs to unrestricted UCQs corresponds to
the transition from CSP to MMSNP: while classifying the complexity of (MDiC, tUCQ) and
(MGAV, tUCQ) is equivalent to classifying the complexity of coCSP (up to FO-reductions),
classifying (MDiC,UCQ) and (MGAV,UCQ) is equivalent in the same sense to classifying
coMMSNP. Since it is known that MMSNP ≈p CSP, the results in this section also imply
that there is a dichotomy between PTime and coNP for (MDiC, tUCQ) if and only if there
is such a dichotomy for (MDiC,UCQ) if and only if the Feder-Vardi conjecture holds (and
likewise for the corresponding CQA languages based on MGAVs). They also yield some
insight into the problem of deciding FO-rewritability in (MDiC,UCQ) and (MGAV,UCQ):
these problems are decidable if and only if FO-definability in MMSNP is decidable, which is
an open problem.

Recall that coMMSNP is the class of problems definable by an MDDLog program. Thus,
let Π be an MDDLog program over schema S and assume that Q is the set of IDB relations
in Π. A Q-type is a subset t ⊆ Q. We say that Π admits precoloring if the EDB schema S
includes a monadic relation symbol St for each Q-type t and Π includes rules (i) St(x)→ Q(x)
for all Q-types t and all Q ∈ t and (ii) St(x) ∧Q(x)→ ⊥ for all Q-types t and all Q ∈ Q \ t;
the St relations are not allowed to be used in any other rule. We use coMMSNPpre to
denote the class of all problems defined by a MDDLog program that admits precoloring and
MMSNPpre to denote the class of their complements. Recall that we can w.l.o.g. assume
CSPs to admit precoloring. The following result says that the same is true for (co)MMSNP.

I Theorem 14 (Bodirsky and Madelaine [12]). MMSNP �FO MMSNPpre.

We start with establishing a counterpart of Theorem 3. Let Π be an MDDLog program over
schema S that admits precoloring with IDB relations Q, as above. We use tp to denote
the set of all Q-types. Construct a problem CQA(CΠ, qΠ) in (MDiC,UCQ) over schema S′
which extends S with unary relation symbols Qt, t ∈ tp (to be distinguished from the EDB
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relations St required because Π admits precoloring). CΠ contains one monadic disjointness
constraint:

∀x¬
∧
t∈tp

Qt(x).

For each Q-type t, we use cont(x) to denote the conjunction
∧

t′∈tp\{t}Qt′(x). We now
construct the UCQ qΠ, which contains the following two kinds of CQs.
1. Consider each non-goal rule

ρ =
∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤m

Si(yi)→
∨

1≤i≤`

S′i(zi)

where all Ri are from S and all Si and S′i are from Q. Let x1, . . . , xk be the variables
in ρ. Then include in qΠ the following CQ, for all sequences of Q-types t1, . . . , tk such
that (i) if S(xi) occurs the body of ρ with S ∈ Q, then S ∈ ti and (ii) if S(xi) occurs in
the head of ρ, then S /∈ ti:∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤k

conti(xi) ∧
∧

1≤i≤`

cont′
i
(zi);

2. Consider each goal rule

ρ =
∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤m

Si(yi)→ goal()

where all Ri are from S and all Si are from Q. Let x1, . . . , xk be the variables in ρ. Then
include in qΠ the following CQ, for all sequences of Q-types t1, . . . , tk such that if S(xi)
occurs in the body of ρ with S ∈ Q, then S ∈ ti:∧

1≤i≤n

Ri(xi) ∧
∧

1≤i≤k

conti
(xi).

The above construction parallels the one used in the proof of Theorem 3, with Q-types
playing the role of elements of the CSP template. In the reduction from Π to CQA(CΠ, qΠ),
we are given an S-instance I and construct an S′-instance T ↑(I) by adding Qt(a) for all
a ∈ adom(I) and all Q-types t. Then each minimal repair J of T ↑(I) must satisfy, for each
a ∈ adom(I), J |= cont[a] for a unique Q-type t and thus assigns to each a ∈ adom(I) a
Q-type ta. In this way, it describes a unique S ∪Q-instance I ′ that is obtained from I by
adding P (a) whenever P ∈ ta. If J 6|= qΠ, then I ′ satisfies all non-goal rules of Π, but no
goal rule applies. Indeed, we show in the appendix that I |= Π iff T ↑(I) |=CΠ qΠ. We also
give an FO-reduction from CQA(CΠ, qΠ) to Π, which is again similar to what is done in the
proof of Theorem 3.

I Theorem 15. For every MDDLog program Π that admits precoloring, there is a problem
CQA(C, q) from (MDiC,UCQ) that satisfies CQA(C, q) ≈FO Π and can be constructed in
polynomial time.

We now show that (MGAV,UCQ) �FO coMMSNP. Let CQA(C, q) be from (MGAV,UCQ)
with schema S. We define an MDDLog program ΠC,q over EDB schema S′ = S(>1) ∪ {PΓ |
Γ ⊆ S(1)} where the PΓ are fresh monadic relation symbols. Recall from Section 3 that for
each Γ ⊆ S(1), rep(Γ) denotes the corresponding set of repairs. The IDB relations of ΠC,q
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12 CQA and CSP

are Q = S(1) ∪ {QΓ | Γ ⊆ S(1)} where the QΓ are monadic. The rules of ΠC,q are as follows:

PΓ(x) →
∨

Λ∈rep(Γ)

QΛ(x) for each Γ ⊆ S(1)

QΓ(x) → P (x) for each Γ ⊆ S(1), P ∈ Γ
PΓ(x) ∧ PΛ(x) → goal() for all distinct Γ,Λ ⊆ S(1)

q′ → goal() for each disjunct q′ of q.

I Lemma 16. CQA(C, q) �FO ΠC,q and ΠC,q �FO CQA(C, q).

The reductions used for establishing this lemma are exactly the FO-reductions from the proof
of Lemma 4. In the appendix, we prove that these reductions are correct also in this case.

I Theorem 17. For every CQA problem in (MGAV,UCQ), there is an FO-equivalent
MDDLog program Π that can be constructed in single exponential time.

We thus obtain the following equivalences.

I Corollary 18.

1. (MDiC,UCQ) ≈FO (MGAV,UCQ) ≈FO coMMSNP;
2. (MDiC,UCQ) ≈p (MDiC, tUCQ) and (MGAV,UCQ) ≈p (MGAV, tUCQ).
Since the FO-reductions in the proof of Lemma 16 are identical to those in the proof of
Lemma 4, all arguments used in Section 4 for relating FO- and Datalog-rewritability of
CQA problems with hypertree UCQs to the FO- and Datalog-definability of CSPs can
also be used to relate, in exactly the same way, CQA problems with unrestricted UCQs to
MMSNP. Consequently, we obtain that FO-rewritability in (MDiC,UCQ) and (MGAV,UCQ)
is decidable iff FO-definability in MMSNP is decidable and the former is at most exponentially
harder than the latter.

7 Relating CQA and GMSNP

Monadic disjointness constraints are surely a rather restricted class of denial constraints. In
this section, we analyze a slightly more powerful class obtained by dropping the monadicity
of MDiCs while still retaining some ‘uniformity’ accross the atoms in the constraint. More
precisely, a disjointness constraint (DiC) has the form ∀x¬(R1(x) ∧ · · · ∧ Rn(x)) where
all relations Ri have the same arity and all atoms Ri(x) use the same variables from x in
the same order (multiple occurrences are allowed). We show that the connection between
(MDiC,UCQ) and coMMSNP established in Section 6 can be lifted to (DiC,UCQ) and a
generalization of coMMSNP called coGMSNP that corresponds to replacing MDDLog with
frontier-guarded disjunctive Datalog [10]. It is straightforward to define a corresponding
generalization of GAV constraints and to establish analogous results for them, but for
simplicity we refrain from doing so.

Recall that we defined coMMSNP in terms of MDDLog. A frontier-guarded disjunctive
Datalog (GDDLog) rule takes the form R1(y1)∧ · · · ∧Rk(yk)→ S1(z1)∨ · · · ∨Sm(zm) where
the IDB predicates need not be monadic and for each head atom Si(zi), there must be a
body atom Rj(yj) with zi ⊆ yj . A GDDLog program is then defined in the obvious way
(with nullary goal predicate) and we use coGMSNP to denote the class of decision problems
that are defined by a GDDLog program. GMSNP, which is also known as MMSNP2 [32],
is considered an interesting candidate for a generalization of MMSNP that is still PTime-
equivalent to CSP. It is, however, an open problem whether this is really the case. We
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nevertheless believe that relating (DiC,UCQ) and coGMSNP provides interesting additional
insight into the computational complexity of CQA. Note that coGMSNP is also closely
related to ontology-based data access with the guarded fragment of FO [10].

What we actually show in this section is coGMSNPpre �FO (DiC,UCQ) �FO coGMSNP
where GMSNPpre is a version of GMSNP that admits precoloring defined as follows in
analogy with MMSNPpre. Let Π be a GDDLog program over schema S, assume that Q
is the set of IDB relations in Π, and let m be the maximal arity of relations in Q. Fix
variables x1, . . . , xm. For i ≤ m, an i-type is a set t of relational atoms using relation
symbols from Q and variables from xi := x1 · · ·xi. We say that Π admits precoloring if
the EDB schema S includes a relation symbol St of arity i for each i-type t, i ≤ m, and Π
includes rules (i) St(xi) → R(xi1 , . . . , xi`

) for all i-types t and all R(xi1 , . . . , xi`
) ∈ t and

(ii) St(xi) ∧R(xi1 , . . . , xi`
)→ ⊥ for all i-types t and all R(xi1 , . . . , xi`

) /∈ t with R ∈ Q and
xi1 , . . . , xi`

∈ xi; the St relations are not allowed to be used in any other rule. We leave it
open whether coGMSNP �p coGMSNPpre, but consider it likely that this is the case given
the corresponding result for MMSNP mentioned in Section 6.

We start with proving coGMSNPpre �FO (DiC,UCQ), first observing that it suffices to
consider GDDLog programs of a certain form, which we introduce next. Let Q be a schema
that consists of relations which all have the same arity m. A Q-type is a set of relational
atoms R(x) with R ∈ Q and where x is a permutation of x1 · · ·xm. We say that a GDDlog
program Π with IDB relations Q is normalized if it satisfies the following conditions:
1. all EDB and IDB relations (except the goal relation) have the same arity m, each variable

may occur at most once in each head and body atom, and Π includes all rules of the form
R(. . . , x, . . . , x, . . .)→ ⊥ for each EDB and IDB relation R;

2. the EDB schema S includes a relation symbol St of aritym for each Q-type t and Π includes
rules (i) St(x1, . . . , xm)→ R(xi1 , . . . , xim

) for all Q-types t and all R(xi1 , . . . , xim
) ∈ t and

(ii) St(x1, . . . , xm)∧R(xi1 , . . . , xim
)→ ⊥ for all Q-types t and atoms R(xi1 , . . . , xim

) 6∈ t,
where R ∈ Q and xi1 . . . xim is a permutation of x1 . . . xm; the St relations are not allowed
to be used in any other rule.2

Working with normalized programs will simplify the subsequent constructions.

I Lemma 19. For every GDDLog program Π that admits precoloring, there is a normalized
GDDLog-Program Π′ with Π ≈FO Π′.

Let Π be a normalized GDDLog program over schema S, let Q be the set of IDB relations
in Π and m the unique arity of relations in Π. We define a CQA setup CQA(CΠ, qΠ) from
(DiC,UCQ) over schema S′, that is, S extended with one relation Qt of arity m for each
Q-type t. For an S′-instance J , and a tuple a ∈ adom(J)m, we say that a is assigned Q-type
t in J if there is a permutation b of a and a Q-type t̂ such that (i) Qt′(b) ∈ J if t′ 6= t̂

for all Q-types t′ and (ii) t̂ is obtained from t by permuting the variables x1 · · ·xm in the
same way in which the constants in a are permuted in b, that is, if a = a1 · · · am and
b = ai1 · · · aim

, then t̂ = t[xi1 · · ·xim
/x1 · · ·xm]. We say that J is proper if every S-guarded

tuple3 a ∈ adom(J)m is assigned a unique Q-type. A proper S′-instance J represents an
S-instance and an S ∪Q-instance: the former is the reduct of J to schema S and the latter
is obtained by starting with that reduct and then adding the fact R(ai1 , . . . , aim

) whenever

2 Note that this is different from requiring Π to admit precoloring because admitting precoloring is about
i-types whereas for normalized programs we use Q-types. In fact, a program in normal form cannot
admit precoloring in the original sense because the conditions on the rules required for normality and
admitting precoloring are incompatible.

3 A tuple a ∈ adom(I)m is S-guarded if I contains some fact R(a) with R ∈ S.
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14 CQA and CSP

a = a1 · · · am ∈ adom(J)m is assigned Q-type t and R(xi1 , . . . , xim) ∈ t. Intuitively, the
latter instance is supposed to represent an extension of the former instance obtained by
applying the rules in Π.

We now define CQA(CΠ, qΠ). The set CΠ contains one disjointness constraint, namely

∀x1 · · · ∀xm ¬
( ∧

t a Q-type
Qt(x1, . . . , xm)

)
.

For a Q-type t, we use Ct(x) to denote the conjunction
∧

t′ a Q-type,t′ 6=t Qt′(x). A CQ q over
schema S′ is forbidden if for each proper S′-instance J such that the S ∪Q-instance I of
J satisfies all non-goal rules in Π and no goal-rule of Π applies in I, we have J 6|= q. The
UCQ qΠ consists of the following CQs:

1. all forbidden CQs q over schema S′ such that
a. the number of variables in q is bounded by the maximum number of variables in a

rule body in Π;
b. for every atom R(x) there is a Q-type t and a permutation y of x such that Ct(y) is a

subconjunction of q;
2. all CQs Ct(x) ∧ Ct′(y) such that y is a permutation of x and t′ 6= t[y/x].

I Lemma 20. Π �FO CQA(CΠ, qΠ) and CQA(CΠ, qΠ) �FO Π.

Proof. For the first reduction, assume that an S-instance I is given. Define an S′-instance
T ↑(I) as the extension of I with all facts Qt(a) such that t is a Q-type and a ∈ adom(I)m.
We show in the appendix that I |= Π iff T ↑(I) |=CΠ qΠ. Clearly, T ↑ is FO-definable.

For the second reduction, let I be an S′-instance. Let T ↓(I) be the S-instance obtained
from the reduct of I to schema S by the following sequence of operations:
1. drop each fact R(a) such that for every permutation b of a, there are distinct Q-types t

and t′ such that neither Qt(b) nor Qt′(b) are in I;
2. add St(a) for each S-guarded tuple a ∈ adom(I)m that is assigned Q-type t in I (the

assignment need not be unique).
We show in the appendix that I |=CΠ qΠ iff T ↓(I) |= Π. Again T ↓ is clearly FO-definable.

o

I Theorem 21. For every GDDLog program Π that admits precoloring, there is an FO-
equivalent problem CQA(C, q) from (DiC,UCQ).

We now turn towards showing that (DiC,UCQ) �FO coGMSNP. Let CQA(C, q) over
schema S be given with C a set of disjointness constraints. Let m be the maximum arity of
a relation in S. Fix variables x1, . . . , xm. For i ≤ m, an i-type is a set of atoms R(x1, . . . , xi)
with R ∈ S (all variables occur in fixed order and are distinct). We use tpi to denote the
set of all i-types. For an S-instance I and a ∈ adom(I)i, we use tpI(a) denote the i-type
realized at a in I, that is, the set of all atoms R(x1, . . . , xi) such that R(a) ∈ I.

We define a GDDLog program ΠC,q over schema S′ = {Rt | t ∈ tpi, i ≤ m}. The
quantified relations in ΠC,q are S ∪ {Qt | t ∈ tpi, i ≤ m} where the arities are defined
in the obvious way. The disjointness constraints in C assign to each i-type t and each
sequence of variables x ∈ {x1, . . . , xm}i (repetitions allowed) a set of possible minimal repairs
(which are also i-types), denoted with repx(t). Formally, repx(t) are the minimal repairs
of {R(x) | R(x1, . . . , xi) ∈ t} viewed as an instance. Note that different sequences x may
give rise to different repair sets for the same i-type t since the constraints in C might use
variables multiple times in the same atom. The rules of ΠC,q are as follows:
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1. for each i-type t, i ≤ m, and each x ∈ {x1, . . . , xm}i: Rt(x)→
∨

t′∈repx(t)

Qt′(x)

2. for each i-type t, i ≤ m, and each R(x1, . . . , xi) ∈ t: Qt(x1, . . . , xi)→ R(x1, . . . , xi)
3. for all distinct i-types t, t′, i ≤ m: Rt(x1, . . . , xi) ∧Rt′(x1, . . . , xi)→ goal()
4. for each CQ q′ in q: q′ → goal()

I Lemma 22. CQA(C, q) �FO ΠC,q and ΠC,q �FO CQA(C, q).
Proof. For the first reduction, let an S-instance I be given. Define an S′-instance T ↑(I)
that consists of all facts RtpI(a)(a) with a ∈ adom(I)i, i ≤ m. Clearly, T ↑ is FO-definable.
We show in the appendix that I |=C q iff T ↑(I) |= ΠC,q.

For the second reduction, let an S′-instance I be given. If Rt(a), Rt′(a) ∈ I for any
a ∈ dom(I)i, i ≤ m, and t 6= t′, then answer ‘inconsistent’. Otherwise, replace each fact Rt(a)
with the set of facts {R(a) | R(x) ∈ t}, and call the result T ↓(I). Clearly, T ↓ is FO-definable.
We show in the appendix that I |= ΠC,q iff T ↓(I) |=C q. o

I Theorem 23. For every CQA problem in (DiC,UCQ), there is an FO-equivalent GDDLog
program Π.

8 Conclusion

We find it intriguing that very simple integrity constraints such as MDiCs and MGAVs
combined with structurally simple queries such as tUCQs result in classes of CQA problems
that are as difficult to analyze as CSPs, and that slight generalizations (such as DiCs) result in
entering essentially unknown terrain (in the form of GMSNP). We believe that the CSP-CQA
connection is not yet explored to the end. For example, the known non-dichotomy between
PTime and NP for MMSNP extended with inequality [20] gives rise to the speculation that
(MDiC,UCQ6=) might have no dichotomy between PTime and coNP either, where UCQ 6=

denotes the class of UCQs that also admit inequality atoms. The proof of such a result
will not be entirely simple, though, as it seems to require a version of Ladner’s theorem
that relates to Ladner’s original theorem in a similar way in which the mortality problem of
Turing machines relates to the halting problem. We leave this as future work.

Another interesting question is whether larger and more natural classes of CQA problems,
such as those based on unrestricted denial constraints or on some form of functional depend-
ency also have natural counterparts in the world of CSP and MMSNP. In fact, it is not
even clear whether the correspondence between (MDiC, tUCQ) and coCSP can be extended
from monadic disjointness constraints to monadic denial constraints in which relations are
still required to be monadic, but where more than one variable can be used. For example,
the constraint ∀x∀y ¬(A(x) ∧B(y)) is a monadic denial constraint, but not an MDiC. The
main challenge is to deal with the problem that the ‘yes’-instances of each CSP are closed
under homomorphic pre-images while the ‘no’-instances of CQA problems are not. Simply
changing the monadic relations in the schema as in the proof of Theorem 5 is no longer
sufficient because, in contrast to MDiCs, monadic denial constraints are not local to a single
constant. We believe, however, that even if it should turn out that such differences prevent
the CQA-CSP connection from gracefully extending beyond the classes of CQA problems
considered here, it might still be possible to carry over techniques and intuitions from the
CSP/MMSNP world, which has seen frantic development in the last decade.
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A Proofs for Section 3

I Lemma 24. coCSP(A) �FO CQA(CA, qA).

Proof. Let an S-instance I be given. Convert I into an S′-instance T ↑(I) by extending I
with Qa(b) for all b ∈ adom(I) and a ∈ adom(A). Clearly, T ↑ is FO-definable. It remains to
show that T ↑(I) 6|=CA

qA iff I → A.
“if”. Let h be a homomorphism from I to A. Define J as T ↑(I) with Qa(b) removed whenever
h(b) = a, for all a ∈ adom(A) and b ∈ adom(I). It is easy to verify that J is a minimal repair
of T ↑(I). We show that J 6|= qA. For a proof by contradiction assume that there are R ∈ S
of arity n and a1 · · · an ∈ adom(A) with R(a1, . . . , an) 6∈ A such that

J |= cona1(b1) ∧ · · · ∧ conan
(bn) ∧R(b1, . . . , bn)

for some b1, . . . , bn. By construction of J , this implies h(b1) = a1, . . . , h(bn) = an, and thus
we have derived a contradiction to the assumption that h is a homomorphism.
“only if”. T ↑(I) 6|=CA

qA implies I → A. Let J be a minimal repair of T ↑(I) such that J 6|= qA.
Then for each b ∈ adom(J), there exists a unique ab ∈ adom(A) such that Qab

(b) ∈ J iff
e 6= ab for all e ∈ adom(A). Define a map h from I to A by setting h(b) = ab. Assume to the
contrary of what is to be shown that h is not a homomorphism from I to A. Then there is a
fact R(b1, . . . , bn) ∈ I such that R(h(b1), . . . , h(bn)) 6∈ A. But then

J |= conab1
(b1) ∧ · · · ∧ conabn

(bn) ∧R(b1, . . . , bn)

and we have derived a contradiction to the assumption that J 6|= qA. o

I Lemma 25. CQA(CA, qA) �FO coCSP(A).

Proof. Let I be an S′-instance. Denote by X the set of b ∈ adom(I) such that there are at
least two distinct a1, a2 ∈ adom(A) with neither Qa1(b) ∈ I nor Qa2(b) ∈ I. Then T ↓(I) is
obtained from I by dropping all facts that involve a constant from X or a relation symbol in
S′ \S, and adding all facts Pa(b) such that Qe(b) ∈ I iff e 6= a for all e ∈ adom(A). Note that
we rely on A to admit precoloring by using the relations Pa. Clearly T ↓(I) is FO-definable.
It remains to show that I 6|=CA

qA iff T ↓(I)→ A.
“if”. Let h be a homomorphism from T ↓(I) to A. Let J be obtained from I by removing
every fact Qa(b) with h(b) = a. J is a minimal repair of I. To prove this, it suffices to show
that whenever Qa(b) is removed, then Qe(b) ∈ I for all e ∈ A. Assume to the contrary that
this is not the case. Since h(b) is defined, we must have b 6∈ X, and consequently there is
a unique a′ ∈ adom(A) with Qa′(b) /∈ I. By construction of T ↓(I), we have Pa′(b) ∈ T ↓(I).
Since h is a homomorphism, we must thus have h(b) = a′, consequently a′ = a and thus
Qa′(b) /∈ I, a contradiction to it being removed during the construction of J . We now show
that J 6|= qA. Let R ∈ S be of arity n and R(a1, . . . , an) 6∈ A. Assume to the contrary of
what we have to show that

J |= cona1(b1) ∧ · · · ∧ conan
(bn) ∧R(b1, . . . , bn)

for some b1, . . . , bn. From J |= conai
(bi) we get h(bi) = ai by construction of J , for 1 ≤ i ≤ n.

Moreover, J |= cona1(b1) ∧ · · · ∧ conan
(bn) implies that b1, . . . , bn are in X. Consequently,

J |= R(b1, . . . , bn) yields R(b1, . . . , bn) ∈ T ↓(I) in contradiction to h being a homomorphism.
“only if”. I 6|=CA

qA implies T ↓(I)→ A. Let J be a minimal repair of I such that J 6|= qA.
Since J is a minimal repair and by definition of X, for every b ∈ adom(I) \X there must be
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a unique ab ∈ A such that Qe(a) ∈ J iff e 6= ab, for all e ∈ adom(A). Define a map h from
T ↓(I) to A by setting h(b) = ab for all b ∈ adom(I) \X. We show that h is a homomorphism
from T ↓(I) to A. It is easy to check that h preserves the facts Pa(b) added in the construction
of T ↓(I). All other facts R(b1, . . . , bn) ∈ T ↓(I) are also in J and satisfy R ∈ S, thus we
have R(b1, . . . , bn) ∈ J . We must have R(h(b1), . . . , h(bn)) ∈ A because by definition of h we
otherwise obtain J |= qA in contradiction to this not being the case. o

To prove Lemma 4, we first establish a technical lemma. Let IA be the S-instance obtained
from AC,q0 by dropping all facts PΓ(〈t,Γ〉) and adding P (〈t,Γ〉) for all (P (x), x) ∈ t.

I Lemma 26.
1. IA satisfies all constraints in C and IA 6|= q0.
2. Let I be an S-instance R(a1, . . . , an) ∈ I, n > 1. Then (t1, . . . , tn) is R-coherent, where

ti = tpI(ai).
Proof. We start with the proof of Point 1. It is clear by construction of AC,q0 and IA that
the latter satisfies all constraints in C. It thus remains to show that IA 6|= q0. We show
that for all places (q, x) and elements 〈t,Γ〉 in IA, (q, x) /∈ t implies that (q, x) /∈ tpIA

(〈t,Γ〉).
Since the type t in any element 〈t,Γ〉 of AC,q0 avoids q0, this implies IA 6|= q0 as desired.
The proof is by induction on the number of atoms in q. The induction start and step are
identical and treated together.

Take a place (q, x) and an element 〈t,Γ〉 with (q, x) /∈ t. Assume to the contrary of what
is to be shown that (q, x) ∈ tpIA

(〈t,Γ〉), that is, there is a homomorphism h from q to IA

such that h(x) = 〈t,Γ〉. Take an atom R(x1, . . . , xn) ∈ q with x = x` and let h(xi) = 〈ti,Γi〉
for 1 ≤ i ≤ n. To obtain a contradiction, it suffices to show that (t1, . . . , tn) is not R-coherent
because then R(h(x1), . . . , h(xn)) /∈ IA despite h being a homomorphism. To show that
(t1, . . . , tn) is not R-coherent, take disjoint instances I1, . . . , In with distinguished elements
a1, . . . , an such that tpIi

(ai) = ti for 1 ≤ i ≤ n, which exist since the ti are all realizable
by construction of AC,q0 . Let U be the disjoint union of I1, . . . , In. Since all queries used
in places are connected, we have tpU (ai) = ti for 1 ≤ i ≤ n. In particular, (q, x) /∈ tpU (a`).
Let q1, . . . , qk be the queries obtained from q as maximally connected components when
removing the atom R(x1, . . . , xn)—in the induction start, this sequence of queries is empty.
Since q is a hypertree, we can associate with each qi a unique ji, 1 ≤ ji ≤ n, such that the
variable xji occurs in qi. Because of the homomorphism h, we have (qi, xji) ∈ tpIA

(h(xji))
for 1 ≤ i ≤ k. By IH, this yields (qi, xji

) ∈ tji
, consequently (qi, xji

) ∈ tpU (aji
). Now

let U ′ be obtained from U by adding the fact R(a1, . . . , an). It is easy to assemble the
homomorphisms witnessing (qi, xji) ∈ tpU (aji) into a homomorphism h′ from q to U ′ with
h′(x`) = a`. Consequently, (q, x) ∈ tpU ′(a`). Thus, the instances U and U ′ witness that
(t1, . . . , tn) is not R-coherent.

We now prove Point 2. Take an instance J and a tuple of constants (b1, . . . , bn) such that
tpJ (bi) = ti for 1 ≤ i ≤ n. We have to show that, after extending J to a new instance J ′ by
adding the tuple R(b1, . . . , bn), we have tpJ′(bi) = ti for 1 ≤ i ≤ n. This amounts to showing
that for all places (q, x) and all elements a of J , (q, x) ∈ tpJ′(a) implies (q, x) ∈ tpJ(a). We
do this by induction on the number of atoms in q. The induction start and step are identical
and treated together.

Take a place (q, x) and a constant a from J such that (q, x) ∈ tpJ′(a). Then there is a
homomorphism h from q to J ′ that takes x to a. Choose an atom S(x1, . . . , xm) ∈ q with
x = x` and, therefore, h(x`) = a or some `. Let q1, . . . , qk be the (hypertree) CQs obtained
as the maximal connected components when removing from q the atom S(x1, . . . , xm)—in
the induction start, this sequence of queries is empty. Since q is a hypertree, for every qi
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there is a unique variable xji from x1, . . . , xm that occurs in qi. IH yields that for 1 ≤ i ≤ k,
we have (qi, xji

) ∈ tpJ(h(xji
)). We distinguish two cases.

First assume that h does not map S(x1, . . . , xm) to R(b1, . . . , bn). Then h must map
S(x1, . . . , xm) to a fact that was already in J . Combining the restriction of h to variables
x1, . . . , xm with homomorphisms witnessing (qi, xji

) ∈ tpJ (h(xji
)), it is now straightforward

to assemble a homomorphism from q to J that maps x to a, witnessing (q, x) ∈ tpJ(a) as
required.

Now assume that h maps S(x1, . . . , xm) to R(b1, . . . , bn). Then S = R, m = n and
h(xi) = bi for 1 ≤ i ≤ n. By the latter and since tpJ (bik

) = tji
, (qi, xji

) ∈ tpJ (h(xji
)) yields

(qi, xji
) ∈ tji

for 1 ≤ i ≤ k. Thus there is a homomorphism from qi to J that maps xji
to bji

,
for 1 ≤ i ≤ k. From R(a1, . . . , an) ∈ I and ti = tpI(ai) we obtain (R(x1, . . . , xn), xi) ∈ ti.
We can thus assemble a homomorphism from q to J that maps xi to bi for 1 ≤ i ≤ n.
Therefore, (q, xi) ∈ ti for 1 ≤ i ≤ n. Since h(x`) = a = b`, we obtain (q, x`) ∈ tpI(a) and are
done. o

I Lemma 27. CQA(C, q0) �FO coCSP(AC,q0).

Proof. Let an S-instance I be given. Define an S′-instance T ↑(I) by dropping all facts that
involve a monadic predicate and adding PΓa(a) for every element a ∈ I, where Γa = {P |
P (a) ∈ I}. Clearly, T ↑ is FO-definable. Then we have I 6|=C q0 iff T ↑(I)→ AC,q0 .

“if”. Assume that h is a homomorphism from T ↑(I) to AC,q0 . Define an S-instance I ′
by starting with I and dropping each fact P (a) such that h(a) = 〈t,Γ〉 and (P (x), x) /∈ t.
It suffices to show that I ′ is a minimal repair of I with I ′ 6|= q0. The former is obvious by
definition of T ↑(I), AC,q0 , and I ′. The latter follows from Point 1 of Lemma 26 since any
homomorphism from a CQ in q0 to I ′ gives rise to a homomorphism from that CQ to IA via
composition with h.

“only if”. Assume that I 6|=C q0 and let I ′ be a minimal repair of I with I ′ 6|= q0. Define
a map h from T ↑(I) to AC,q0 by setting

h(a) = 〈tpI′(a), {P ∈ S(1) | P (a) ∈ I}〉

for all elements a of T ↑(I). Note that, by definition of T ↑(I) and choice of I ′, h(a) is indeed
a constant of AC,q0 for each a. It remains to show that h is a homomorphism. First let
PΓ(a) ∈ T ↑(I). Then PΓ(h(a)) ∈ AC,q0 by definition of the monadic relations in AC,q0 . Now
let R(a1, . . . , an) ∈ T ↑(I) with n > 1. It follows from R(a1, . . . , an) ∈ I ′ and Point 2 of
Lemma 26 that (t1, . . . , tn) is R-coherent, where ti = tpI′(ai). By definition of AC,q0 and h,
we thus have R(h(a1), . . . , h(an)) ∈ AC,q0 , as required. o

I Lemma 28. coCSP(AC,q0) �FO CQA(C, q0).

Proof. Let an S′-instance I be given. If there exists a ∈ adom(I) with PΓ(a), P∆(a) ∈ I
for some Γ 6= ∆, then there is no homomorphism from I to AC,q0 and “false” is returned.
Otherwise define an S-instance T ↓(I) by dropping all facts of the form PΓ(a) and adding
P (a) whenever PΓ(a) ∈ I with P ∈ Γ. Then we have I → AC,q0 iff T ↓(I) 6|=C q0.

“if”. Assume that T ↓(I) 6|=C q0 and let J be a minimal repair of T ↓(I) with J 6|= q0.
Define a map h from I to AC,q0 by setting

h(a) = 〈tpJ(a), {P ∈ S(1) | P (a) ∈ T ↓(I)}〉

for all a ∈ adom(I). Note that, by definition of T ↓(I) and choice of J , h(a) is indeed a
constant of AC,q0 for each a. It remains to show that h is a homomorphism. First let
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PΓ(a) ∈ I. Then PΓ(h(a)) ∈ AC,q0 by definition of the monadic relations in AC,q0 . Now let
R(a1, . . . , an) ∈ I with n > 1. It follows from R(a1, . . . , an) ∈ J and Point 2 of Lemma 26
that (t1, . . . , tn) is R-coherent, where ti = tpJ(ai). By definition of AC,q0 and h, we thus
have R(h(a1), . . . , h(an)) ∈ AC,q0 , as required.

“only if”. Assume that h is a homomorphism from I to AC,q0 . Define an S-instance J by
starting with T ↓(I) and dropping each fact P (a) such that h(a) = 〈t,Γ〉 and (P (x), x) /∈ t.
It suffices to show that J is a minimal repair of I with J 6|= q0. The former is obvious by
definition of T ↓(I), AC,q0 , and J . The latter follows from Point 1 of Lemma 26 since any
homomorphism from q0 to J gives rise to a homomorphism from q0 to IA via composition
with h. o

B Proofs for Section 4

We show the PSpace lower bound claimed in Theorem 8 for (MDiC, tUCQ) using a reduction
of the word problem of polynomially space-bounded Turing machines. Similar reductions
have been used to establish PSpace-hardness of boundedness in linear monadic datalog [19]
and of certain FO-rewritability problems in ontology-based data access [9]. It is easy to
adapt the proof to (MGAV, tUCQ). Let M = (Q,Ω,Γ, δ, q0, qacc, qrej) be a DTM that solves a
PSpace-complete problem and p(·) its polynomial space bound. Here, Q is the set of states,
Ω is the input alphabet, Γ the tape alphabet, δ : (Q×Γ)→ {L,N,R}×Q×Γ the transition
function, q0 ∈ Q the initial state, and qacc qrej the accepting and rejecting state, respectively.
We assume that the transition function is total except on qacc and qrej where it is undefined
for every tape symbol. The tape is assumed to be two-side infinite. We make the following
additional assumptions on M . We assume that M never writes the blank symbol and with
the left (resp. right) end of the tape we mean the first tape cell to the left (resp. right) of the
head labeled with a blank. We also assume that M always terminates with the head on the
right-most tape cell and that it never attempts to move left on the left-most end of the tape.

Finally and most importantly, we assume that, when started in any (not necessarily initial)
configuration C, then the computation of M terminates. Any TM M0 with polynomial space
bound p(·) can be converted into a TM M that satisfies this condition as follows. Using
padding, we can achieve that 2n − 1 ≥ |Γ|p(n) · p(n) · |Q|, that is, a binary counter with
n bits can be used to count the number of tape cells used by M0 started on an input of
length n. We then replace every tape symbol a with symbols (a, 0), (a, 1), (a,⊥), that is,
add a bit value to every tape symbol; the symbol ⊥ indicates that this tape cell is not part
of the counter. In this way, the tape cells between the left end of the tape and the (right
end or the) first cell carrying a symbol of the form (a,⊥) represents a number encoded in
binary. After each step of M0, M traverses the tape to the left end, then to the right end,
and then back to M0’s head position, incrementing the counter value of the tape (but leaving
its content unchanged otherwise). If the counter has maximum value (all bits one), then
M stops. Otherwise, M executes the next step of M0. Whenever M0 overwrites a blank
with a non-blank symbol a, M writes the symbol (a,⊥) instead, that is, the counter length
remains unchanged. It can be verified that a straightforward implementation of the counter
incrementation in terms of concrete TM transitions results in M having the desired property,
that is, even if M is started in a state that is used for counter incrementation, and with
arbitrary tape content (that can not necessarily be generated from any initial configuration),
termination is still guaranteed.

Now let M be a TM that satisfies the conditions above and let x ∈ Ω∗ be an input to
M of length n. Our aim is to construct a problem CQA(C, q) in (MDiC, tUCQ) such that
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CQA(C, q) is not FO-rewritable iff M accepts x.
A fundamental idea of the reduction is that when M accepts x, then CQA(C, q) is not

FO-rewritable because any FO-rewriting would have to query for longer and longer paths
that represent the accepting computation of M on x, repeated over and over again; this
clearly contradicts the locality of an FO-query. In the reduction, we use a single constraint

C = {∀z ¬(B(z) ∧B′(z))}

where B,B′ are monadic relation symbols. To understand the source for non-FO-rewritability
that we build on, consider CQA(C, q) with q̂ = B(x)∧R(x, y)∧B′(y). Non-FO-rewritability
is witnessed by path-shaped instances of the form

Im := {B′(b0), R(b1, b0), R(b2, b1), . . . , R(bm, bm−1), B(bm)} ∪ {B(bi), B′(bi) | 0 < i < m}.

In fact, it can be verified that Im |=C q̂ for all m > 0, but whenever we drop a binary fact
from Im resulting in instance I ′m, then I ′m 6|=C q̂. We are going to modify the above paths so
that they describe a (repeated) accepting computation of M on x. To this end, the tape
contents, the current state, and the head position are represented using the elements of
Γ ∪ (Γ×Q) as monadic relation symbols. Each constant on the path represents one tape
cell of one configuration, the binary relation R is used to move between consecutive tape
cells, the binary relation S is used to move between successor configurations inside the same
computation, and the binary relation T is used to separate computations. To illustrate,
suppose the computation of M on x = ab consists of the two configurations qab and aq′b.4
The corresponding path of length m that describes this computation (repeatedly) is

B′(b0), R(b1, b0), S(b2, b1), R(b3, b2), T (b4, b3), R(b5, b4), . . . , R(bm, bm−1), B(bm)

with the additional monadic facts (a, q)(c) for c = b0, b4, b8, . . . , b(c) for c = b1, b5, b9, . . . ,
a(c) for c = b2, b6, b10, . . . , and (b, q′)(c) for c = b3, b7, b11, . . . . We now assemble the tUCQ q

for our CQA problem. To ensure that every constant on the path is labeled with at least one
symbol from Γ ∪ (Γ×Q) (and since we now have three relations R,S, T instead of only a
single one), we modify the query q̂ from above. While doing this, we also ensure that every
constant is also labeled with H or H (used later to ensure the existence of a head position in
each configuraiton) and that T -steps can only occur exactly after the accepting state was
reached:
(r-pr) B(x) ∧ A(x) ∧ H1(x) ∧ R(x, y) ∧ H2(y) ∧ A′(y) ∧ B′(y), for all A ∈ Γ ∪ (Γ × Q),

A′ ∈ Γ ∪ (Γ× (Q \ {qacc, qrej})), and H1, H2 ∈ {H,H};
(s-pr) B(x) ∧ A(x) ∧ H1(x) ∧ S(x, y) ∧ H2(y) ∧ A′(y) ∧ B′(y), for all A ∈ Γ ∪ (Γ × Q),

A′ ∈ Γ ∪ (Γ× (Q \ {qacc, qrej})), and H1, H2 ∈ {H,H};
(t-pr) B(x)∧A(x)∧H(x)∧T (x, y)∧H(y)∧A′(y)∧B′(y) for all A ∈ Γ∪(Γ×Q), A′ ∈ Γ×{qacc},

and H1, H2 ∈ {H,H}.
If we simpy use the disjunction of the above three queries as the tUCQ in our CQA problem,
then that problem is not FO-rewritable. This is witnessed by R-paths as above in which
every element is labeled with some relation symbol from Γ ∪ (Γ×Q) and with one of H and
H. However, these labeled witness paths need not represent proper computations of M on x
since the transition relation need not be satisfied, there need not be any state, etc. We fix

4 uqv ∈ Γ∗QΓ∗ means that M is in state q, the tape left of the head is labeled with u, and starting from
the head position, the remaining tape is labeled with v.
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these problems by including additional tCQs in the tUCQ q that discover ‘defects’ in the
computation. These queries rule out labeled path that do not describe proper computations
as witnesses for non-FO-rewritability of the defined CQA problem: paths with defects are
‘yes’-instances, but can be identified by an FO-query. In fact, the following queries do not
mention B and B′ and thus apply in a repair of an instance if and only if they apply in the
original instance. They thus do not require any rewriting. The first set of additional CQs
ensures that every tape cell has a unique label.
(uni) A(x) ∧A′(x) for all distinct A,A′ ∈ Γ ∪ (Γ×Q).
The next CQ enforces that there is not more than one head position per configuration:
(h1)

∧
0≤l<i{R(xl, xl+1)} ∧ (a, q)(xi) ∧

∧
0≤l<j R(yl, yl+1) ∧ (a′, q′)(yj), for all i < j < p(n),

(a, q), (a′, q′) ∈ Γ×Q, and x0 = y0.
and that there is at least one head position per configuration:
(h2) H(x) ∧ a(x) for all a ∈ Γ
(h3) R(x0, x1) ∧ . . . ∧R(xp(n)−2, xp(n)−1) ∧H(x0) ∧ . . . ∧H(xp(n)−1).
We ensure that configurations have at most length p(n) using the CQ
(l1) R(x0, x1) ∧ . . . ∧R(xp(n)−1, xp(n)).
We also ensure that configurations are not shorter than p(n) (with the possible exception of
the first configuration, which can be shorter):
(l2) ρ(x0, x1) ∧R(x1, x2) ∧ . . . ∧R(xi, xi+1) ∧ ρ′(xi+1, xi+2) for all i < p(n)− 1 and ρ, ρ′ ∈
{S, T}.

We now enforce that the transition function is respected and that the content of tape cells
which are not under the head does not change. Let forbid denote the set of all tuples
(A1, A2, A3, A) with A1, A2, A3, A ∈ Γ ∪ (Γ×Q) such that whenever three consecutive tape
cells in a configuration c are labeled with A1, A2, A3, then in the successor configuration c′
of c, the tape cell corresponding to the middle cell cannot be labeled with A:
(con) A(x0) ∧R(x0, x1) ∧ . . . ∧R(xi−1, xi) ∧ S(xi, y0) ∧R(y0, y1) ∧ . . .∧

R(yp(n)−i−3, yp(n)−i−2) ∧A3(yp(n)−i−2) ∧R(yp(n)−i−2, yp(n)−i−1)∧
A2(yp(n)−i−1) ∧R(yp(n)−i−1, yp(n)−i) ∧A1(yp(n)−i)

for all 0 ≤ i < p(n) and (A1, A2, A3, A) ∈ forbid.
It remains to set up the initial configuration. Recall that witness instances consist of repeated
computations of M , which ideally we would all like to start in the initial configuration for
input x. It does not seem possible to enforce this for the first computation in the instance,
so we live with this computation starting in some unknown configuration, relying on our
assumption that M terminates also when started in an arbitrary configuration. Then, we
utilize the final states qacc and qrej to enforce that all computations in the instance except
the first one must start with the initial configuration for x. Let A(0)

0 , . . . , A
(0)
p(n)−1 be the

monadic relation symbols that describe the initial configuration, i.e., when the input x is
x0 · · ·xn−1, then A(0)

0 = (x0, q0), A(0)
i = xi for 1 ≤ i < n, and A(0)

i = xi is the blank symbol
for n ≤ i < p(n). Now take
(in)

∧
0≤l<i R(xl, xl+1) ∧ T (xi, xi+1) ∧A(x0) for all 0 ≤ i < p(n) and A 6= A

(0)
i .

The query q used in the CQA problem is the UCQ defined by taking the union of all CQs
given above. The following lemma establishes the correctness of our reduction.

I Lemma 29. CQA(C, q) is not FO-rewritable iff M accepts x.
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Proof. “if”. Assume that M accepts x. By using standard locality arguments (e.g., Hanf’s
Theorem), it is enough to show that there exist arbitary large k and instances Ik with domain
{b0, . . . , bk} such that

for all i, j ≤ k: if ρ(bi, bj) ∈ Ik for some ρ ∈ {R,S, T}, then i = j + 1 or j = i+ 1;
Ik |=C q;
J 6|=C q, where J is the disjoint union of the instances I0

k and Ik
k , where I0

k is obtained
from Ik by removing all facts involving b0 and Ik

k is obtained from Ik by removing all
facts involving bk.

Assume k > 0 is given. Let C1, . . . , Cm be a sequence of configurations of length p(n)
obtained by sufficiently often repeating the accepting computation of M on x so that
|C1|+ · · ·+ |Cm| ≥ k. We can convert C1, . . . , Cm into the desired witness instance Ik in a
straightforward way: introduce one individual name for each tape cell in each configuration
and computation, use R to connect cells within the same configuration, S to connect
configurations, and T to connect computations, and the relation symbols from Γ ∪ (Γ×Q)
to indicate the tape inscription, current state, and head position. Also add the concept
name H at all head positions and H at all non-head positions. We obtain an instance
satisfying the conditions above by identifying the individuals with b0, . . . , bk assuming
that b0 stands for the first cell of the first configuration of C1. Finally add the facts
{B′(b0)} ∪ {B(bk))} ∪ {B(bi), B′(bi) | 0 < i < k} to obtain Ik. It can be verified that Ik

is as required. To see that Ik |=C q observe that in any minimal repair I ′k of Ik there is
some i with 0 ≤ i < k such that B′(bi) ∈ I ′k and B(bi+1) ∈ I ′k. To see that J 6|=C q for the
disjoint union J of I0

k and Ik
k , observe that one obtains a minimal repair of J by satisfying

B′ everywhere in I0
k and B everywhere in Ik

k .

“only if”. Assume that CQA(C, q) is not FO-rewritable. Note that all CQs in q that are
distinct from (r-pr), (s-pr), and (t-pr) have a match in an instance I iff they have a match
in all minimal repairs of I w.r.t. C. Thus, they are FO-rewritable under C. Now consider
the following

Observation. Assume I is an instance such that no CQ in q distinct from the CQs (r-pr),
(s-pr), and (t-pr) has a match in I. Then I |=C q iff there exists k > 0 such that the following
condition (∗k) holds: there are

ρ0(b1, b0), . . . , ρk−1(bk, bk−1), A0(b0), . . . , Ak(bk) ∈ I

with ρi ∈ {R,S, T} for all i < k and Ai ∈ Γ ∪ (Γ×Q) for all i ≤ k such that
B′(b0) ∈ Ik, B(b0) 6∈ Ik,
B(bk) ∈ Ik, B′(bk) 6∈ Ik,
B(bi), B′(bi) ∈ Ik for all 0 < i < k,
if ρi+1 ∈ {R,S}, then Ai ∈ Γ ∪ (Γ× (Q \ {qacc, qrej})),
if ρi+1 = T , then Ai ∈ Γ ∪ (Γ× {qacc})
if Ai ∈ Γ, then H(bi) ∈ Ik;
if Ai ∈ Γ×Q, then H(bi) ∈ Ik.

Clearly, for every k > 0 condition (∗k) can be expressed in FO. Thus, if CQA(C, q) is not
FO-rewritable, then for every k > 0 there exists an instance I satisfying (∗k). Now let m0 be
the maximum number of stepsM makes starting from any configuration of length p(n) before
entering the final state. One can prove that any I satifying (∗k) for k ≥ 2m0(p(n) + 1) + 1
encodes an accepting computation of M for input x, as required. o
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C Proofs for Section 5

The following small observation shows that we can w.l.o.g. assume that every tCQ in q0
contains exactly one atom with a relation symbol distinct from A1, A2.

I Lemma 30. Let CQA(C, q0) be a restricted binary CQA problem. If q0 contains a tCQ
that refers only to the relation symbols A1 and A2, then CQA(C, q0) is in AC0.

Proof. (sketch). Let CQA(C, q0) be a binary restricted CQA problem. Note that every
tCQ q in q0 that refers only to the relation symbols A1 and A2 can only contain a single
variable x since q is a hypertree. We thus have the following cases. (i) q0 contains the tCQ
A1(x) ∧A2(x). Then the answer is always ‘false’. (ii) q0 contains both the tCQ A1(x) and
the tCQ A2(x), but not the tCQ A1(x) ∧A2(x). Then we can simply answer the query q′0
over the original instance, where q′0 is obtained from q0 by removing from any disjunct of
q0 containing an atom distinct from A1 and A2 the atoms involving A1 and A2. (iii) q0
contains the tUCQ Ai(x), but neither the tUCQ Ai(x) nor the tCQ A1(x) ∧ A2(x) where
i ∈ {1, 2}, i = 3− i. Then there is only one candidate instance for a repair, namely where
Ai(a) is removed whenever A1(x) and A2(x) are in the original instance. In AC0, we can
clearly compute this repair and check whether q applies in it. o

I Lemma 31. CQA(C, q0) �FO coCSP(AC,q0).

Proof. Let I be an S-instance. Construct an S′-instance T ↑(I) by removing all facts Ai(a)
and adding PΓ(a) for each a, where Γ = {Ai | Ai(a) ∈ I}. Clearly, T ↑ is FO-definable.
Moreover, we have I 6|=C q0 iff T ↑(I)→ AC,q0 .

“if”. Let h be a homomorphism from T ↑(I) to AC,q0 . Define an S-instance I ′ by starting
with I and dropping all facts Ai(a) such that A1(a), A2(a) are in I and h(a) = ai (note that
we cannot have h(a) = 0 then because 0 is not labeled with P{A1,A2} in AC,q0). Clearly,
I ′ is a minimal repair of I. We show that I ′ 6|= q0. Assume to the contrary that I ′ |= q0.
Then there is a tCQ q in q0 with I ′ |= q. Let h′ be a homomorphism from q to I ′ and
let R(x1, . . . , xn) be the unique atom in q with R distinct from A1, A2. Obviously, we
have R(h′(x1), . . . , h′(xk)) ∈ T ↑(I) and thus R(h(h′(x1)), . . . , h(h′(xk))) ∈ AC,q0 . Since
q is a tCQ and thus connected, all atoms in q that are of the form Ai(x) satisfy x ∈
{x1, . . . , xn}. For each atom Ai(xj) ∈ q, we must have Ai(h′(xj)) ∈ I ′ and Ai(h′(xj)) /∈ I ′.
Consequently, Ai(xj) ∈ q implies h(h′(xj)) = i: if A1(a) and A2(a) are in I, then this is
a consequence of the construction of I ′; if only Ai(a) is in I, then P{Ai}(a) ∈ T ↑(I) and
thus h(a) = i. It is thus easy to verify that the instance in Point 4 in the definition of
AC,q0 for the fact R(h(h′(x1)), . . . , h(h′(xk))) implies q, thus q0. This is a contradiction to
R(h(h′(x1)), . . . , h(h′(xk))) being in AC,q0 .

“only if”. Assume that I 6|=C q0 and let I ′ be a minimal repair of I such that I ′ 6|= q0.
Define a function h by setting h(a) = i if Ai(a) ∈ I ′ and Ai(a) /∈ I ′, i ∈ {1, 2}, and h(a) = 0
if Ai(a) /∈ I ′ and Ai(a) /∈ I ′ . We show that h is a homomorphism from T ↑(I) to AC,q0 .
Take a PΓ(a) ∈ T ↑(I). If Γ = ∅, then neither A1(a) nor A2(a) are in I ′, thus h(a) = 0 and
P∅(0) ∈ AC,q0 . If Γ = {Ai} for i ∈ {1, 2}, then Ai(a) is in I ′ but Ai(a) is not, thus h(a) = i

and P{Ai}(i) ∈ AC,q0 . If Γ = {A1, A2}, then there is an i ∈ {1, 2} such that Ai(a) is in I ′
but Ai(a) is not. Thus h(a) = i and P{A1,A2}(i) ∈ AC,q0 . Finally, let R(a1, . . . , ak) ∈ T ↑(I).
Assume to the contrary of what is to be shown that R(h(a1), . . . , h(ak)) /∈ AC,q0 . Then the
instance in Point 4 in the definition of AC,q0 for the fact R(h(a1), . . . , h(ak)) implies q0. Note
that if that instance contains Aj(h(ai)), then h(ai) = j. By definition of h, we then have
Aj(ai) ∈ I ′. Additionally using that R(a1, . . . , ak) ∈ I ′ and that no atom in q0 uses the same
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variable multiple times since each CQ in q0 is a hypertree, it is thus easy to verify that I ′
entails q0, a contradiction. o

I Lemma 32. coCSP(AC,q0) �FO CQA(C, q0).

Proof. Let an S′-instance I be given. If I contains facts PΓ(a) and PΛ(a) with Γ 6= Λ, then
answer ‘false’ as there is clearly no homomorphism to AC,q0 . Otherwise, replace every fact
PΓ(a) with Ai(a) for all Ai ∈ Γ. Call the resulting S-instance T ↓(I). Clearly, the map T ↓ is
FO-definable. Moreover, I → AC,q0 iff T ↓(I) 6|=C q0.

“if”. Assume that T ↓(I) 6|=C q0 and let J be a minimal repair of T ↓(I) such that
J 6|= q0. Define a function h from adom(I) to adom(AC,q0) by setting h(a) = i if Ai(a) ∈ J
and Ai(a) /∈ J , i ∈ {1, 2}, and h(a) = 0 if Ai(a) /∈ J and Ai(a) /∈ J . We show that h
is a homomorphism from I to AC,q0 . Take a PΓ(a) ∈ I. If Γ = ∅, then5 neither A1(a)
nor A2(a) are in J , thus h(a) = 0 and P∅(0) ∈ AC,q0 . If Γ = {Ai} for i ∈ {1, 2}, then
Ai(a) is in J but Ai(a) is not, thus h(a) = i and P{Ai}(i) ∈ AC,q0 . If Γ = {A1, A2},
then there is an i ∈ {1, 2} such that Ai(a) is in J but Ai(a) is not. Thus h(a) = i and
P{A1,A2}(i) ∈ AC,q0 . Finally, let R(a1, . . . , ak) ∈ I. Assume to the contrary of what is to
be shown that R(h(a1), . . . , h(ak)) /∈ AC,q0 . Then the instance in Point 4 in the definition
of AC,q0 for the fact R(h(a1), . . . , h(ak)) entails q0. Note that if that instance contains
Aj(h(ai)), then h(ai) = j. By definition of h, we then have Aj(ai) ∈ J . Additionally using
that R(a1, . . . , ak) ∈ J and that no atom in q uses the same variable multiple times since
each CQ in q is a hypertree, it is thus easy to verify that J entails q0, a contradiction.

“only if”. Let h be a homomorphism from I to AC,q0 . Define an S-instance J by starting
with T ↓(I) and dropping all facts Ai(a) such that A1(a), A2(a) are in T ↓(I) and h(a) = ai

(note that we cannot have h(a) = 0 then because 0 is not labeled with P{A1,A2} in AC,q0).
Clearly, J is a minimal repair of T ↓(I). We show that J 6|= q0. Assume to the contrary that
J |= q0. Then there is a tCQ q in q0 with J |= q. Let h′ be a homomorphism from q to J
and let R(x1, . . . , xn) be the unique atom in q with R distinct from A1, A2. Obviously, we
have R(h(h′(x1)), . . . , h(h′(xk))) ∈ AC,q0 . Since q is a tCQ and thus connected, all atoms
in q that are of the form Ai(x) satisfy x ∈ {x1, . . . , xn}. For each atom Ai(xj) ∈ q, we must
have Ai(h′(xj)) ∈ J and Ai(h′(xj)) /∈ J . Consequently, Ai(xj) ∈ q implies h(h′(xj)) = i: if
A1(a) and A2(a) are in T ↓(I), then this is consequence of the construction of J ; if only Ai(a)
is in T ↓(I), then P{Ai}(a) ∈ I and thus h(a) = i. It is thus easy to verify that the instance
in Point 4 in the definition of AC,q0 for the fact R(h(h′(x1)), . . . , h(h′(xk))) implies q, thus
q0. This is a contradiction to R(h(h′(x1)), . . . , h(h′(xk))) being in AC,q0 . o

D Proofs for Section 6

I Lemma 33. Π �FO CQA(CΠ, qΠ).

Proof. Let an S-instance I be given. Convert I into an S′-instance T ↑(I) by extending
I with Qt(b) for all b ∈ adom(I) and t ∈ tp. Clearly, T ↑ is FO-definable. We show that
T ↑(I) |=CΠ qΠ iff I |= Π.

“if”. Assume that T ↑(I) 6|=CΠ qΠ. Let J be a minimal repair of T ↑(I) such that J 6|= qΠ.
Then for each a ∈ adom(J), there exists a unique ta ∈ tp such that Qt(a) ∈ J iff t 6= ta for

5 Here and in the following, we implicitly make use of the fact that for all a ∈ adom(I), PΓ(a), P∆(a) ∈ I
implies Γ = ∆.
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all t′ ∈ tp. Define an extension of I to schema S∪Q by adding P (a) whenever P ∈ ta. Since
T ↑(I) 6|=CΠ qΠ, I satisfies all non-goal rules in Π, but no goal rule applies. Consequently, we
have I 6|= Π as required.

“only if”. Assume that I 6|= Π and let I ′ be an extension of I to schema S ∪ Q that
satisfies all non-goal rules in Π but where no goal rule applies. Define J as T ↑(I) with Qt(a)
removed whenever the Q-type realized by a in I ′ is t, that is, t = {P | P ∈ Q and P (a) ∈ I ′}.
It is easy to verify that J is a minimal repair of T ↑(I). It thus remains to show that J 6|= qΠ,
which is also easy. Since all non-goal rules of Π are satisfied in I ′, no CQ under Point 1 of
the definition of qΠ applies in J ; and since no goal rule applies in I ′, no CQ under Point 2
applies either. o

I Lemma 34. CQA(CΠ, qΠ) �FO Π.

Proof. Let I be an S′-instance. Denote by X the set of a ∈ adom(I) such that there are at
least two distinct t1, t2 ∈ tp with neither Qt1(a) ∈ I nor Qt2(a) ∈ I. Then T ↓(I) is obtained
from I by dropping all facts that involve a constant from X or a relation symbol that is not
from S, and adding all facts St(a) such that Qt′(b) ∈ I iff t′ 6= t for all t′ ∈ tp. Note that we
rely on Π to admit precoloring by using the relations St. Clearly T ↓(I) is FO-definable. We
show that I |=CΠ qΠ iff T ↓(I) |= Π.

“if”. Assume that I 6|=CΠ qΠ. Then there is a minimal repair I ′ of I with I ′ 6|= qΠ. Since I ′
is a minimal repair and by definition of X, for every a ∈ adom(I) \X there must be a unique
ta ∈ tp such that Qt(a) ∈ I ′ iff t 6= ta. Define an extension J of T ↓(I) to schema S ∪Q by
adding P (a) whenever a ∈ adom(T ↓(I)) and P ∈ ta. It is easy to see that whenever St(a)
was added during the construction of T ↓(I), then t = ta. Therefore, J satisfies all non-goal
rules in Π that involve one of the St relations. All other non-goal rules in Π are satisfied in J
since I ′ 6|= qΠ. For the same reason, no goal rule of Π applies in J . Consequently, T ↓(I) 6|= Π.

“only if”. Assume that T ↓(I) 6|= Π. Then there is an extension J of T ↓(I) to schema S∪Q
in which all non-goal rules of Π are satisfied and no goal rule applies. For each a ∈ adom(J),
let ta be the Q-type realized by a in J . Let I ′ be obtained from I by removing every fact
Qta

(a) for all a ∈ adom(J). Then I ′ is a minimal repair of I. To prove this, it suffices to
show that whenever Qta(a) has been removed from I during the construction of I ′, then
Qt(a) ∈ I for all t ∈ tp. Assume that this is not the case. Since a ∈ adom(J), we must
have a 6∈ X, and thus there is a unique t ∈ tp with Qt(a) /∈ I. By construction of T ↓(I), we
have St(a) ∈ T ↓(I) and since J satisfies all non-goal rules of Π that involve an St relation,
we must have ta = t. Thus Qta

(a) /∈ I, in contradiction to it being removed during the
construction of I ′. It remains to show that I ′ 6|= qΠ. Note that the CQs in qΠ are constructed
such that every body variable x is ‘guarded’ by a conjunction of the form cont(x), t ∈ tp. It
follows that no match of a CQ in qΠ can involve a constant from X. However, all remaining
potential matches involve only constants from J , and consequently each such match implies
that some non-goal rule of Π is violated in J or that some goal rule of Π applies in J , which
is a contradiction. o

I Lemma 35. CQA(C, q) �FO ΠC,q.

Proof. Let an S-instance I be given. Define T ↑(I) exactly as in the proof of Lemma 4:
drop all facts that involve a monadic relation symbol and add PΓa(a) for every a ∈ adom(I),
where Γa = {P | P (a) ∈ I}. It remains to show that I |=C q iff T ↑(I) |= ΠC,q.

“if”. Assume I 6|=C q. Then there is a minimal repair I ′ of I such that I ′ 6|= q. Clearly,
for every a ∈ adom(I), there must be a Λa ∈ rep(Γa) such that P (a) ∈ I ′ iff P ∈ Λa for all
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P ∈ S(1). Extend the S′-instance T ↑(I) to schema S′ ∪Q by adding the facts QΛa
(a) as well

as P (a) whenever P ∈ Λa, for each a ∈ adom(I). Call the resulting instance J . It is readily
checked that J satisfies all non-goal rules of Π. Moreover, no goal rule applies. In particular,
I ′ and J satisfy exactly the same S-facts, and thus J 6|= q because I ′ 6|= q.

“only if”. Assume T ↑(I) 6|= ΠC,q. Then there is an extension J of T ↑(I) to schema S′ ∪Q
such that all non-goal rules in ΠC,q are satisfied, but no goal rule applies. Assume that J is
a minimal such extension regarding set inclusion. Note that J 6|= q. By the rules in ΠC,q, we
find, for each a ∈ adom(J), a Λa ∈ rep(Γa) such that QΛa

(a) ∈ J . By the minimality of J ,
we have P (a) ∈ J iff P ∈ Λa, for all P ∈ S(1). Define I ′ by removing from I all facts P (a)
that are not in J . Clearly, I ′ is a minimal repair of I. Moreover, I ′ 6|= q because I ′ and J
make true the same S-facts and J 6|= q. o

I Lemma 36. ΠC,q �FO CQA(C, q).

Proof. Let an S′-instance I be given. If PΓ(a), PΛ(a) ∈ I for any a and two distinct Γ,
Λ, then answer ‘yes’. Otherwise define T ↓(I) exactly as in the proof of Lemma 4: for each
constant a ∈ adom(I), let Γa be the unique subset of S(1) such that PΓa(a) ∈ I. Replace each
fact PΓa

(a) with the facts P (a), P ∈ Γa and call the result T ↓(I). We show that I |= ΠC,q

iff T ↓(I) |=C q.
“if”. Assume I 6|= ΠC,q. Then there is an extension I ′ of I with to schema S′ ∪Q such

that I ′ satisfies all non-goal rules of ΠC,q, but no goal rule applies in I ′. Assume that I ′ is a
minimal such extension regarding set inclusion. Note that I ′ 6|= q. By the rules in ΠC,q, we
find, for each constant a in I, a Λa ∈ rep(Γa) such that QΛa

(a) ∈ I ′. By the minimality of I ′
and the uniqueness of Γa, we have P (a) ∈ I ′ iff P ∈ Λa, for all P ∈ S(1) and a ∈ adom(I).
Define J by removing from T ↓(I) all facts P (a) that are not in I ′. Clearly, J is a minimal
repair of T ↓(I). Moreover, J 6|= q because J and I ′ make true the same S-facts and I ′ 6|= q.

“only if”. Assume T ↓(I) 6|=C q. Then there is a minimal repair J of T ↓(I) such that
J 6|= q. Clearly, for every a ∈ adom(I), there must be a Λa ∈ rep(Γa) such that P (a) ∈ J
iff P ∈ Λa for all P ∈ S(1). Extend I to schema S′ ∪Q by adding the fact QΛa

(a) for each
a and P (a) whenever P ∈ Λa. Call the resulting instance I ′. It is readily checked that I ′
satisfies all non-goal rules of ΠC,q. Moreover, no body of a goal rule applies. In particular, I ′
and J make true exactly the same S-facts, and thus J 6|= q because I ′ 6|= q. o

E Proofs for Section 7

Lemma 19. For every GDDLog program Π that admits precoloring, there is a normalized
GDDLog-Program Π′ with Π ≈FO Π′.
Proof. Let Π be a GDDLog program over schema S that admits precoloring and let m
be the maximum arity of EDB and IDB relation symbols in Π. We may assume that the
rules of Π are closed under identifying variables, that is, if ρ′ can be obtained from ρ ∈ Π
by identifying variables, then ρ′ ∈ Π. For any tuple of variables x, we use δ(x) to denote
the tuple of variables obtained from x by deleting each but the first occurrence of each
variable. We use f(x) to denote the footprint of x, that is, f(x) is the tuple obtained from
x by replacing each variable with its position in δ(x). A footprint of length i is a tuple
f ∈ {1, . . . , i}i such that (1, 1) ∈ f and from (k, `) ∈ f and k > 1 it follows that (k′, `− 1)
for some k′ < k. Let schema Ŝ consist of relation symbols Rf where R ∈ S is of arity i and
f is a footprint of length i.
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We next construct a GDDLog program Π̂ over schema Ŝ that satisfies the first two items
of Condition 1 of normalized GDDLog programs. In a second step, we extend Π̂ to satisfy
also the third item of Condition 1 and Condition 2. To construct Π̂, start with Π and modify
every rule

R1(y1) ∧ · · · ∧Rk(yk)→ S1(z1) ∨ · · · ∨ Sm(zm)

as follows:
(i) replace every Ri(yi) with Rf(yi)

i (y) where y is obtained from δ(yi) by filling up to length
m with fresh variables;

(ii) consider each head atom Si(zi) with Si 6= goal; due to Step (i), there is a body atom
R(y) with R of arity m and such that zi ⊆ y; replace Si(zi) with Sf(zi)

i (z) where z is
obtained from δ(zi) by filling up to length m with the variables from y \ zi (in any order
and without repetitions).

Let Q′ denote the set of IDB relations in Π̂. Let S′ be the extension of Ŝ with an m-ary
relation symbol St for each Q′-type t. Let Π′ be obtained from Π̂ by adding the rules required
for the third item of Condition 1 and the rules that involve the St symbols and are required
by Condition 2 of normalized GDDLog programs.

It remains to show that Π �FO Π′ and vice versa. We confine ourselves to a sketch. For
Π �FO Π′, let an S-instance I be given. Construct an S′-instance T ↑(I) by selecting elements
a1, . . . , am ∈ adom(I) and replacing every tuple R(a) in I with Rf(a)(b) where b is obtained
from δ(a) by appending distinct elements from a0, . . . , am until length m is reached and
where f(a) and δ(a) are defined in exactly the same way as for sequences of variables.6 It
can be verified that I |= Π iff T ↑(I) |= Π′.

To show Π′ �FO Π, let an S′-instance I be given. If I contains a fact Rf (a) where
a contains repititions, then return “I |= Π”. Otherwise construct an S-instance T ↓(I) by
applying the following operations:

replace every fact Rf (a) where f = `1 · · · `i and a = a1 · · · am with R(a`1 , . . . , a`i);
replace every fact St(a) (where t is a Q′-type) with St′(a), where t′ is the following
m-type:

t′ = {R(xi1 , . . . , x`i
) | Rf (x1, . . . , xm) ∈ t and f = `1 · · · `i}.

Again, one can verify that T ↓(I) |= Π iff I |= Π′. o

I Lemma 37. Π �FO CQA(CΠ, qΠ).

Proof. Assume that an S-instance I is given. Define an S′-instance T ↑(I) as the extension
of I with all facts Qt(a) such that t is a Q-type and a ∈ adom(I)m. We show that I |= Π iff
T ↑(I) |=CΠ qΠ.

“if”. Assume that I 6|= Π. Then there is an extension I ′ of I to schema S ∪Q such that
all non-goal rules in Π are satisfied in I ′ and no goal rule of Π applies in I ′. For each tuple
a ∈ adom(I)m, we use tpI′(a) to denote the Q-type realized by a = a1 · · · am in I ′, that is,
tpI′(a) is the set of all atoms R(x) such that R ∈ Q, and x = xi1 , . . . , xim

is a permutation
of x1 · · ·xm such that R(ai1 , . . . , aim

) ∈ I ′. Let J be the S′-instance obtained from T ↑(I) by
dropping all facts Qt(a) such that tpI′(a) = t. We show that J is a minimal repair of T ↑(I)
with J 6|= qΠ. Regarding the former, J is a minimal repair since, whenever I contains Qt(a)
for all Q-types t thus violating a constraint in CΠ, then exactly one of those facts is removed

6 We assume here that adom(I) contains at least m constants. Instances of smaller cardinality can be
dealt with in a straightfoward way.
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in J , the one with t = tpI′(a). Regarding the latter, we start with noting that J is proper
and that I ′ is the S ∪Q-instance of J . Since I ′ satisfies all goal rules in Π and no body of a
goal rule of Π applies in I ′, the CQs under Point 1 of the definition of qΠ do not apply in J .
The CQs under Point 2 of the definition qΠ do not apply by construction of J .

“only if”. Assume that T ↑(I) 6|=CΠ qΠ. Then there is a minimal repair J of T ↑(I) such
that J 6|= qΠ. By construction of T ↑(I) and since J satisfies all constraints in CΠ, every
a ∈ adom(J)m is assigned a Q-type ta in J . Since none of the CQs under Point 2 of the
definition of qΠ applies in J , this Q-type is unique. Define an extension I ′ of I to schema S∪Q
by adding R(ai1 , . . . , aim) whenever R(xi1 , . . . , xim) ∈ ta and a = a1 · · · am. Note that I ′ is
the S∪Q-instance in J . To establish that I 6|= Π as desired, it suffices to show that I ′ satisfies
all non-goal rules of Π and that no goal-rule of Π applies in I ′. Both proofs are very similar,
so we concentrate on the former. Take a rule R1(y1)∧ · · · ∧Rk(yk)→ S1(z1)∨ · · · ∨ Sm(zm)
from Π and assume to the contrary of what is to be shown that R1(a1), . . . , Rk(ak) ∈ I ′, but
none of the atoms in the rule head is satisfied. For i ∈ {1, . . . , k} let qi be the restriction of
J to the facts of the form R(ai), R ∈ S′, viewed as relational atoms of a CQ (consistently
substitute the constants with variables, maintaining consistency also across queries qi). It is
not hard to verify that whenever Ĵ is a proper S′-instance and Ĵ |= qi[bi] for 1 ≤ i ≤ k, then
the S ∪Q-instance Î in Ĵ contains R1(b1), . . . , Rk(bk), but again none of the atoms in the
rule head is satisfied; in fact, R(ai) ∈ I ′ implies R(bi) ∈ Î for all R ∈ S and 1 ≤ i ≤ k, and
R(bi) ∈ I ′ iff R(bi) ∈ Î for all R ∈ Q, 1 ≤ i ≤ k, and permutations bi of ai. Consequently, Î
also violates the selected rule in Π and thus the CQ obtained from

∧
1≤i≤k qi by existentially

quantifying all variables is a forbidden CQ. In fact, it satisfies the two conditions under Point 1
of the definition of qΠ and thus the application of this query in J yields a contradiction to J
not satisfying any of the CQs in qΠ. o

I Lemma 38. CQA(CΠ, qΠ) �FO Π.

Proof. Let I be an S′-instance. Let T ↓(I) be the S-instance obtained from the reduct of I
to schema S by the following sequence of operations:
1. drop each fact R(a) such that for every permutation b of a, there are distinct Q-types t

and t′ such that neither Qt(b) nor Qt′(b) are in I;
2. add St(a) for each S-guarded tuple a ∈ adom(I)m that is assigned Q-type t in I (the

assignment need not be unique).
We show that I |=CΠ qΠ iff T ↓(I) |= Π.

“if”. Assume that I 6|=CΠ qΠ. Then there is a minimal repair I ′ of I such that I ′ 6|= qΠ. Let
I ′′ be obtained from I ′ by dopping all facts that are removed during Step 1 of the construction
of T ↓(I) from I. Clearly, I ′′ satisfies all constraints from CΠ and we have I ′′ 6|= qΠ. By
construction of I ′′ and since I ′′ satisfies all constraints in CΠ, every a ∈ adom(I ′′)m is
assigned a Q-type ta in I ′′. Since none of the CQs under Point 2 of the definition of qΠ
applies in I ′′, this Q-type is unique (and thus I ′′ is a proper S′-instance); moreover, if a
Q-type is assigned to a in I, then this type is (unique and) ta. Define an extension J

of T ↓(I) to schema S ∪ Q by adding R(ai1 , . . . , aim
) whenever R(xi1 , . . . , xim

) ∈ ta and
a = a1 · · · am ∈ adom(T ↓(I))m. Note that J is the S ∪Q-instance in I ′′ extended with the
facts added in Point 2 of the construction of T ↓(I). To establish that T ↓(I) 6|= Π as desired,
it suffices to show that J satisfies all non-goal rules of Π and that no goal-rule of Π applies
in J . Both proofs are very similar, so we concentrate on the former.

We start with non-goal rules R1(y1) ∧ · · · ∧ Rk(yk) → S1(z1) ∨ · · · ∨ Sm(zm) from Π
that do not contain any of the St relations. Assume to the contrary of what is to be
shown that R1(a1), . . . , Rk(ak) ∈ J , but none of the atoms in the rule head is satisfied. For
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i ∈ {1, . . . , k}, let qi be the restriction of I ′′ to the facts of the form R(a′i), R ∈ S′ and
a′i a permutation of ai, viewed as relational atoms of a CQ (consistently substitute the
constants with variables, maintaining consistency also across queries qi). It is not hard
to verify that whenever Ĵ is a proper S′-instance and Ĵ |= qi[bi] for 1 ≤ i ≤ k, then the
S ∪Q-instance Î in Ĵ contains R1(b1), . . . , Rk(bk), but again none of the atoms in the rule
head is satisfied; in fact, R(ai) ∈ J implies R(bi) ∈ Î for all R ∈ S that are not of the form
St and 1 ≤ i ≤ k, and we have R(b′i) ∈ J iff R(b′i) ∈ Î for all R ∈ Q and all permutations
b′i of bi, 1 ≤ i ≤ k. Consequently, Î also violates the selected rule in Π and thus the CQ
obtained from

∧
1≤i≤k qi by existentially quantifying all variables is a forbidden CQ. In fact,

it satisfies the two conditions under Point 1 of the definition of qΠ and thus the applicability
of this query in I ′′ yields a contradiction to I ′′ not satisfying any of the CQs in qΠ.

Now for non-goal rules in Π that mention an St relation, which are of the form (i) St(x)→
R(xi1 , . . . , xim

) with x = x1 · · ·xm, R(xi1 , . . . , xim
) ∈ t and (ii) St(x) ∧ R(y) → ⊥ with

R(y) /∈ t, R ∈ Q, and y a permutation of x. For brevity, we concentrate on the latter.
Assume that St(a), R(b) ∈ J with b a permutation of a. No matter whether St(a) is already
in I or was added during the construction of J , t is the (unique, as argued above) Q-type
assigned to a in I; in the case where St(a) is already in I, assuming that a is assigned
Q-type t assigned to a in I in fact gives rise to a forbidden query satisfied by I ′′, which is a
contradiction. As noted above, the Q-type t assigned to a in I is actually ta, that is, the
Q-type assigned to a in I ′′. The construction of J thus yields a contradiciton to R(b) ∈ J .

“only if”. Assume that T ↓(I) 6|= Π. Then there is an extension J of T ↓(I) to schema
S ∪Q such that all non-goal rules in Π are satisfied in J and no goal rule of Π applies in J .
Let I ′ be the S′-instance obtained from I by dropping all facts Qt(a) such that tpJ(a) = t.
We show that I ′ is a minimal repair of T ↓(I) with I ′ 6|= qΠ. Regarding the former, I ′ is a
minimal repair since, whenever I contains Qt(a) for all Q-types t thus violating a constraint
in CΠ, then exactly one of those facts is removed in I ′, the one with t = tpJ(a); also
note that when I assigns Q-type t to some a ∈ adom(I)m (and thus the constraint CΠ is
not violated at a in I), then St(a) was added in Step 2 of the construction of T ↓(I), and
consequently tpT (I′)(a) = t, thus no tuple Qt′(a) is removed from I during the construction
of I ′. Regarding I ′ 6|= qΠ, we start with noting that the S′-instance I ′′ obtained from I ′

by dropping all facts removed in Point 1 of the construction of T ↓(I) and adding all facts
added in Point 2 of the construction is proper and that J is the S ∪Q-instance of I ′′. Since
J satisfies all goal rules in Π and no body of a goal rule of Π applies in I ′, the CQs under
Point 1 of the definition of qΠ do not apply in I ′′. By Point (c) of the construction of those
CQs and construction of I ′′ from I ′, they also do not apply in I ′. The CQs under Point 2 of
the definition qΠ do not apply in I ′ by construction of I ′. o

I Lemma 39. CQA(C, q) �FO ΠC,q.

Proof. Let an S-instance I be given. Define an S′-instance T ↑(I) that consists of all facts
RtpI(a)(a) with a ∈ adom(I)i, i ≤ m. Clearly, T ↑ is FO-definable. We show that I |=C q iff
T ↑(I) |= ΠC,q.

“if”. First assume I 6|=C q. Then there is a minimal repair I ′ of I such that I ′ 6|= q. Let
Q be the IDB relations of ΠC,q and extend T ↑(I) to an S′ ∪ Q-instance J as follows: if
tpI′(a) = t for a guarded tuple a ∈ dom(I ′)i, i ≤ m, then include Qt(a) as well as R(a) for
all R(x1, . . . , xi) ∈ t. One can check that J satisfies all non-goal rules in ΠC,q and that the
goal rules under Point 3 of the definition of ΠC,q do not apply. The goal rules under Point 4
do not apply since I ′ 6|= q and by construction of J . Thus T ↑(I) 6|= ΠC,q.
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“only if”. Now assume that T ↑(I) 6|= ΠC,q and let J be a minimal extension of T ↑(I)
(w.r.t. set inclusion) that satisfies all rules in ΠC,q and where no body of a goal rule applies.
Define I ′ as the restriction of J to S. Then I ′ is a minimal repair of I. In fact, it suffices to
show that for each guarded set a ∈ dom(I ′), i ≤ m, the set of facts in I ′ of the form R(a) is
a minimal repair of the corresponding restriction of I. This is a consequence of the first two
types of rules in ΠC,q being satisfied in J , the minimality of J , and the body of the first type
of goal rule not applying in J . It thus remains to argue that I ′ 6|= q, which is an immediate
consequence of the second type of goal rule not applying in J . o

I Lemma 40. ΠC,q �FO CQA(C, q).

Proof. Let an S′-instance I be given. If Rt(a), Rt′(a) ∈ I for any a ∈ dom(I)i, i ≤ m, and
t 6= t′, then answer ‘inconsistent’. Otherwise, replace each fact Rt(a) with the set of facts
{R(a) | R(x) ∈ t}, and call the result T ↓(I). Clearly, T ↓ is FO-definable. We show that
I |= ΠC,q iff T ↓(I) |=C q.

“if”. Assume I 6|= ΠC,q and let I ′ be an extension of I to the IDB relations that satisfies
all non-goal rules in ΠC,q and in which no body of a goal rule applies; we may further assume
w.l.o.g. that I ′ is minimal (w.r.t. set inclusion) with this property. Let J be the restriction
of I ′ to S. Then J is a repair of T ↓(I). In fact, it suffices to show that for each guarded
set a ∈ dom(J), i ≤ m, the set of facts in J of the form R(a) is a minimal repair of the
corresponding restriction of T ↓(I). Since for each a ∈ dom(I ′)i, i ≤ m, I contains is at most
one fact of the form Rt(a) and due to the minimality of I ′ and the fact that I ′ satisfies the
non-goal rules under Points 1 and 2, we have that whenever Rt(a) ∈ I, then the set of facts
in I ′ of the form R(a) is a minimal repair of the corresponding restriction of T ↓(I). By
construction of J , the same is true for J as desired.

“only if”. Now assume T ↓(I) 6|=C q. Then there is a minimal repair J of T ↓(I) such that
J 6|= q. Extend J to an instance I ′ by adding the following IDB facts: for each a ∈ dom(J)i,
i ≤ m with tpJ(a) = t, add Qt(a) as well as R(a) for all R(x) ∈ t. One can check that I ′
satisfies all non-goal rules in ΠC,q and that no body of a goal rule applies, thus I 6|= ΠC,q.

o
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