
Lightweight Temporal Description Logics with Rigid Roles and Restricted TBoxes

Vı́ctor Gutiérrez-Basulto and Jean Christoph Jung and Thomas Schneider
Universität Bremen, Germany

{victor, jeanjung, ts}@informatik.uni-bremen.de

Abstract

We study temporal description logics (TDLs) based
on the branching-time temporal logic CTL and the
lightweight DL EL in the presence of rigid roles
and restricted TBoxes. While TDLs designed in this
way are known to be inherently nonelementary or
even undecidable over general TBoxes, there is hope
for a better computational behaviour over acyclic
or empty TBoxes. We begin by showing that the
basic DLALC combined with CTL in the described
way is indeed decidable, but still inherently nonele-
mentary. As our main contribution, we identify
several TDLs of elementary complexity, obtained
by combining EL with CTL fragments that allow
only restricted sets of temporal operators. We obtain
upper complexity bounds ranging from PTIME to
CONEXPTIME and mostly tight lower bounds. This
contrasts the fact that the respective ALC variants
are already inherently nonelementary.

1 Introduction
Classical description logics (DLs), such as those underlying
the W3C standard OWL, are a successful family of knowledge
representation languages. Temporal description logics (TDLs)
extend classical DLs, providing built-in means to represent
and reason about temporal aspects of knowledge. The impor-
tance of TDLs stems from the need of relevant applications
to capture temporal and dynamic aspects of knowledge, e.g.,
in medical and life science ontologies, which are very large
but still demand efficient reasoning, such as SNOMED CT and
FMA [Bodenreider and Zhang, 2006], and the gene ontology
(GO) [The Gene Ontology Consortium, 2000]. A natural task
is to model dynamic knowledge about patient histories against
static medical knowledge (e.g., about diseases): e.g., the tem-
poral concept C := E3∃ requiresTransfusion.> describes a
patient who may need a blood transfusion in the future, and
the axiom Anemic v C says that this applies to anemic people.
In contrast, Anemia v Disorder represents static knowledge.

A notable approach to designing TDLs is to combine DLs
with temporal logics commonly used in software/hardware
verification such as LTL, CTL(∗), and to provide a two-
dimensional product-like semantics [Schild, 1993; Gabbay

et al., 2003; Lutz et al., 2008]. The combination allows vari-
ous design choices, e.g., we can restrict the scope of temporal
operators to certain types of entities (such as concepts, roles,
axioms), or declare some DL concepts or roles as rigid, mean-
ing that their interpretation will not change over time. The
need for rigid roles in TDL applications, e.g., in biomedi-
cal ontologies to accurately capture life-time relations, has
been identified [Baader et al., 2008]. For example, the role
hasBloodType should be rigid since a human’s blood type
does not change during their lifetime.

Unfortunately, TDLs based on the Boolean-complete DL
ALC with rigid roles cannot be effectively used since they
become undecidable as soon as temporal operators are applied
to concepts and a general TBox is allowed [Gabbay et al.,
2003; Gutiérrez-Basulto et al., 2014]. This is the case even if
we severely restrict the temporal operators available and use
the sub-Boolean DL EL, whose standard reasoning problems
are tractable, instead of ALC [Artale et al., 2007a; Gutiérrez-
Basulto et al., 2014]. In the light of these results, several
efforts have been devoted to the design of decidable TDLs
with rigid roles [Artale et al., 2007b; 2014]; e.g., decidability
can be attained by using a different lightweight DL component
based on DL-Lite. Both the EL and DL-Lite families underlie
prominent profiles of the OWL standard.

Interestingly, no research has been yet devoted to TDLs
based on EL in the presence of restricted TBoxes, such as
classical TBoxes, which consist solely of definitions of the
form A ≡ C with A atomic and unique, or acyclic TBoxes,
which additionally forbid syntactic cycles in definitions. This
is surprising since in the presence of general TBoxes TDLs
based on EL tend to be as complex as theALC variant [Artale
et al., 2007b; Gutiérrez-Basulto et al., 2012; 2014].

These considerations lead us to investigating TDLs with
rigid roles based on EL and the (branching-time) CTL allowing
for temporal concepts and empty or acyclic TBoxes. We
strongly believe that TDLs designed in this way are well-
suited as temporal extensions of biomedical ontologies. After
all, large parts of SNOMED CT and GO indeed are acyclic
EL-TBoxes.

Our main contributions are algorithms for standard reason-
ing problems and (mostly tight) complexity bounds. We begin
by showing that the combination of CTL andALC with empty
and acyclic TBoxes is decidable. Our nonelementary upper
bound is optimal even when the set of temporal operators is

Rigid roles? no yes yes yes
TBoxes general general acyclic empty

CTLALC =EXPTIME1 undecidable2 nonelementary, decidable [Thm. 1] nonelem., decidable [Thm. 1]
CTLE3

EL /CTLE◦
EL ≤PTIME1 nonelem./undecid.2 ≤PTIME [Thm. 6] ≤PTIME [Thm. 6]

CTLE◦,E3
EL =EXPTIME1,2 undecidable2 ≥CONP, ≤CONEXPTIME [Thm. 2, Cor. 5] =CONP [Thm. 2]

CTLE3,A2
EL =PSPACE1 nonelementary2 =PSPACE [Thm. 9] ≤PSPACE [Thm. 9]

1 [Gutiérrez-Basulto et al., 2012] 2 [Gutiérrez-Basulto et al., 2014]

Table 1: Overview of previous and new complexity results. ≥ hardness, ≤ membership, = completeness

restricted to E3 (“possibly eventually”) or E© (“possibly
next”). We then replace ALC with EL and maintain the re-
striction to E3,E© and empty TBoxes. We particularly show
that the resulting TDLs are decidable in PTIME with one of
the two operators, and CONP-complete with both. To this aim,
we employ canonical models, together with expansion vectors
[Haase and Lutz, 2008] in the case with both E3,E©. Next,
we lift the PTIME upper bound to the case of acyclic TBoxes,
employing a completion algorithm in the style of those for
EL and extensions, [Baader et al., 2005]. Finally, we show
that the combination of E3 with A2 (“always globally”)
and acyclic TBoxes leads to a PSPACE-complete TDL, again
employing a completion algorithm. An overview of existing
and new results is given in Table 1, where CTLYX denotes the
combination of the DL X with the fragment of CTL restricted
to the temporal operators Y . In particular, all the new results
hold even if rigid concepts are also included.

The relatively low complexity that we obtain for EL-based
TDLs over restricted TBoxes are in sharp contrast with the
undecidability and nonelementary lower bounds known for
the same logics over general TBoxes [Gutiérrez-Basulto et al.,
2014]. With the restriction to acyclic TBoxes, we will thus
identify the first computationally well-behaved TDLs with
rigid roles based on EL and classical temporal logics.

Due to limited space, additional technical notions and proofs
are in a report: http://tinyurl.com/ijcai15tdl

2 Preliminaries
We introduce CTLALC , a TDL based on the classical DLALC.
Let NC and NR be countably infinite sets of concept names
and role names, respectively. We assume that NC and NR are
partitioned into two countably infinite sets: Nrig

C and Nloc
C of

rigid concept names and local concept names, respectively;
and, Nrig

R and Nloc
R of rigid role names and local role names,

respectively. CTLALC-concepts C are defined by the grammar

C := > | A | ¬C | C uD | ∃r.C | E©C | E2C | E(CUD)

where A ranges over NC, r over NR. We use standard DL
abbreviations [Baader et al., 2003] and temporal abbreviations
E3C,A2C,A3C and A(C U D) [Clarke et al., 1999].

The semantics of classical DLs, such as ALC, is given in
terms of interpretations of the form I = (∆, ·I), where ∆ is
a non-empty set called the domain and ·I is an interpretation
function that maps each A ∈ NC to a subset AI ⊆ ∆ and each
r ∈ NR to a binary relation rI ⊆ ∆ ×∆. The semantics of
CTLALC is given in terms of temporal interpretations based

on infinite trees [Gutiérrez-Basulto et al., 2014]: A tempo-
ral interpretation based on an infinite tree T = (W,E) is a
structure I = (T, (Iw)w∈W) such that, for each w ∈ W , Iw
is a DL interpretation with domain ∆; and, rIw = rIw′ and
AIw = AIw′ for all r ∈ Nrig

R , A ∈ Nrig
C and w,w′ ∈ W . We

usually write AI,w instead of AIw . The stipulation that all
worlds share the same domain is called the constant domain
assumption (CDA). For Boolean-complete TDLs, CDA is the
most general: increasing, decreasing and varying domains can
all be reduced to it [Gabbay et al., 2003, Prop. 3.32]. For
the sub-Boolean logics studied here, CDA is not w.l.o.g. In-
deed, we identify a logic in which reasoning with increasing
domains cannot be reduced to the constant domain case.

We now define the semantics of CTLALC-concepts. A path
in T = (W,E) starting at a node w is an infinite sequence
π = w0w1w2 · · · with w0 = w and (wi, wi+1) ∈ E. We
write π[i] for wi, and use Paths(w) to denote the set of all
paths starting at the node w. The mapping ·I,w is extended
from concept names to CTLALC-concepts as follows.

>I,w = ∆ (C uD)I,w = CI,w ∩DI,w

(∃r.C)I,w = {d ∈ ∆ | ∃e . (d, e) ∈ rI,w ∧ e ∈ CI,w}
(E©C)I,w = {d | ∃π ∈Paths(w) . d∈CI,π[1]}
(E2C)I,w = {d | ∃π ∈Paths(w) .∀j≥ 0 . d∈CI,π[j]}

(E(CUD))I,w = {d | ∃π ∈Paths(w) .∃ j≥ 0 . (d∈DI,π[j]

∧ (∀ 0≤ k < j . d∈CI,π[k]))}
An acyclic CTLALC-TBox T is a finite set of concept defini-
tions (CDs) A ≡ D with A ∈ NC and D a CTLALC concept,
such that (1) no two CDs have the same left-hand side, and
(2) there are no CDs A1 ≡ C1, . . . , Ak ≡ Ck in T such that
Ai+1 occurs in Ci for 1 ≤ i ≤ k, where Ak+1 = A1.

A temporal interpretation I is a model of a concept C if
CI,ε 6= ∅; it is a model of an acyclic TBox T , written I |= T ,
if AI,w = CI,w for all A ≡ C in T and w ∈ W ; it is a
model of a concept inclusion C v D, written I |= C v D, if
CI,w ⊆ DI,w for all w ∈W .

The two main reasoning tasks we consider are concept
satisfiability and subsumption. A concept C is satisfiable
relative to an acyclic TBox T if there is a common model of
C and T . A concept D subsumes a concept C relative to an
acyclic TBox T , written T |= C v D, if I |= C v D for all
models I of T . If T is empty, we write |= C v D.

3 First Observations

We start by observing that the combination of CTL and ALC
with rigid roles relative to empty and acyclic TBoxes is de-

cidable and inherently nonelementary. In a nutshell, we show
the upper bounds using a variant of the quasimodel tech-
nique [Gabbay et al., 2003, Thm. 13.6]; the lower bound
follows from the fact that satisfiability for the product modal
logics S4×K and K×K is inherently nonelementary [Göller
et al., 2015]. Indeed, the fragment of CTLALC allowing E3

(E©) as the only temporal operator is a notational variant of
S4×K (K×K) [Gutiérrez-Basulto et al., 2014].

Theorem 1 Concept satisfiability relative to acyclic and
empty TBoxes for CTLALC with rigid roles is decidable and
inherently nonelementary.

With Theorem 1 and the third column of Table 1 in mind, we
particularly set as our goal the identification of elementary
(ideally tractable) TDLs. To this aim, we study combinations
of (fragments of) CTL with the lightweight DL EL. CTLEL is
the fragment of CTLALC that disallows the constructor ¬ (and
thus the abbreviations C tD, ∀r.C, A2, . . .). The standard
reasoning problem for CTLEL, as for EL, is concept subsump-
tion since each concept and TBox are trivially satisfiable. In
what follows we consider various fragments of CTLEL ob-
tained by restricting the available temporal operators. We
denote the fragments by putting the allowed operators as a
superscript. In this context, we view each of the operators E3,
A2 as primitive instead of as an abbreviation.

In order to keep the presentation of our main results acces-
sible, in Sections 5-6, we concentrate on the case where only
rigid role names and local concept names are present. Later
on, in Section 7, we explain how to deal with the general case.

4 CTLE◦,E3

EL relative to the Empty TBox
We begin by investigating the complexity of subsumption
relative to the empty TBox for a TDL whose subsumption
relative to general TBoxes is undecidable: CTLE◦,E3

EL .

Theorem 2 Concept subsumption relative to the empty TBox
is CONP-complete for CTLE◦,E3

EL with rigid roles and in
PTIME for CTLE◦

EL and CTLE3
EL with rigid roles.

CONP-hardness is obtained by embedding EL plus transitive
closure into CTLE◦,E3

EL ; the jump in complexity comes from
the ability to express disjunctions, e.g., |= E3C v C t
E©E3C. We next explain CONP-membership; the PTIME
results are a byproduct and improved later.

We proceed in two steps: first we provide a characteriza-
tion of |= C v D where C is an CTLE◦

EL -concept and D an
CTLE◦,E3

EL -concept. Next we generalize this characterization
to CTLE◦,E3

EL -concepts C.
Given a CTLE◦

EL -concept C, the description tree tC =
(VC , LC , EC) for C is a labeled graph corresponding to C’s
syntax tree; we denote its root by xC . For example, if
C = E©(∃r.A u ∃s.B), then tC is given in Figure 1, left.

For plain EL, we have |= C vD if and only if there is a
homomorphism from tD to tC , which can be tested in polyno-
mial time [Baader et al., 1999]. This criterion cannot directly
be transferred to CTLE◦

EL because tC does not explicitly repre-
sent all pairs of worlds and domain elements whose existence
is implied by tC , e.g., for |= E©∃r.A v ∃r.E©A with r rigid,

...

A B

◦

r s

A
B

r

s
A
B

r

s

tC IpreCIC

Figure 1: Description tree tC , canonical model IC , and finite
representation Ipre

C for the concept C = E©(∃r.A u ∃s.B)

there is no homomorphism from tD to tC . We overcome this
problem by transforming tC into a canonical model IC of
C, i.e., (1) its distinguished root is an instance of C and (2)
IC homomorphically embeds into every model of C. The
construction of IC from tC is straightforward: for every node
with an incoming ©-edge (r-edge, r being a role) create a
fresh world (domain element); for the root xC create both a
world and domain element. The temporal relation and the
interpretation of r and concept names is read off EC and LC .
To transform (W,R) into an infinite tree, we add an infinite
path of fresh worlds to every world without R-successor. The
canonical model for the above concept C is shown in Fig. 1,
center; the infinite path of worlds is dashed.

From (1), (2), and the preservation properties of homomor-
phisms, we obtain the desired characterization of subsumption.

Lemma 3 For all CTLE◦
EL -concepts C and all CTLE◦,E3

EL -
concepts D, we have |= C v D if and only if xC ∈DIC ,xC .

Now xC ∈ DIC ,xC can be verified by model-checking D in
world xC and element xC of Ipre

C , which is the polynomial-
sized modification of I where the lastly added infinite path
of worlds is replaced by a single loop, see Figure 1, right.
Since IC is the unraveling of Ipre

C into the temporal dimension,
both interpretations satisfy the same concepts in their roots.
Theorem 2 for CTLE◦

EL therefore follows. The CTLE3
EL part

can be obtained by representing every E3 in C by a ©-edge
in tC and modifying the notion of a homomorphism.

For CTLE◦,E3
EL , we use expansion vectors introduced by

Haase and Lutz [2008], applied to the temporal dimension.
Let C be a CTLE◦,E3

EL -concept with n occurrences of E3.
An expansion vector for C is an n-tuple U = (u1, . . . , un)
of natural numbers ui ∈ N (including 0). Intuitively, U fixes
a specific number of temporal steps taken for each E3 in C
when constructing tC and IC . More precisely, we use C[U] to
denote the CTLE◦

EL -concept obtained from C by replacing the
i-th occurrence of E3 with (E©)ui , that is, a sequence of ui
E©-operators. For example, if C = E3∃r.E3(A u E©B)
and U = (2, 0), then C[U] = E©E©∃r.(A uE©B).

Let UmC be the set of all expansion vectors (u1, . . . , un) with
0 6 ui 6 m, for all i = 1, . . . , n. We denote with td(D) the
nesting depth of temporal operators in D. We use expansion
vectors with entries bounded by td(D) to reduce 6|= C v D

for CTLE◦,E3
EL to the case where C is from CTLE◦

EL .

Lemma 4 For all CTLE◦,E3
EL -concepts C,D, we have

|= CvD if and only if |= C[U] v D for all U ∈ Utd(D)+1
C .

Together with Lemma 3, this yields the desired polynomial-
time guess-and-check procedure for deciding |= C v D.

5 CTLE◦
EL and CTLE3

EL relative to Acyclic
TBoxes

The results of Theorem 2 transfer to acyclic TBoxes with an
exponential blowup due to unfolding [Nebel, 1990], that is:

Corollary 5 Concept subsumption relative to acyclic
CTLE◦,E3

EL -TBoxes with rigid roles is in CONEXPTIME.

For the subfragments CTLE◦
EL and CTLE3

EL , we can even show
polynomial complexity as in the empty TBox case.

Theorem 6 Concept subsumption relative to acyclic CTLE◦
EL -

and CTLE3
EL -TBoxes with rigid roles is in PTIME.

We first concentrate on the E3 case and explain below how
to deal with the E© one. We focus w.l.o.g. on subsumption
between concept names and assume that the input TBox is
in normal form (NF), i.e., each axiom is of the shape A ≡
A1 uA2, A ≡ E3A1, or A ≡ ∃r.A1, where Ai ∈ NC ∪ {>}
and r ∈ NR. As usual, a subsumption-equivalent TBox in NF
can be computed in polynomial time [Baader, 2003]. We use
CN and ROL to denote the sets of concept names and roles
occurring in T .

To prove a PTIME upper bound, we devise a comple-
tion algorithm in the style of those known for EL and (two-
dimensional) extensions, cf. [Baader et al., 2005; Gutiérrez-
Basulto et al., 2011], which build an abstract representation
of the ‘minimal’ model of the input TBox T (in the sense
of Horn logic). The main difficulty is that different occur-
rences of the same concept name in the TBox cannot all be
treated uniformly (as it is the case for, say, EL), due to the
two-dimensional semantics. Instead, we have to carefully
choose witnesses for E3A and ∃r.A, respectively. Our algo-
rithm constructs a graph G = (W,E,Q,R) based on a set
W , a binary relation E, a mapping Q that associates with
each A ∈ CN and each w ∈W a subset Q(A,w) ⊆ CN, and
a mapping R that associates with each rigid role r ∈ ROL
a relation R(r) ⊆ CN × W × CN × W . For brevity, we
write (A,w)

r→ (B,w′) instead of (A,w,B,w′) ∈ R(r) and
denote with E∗ the reflexive, transitive closure of E.

The algorithm for deciding subsumption initializes G by
setting R(r) = ∅ for all r ∈ ROL and for all A ∈ CN:

W = CN× CN ∪ {E3A | A ∈ CN};
E = {(E3A,AA), (AB,A>) | A,B ∈ CN};

Q(A,w) = {>, B}, if w = AB; {>}, otherwise.

Intuitively, the unraveling of (W,E) is the temporal tree un-
derlying the canonical model and the mappings Q and R
contain condensed information on how to interpret concepts
and roles, respectively. More specifically, the data stored in
Q(A, ·) describes the temporal evolution of an instance of A.
For example, Q(A,AA) collects all concept names B such
that T |= A v B; likewise, Q(A,E3A) captures everything

F1 If B ∈Q(A,AA′) & B ≡ E3B′ ∈ T , add (AA′, AB′) to E

F2 If B ∈ Q(A,w) and B ≡ ∃r.B′ ∈ T ,
set (A,w) r→ (B′, B′B′)

F3 If B∈Q(A,w) & B≡A1uA2 ∈T , add A1,A2 to Q(A,w)

C1 If (BB,w) ∈ E and (A,w′)
r→ (B,BB), add (w′, w) to E

C2 If (A,w) r→ (B,BB), then
a) (A,w′)

r→ (B,E3B) for all w′ 6= w with (w′, w) ∈ E∗

b) (A,w′)
r→ (B,w′) for all w′ with (w′, w) /∈ E∗

B1 If B ∈ Q(A,w), (w′, w) ∈ E∗, and A′ ≡ E3B ∈ T ,
add A′ to Q(A,w′)

B2 If A ∈ Q(B,w), (A′, w′) r→ (B,w), and A′′ ≡ ∃r.A ∈ T
add A′′ to Q(A′, w′)

B3 If A1, A2 ∈ Q(B,w) & A ≡ A1 uA2 ∈ T
add A to Q(B,w)

Figure 2: Completion rules

that follows from E3A. Finally, Q(A,AB) contains con-
cept names that are implied by B given that B appears in the
temporal evolution of an instance of A, i.e., B′ ∈ Q(A,AB)
implies T |= A uE3B v E3(B uB′).

After initialization, the algorithm extends G by applying
the completion rules depicted in Figure 2 in three phases. In
the first phase – also called FORWARD-phase, since definitions
A ≡ C ∈ T are read asA v C – rules F1-F3 are exhaustively
applied in order to generate a fusion-like representation by
adding witness-worlds and witness-existentials as demanded.
Most notably, rule F2 introduces a pointer to the structure
representing the temporal evolution of an instance of B′.

Subsequently, G is extended to conform with the constant
domain assumption and reflect rigidity of roles by exhaustively
applying rules C1 and C2. For example, one can read C2 as
‘if two points are connected via r in some world, then they
should be connected in all worlds.’ Note that Q(B,E3B) is
used as a representative for the entire “past” of B in part a).

In the final phase, BACKWARD-completion rules B1-B3
are exhaustively applied in order to respect the ‘backwards’-
direction of definitions, i.e., definitions A ≡ C ∈ T are read
as A w C. This separation into a FORWARD and BACKWARD
phase is sanctioned by acyclicity of the TBox. In fact, one
run through each phase is enough; note that no new tuples are
added to E or R in the BACKWARD-phase.

The following lemma shows correctness of our algorithm.

Lemma 7 Let T be an acyclic CTLE3
EL -TBox in normal form.

Then for all A,B ∈ CN, we have T |= A v B iff, after
exhaustive rule application, B ∈ Q(A,AA).

For proving “⇐”, we show that (a certain unraveling of) G
“embeds” into every model of A and T . For this purpose,
we need to adapt the notion of a homomorphism to temporal
interpretations and rigid roles. For the reverse direction, we
construct from G a model I of T such that d ∈ AI,w \BI,w

for some d,w. It is not hard to see that the algorithm runs
in polynomial time: The size of the data structures W , E,
and R is clearly polynomial and the mapping Q(·, ·) is ex-
tended in every rule application, so the algorithm stops after

polynomially many steps.
Finally, we sketch two modifications of the algorithm

such that it works for E© instead of E3. First, we have
to use a non-transitive version of B1. Second, and a bit
more subtly, we have to replace E3A ∈ W with E©kA,
1 ≤ k ≤ |T | to capture what is implied by E©kA; more pre-
cisely, B′ ∈ Q(A,E©kA) implies T |= E©kA v B′, where
E©k denotes E© · · ·E© k times.

We next show that there is a jump in the complexity if
increasing domains are considered instead of constant ones.
Intuitively, this can be explained by the fact that increasing
domains allow rigid roles to mimic the behaviour of the A2-
operator. In the next section, we show that the addition of A2

to {E3} indeed leads to PSPACE hardness.

Theorem 8 Concept subsumption relative to acyclic CTLE◦
EL -

and CTLE3
EL -TBoxes with rigid roles and increasing domains

is PSPACE-hard.

6 CTLE3,A2

EL relative to Acyclic TBoxes
We now add A2 and observe that this leads to an increase in
complexity to polynomial space over acyclic TBoxes.

Theorem 9 Concept subsumption relative to acyclic
CTLE3,A2

EL -TBoxes with rigid roles is PSPACE-complete.

The lower bound is obtained via a reduction from QBF validity.
For the upper bound, we again consider w.l.o.g. subsumption
between concept names and assume that the acyclic TBox is in
normal form, i.e., axioms are of the shape A ≡ A1 uA2, A ≡
E3A1, A ≡ A2A1, or A ≡ ∃r.A1, where Ai ∈ NC ∪ {>}
and r ∈ NR. We also restrict ourselves again to only rigid
roles. CN and ROL are used as before.

In contrast to the previous section, we cannot maintain the
entire minimal model in memory since the added operator A2

can be used to enforce models of exponential size. Instead, we
will compute all concepts implied by the input concept A (the
left-hand side of the subsumption to be checked) by iteratively
visiting relevant parts of the minimal model. Our main tool
for doing so are traces.

Definition 1 A trace is a tuple (σ,E,R) where σ is a se-
quence (d0, w0) · · · (dn, wn) such that for all 0 ≤ i < n
one of the following is true:

• di = di+1 and (wi, wi+1) ∈ E;

• wi = wi+1 and (di, di+1) ∈ R(r) for some r ∈ ROL.

Intuitively, traces represent paths through temporal interpreta-
tions, which in each step follow either the temporal relation
(first item of Definition 1) or a DL relation r (second item of
Definition 1); so, in a pair (d,w), d can be thought of as a
domain element and w as a world.

Our algorithm, whose basic structure is depicted in Algo-
rithm 1, enumerates on input A and T , in a systematic tableau-
like way, all traces that must appear in every model of A and
T . It is important to note that in the context of Algorithm 1 a
trace is used as the basis for inducing a richer structure that
conforms with the constant domain assumption and captures
rigidity; see Example 1 below. The algorithm also maintains
an additional mapping Q that labels each point (d,w) of the

Algorithm 1: Subsumption in CTLE3,A2
EL

Input: Acyclic TBox T , concept names A,B
Output: true if T |= A v B, false otherwise

1 σ := (d0, w0); Q(d0, w0) := {A,>};
2 E := ∅; R(r) := ∅ for all r ∈ ROL;
3 expand(σ,E,R);
4 return true if B ∈ Q(d0, w0), false otherwise;

5 procedure expand (σ,E,R) :
6 complete (σ,E,R,Q);
7 if (σ,Q) is periodic at (i, j) then
8 add (wj−1, wi) to E;
9 truncate;

10 complete (σ,E,R,Q);
11 return;
12 (d,w) := last element of σ;
13 foreach A ∈ Q(d,w) with A ≡ ∃r.B ∈ T do
14 Q(d′, w) = {B,>} for a fresh d′;
15 add (d, d′) to R(r);
16 expand (σ · (d′, w), E,R);
17 foreach A ∈ Q(d,w) with A ≡ E3B ∈ T do
18 Q(d,w′) = {B,>} for a fresh w′;
19 add (w,w′) to E;
20 expand (σ · (d,w′), E,R);

trace (and all the induced points) with a set Q(d,w) ⊆ CN.
The set Q(d,w) captures all concept names that are satisfied
in the minimal model at points represented by (d,w).

The basics of Algorithm 1 are the following. In Lines 1
and 2, it creates a trace consisting of a single point representing
A and initializes the necessary data structures. In Line 3, the
systematic expansion is set off. When that is finished, the
algorithm just returns whether or not B (the right-hand of the
subsumption) has been added during the expansion. As for the
expand procedure:

• in Line 6 and 10, the algorithm updates the mapping Q;

• Line 7 contains some termination condition; and finally,

• the loops in Lines 13 and 17 enumerate all ∃r.B and
E3B that appear in the setQ(d,w) of the last element of
the trace and expand the trace to witness these concepts.

This basic description of the algorithm leaves open several
points: (i) the precise behavior of the subroutine complete,
(ii) when a trace is periodic, and (iii) what happens inside the
truncate command in Line 9. Let us start with describ-
ing the subroutine complete. It uses additional mappings
Qcert(d) ⊆ CN and QA2(d,w) ⊆ CN, which intuitively con-
tain all the concept names that d satisfies certainly, i.e., in all
worlds, and starting from world w, respectively. It proceeds in
two steps:

1. Initialize undefined Q(d,w) and Qcert(d) with {>}, and
undefined QA2(d,w) with Qcert(d); and

2. apply rules R1-R12 in Figure 3 to Q(·), Qcert(·) and
QA2(·).

The number of rules is indeed scarily high; however, they can
be divided into four digestible groups: R1 and R2 are used

R1 If A ≡ A1 uA2 ∈ T and A ∈ Q∗(·), add A1, A2 to Q∗(·)
R2 If A ≡ A1 uA2 ∈ T and A1, A2 ∈ Q∗(·), add A to Q∗(·)

R3 If (d, d′) ∈ R(r), B ∈ Q(d′, w), A ≡ ∃r.B ∈ T ,
add A to Q(d,w)

R4 If B ∈ Q(d,w), (w′, w) ∈ E∗, A ≡ E3B ∈ T ,
add A to Q(d,w′)

R5 If B ∈ Q(d,w), (w,w′) ∈ E∗, B ≡ A2A ∈ T ,
add B,A to Q(d,w′)

R6 If (d, d′) ∈ R(r), B ∈ Qcert(d
′), A ≡ ∃r.B ∈ T ,

add A to Qcert(d)

R7 If B ∈ Qcert(d), A ≡ A2B ∈ T , add A to Qcert(d)

R8 If B ∈ Qcert(d), add B to Q(d,w) for all w

R9 If B ∈ QA2(d,w), A ≡ A2B ∈ T , add A to Q(d,w)

R10 If A ∈ Q(d,w), A ≡ A2B ∈ T , add A,B to QA2(d,w)

R11 If (d, d′) ∈ R(r), B ∈ QA2(d
′, w), A ≡ ∃r.B ∈ T ,

add A to QA2(d,w)

R12 If A ∈ QA2(d,w), A ≡ E3B ∈ T , w′ added due to
A ∈ Q(d,w) in Line 18, B′ ∈Q(d,w′), A′ ≡ E3B′ ∈ T ,
add A′ to QA2(d,w)

Figure 3: Saturation rules, where in R1 and R2 the set Q∗(·)
ranges over all Q(d,w), Qcert(d), and QA2(d,w).

to ensure that all sets Q∗ are closed under conjunction; R3-
R5 are used to complete Q(·). Note that R1-R4 are already
known from the algorithm of the previous section. Further-
more, R6-R8 are used to deal with Qcert(·); and R9-R12 to
update QA2(·). As an example of the interplay between the
different mappings take R9: If B is certain for d starting in
world w and A ≡ A2B, then we also know that d satisfies A
in w; and R11 for the interplay between temporal operators
and rigid roles: indeed, for r rigid, |= ∃r.A2B v A2∃r.B.

Example 1 Let T = {A≡E3A1, A1≡∃r.B, B≡E3A1}
be the input TBox; and T |= A v A1 is to be checked.
Figure 4 (left) shows the trace initiated at (d0, w0) with
Q(d0, w0) = {>, A}, and further expanded in Lines 13 and
17. The trace, as mentioned above, induces a richer structure,
reflecting rigid roles and the constant domain assumption; see
Fig. 4 (center). This richer structure is then completed to
properly enrich the types Q(d,w) of each element. In partic-
ular, during completion, further concept names are added to
the corresponding types (Fig. 4, right). One can now easily
see that T |= A v A1 indeed holds. Furthermore, note that

(d0,w0)

(d0,w1)(d1,w1)

(d1,w2)

E

E

r

r

r

r

r

r

r

A

A1B

B1

B A,A1

A1B

B1,B A1

Figure 4: An example trace and the induced structure

T 6|= A v A1, if r is local or increasing domains are assumed.
This is the case since, in both cases, the r-connection is not
necessarily present in the ‘root world’.

For the termination condition in Line 7, we take the following
definition of periodicity.

Definition 2 A trace (σ,E,R) together with a mapping Q is
called periodic at (i, j) if σ = (d0, w0) · · · (dn, wn), i < j,
di = dj = dn, and Q(di, wi) = Q(dj , wj).

This means that during the evolution of element d = di = dj ,
we find two different worlds wi, wj such that d has the same
type in wi and wj . We can stop expanding worlds appear-
ing after wj since their behavior is already captured by the
successors of wi. If a trace periodic at (i, j) is found, we
add an edge (wj−1, wi) to E reflecting the periodic behav-
ior, see Line 8. Then, in truncate, the trace is shortened
to (d0, w0) · · · (dj−1, wj−1) and the relations E and R(r),
r ∈ ROL, and the mappings Q,Qcert, QA2 are restricted to
those d and w that appear in the shortened trace.

Lemma 10 On every input T , A,B, Algorithm 1 terminates
and returns true iff T |= A v B.

For termination, consider a trace with suffix (d,w1) · · · (d,wn)
and let additionally A1, . . . , An be the concept names such
that E3Ai lead to wi, see Line 17 of Algorithm 1. It is not
difficult to show that if Ai = Aj for i < j, then Q(d,wi) ⊆
Q(d,wj) after application of complete. Since Q(d,w) ⊆
CN, there are no infinite (strictly) increasing sequences. Hence,
the expansion in Lines 17ff. will not indefinitely be applied.
Also, the expansion in Lines 13ff. stops due to acyclicity of
the TBox. Together, this guarantees termination.

Correctness is shown similar to Lemma 7. For “⇒”, we
show that every trace together with the labeling so far com-
puted in Q can be embedded into every model of A and T .
For “⇐”, we present a model of T witnessing T 6|= A v B.

To finish the proof of Theorem 9, it remains to note that the
termination argument indeed yields a polynomial bound on the
length of the traces encountered during the run of Algorithm 1.

7 Local Roles and Rigid Concepts
One can easily extend the above algorithms so as to deal with
local roles. In fact, e.g., in Section 5 only B4 in Figure 5 needs
to be added to the BACKWARD-rules in Figure 3. Note that F2
is only applied to rigid roles and C2 is therefore not applied to
local ones. Clearly, the algorithm in Section 6 can be extended
with a similar rule.

Recall that rigid concepts are concepts whose interpretation
does not change over time. In the first example from Section 1,
the concept Disorder should be rigid because we consider med-
ical knowledge as static. In contrast, PatientWithDisorder
should be local because a disease history has a begin and end.

In the presence of general TBoxes, rigid concepts can be
simulated by rigid roles: replace each rigid concept name A
with ∃rA.>, where rA is a fresh rigid role. Unfortunately, this
simulation does not work in the context of acyclic TBoxes
since the result of replacing A with ∃rA.> in a CD A ≡ D
is not a CD anymore. Nevertheless, our algorithms can be
extended, without increasing the complexity, to consider rigid

B4 If A ∈ Q(B,w), A ≡ ∃r.A′, B′ ∈ Q(A′, A′A′) and
B′′ ≡ ∃r.B′ ∈ T , add B′′ to Q(B,w)

RC If B ∈ Q(A,w), B ∈ CNrig, add B to Q(A,w′), ∀w′ ∈W

R13 If B ∈ Q(d,w) or B ∈ QA2(d,w) & B ∈ CNrig, then
add B to Qcert(d)

Figure 5: Rules for Local Roles and Rigid Concepts

concepts: e.g., the algorithm in Section 5 can be extended by
adding RC above to the FORWARD and BACKWARD rules –
CNrig denotes the set of rigid concepts occurring in the input
TBox. Note that the intermediate phase remains the same, i.e.,
rules C1 and C2 are neither extended nor modified.

Rigid concepts can analogously be included in Section 6 by
adding R13 to the rules in Figure 3. Recall that, intuitively,
Qcert(d) contains the concepts that hold for d in any world.

Finally, note that in the empty TBox case rigid roles can
indeed simulate rigid concepts, as described above.

8 Conclusions and Future Work
In this paper we have initiated the investigation of TDLs based
on EL allowing for rigid roles and restricted TBoxes. We
indeed achieved our main goal: we identified fragments of the
combination of CTL and EL that have elementary, some even
polynomial, complexity.

One important conclusion is that the use of acyclic TBoxes,
instead of general ones, allows to design TDLs based on EL
with dramatically better complexity than theALC variant; e.g.,
for the fragment allowing only E© the complexity drops from
nonelementary to PTIME. As an important byproduct, the
studied fragments of CTLEL can be seen as positive fragments
of product modal logics with elementary complexity, e.g.,
implication for the positive fragment of K×K is in PTIME.

As a next step, we plan to look at more expressive fragments
of CTLEL or at classical (cyclic) TBoxes, e.g., consider non-
convex fragments, such as CTLE◦,E3

EL , with (a)cyclic TBoxes.
We plan to incorporate temporal roles, too. It is also worth
exploring how restricting TBoxes can help tame other TDLs
with bad computational behavior over general TBoxes, such
as TDLs based on LTL or the µ-calculus. We believe that the
LTL case is technically easier than ours since it does not have
the extra ‘ 1

2 -dimension’ introduced by branching.

Acknowledgements The first author was supported by the
M8 PostDoc Initiative project TS-OBDA and the second one
by the DFG project LU1417/1-1. We thank the anonymous
reviewers for their detailed and constructive suggestions.

References
[Artale et al., 2007a] A. Artale, R. Kontchakov, C. Lutz, F.

Wolter, and M. Zakharyaschev. Temporalising tractable
description logics. In Proc. TIME, 2007.

[Artale et al., 2007b] A. Artale, C. Lutz, and D. Toman. A
description logic of change. In Proc. IJCAI, 2007.

[Artale et al., 2014] A. Artale, R. Kontchakov, V. Ryzhikov,
and M. Zakharyaschev. A cookbook for temporal concep-

tual data modelling with description logics. ACM Trans.
Comput. Log., 15(3):25, 2014.

[Baader et al., 1999] F. Baader, R. Küsters, and R. Molitor.
Computing least common subsumers in description logics
with existential restrictions. In Proc. IJCAI, 1999.

[Baader et al., 2003] F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P. F. Patel-Schneider, editors. The De-
scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[Baader et al., 2005] F. Baader, S. Brandt, and C. Lutz. Push-
ing the EL envelope. In Proc. IJCAI, 2005.

[Baader et al., 2008] F. Baader, S. Ghilardi, and C. Lutz. LTL
over description logic axioms. In Proc. KR, 2008.

[Baader, 2003] F. Baader. Terminological cycles in a descrip-
tion logic with existential restrictions. In Proc. IJCAI, 2003.

[Bodenreider and Zhang, 2006] O. Bodenreider and
S. Zhang. Comparing the representation of anatomy in the
FMA and SNOMED CT. In Proc. AMIA, 2006.

[Clarke et al., 1999] E. M. Clarke, O. Grumberg, and D. A.
Peled. Model Checking. MIT Press, 1999.

[Gabbay et al., 2003] D. Gabbay, A. Kurucz, F. Wolter, and
M. Zakharyaschev. Many-dimensional modal logics: the-
ory and applications, volume 148 of Studies in Logic. El-
sevier, 2003.

[Göller et al., 2015] S. Göller, J. C. Jung, and M. Lohrey. The
complexity of decomposing modal and first-order theories.
ACM Trans. Comput. Log., 16(1):9:1–9:43, 2015.

[Gutiérrez-Basulto et al., 2011] V. Gutiérrez-Basulto, J. C.
Jung, C. Lutz, and L. Schröder. A closer look at the proba-
bilistic description logic Prob-EL. In Proc. AAAI, 2011.

[Gutiérrez-Basulto et al., 2012] V. Gutiérrez-Basulto, J. C.
Jung, and C. Lutz. Complexity of branching temporal
description logics. In Proc. ECAI, 2012.

[Gutiérrez-Basulto et al., 2014] V. Gutiérrez-Basulto, J. C.
Jung, and T. Schneider. Lightweight description logics
and branching time: a troublesome marriage. In Proc. KR,
2014.

[Haase and Lutz, 2008] C. Haase and C. Lutz. Complexity of
subsumption in the EL family of description logics: Acyclic
and cyclic TBoxes. In Proc. ECAI, 2008.

[Haase, 2007] C. Haase. Complexity of subsumption in ex-
tensions of EL. Diplom thesis, TU Dresden, 2007.

[Hodkinson et al., 2002] I. M. Hodkinson, F. Wolter, and M.
Zakharyaschev. Decidable and undecidable fragments of
first-order branching temporal logics. In Proc. LICS, 2002.

[Lutz et al., 2008] C. Lutz, F. Wolter, and M. Zakharyaschev.
Temporal description logics: A survey. In Proc. TIME,
2008.

[Nebel, 1990] B. Nebel. Terminological reasoning is inher-
ently intractable. Artif. Intell., 43(2):235–249, 1990.

[Schild, 1993] K. Schild. Combining terminological logics
with tense logic. In Proc. EPIA, 1993.

[The Gene Ontology Consortium, 2000] The Gene Ontology
Consortium. Gene ontology: Tool for the unification of
biology. Nature Genetics, 25:25–29, 2000.

[Wolter and Zakharyaschev, 1999] F. Wolter and M. Za-
kharyaschev. Modal description logics: Modalizing roles.
Fundam. Inform., 39(4):411–438, 1999.

Appendix
A Additional Preliminaries
• A tree is a directed graph T = (W,E) where W ⊆

(N \ {0})∗ is a prefix-closed non-empty set of nodes and
E = {(w,wc) | wc ∈ W,w ∈ N∗, c ∈ N} a set of
edges; we generally assume that wc ∈ W and c′ < c
implies wc′ ∈W and that E is a total relation. The node
ε ∈ W is the root of T . For brevity and since E can be
reconstructed from W , we will usually identify T with
W .

• If the constant domain assumption is made, we some-
times write I = (∆, T, (Iw)w∈W), instead of I =
(T, (Iw)w∈W), to denote a temporal interpretation.

B Proofs for the CTLALC

Theorem 1 Concept satisfiability relative to acyclic and empty
TBoxes for CTLALC is decidable and inherently nonelemen-
tary.
Proof. The proof of the upper bound for the empty TBox case
follows a two-step strategy similar to that for LTLALC [Gab-
bay et al., 2003, Thm. 13.6]. Let C be the CTLALC concept
whose satisfiability is to be decided. First, we define quasi-
models, which are abstractions of temporal interpretations,
and we show that satisfiability of C is characterized by the
existence of a quasimodel for C. Second, we express the
latter as a monadic second-order formula. We can thus in-
fer decidability from the fact that the monadic second-order
theory of countably branching trees is decidable [Hodkinson
et al., 2002]. Our proof requires a careful treatment of the
definition of the quasimodel and of the reduction to monadic
second-order logic to conform with the branching structure of
time.

The case of acyclic TBoxes can be reduced to the empty-
TBox case using standard unfolding [Nebel, 1990].

The nonelementary lower bound follows from the fact that
satisfiability for the product modal logics S4×K and K×K is
inherently nonelementary [Göller et al., 2015]. Indeed, the
fragment of CTLALC allowing E3 (E©) as the only temporal
operator is a notational variant of S4×K (K×K) [Gutiérrez-
Basulto et al., 2014].
It is worth noting that a similar technique has been used to
show decidability of the so-called monodic fragment of first-
order branching temporal logic [Hodkinson et al., 2002, The-
orem 8], which is closely related to CTLALC . However, the
expressivity of this logic is orthogonal to our CTLALC since
it does not allow rigid roles, but temporal operators can be
applied to TBoxes.

We next proceed with the first step. Let us fix a CTLALC
concept C. We use cl(C) to denote the set of concepts that
occur in C, closed under subconcepts and single negation. We
moreover use rd(C) to denote the role depth of C, that is, the
maximal nesting depth of existential restrictions in C. The
depth of a tree T is the length of the longest path of T . The
co-depth of w ∈ T (cdT (w)) is the distance from the root ε
to w. The depth of w ∈ T it is the depth of the subtree of T

rooted at w. Let Σ be a finite alphabet. A Σ-labeled tree is a
pair (T, τ) where T is a tree and τ : T → Σ assigns a letter
from Σ to each world. We sometimes identify (T, τ) with τ .

A type for C is a set t ⊆ cl(C) such that D u E ∈ t iff
D ∈ t and E ∈ t, for all D u E ∈ cl(C), and ¬D ∈ t iff
D 6∈ t, for every D ∈ cl(C). We denote by tp(C) the set
of all types for C. In the following, we restrict ourselves to
a single role r, which is rigid. All arguments work in the
presence of arbitrarily many roles, including local roles, but
the technical notation required for writing them down becomes
more complex.

We next introduce the structure representing a DL interpre-
tation in a given world.
Definition 3 A quasistate for C is finite tp(C)-labeled tree
(T, τ) such that

1. for all w ∈ T and ∃r.D ∈ cl(C), ∃r.D ∈ τ(w) iff
∃w′ ∈ T such that w′ ∈ children(w) and D ∈ τ(w′);

2. for all w,w1, w2, if w1, w2 ∈ children(w) and w1 6= w2,
the subtrees generated by w1 and w2 are not isomorphic;

3. (T, τ) is of depth ≤ rd(C).

Note that there are at most 2cl(C) types, and therefore the
number of pairwise non-isomorphic quasistates of depth 0 is
at most the number of types. We define nk(C) inductively as
follows:

n0(C) = 2cl(C), nk+1(C) = 2cl(C)×2nk(C)

It is clear that nk(C) bounds the number of non-isomorphic
quasistates for C of depth k.

We now introduce the structure used to reconstruct a
CTLALC-interpretation of C. Let T be a total tree. A ba-
sic structure of depth m for C is a pair (T,q), where q
is a function associating with each w ∈ T a quasistate
q(w) = (Tw, τw) for C such that the depth of each Tw is
m. Now we introduce run-functions which are used to recover
the temporal relation between types at different quasistates.
Definition 4 A k-run through (T,q) is a function ρ such that
for each w ∈ T it assigns a node ρ(w) ∈ Tw of co-depth k.
Given a set of runs R, we denote by Rk the set of all k-runs in
R. We moreover say that a run is proper if the following hold:
• for every E©D ∈ cl(C) and every w ∈ T , we have
E©D ∈ τw(ρ(w)) iff D ∈ τπ[1](ρ(π[1])) for some π ∈
Paths(w);

• for every E2D ∈ cl(C) and every w ∈ T , we have
E2D ∈ τw(ρ(w)) iff ∀j ≥ 0.D ∈ τπ[j](ρ(π[j])) for
some π ∈ Paths(w);

• for every E(D1UD2) ∈ cl(C) and every w ∈ T ,
we have E(D1UD2) ∈ τw(ρ(w)) iff ∃j ≥ 0.(D2 ∈
τπ[j](ρ(π[j])) ∧ (∀ 0 ≤ k < j.C ∈ τπ[k](ρ(π[k])))) for
some π ∈ Paths(w).

We now have the required ingredients to define an abstraction
of a CTLALC model.
Definition 5 A quadruple M = 〈T,q,R,�〉 is a quasimodel
for C if (T,q) is a basic structure for C of depth m ≤ rd(C),
R is a set of proper runs through (T,q), and � is a binary
relation on R such that

1. C ∈ τε(ρ0(ε)), where ρ0 ∈ R0 and ρ0(ε) = ε;

2. for all ρ, ρ′ ∈ R, if ρ� ρ′ then ρ′(w) ∈ children(ρ(w))
for all w ∈ T ;

3. for all k < m, ρ ∈ Rk, w ∈ T and x ∈ Tw, if
x ∈ children(ρ(w)) then there is a ρ′ ∈ Rk+1 such
that ρ′(w) = x and ρ� ρ′.

The following result can be proved as the analogous lemma
for KALC [Wolter and Zakharyaschev, 1999, Theorem 14].

Lemma 11 A CTLALC concept C is satisfiable iff there is a
quasimodel for C.

Proof. “⇐:” Let M = 〈T,q,R,�〉 be a quasimodel for C.
We construct a model I = (T,∆, {Iw}w∈W) of C, where
T is defined as in M and ∆ = R. It remains to define the
interpretation of concept names and role names:

AI,w = {ρ ∈ ∆ | A ∈ ρ(w)};
rI,w = {(ρ, ρ′) ∈ ∆×∆ | ρ′ � ρ}.

One can check by structural induction that the following
claim holds.

Claim. For every D ∈ cl(C), ρ ∈ ∆, w ∈W , we have that

CI,w iff C ∈ ρ(w).

Therefore, by the previous claim and Condition 1 of Defini-
tion 5, ρ0 ∈ CI,ε.

“⇒:” Let I = (∆, T, (Iw)w∈W) be a model of C. We con-
struct a quasimodel M for C. We begin by defining the set of
types for C induced by I: For every d ∈ ∆ and w ∈ W , we
set:

tp(d,w) = {C ∈ cl(C) | d ∈ CI,w}.
It is well-known that every satisfiable CTLALC concept C
is satisfiable in a model where for every w ∈ W , Iw is an
intransitive tree of depth ≤ rd(C) = m. From now on we
assume this is the case for I.
Now, we have to define a quasistate (Tw, τw) for all w ∈
W . To this aim, one could choose ∆ to be the set of nodes
associated to Tw, and the ‘r-connections’ to be the order on
the nodes. However, note that ∆ might be infinite and, by
Condition 3 of Definition 3, a quasistate is finite. Hence we
need to make ∆ finite without violating Conditions 1 and 2 of
Definition 3. Fix a w ∈W and define a binary relation ∼w on
∆ as follows:

• if d, e ∈ ∆ are of depth 0 (that is, d, e are at the leaves-
level), then

d ∼w e iff tp(d,w) = tp(e, w);

• for d, e ∈ ∆ at depth 0 < k ≤ rd(C) d ∼w e iff

– tp(d,w) = tp(e, w);
– ∀d′ ∈ ∆

(
(d, d′) ∈ rI,w → ∃e′ ∈ ∆ ((e, e′) ∈

rI,w ∧ e ∼w e′)
)
;

– ∀e′ ∈ ∆
(
(e, e′) ∈ rI,w → ∃d′ ∈ ∆ ((d, d′) ∈

rI,w ∧ d ∼w d′)
)
.

We denote by [d]w the equivalence class of d in w. We now
define for all w ∈W .

Vw := {[d]w | d ∈ ∆};
Ew := {([d]w, [e]w) | ∃e′ ∈ [e]w ∧ (d, e′) ∈ rI,w};

τw([d]w) := tp(d,w).

Note that, however, ((Vw, Ew), τw) might not be a tree. Nev-
ertheless, we can unravel ((Vw, Ew), τw) to obtain a tree,
as follows. A role path in w is a sequence [d0]w · · · [dk]w
such that for each 0 ≤ i < k, ([di]w, [di+1]w) ∈ Ew.
We denote by V ∗w the set of all role paths in w and define
tail([d0]w · · · [dk]w) = [dk]w and E∗w = {(σ, σ′) ∈ V ∗w×V ∗w |
(tail(σ), tail(σ′)) ∈ Ew}. Finally, let τ∗w(σ) = τw(tail(σ)).
Set now

Tw = ((V ∗w , E
∗
w), τ∗w).

It is not hard to see that for any w ∈W , Tw = ((V ∗w , E
∗
w), τ∗w)

satisfies Conditions 1 and 2 from Definition 3. Now, take
q(w) = ((V ∗w , E

∗
w), τ∗w) for each w ∈ W and get a basic

structure (T,q). It remains to define the runs through (T,q)
as follows. For each k ≤ m and each sequence d0, . . . , dk
such that (di, di+1) ∈ rI,w take the map:

ρ : w → ([d0]w, . . . , [dk]w)

ρ is thus a k-run through (T,q). Finally, let R be the set of
such runs.

With this definitions at hand, it is routine to see that R is a
set of proper runs, and moreover that they satisfy Conditions 2
and 3 of Definition 5. Therefore, 〈T,q,R,�〉 is a quasimodel.

o

We now proceed with the second step of the proof. We trans-
late into monadic second order the statement ‘there is a quasi-
model for C’. We fix an arbitrary m ≤ rd(C), and denote by
qsm(C) the set of all quasistates for C of depth m.

We introduce a unary predicate variable Pq for each q ∈
qsm(C) and a unary predicate variableRkD for eachD ∈ cl(C)
and k ≤ m. Now, given a type t for C and a k ≤ m, let

χt(R
k(x)) =

∧
D∈t

RkD(x) ∧
∧

D∈cl(C)\t

¬RkD(x)

Intuitively, it says that the type t at point x of co-depth k is
defined using

Rk(x) = 〈RkD(x) | D ∈ cl(D)〉.

We next proceed to capture that Rk defines a proper k-run
through a ‘path’ of quasistates using P = 〈Pq | q ∈ qsm(C)〉
as follows. For each k ≤ m, run0(P,Rk) denotes the con-
junction of the following formulas:

∀x
∧

q∈qsm(C)

(
Pq(x)→

∨
w∈Tq

cdq(w)=k

χτq(w)(R
k(x))

)
∀x
∧

EC∈cl(C)

(
RkEC(x)↔ ∃π(β(π, x) ∧ γ(C, π, x))

)
where β(π, x) denotes the MSO formula saying that π –π a
set variable– is a path containing x, and γ(C, π, x) is defined

as follows:

γ(©D,π, x) = RkD(π[1])
γ(2D,π, x) = ∀j ≥ 0.RkD(π[j])
γ(D1UD2, π, x) =

∃j ≥ 0.
(
RkD2

(π[j]) ∧ ∀0 ≤ l ≤ j.RkD1
(π[l])

)
In the previous definition, we slightly abuse notation in the
sense that we see π as in Paths(x).

We next ensure that Condition 3 of Definition 5 is satisfied,
by defining, by ‘backwards’ induction on k (following [Gab-
bay et al., 2003, Theorem 13.6]), the formula run(P,Rk).

• If k = m, then run(P,Rm) = run0(P,Rm).
• For the inductive step, suppose that for k ≤ m,
run(P,Rk) is defined. We then define run(P,Rk−1) as
follows:

run0(P,Rk−1) ∧ ∀x
∧

q∈qsm(C)

∧
w∈Tq

cdq(w)=k−1[
Pq(x) ∧ χτq(w)(R

k−1(x))→
∧

w′∈Tq

w′∈children(w)

∃
D∈cl(C)

RkD

(
run(P,Rk) ∧ χτq(w′)(R

k(x)) ∧

∀z
∧

q′∈qsm(C)

∧
v∈Tq′

cdq′ (v)=k−1

(
Pq′(z)∧

χτq′ (v)(R
k−1(z))→

∨
v′∈Tq′

v′∈children(v)

(Rk(z))
))]

To finish the translation, we define the MSO sentence qmm
C as

follows:
qmm

C =

∃
q∈qsm(C)

Pq

[
∀x
∨

q∈qsm(C)

(
Pq(x) ∧

∧
q′∈qsm(C)

q 6=q′
¬Pq′(x)

)
∧
∨

q′,ε∈Tq′
cdq′(ε)=0

C∈τq′ (ε)

∃x
(
Pq′(x) ∧ ∃

D∈cl(C)

R0
D

(
run(P,R0)

∧χτq′ (ε)(R
0(x))

))]
Evaluated in a (time) tree T , as discussed in [Gabbay et al.,
2003, Theorem 13.6], the first line of qmm

C states that the
sets Pq ⊆ W make a partition on W . We can then obtain a
quasimodel M = 〈T,q,R,�〉 for C by defining a mapping
q : W → qsm(C) as

q(w) = q iff w ∈ Pq

and a relation � on the runs as follows: r � r′ iff r is defined
by Rk−1 and r′ is defined by Rk for some k ≤ m.

The second line of qmm
C states conditions of Definition 5

are satisfied by the definitions of � and run(P,Rk). With this
at hand, it is not hard to see that the following holds.
Lemma 12 T |= qmm

C iff there exists a quasimodel for C.
Finally, to deduce decidability we use the fact that the monadic-
second order theory of countably branching trees is decid-
able [Hodkinson et al., 2002]. o

C Proofs and additional details for Section 4
C.1 Additional notation
The depth of a CTLE◦

EL -concept C, denoted d(C), is the com-
bined nesting depth of ∃r and E© operators in C:

d(A) = 0, A ∈ NC

d(C1 u C2) = max{d(C1), d(C2)}
d(∃r.D) = d(E©D) = d(E3D) = d(D) + 1

Thus, a depth-0 concept has the form C = A1 u · · · u An,
where Ai ∈ NC, and a concept of depth d > 1 has the form

C =

nl

i=1

Aiu
ml

i=1

∃ri.Diu
l̀

i=m+1

E©Diu
kl

i=`+1

E3Di, (1)

where all Di have depth at most d− 1.

C.2 Description graphs
We use description graphs to represent concepts and interpre-
tations alike.

A description graph is a labelled directed graph G =
(V,L,E), where V is a non-empty set of nodes, L is a map
from V to 2NC , and E is a set of edges, i.e., triples (v, •, v′)
where • ∈ NR ∪ {©}. We write

v
•→G v

′ for (v, •, v′) ∈ E,
NR−→G for the union of all r→G, r ∈ NR, and
•→∗G for the reflexive and transitive closure of •→G .

Given a temporal interpretation I = (∆, T, (Iw)w∈W) with
T = (W,R), the description graph GI = (VI, LI, EI) asso-
ciated with I is defined as follows.

VI = {〈w, x〉 | w ∈W,x ∈ ∆}
LI(〈w, x〉) = {A | x ∈ AI,w}

〈w, x〉 r→G 〈w′, x′〉 ⇔ w = w′ and (x, x′) ∈ rI,w

〈w, x〉 ◦→G 〈w′, x′〉 ⇔ (w,w′) ∈ R and x = x′

Given a CTLE◦
EL -concept C, the description tree tC =

(VC , LC , EC) associated with C and its root xC ∈ VC are
straightforwardly obtained from the tree representation of C
and its root node. They are defined recursively over the depth
of C as follows.

• If C = A1 u · · · u An, then VC = {xC}, LC(xC) =
{A1, . . . , An}, and EC = ∅.
• If C is of the form (1), then

VC =
⊎̀
i=1

VDi
] {xC}

LC(v) =

{
LDi(v) if v ∈ VDi

{A1, . . . , An} if v = xC

EC =
⋃̀
i=1

EDi
∪

m⋃
i=1

{(xC , ri, xDi
)}∪

⋃̀
i=m+1

{(xC ,©, xDi)} ∪
k⋃

i=`+1

{(xC ,3, xDi)}

C.3 Temporary restriction to rigid roles
From here on, we are restricting ourselves to the case Nloc

C = ∅,
i.e., no local roles are allowed. The only reason is that the
technical notation would become more complex if we had to
consider both rigid and local roles. Later in this section, we
will explain the modifications necessary to incorporate local
roles.

C.4 Homomorphisms and the fragments CTLE◦
EL

and CTLE3
EL

Given description graphs Gi = (Vi, Li, Ei), i = 1, 2, a homo-
morphism from G1 to G2 is a map h : V1 → V2 satisfying

1. L1(v) ⊆ L2(h(v)) for all v ∈ V1.

2. v •→G1
v′ implies h(v)

•→G2
h(v′), for • ∈ NR ∪ {©}.

3. v 3→G1
v′ implies h(v)

◦→∗G2
h(v′).

For our purposes, it suffices to consider as ranges of h only
description graphsG2 associated with temporal interpretations,
and those do not have 3-edges. Therefore our definition does
not need to include, e.g., h(v)

3→G2
h(v′).

Since homomorphisms operate on pairs of worlds and do-
main elements, we will ease notation by writing, from now on,
〈w, x〉 ∈ CI instead of x ∈ CI,w. As expected, homomor-
phisms preserve instanceship:

Lemma 13 Let I1, I2 be temporal interpretations and h a
homomorphism from GI1 to GI2 . Then, for all CTLE◦,E3

EL -
concepts C, 〈w, x〉 ∈ CI1 implies h(〈w, x〉) ∈ CI2 .

Proof. Via straightforward induction on the structure of C.

C = A. Follows from condition 1 of homomorphisms and the
construction of LI1

/LI2
.

C = C1 u C2. Via a simple argument involving the induction
hypothesis.

C = E©D. If 〈w, x〉 ∈ (E©D)I1 , then there is some
v ∈ ∆I1 with (w, v) ∈ RI1 and 〈v, x〉 ∈ DI1 . Let
〈w′, x′〉 = h(〈w, x〉) and 〈v′, x′′〉 = h(〈v, x〉). By
condition 2 of homomorphisms and the construction of
EI1 /EI2 , we have that (w′, v′) ∈ RI2 and x′ = x′′. Fur-
thermore, by induction hypothesis we get 〈v′, x′〉 ∈ DI2 .
Hence 〈w′, x′〉 ∈ (E©D)I2 .

C = E3D. Via the same argument as in the previous case,
with a modification to the second-last step: instead of
(w′, v′) ∈ RI2 we conclude that either w′ = v′ or w′, v′
are connected via an RI2-chain of arbitrary length. As
before, the induction hypothesis yields 〈v′, x′〉 ∈ DI2 ,
and we get 〈w′, x′〉 ∈ (E3D)I2 .

C = ∃r.D. Analogous to the case C = E©D, swapping the
temporal and DL “dimensions”.

o

Lemma 14 For every CTLE◦
EL -concept C, temporal interpre-

tation I, w0 ∈ W and x0 ∈ ∆, we have 〈w0, x0〉 ∈ CI if
and only if there is a homomorphism h from tC to GI with
h(xC) = 〈w0, x0〉.

Proof. “⇒”. Via induction on the depth of C. If C =
A1 u · · · uAn, then h with h(xC) = 〈w0, x0〉 is the required
homomorphism.

If C has the form (1), then k = ` because C is from
CTLE◦

EL . Let I = (∆, T, (Iw)w∈W) with T = (W,R). Since
〈w0, x0〉 ∈ CI, there are

• x1, . . . , xm ∈ ∆ with (x0, xi) ∈ rI,w0

i and 〈w0, xi〉 ∈
DI
i and

• wm+1, . . . , w` ∈ W with (w0, wi) ∈ R and 〈wi, x0〉 ∈
DI
i .

By induction hypothesis, there are homomorphisms hi from
tDi

to GI with hi(xDi
) = 〈w0, xi〉 if i 6 m and hi(xDi

) =
〈wi, x0〉 if i > m. It is immediate from the construction of tC
that h with

h(y) =

{
〈w0, x0〉 if y = xC
hi(y) if y ∈ VDi

is the required homomorphism.

“⇐”. Again via induction on the depth ofC. IfC = A1u· · ·u
An, then h(xC) = 〈w0, x0〉 together with Property 1 of being
a homomorphism guarantees that 〈w0, x0〉 ∈ AI

i for every Ai.
If C has the form (1), then k = ` as above. Let I =

(∆, T, (Iw)w∈W) with T = (W,R). As in the base case, we
get 〈w0, x0〉 ∈ AI

i for every Ai. It remains to show

(i) 〈w0, x0〉 ∈ (∃ri.Di)
I for every i 6 m and

(ii) 〈w0, x0〉 ∈ (E©Di)
I for every i = m+ 1, . . . , `.

which we obtain as follows. Due to the construction of tC we
have

• xC
ri→tC xDi

for every i 6 m and

• xC ◦→tC xDi
for every i = m+ 1, . . . , `.

Let h(xDi
) = 〈wi, xi〉 for all i 6 k. Since h is a homomor-

phism, we have

• w0 = wi and (x0, xi) ∈ rI,w0

i for every i 6 m and

• x0 = xi and (w0, w0) ∈ R for every i = m+ 1, . . . , `.

Furthermore, by applying the induction hypothesis to all these
h(xDi), we obtain 〈wi, xi〉 ∈ DI

i . Hence, we get (i)–(ii).
o

The canonical model of C is the temporal interpretation
IC = (∆C , TC , (IC,w)w∈WC

) with TC = (WC , RC), whose
components are constructed in two steps.
Step 1. We construct a finite fragment of TC .

W−C = {xC} ∪ {v ∈VC | v has an incoming ©-edge in EC}

R−C = {(w,w′) | ∃x : w
NR−→∗tC x

◦→tC w
′}

Step 2. Since temporal interpretations are based on infi-
nite trees, we need to “artificially” continue every path in
(W−C , R

−
C) ad infinitum. For this purpose, let

leavesC = {v ∈W−C | v has no outgoing ©-edges in EC}.

For every v ∈ leavesC , we set v0 = v and introduce a se-
quence (vi)i>1 of fresh worlds. Now we can finish the con-
struction of IC .

∆C = {xC} ∪ {v ∈VC | v has incoming r-edge, r∈NR}
WC = W−C ∪ {vi | v ∈ leavesC , i > 1}
RC = R−C ∪ {{(vi, vi+1) | v ∈ leavesC , i > 0}

AIC ,w = {x ∈ ∆C | w
NR−→∗tC x & A ∈ LC(x)

or x ◦→∗tC w & A ∈ LC(w)}

rIC ,w = {(x, x′) | ∃v : x
◦→∗tC v

r→tC x
′} (2)

In particular, the construction ensures that every r is rigid
(because v in the definition of rIC ,w is independent of w), and
AIC ,vi = ∅ for any vi with i > 1 added in Step 2.

Lemma 15 For every CTLE◦
EL -concept C, temporal interpre-

tation I, w0 ∈W and x0 ∈ ∆, we have

1. 〈w0, x0〉 ∈ CI if and only if there is a homomorphism h
from GIC

to GI with h(〈xC , xC〉) = 〈w0, x0〉;
2. 〈xC , xC〉 ∈ CIC .

Proof. To prove Points 1 and 2, we will make use of a ho-
momorphism hC from tC to GIC

with hC(xC) = 〈xC , xC〉,
which we define as follows. For any x ∈ VC , set

hC(x) = 〈y, z〉,

where y is the unique element from WC with y NR−→∗tC x and z

is the unique element from ∆C with z ◦→∗tC x. By construction
of GC , we have either y = x (if x has an incoming ©-edge)
or z = x (if x has an incoming r-edge), or both if x = xC .

Claim 1 hC is a homomorphism from tC to GIC
with

h(xC) = 〈xC , xC〉.
Proof of Claim. Since h(xC) = 〈xC , xC〉 is immediate, it
remains to show Properties 1–2 of a homomorphism; Property
3 is not required because C does not contain any E3 operator.
Property 1. Let A ∈ LtC (x) and hC(x) = 〈y, z〉 as above. To
show that A ∈ LGIC

(y, z), we distinguish the following two
cases (see above).

If y = x, then by construction of IC,x, we have z ∈ AIC ,x.
By definition of GIC

, this implies A ∈ LGIC
(x, z).

If z = x, then by construction of IC,y , we have x ∈ AIC ,y .
By definition of GIC

, this implies A ∈ LGIC
(y, x).

Property 2. Let x1
r→tC x2 and hC(xi) = (yi, zi). Since x2

has an incoming r-edge in tC , we have x2 ∈ ∆C . Hence
z2 = x2 and y1 = y2 =: y. By construction of IC,y, we
get (z1, x2) ∈ rIC ,y. Due to the construction of EIC

, we get
(〈y, z1〉, r, 〈y, x2〉) ∈ EIC

, which means that hC(x1)
r→GIC

hC(x2).
The case x1

◦→tC x2 is analogous.

Property 3 is void because C is from CTLE◦
EL .

We are now ready to prove Points 1 and 2.

Point 1. “⇐”. Let h be a homomorphism from GIC
to GI

with h(〈xC , xC〉) = 〈w0, x0〉. Then the composition h′ of
hC with h is a homomorphism from tC to GI with h′(xC) =
〈w0, x0〉. By Lemma 14 “⇐”, we have 〈w0, x0〉 ∈ CI.

“⇒”. Let 〈w0, x0〉 ∈ CI. By Lemma 14 “⇒”, there is
a homomorphism from tC to GI with h(xC) = 〈w0, x0〉.
We construct a homomorphism h′ from GIC

to GI with
h′(〈xC , xC〉) = 〈w0, x0〉 according to the following intu-
ition: h′ can be directly obtained from h for those pairs 〈w, x〉
which directly correspond to a node v in tC – i.e., either
w

NR−→∗tC x = v, or x ◦→∗tC w = v. All remaining pairs 〈w, x〉
have been added to GIC

due to rigidity of some r; conse-
quently we find corresponding images for h′ in GI, where r
is interpreted as rigid too.

In detail, h′ is constructed from h in four steps.

1. For all 〈w, x〉 with w NR−→∗tC x, set h′(〈w, x〉) = h(x).

2. For all 〈w, x〉 with x ◦→∗tC w, set h′(〈w, x〉) = h(w).
3. For all other 〈w, x〉, if h(w) = 〈w1, x1〉 and h(x) =
〈w2, x2〉, then set h′(〈w, x〉) = 〈w1, x2〉.

4. For all v ∈ leavesC , let 〈w0, x
′
C〉 = h′(〈v0, xC〉). Fix

some path w0Rw1Rw2R . . . of worlds in I. For every
x ∈ ∆C , let 〈w0, x

′〉 = h′(〈v0, x〉); and for all i > 1 set
h′(〈vi, x〉) = 〈wi, x′〉).

The construction ensures h′(〈xC , xC〉) = h(xC) = 〈w0, x0〉.
It remains to show that h′ is a homomorphism. As above,
we can omit Property 3 because C does not contain any E3

operator.
Property 1. Since h is a homomorphism from tC to GI, we
have that (i)LC(v) ⊆ LGI

(h(v)) for all v ∈ VC . To show that
(ii) LGIC

(〈w, x〉) ⊆ LGI
h′(〈w, x〉)) for all 〈w, x〉 ∈ VGIC

,
we distinguish three cases.

If 〈w, x〉 satisfies the condition in Step 1, then h′(〈w, x〉) =
h(x) by construction of h′, and LGIC

(〈w, x〉) = LC(x) by
construction of IC . Hence we get (ii) via (i).

If 〈w, x〉 satisfies the condition in Step 2, then we can argue
analogously.

If 〈w, x〉 satisfies the condition in one of Steps 3 or 4, then
Inclusion (ii) holds trivially because LGIC

(〈w, x〉) = ∅ by
construction of IC .

Property 2, case 〈w, x〉 r→GIC
〈w′, x′〉. Let 〈w, x〉 r→GIC

〈w′, x′〉, which implies w = w′. In order to show

(i) h′(〈w, x〉) r→GI
h′(〈w, x′〉),

we analyze the possible relations between x,w, x′ in tC . First,
from the assumption we conclude (x, x′) ∈ rIC ,w, due to the
construction of GIC

. By construction of rIC ,w, there is some
v ∈WC with

(ii) x ◦→∗tC v and

(iii) v r→tC x
′.

We now distinguish the following cases according to the con-
struction of h′(〈w, x〉) and h′(〈w, x′〉); the notation “(s, t)”
stands for “〈w, x〉 and 〈w, x′〉 satisfy the conditions of Step s
and t, respectively”.

Case 1: (1, 1). Then, by construction of h′, we have
h′(〈w, x〉) = h(x) and h′(〈w, x′〉) = h(x′). Since h is a
homomorphism, we obtain (i).

Case 2: (2, 2). This means x ◦→∗tC w and x′ ◦→∗tC w, which
contradicts (ii) and (iii), given that tC is a tree.

Case 3: (1, 2). This means w NR−→∗tC x and x′ ◦→∗tC w, which
contradicts (ii) and (iii), given that tC is a tree.

Case 4: (2, 1). This means x ◦→∗tC w and w NR−→∗tC x
′. Because

of (ii) and (iii) and since tC is a tree, we even have w = v,
that is,

(iv) w r→tC x
′.

By construction of h′ in (b) and (a), we have that h′(〈w, x〉) =
h(w) and h′(〈w, x′〉) = h(x′). Since h is a homomorphism,
we get via (iv) that h(w)

r→GI
h(x′), hence (i).

Case 5: (1, 3). This means that

(v) w NR−→∗tC x

and neither w NR−→∗tC x
′ nor x′ ◦→∗tC w. Let h(x) =: 〈w1, x1〉.

By construction of h′, we get

(vi) h′(〈w, x〉) = 〈w1, x1〉.
Furthermore, let h(w) = 〈w2, x2〉 and h(x′) = 〈w3, x3〉.
Then we have by construction step 3 that

(vii) h′(〈w, x′〉) = 〈w2, x3〉.
Because of (v) and h being a homomorphism, we have that
h(w)

NR−→∗GI
h(x). By construction of GI, this means that

w2 = w1; hence

(vii′) h′(〈w, x′〉) = 〈w1, x3〉.
Furthermore, because of (ii) and h being a homomorphism,
we have that h(x)

◦→∗GI
h(v). By construction of GI, this

means that x1 = x4, where h(v) = 〈w4, x4〉. Hence

(vi′) h′(〈w, x〉) = 〈w1, x4〉.
Finally, because of (iii) and h being a homomorphism, we
have that h(v)

r→GI
h(x′), By construction of GI, this means

that w4 = w3 and (x4, x3) ∈ rI,w3 . Since r is rigid, we also
get (x4, x3) ∈ rI,w1 and, by construction of GI together with
(vi′) and (vii′), h′(〈w, x〉) r→GI

h′(〈w, x′〉), which is (i) as
required.
Case 6: (2, 3). This means that

(viii) x ◦→∗tC w

and neither w NR−→∗tC x
′ nor x′ ◦→∗tC w. Let h(w) =: 〈w1, x1〉.

By construction of h′, we get

(ix) h′(〈w, x〉) = 〈w1, x1〉.
Furthermore, let h(x) = 〈w2, x2〉 and h(x′) = 〈w3, x3〉.
Then we have by construction step 3 that

(x) h′(〈w, x′〉) = 〈w1, x3〉.
Because of (viii), (ii) and (iii), we have

(xi) w ◦→∗tC v.

From this and because h being a homomorphism, we get that
h(w)

◦→∗GI
h(v). By construction of GI, this means that

x1 = x4, where h(v) = 〈w4, x4〉. Hence

(ix′) h′(〈w, x〉) = 〈w1, x4〉.
Now, because of (iii) and h being a homomorphism, we have
that h(v)

r→GI
h(x′), By construction of GI, this means that

w4 = w3 and (x4, x3) ∈ rI,w3 . Since r is rigid, we also get
(x4, x3) ∈ rI,w1 and, by construction ofGI together with (ix′)
and (x), h′(〈w, x〉) r→GI

h′(〈w, x′〉), which is (i) as required.

Case 7: (3, 1). This means that neitherw NR−→∗tC x nor x ◦→∗tCw,

but w NR−→∗tC x
′. These contradict (ii) and (iii), given that tC is

a tree.

Case 8: (3, 2). This means that neitherw NR−→∗tC x nor x ◦→∗tCw,

but w ◦→∗tC x′. The argument is analogous to Case 5, swapping
the temporal and DL dimensions.
Case 9: (3, 3). Let h(w) =: 〈w1, x1〉, h(x) = 〈w2, x2〉 and
h(x′) = 〈w3, x3〉. Then we have by construction step 3 that

(xii) h′(〈w, x〉) = 〈w1, x2〉 and

(xiii) h′(〈w, x′〉) = 〈w1, x3〉.
Because of (ii) and h being a homomorphism, we have that
h(x)

◦→∗GI
h(v). By construction of GI, this means that x2 =

x4, where h(v) = 〈w4, x4〉. Hence

(xii′) h′(〈w, x〉) = 〈w1, x4〉.
Finally, because of (iii) and h being a homomorphism, we
have that h(v)

r→GI
h(x′), By construction of GI, this means

that w4 = w3 and (x4, x3) ∈ rI,w3 . Since r is rigid, we also
get (x4, x3) ∈ rI,w1 and, by construction of GI together with
(vi′) and (vii′), h′(〈w, x〉) r→GI

h′(〈w, x′〉), which is (i) as
required.
Case 10: At least one of 〈w, x〉 and 〈w, x′〉 satisfies the
conditions of Step 4 Then both pairs satisfy the conditions
of Step 4, and we have w = vi for some v ∈ leavesC
and i > 1. Since 〈vi, x〉

r→GIC
〈vi, x′〉 by assumption,

we have 〈v0, x〉
r→GIC

〈v0, x
′〉 by construction of IC (r

is rigid). From the previous cases, we can now conclude
h′(〈v0, x〉)

r→GI
h′(〈v0, x

′〉). Now consider those two homo-
morphic images: let 〈w0, x〉 = h′(〈v0, x〉) and 〈w0, x

′〉 =
h′(〈v0, x

′〉). Then, by construction of h′ in Step 4, we
get h′(〈vi, x〉) = 〈wi, x〉 and h′(〈vi, x′〉) = 〈wi, x′〉 for
some wi with w0R

iwi. Since r is rigid in GI, we get
〈wi, x〉

r→GI
〈wi, x′〉, i.e., h′(〈vi, x〉)

r→GI
h′(〈vi, x′〉), which

is (i) as required.

Property 2, case 〈w, x〉 ◦→GIC
〈w′, x′〉. We can proceed as

in the proof for Property 2, swapping the dimensions (worlds
and the temporal relation © versus individuals and the DL role
r). The assumption here is that 〈w, x〉 ◦→GIC

〈w′, x〉. Cases
1–9 are analogous, and we only need to deal with Case 10: At
least one of 〈w, x〉 and 〈w′, x〉 satisfies the conditions of Step
4. Then w = vi and w′ = vi+1 for some v ∈ leavesC and

i > 0. Due to the construction of h′, we have h′(〈vi, x〉) =
〈wi, x〉 and h′(〈vi+1, x〉) = 〈wi+1, x〉 for somewi, wi+1 with
w0R

iwiRwi+1 in I and w0 being such that h′(〈v0, x〉) =

〈w0, y〉. By definition of GI, we get 〈wi, x〉 ◦→IC
〈wi+1, x〉,

which is the required h′(〈w, x〉) ◦→GI
h(〈w′, x〉).

Point 2. Follows from “b⇒ a” via hC . o

Lemma 3. For all CTLE◦
EL -concepts C and all CTLE◦,E3

EL -
concepts D, we have

|= C v D if and only if 〈xC , xC〉 ∈ DIC .

Proof. First assume |= C v D. Then, for all temporal
interpretations I and all 〈w, x〉, we have that 〈w, x〉 ∈ CI

implies 〈w, x〉 ∈ DI. Since 〈xC , xC〉 ∈ CIC by Lemma 15
(2), we obtain 〈xC , xC〉 ∈ DIC .

For the reverse direction, assume 6|= C v D. Then there is
some temporal interpretation I and some 〈w, x〉 with 〈w, x〉 ∈
CI \DI. By Lemma 15, there is a homomorphism h from
GIC

to GI with h(〈xC , xC〉) = 〈w, x〉). Now Lemma 13
implies that 〈xC , xC〉 /∈ DIC . o

We are now ready to prove the second part of Theorem 2.

Theorem 16 Concept subsumption relative to the empty TBox
for CTLE◦

EL and CTLE3
EL can be decided in polynomial time.

Proof. We start with CTLE◦
EL . Let C,D be CTLE◦

EL -concepts.
By Lemma 3, it suffices to check whether 〈xC , xC〉 ∈ DIC .
Since the canonical model IC is based on an infinite tree
TC = (WC , RC), we cannot construct it fully. Instead, we
use a finite representation Ipre

C whose unraveling along the
temporal direction starting from the world xC yields IC . We
call Ipre

C the canonical pre-model for C.
More precisely, we construct Ipre

C as follows. In Step 1, we
build W−C and R−C as above. In Step 2, we introduce a single
fresh world v1 for every v ∈ leavesC and set

W pre
C = W−C ∪ {v1 | v ∈ leavesC}
Rpre
C = R−C ∪ {{(v0, v1), (v1, v1) | v ∈ leavesC}

In addition, ∆pre
C and ·I

pre
C,w are defined as for IC . Since

(W pre
C , Rpre

C) is not a total tree, Ipre
C,w is not a temporal inter-

pretation. However, we can define the extension of ·I
pre
C,w to

arbitrary CTLE©
EL concepts as usual. It is then an easy con-

sequence of the construction that, if we unravel Ipre
C along

the temporal dimension starting from the root xC , we obtain
a temporal interpretation isomorphic to IC . Since CTLE©

EL
is tolerant of unraveling along the temporal dimension, we
have that 〈xC , xC〉 ∈ DIC is equivalent to 〈xC , xC〉 ∈ DIpre

C .
Therefore the following procedure decides |= C v D.

1. Construct the description tree tC .

2. Transform tC into the canonical pre-model Ipre
C for C.

3. Check whether 〈xC , xC〉 ∈ DIpre
C . Output “yes” if the

answer is positive, and “no” otherwise.

The first two steps can be performed in time polynomial in the
size of C and yield polynomially-sized structures, which is an
easy consequence of the constructions above. The third step is
standard model checking of a bimodal formula, which can be
done in polynomial time too, via a straightforward bottom-up
labeling procedure [Clarke et al., 1999].

The CTLE3
EL part can be obtained by modifying the construc-

tion of the canonical model IC , replacing all ◦→tC with 3→tC .
This way, every 3-edge in tC will induce a new world and a
single R-edge in IC . It should be noted that it is not necessary
for the canonical model to capture transitivity of the 3-edges
in tC – as before, it suffices to show that IC s still a model
of C (Lemma 14) and homomorphically embeds into every
model of C (Lemma 15). This requires two simple modifi-
cations to the proofs of Lemmas 14 and 15: (1) Replace all
occurrences of R and ◦→tC with R+ and 3→tC , respectively.
(2) In the proof of Lemma 15, the extensive argument of h′
satisfying Property 2 of a homomorphism now proves Property
3, and Property 2 is void instead. Finally, Lemma 3 continues
to follow directly from Lemma 13 (which is untouched by this
modification) and the modified Lemma 15. o

C.5 Adding back local roles
In order to incorporate local roles in the definitions and proofs
above, one change and some explanations are necessary. The
change has the purpose to make the construction of the canon-
ical model IC from the description tree tC sensitive to the
distinction between local and rigid roles. This requires to di-
vide the definition of rI,w in Equation (2) into two cases: for
rigid roles r, we continue using (2); for local roles, we need

rIC ,w = {(x, x′) | w NR−→∗rC x
r→tC x

′}.
Surprisingly, this modification has no impacts on the proof
of Lemma 15. One would expect that, in “⇒” of Point 1,
the construction of the homomorphism h′ from h needs to
be adapted to the modified shape of IC . However, closer in-
spection of this part of the proof reveals that the arguments
go through unchanged: First, it is still true that h′ can be
directly obtained from h for all pairs 〈w, x〉 which directly
correspond to a node v in tC – and these are still the pairs
satisfying either w NR−→∗tC x = v or x ◦→∗tC w = v. Second,
it is still true that all remaining pairs 〈w, x〉 have been added
to GIC

due to rigidity of some r; we call these pairs rigidity-
imposed. Consequently the four steps of the construction of h′
can be kept. Third, it remains to justify all references to rigid
roles in Cases 5–10 of the subsequent case distinction. Indeed,
Cases 5–9 are determined by Step 3 of the construction of
h′, which is only necessary for rigidity-imposed pairs 〈w, x〉;
hence the references to r being rigid are justified. Case 10 is
restricted to rigid roles altogether because the original assump-
tion 〈w, x〉 r→GIC

〈w, x′〉 is never satisfied if r is local and
w = vi for some v ∈ leavesC and i > 1, due to the modified
construction of rIC ,w.

C.6 The logic CTLE◦,E3
EL

To prove the technical lemmas necessary for the first part of
Theorem 2, we denote by UC the set of all expansion vectors

for C.

Lemma 17 For all CTLE◦,E3
EL -concepts C,D, we have that

|= C v D if and only if |= C[U] v D for all U ∈ UC .

Proof. We prove the contrapositives of both directions.

“⇒.” Assume 6|= C[U] v D for some U = (u1, . . . , un) ∈
UC . Then there is some temporal interpretation I =
(∆, T, (Iw)w∈W) based on T = (W,R) and some w ∈
W,x ∈ ∆ such that 〈w, x〉 ∈ C[U]I \ DI. By Lemma
14, there is a homomorphism h from tC[U] to GI with
h(xC[U]) = 〈w, x〉. According to the definition of a descrip-
tion tree, tC can be obtained from tC[U] by replacing, for each
i = 1, . . . , n, the corresponding chain of ui ©-edges with a
single 3-edge and deleting the intermediate nodes. Hence, we
can take h′ as the restriction of h to the nodes in tC , which
is obviously a homomorphism from tC to GI, and which sat-
isfies h(xC) = 〈w, x〉. By Lemma 14, we get 〈w, x〉 ∈ CI.
Hence 6|= C v D.

“⇐.” Assume 6|= C v D. Then there is some temporal
interpretation I = (∆, T, (Iw)w∈W) based on T = (W,R)
and some w ∈ W,x ∈ ∆ such that 〈w, x〉 ∈ CI \ DI. By
Lemma 14, there is a homomorphism h from tC to GI with
h(xC) = 〈w, x〉.

We first construct U = (u1, . . . , un) as follows. Let
vi

3→tC v′i be the edge representing the i-th occurrence of
E3 in C. Since h is a homomorphism, there are wi, w′i ∈W
and yi ∈ ∆ with h(vi) = 〈wi, yi〉 and h(v′i) = 〈w′i, yi〉,
as well as (wi, w

′
i) ∈ R∗. The latter means that there are

wi = wi,0, wi,1, . . . , wi,m(i) = w′i with (wi,j , wi,j+1) ∈ R
for all i ≤ m(i). Set ui = m(i).

We can now construct a homomorphism h′ from tC[U] toGI

as an extension of h: according to the definition of a descrip-
tion tree, tC[U] can be obtained from tC by replacing, for each
i = 1, . . . , n, the above edge vi

3→tC v
′
i with the corresponding

chain vi,0 = v0
◦→tC[U]

vi,1
◦→tC[U]

. . .
◦→tC[U]

vi,ui
= v′i, in-

troducing new nodes vi,1, . . . , vi,ui−1. By setting h′(vi,j) =
〈wi,j , yi〉 for these new vi,j and h′(v) = h(v) for all remain-
ing nodes v, we obviously obtain a homomorphism. Further-
more, we get h′(xC[U]) = h(xC) = 〈w, x〉 which, by Lemma
14, leads to 〈w, x〉 ∈ C[U]I. Hence 6|= C[U] v D. o

Lemma 4. For all CTLE◦,E3
EL -concepts C,D, we have

|= CvD if and only if |= C[U] v D for all U ∈ Utd(D)+1
C .

Proof. The “⇒” direction follows from Lemma 17.
To prove the contrapositive of the “⇐” direction, assume

6|= C v D, and let m = td(D) + 1. By Lemma 17, there
is some expansion vector U = (u1, . . . , un) ∈ UC with 6|=
C[U] v D. By Lemma 3, we have

(i) 〈xC[U], xC[U]〉 /∈ DIC[U] .

From U , we construct U = (u1, . . . , un) ∈ UmC by setting
ui = min(ui,m) for all i 6 k. Again by Lemma 3, it suffices
to show

(ii) 〈xC[U], xC[U]〉 /∈ D
I(tC[U]).

It thus remains to show the contrapositive “not (ii)⇒ not (i)”.
Assume “not (ii)”. Then, by Lemma 14, there is a homomor-

phism h from tD to GIC[U]
with h(xD) = 〈xC[U], xC[U]〉. To

establish “not (i)”, we thus need to construct a homomorphism
h′ from tD to GIC[U]

with h′(xD) = 〈xC[U], xC[U]〉.
To construct h′, let e1, . . . , ek ∈ EC be the 3-edges v 3→tc

v′ in tC , where ei corresponds to the i-th occurrence of E3

in C. Let E′ ⊆ {e1, . . . , ek} be the set of affected ei: those
edges whose expansion differs from tC[U] to tC[U] (and thus
from GIC[U]

to GIC[U]
). Let the expansion of an affected edge

ei = v
3→tc v

′ in tC[U] and tC[U] be

v = v1
◦→tC[U]

. . .
◦→tC[U]

vm+1 = v′ and (3)

v = v1
◦→tC[U]

. . .
◦→tC[U]

vm+1 . . .
◦→tC[U]

vui+1 = v′,

respectively. Since the expansions differ, we have ui > ui =
m.

For each affected edge ei ∈ E′, we set

• P (ei) to be the set of those pairs of domain elements and
individuals in IC[U] which correspond to all intermediate
nodes in (3):

P (ei) = {〈vi, x〉 | i ∈ {2, . . . ,m}, x ∈ ∆},

where ∆ is the domain of IC[U]

• W (ei) to be the set of all paths in tD of maximal length
which are affected by the expansion of ei in tC[U] :

W (ei) = {y1
•1→ tD y2

•2→ tD . . .
•k→ tD yk+1 |

∀` ≤ k + 1 : y` ∈ VD
and ∀` ≤ k : •` ∈ NR ∪ {3,©}
and ∀` ≤ k + 1 : h(y`) ∈ P (ei)

and ∀y′ ∈ VD ∀• ∈ NR ∪ {3,©} :

if y′ •→tD y1, then h(y′) /∈ P (ei) and

if yk+1
•→tD y′, then h(y′) /∈ P (ei)}

We can now define h′ node-wise, distinguishing between
nodes that are affected by the expansion and those which
are not. We start with affected nodes y` that occur on some
path y1

•1→ tD y2
•2→ tD . . .

•k→ tD yk+1 in W (ei) for some af-
fected edge ei ∈ E′. Since the expansion of ei in tC[U] has
length m, we have that h(y`) = 〈vq, x〉 for some q ≤ m+ 1
and some x in the domain of IC[U]. Since tC[U] is a tree and
p is of maximal length with the above properties, we get by
construction of P (ei) that y1 has no incoming r-edge.

We distinguish the following three cases.

(a) If y1 has an incoming 3-edge, then set h′(y`) =
〈vq+ui−m, x〉.

(b) If y1 does not have an incoming 3-edge and there is some
`′ < ` with •` = 3, then set h′(y`) = 〈vq+ui−m, x〉.

(c) Otherwise set h′(y`) = h(y`) and h′(z`) = h(z`).

For all other (unaffected) nodes, set h′(y) = h(y).
The intuition behind this construction is to guarantee that,

for every affected path p in tD, if p is long enough to reach via
h the end of the expansion of a 3-edge ei in GIC[U]

, then p
also reaches exactly the end of the expansion of ei in GIC[U]

.
The above construction ensures this: since the expansion of
ei is longer than m = td(D), there is at least one 3-edge
on p in tD, and Cases (a)–(c) in the construction of h′ cause
the first 3-edge in p to be mapped via h′ to a chain of ©-
edges in GIC[U]

that bridges the difference in the lengths of
the expansions of ei in tC[U] and tC[U].

It remains to prove that h′ is a homomorphism from tD
to GIC[U]

with h′(xD) = 〈xC[U], xC[U]〉; the latter property
follows directly from the construction.

For any y ∈ VD, let tyD be the subtree of tD with root y, and
let h′y be the restriction of h′ to the nodes in tyD. It remains to
prove the following claim.

Claim 2 For all y ∈ VD, h′y is a homomorphism from tyD to
GIC[U]

.

Proof of Claim. We proceed by induction on the depth dD(y)
of y in tD.

For the base case, let dD(y) = 0. If h′(y) = h(y), then the
claim holds trivially. Otherwise, y occurs on some maximal
path affected by the expansion of some affected edge ei, and
h(y) ∈ P (ei); furthermore, h′(y) has been constructed from
h(y) in Case (a) or (b) above. Then we have LC[U](h(y)) =

LC[U](h
′(y)) = ∅, and Property 1 of being a homomorphism

holds for h′ because it does for h. Properties 2–4 are satisfied
trivially: there are no edges in tyD.

For the induction step, the induction hypothesis yields Property
1 of being a homomorphism for all nodes except y and Proper-
ties 2–4 for all edges not originating in y. For the remaining
nodes and edges, we consider Properties 1–4 in turn.

Property 1. If h′y(y) = h(y), then Property 1 holds for h′

because it does for h. Otherwise, the construction of h′ en-
sures that LC[U](h(y)) = LC[U](h

′
y(y)) = ∅; consequently,

Property 1 holds for h′ because it does for h.

Property 2. Let y r→tDy
′. Since h is a homomorphism, we have

h(y)
r→GI

C[U]

h(y′). If h′y(y) = h(y), then the construction of

h′ ensures that h′y(y′) = h(y′), and Property 2 is immediate.
Otherwise, both of h(y) and h(y′) are in P (ei) for some
affected edge ei; then Cases (a) and (b) in the construction of
h′ ensure that h′y(y)

r→GIC[U]
h′(y′).

Property 3. Let y ◦→tD y′. Then neither y nor y′ are among
the affected y` in the sense of the construction of h′. Hence
the construction ensures h′y(y) = h(y) and h′y(y′) = h(y′),
and Property 3 for h′ follows from Property 3 for h.

Property 4. Let y 3→tD y′. Since h is a homomorphism, we
have h(y)

3→k
GI

C[U]

h(y′) for some k > 0. Let h(y) = 〈w, x〉
for some world w and some domain element x from IC[U].
Then h(y′) = 〈w′, x〉 for some world w′ with wRkw′.

We first consider the case h′y(y) = h(y). If y′ is not among
the affected y`, then h′y(y′) = h(y′), and we get Property 4 for
h′ from Property 4 for h. Otherwise, h′(y′) must have been
constructed in Case (b) or (c) for some edge ei. In Case (c) we
repeat the previous argument. In Case (b) we conclude that y
is some affected y` as well; hence w = vq and w′ = vq+m−ui

,
and by construction of h′ we get h′y(y)

3→k+m−ui

GI
C[U]

h′y(y′).

Finally, if h′y(y) 6= h(y), then y is some affected y` for
some ei, and h′(y) has been constructed in Step (a) or (b).
In addition, y′ is affected for the same ei, and h′(y′) has
been constructed in Step (b). The construction ensures that
h′y(y)

3→k
GI

C[U]

h′y(y′). o

The following is an easy consequence of Lemmas 3 and 4.

Lemma 18 For all CTLE◦,E3
EL -concepts C,D with m =

td(D) + 1, we have that |= C v D if and only if
〈xC[U], xC[U]〉 ∈ DIC[U] for all U ∈ UmC .

Now we can prove the first part of Theorem 2.

Theorem 19 Concept subsumption w.r.t. the empty TBox for
CTLE◦,E3

EL is CONP-complete.

Proof. For the upper bound, we proceed analogously to the
proof of Theorem 16, using the criterion in Lemma 18 to
decide whether |= C v D for two given CTLE©,E3

EL -concepts
C,D. As above, we use the finite canonical pre-models in
place of the infinite canonical models, which is correct because
CTLE◦,E3

EL too is tolerant of unraveling along the temporal
dimension. The following procedure decides |= C v D.

1. Nondeterministically guess an expansion vectorU ∈ UmC ,
m = td(D) + 1.

2. Construct the description tree tC[U].

3. Transform tC[U] into the canonical pre-model Ipre
C[U] for

C[U].

4. Check whether 〈xC[U], xC[U]〉 ∈ D
Ipre
C[U] .

We have already argued that Steps 2–4 can be performed in
polynomial time. In addition, the new nondeterministic Step 1
requires the guessing of n · logm bits, where n is the number
of occurrences of E3 in C.

For the lower bound, we use a straightforward reduction from
EL with transitive roles, for short EL+, to CTLE◦,E3

EL . The
syntax of EL+ is obtained by extending the definition of EL-
concepts with existential restrictions ∃r+.C, where r is a role
name and C is an arbitrary concept. The semantics of such
restrictions is as follows: given an interpretation I, we have

x ∈ (∃r+.C)I if #{y | (x, y) ∈ (rI)+ & y ∈ CI} ≥ 1,

where (rI)+ is the transitive closure of rI . From the proof of
[Haase, 2007, Lemma 16], it follows that already the fragment
of EL+ with a single role is CONP-complete.

We use the following translation t(·) of EL+-concepts with
a single role r into CTLE◦,E3

EL -concepts.

t(A) = A

t(C uD) = t(C) u t(D)

t(∃r.C) = E© t(C)

t(∃r+.C) = E©E3 t(C)

It suffices to prove the following claim.
Claim 3 For all EL+-concepts C,D, we have |= C v D if
and only if |= t(C) v t(D).

We prove both directions via contraposition. For the “if” direc-
tion, let 6|= C v D. Then d0 ∈ CI \DI for some interpreta-
tion I = (∆I , ·I) and some d0 ∈ ∆. We construct T = W,R
and a temporal interpretation J = (∆′, T, (Jw)w∈W) as fol-
lows.
• T = (W,R) is the unraveling of (∆I , rI).
• ∆′ = {x} for a fresh domain element x.
• For every concept name A and path πd ∈ W , we set

AJ ,πd =

{
{x} if d ∈ AI
∅ otherwise

• The interpretation of roles is irrelevant since t(·) does not
use any roles.

It is now straightforward to show inductively for all EL+-
concepts E and d ∈ (∆′)I that d ∈ EI if and only if x ∈
t(E)J,d. This implies x ∈ t(C)J,d0 \ t(D)J,d0 . Hence we
have 6|= t(C) v t(D) as desired.

For the “only if” direction, let 6|= t(C) v t(D). Then
x0 ∈ t(C)I,w0 \ t(D)I,w0 for some temporal interpretation
I = (∆, T, (Iw)w∈W) based on T = (W,R) and some w0 ∈
W and x0 ∈ ∆. We construct an interpretation J = (∆J , ·J)
as follows.
• ∆J = W

• rJ = R

• AJ = {w ∈W | x0 ∈ AI,w}
It is now straightforward to show inductively for all EL+-
concepts E and w ∈ W that x0 ∈ t(E)I,w if and only if
w ∈ EJ . This implies w0 ∈ CJ \ DJ . Hence we have
6|= C v D.

o

D Proofs for Section 5

Lemma 7 Let T be an acyclic CTLE3
EL -TBox in normal form.

Then for all A,B ∈ CN, we have T |= A v B iff, after
exhaustive rule application, B ∈ Q(A,AA).

Proof. For the “if”-direction, the strategy is to show that a
certain interpretation induced by the data structure used in our
algorithm embeds to any model of A. For doing so, we need
to adapt classical techniques from the EL family of DLs to
capture rigid roles.

A temporal pre-interpretation is a tuple P =
(∆,W, (Pw)w∈W , (Ed)d∈∆) where ∆ is the domain,

W is a set of worlds, Pw is a standard DL interpretation for
all w ∈ W and Ed is a binary relation on W for all d ∈ D.
Pre-interpretations can be thought of as variants of temporal
interpretations where we have a temporal relation Ed for every
domain element d ∈ ∆. Moreover, roles are not necessarily
interpreted rigid. More precisely, we have

d ∈ (∃r.A)P,w iff exists e ∈ AP,w with (d, e) ∈ rP,w;
d ∈ (E3A)P,w iff exists v ∈W with (w, v) ∈ Ed

and d ∈ AP,v.

Next, we define the notion of embeddings, which can, intu-
itively, be thought of as variants of homomorphisms capturing
both temporal and DL-dimension. Given a pre-interpretation
P = (∆,W, (Pw)w∈W , (Ed)d∈∆) and a temporal interpreta-
tion I = (∆′,W ′, (Iw)w∈W ′), and elements d ∈ ∆, d′ ∈ ∆′,
w ∈ W , and w′ ∈ W , we say that (P, d, w) embeds into
(I, d′, w′) if there is a partial function h : (∆ × W) →
(∆′ × W ′) such that h(d,w) = (d′, w′) and for all (e, v)
such that h(e, v) is defined:

• e ∈ AP,v implies e′ ∈ AI,v′ for h(e, v) = (e′, v′);
• (e, f) ∈ rP,v implies that there are e′, f ′, v′ with
h(e, v) = (e′, v′), h(f, v) = (f ′, v′) and (e′, f ′) ∈ r;
• (v, u) ∈ Ee implies that there are v′, u′, e′ such that
h(e, v) = h(e′, v′), h(e, u) = (e′, u′), and (v′, u′) ∈ E′.

We show now how the data structure of our algorithm gives
rise to temporal pre-interpretations. For a fixed concept name
A ∈ CN, define PA = (∆A,WA, (Pv)v∈WA

, (Ed)d∈∆A
) as

follows:
• the domain ∆A is defined as the set of all sequences
A0w0r0A1w1r1 · · · rn−1An such that A0 = A and for
all 0 ≤ i < n we have (Ai, wi)

ri→ (Ai+1, Ai+1Ai+1);
we define tail(A0 · · ·An) = An;
• the set WA is the set of all sequences w0 · · ·wn such that
w0 = AA, wi ∈ W for all i, and for 0 ≤ i < n either
(wi, wi+1) ∈ E or there are B,C ∈ CN with (B,wi)

r→
(C,CC) and (CC,wi+1) ∈ E; we set tail(w0 · · ·wn) =
wn.
• the auxiliary E is defined based on E as {(w,w′) ∈
WA ×WA | (tail(w), tail(w′)) ∈ E};
• Ed is defined based on E, d = d′ · vrX , and v =
w0 · · ·wn as follows:

Ed = {(w0 · · ·wi, w0 · · ·wi+1) | 0 ≤ i < n} ∪
{(w,w′) ∈ E | (v, w) ∈ E∗};

• d ∈ BP,w for B ∈ CN iff d = d′ · w0rD and one of the
following is the case:

– w0 = tail(w) and B ∈ Q(D,DD);
– w0 6= tail(w), (tail(w), w0) ∈ E∗, and B ∈
Q(D,E3D);

– w0 6= tail(w), (tail(w), w0) /∈ E∗, and B ∈
Q(D, tail(w));

• (d, d′) ∈ rP,w iff d′ = d·w0rD and one of the following
is the case:

– tail(w) = w0 and (tail(d), w0)
r→ (D,DD);

– tail(w) 6= w0, (tail(w), w0) ∈ E∗, and
(tail(d), tail(w))

r→ (D,E3D);
– tail(w) 6= w0, (tail(w), w0) /∈ E∗, and

(tail(d), tail(w))
r→ (D, tail(w)).

Claim 1. Let A ∈ CN be any concept name and I be a
temporal interpretation and d ∈ ∆, w ∈W such that I |= T
and d ∈ AI,w. Then (PA, A,AA) embeds into (I, d, w)
during the FORWARD-phase of the algorithm.

Proof of Claim 1. We prove the Claim by induction over
the number of rule applications of the algorithm. For the
induction base, observe that (PA, A,AA) clearly embeds into
any model of A. Note that due to acyclicity of the TBox it is
w.l.o.g. to assume that F1 is prioritized such that it is applied
only to worlds AX that are already reachable via E from AA.

For rule F1, assume that C ∈ Q(B,BX) and C ≡
E3C ′ ∈ T and fix an embedding h of (PA, A,AA) into
(I, d, w). For every σ ∈ ∆A, ω ∈ WA such that σ ∈ CPA,ω

because C ∈ Q(B,BX) we modify h as follows. Suppose
h(σ, ω) = (e, v). By induction hypothesis, we have that e ∈
CI,v. Since I |= T , there is some world v0 with (v, v0) ∈ E
and e ∈ C ′I,v0 . Moreover, by definition, there is an infinite
sequence of worlds v1, v2, . . . such that (vi, vi+1) ∈ E for
all i ≥ 0. We put h(σ, ω · BC ′ · (B>)i) = (e, vi) for all
i ≥ 0. It is routine to verify that h after this modification is
an embedding of (P′A, A,AA) into (I, d, w) where P′A is the
pre-interpretation associated with the data structure after the
rule application. Note that here we need the assumption about
the priorization of F1.

For rule F2, assume that C ∈ Q(B,w) and C ≡ ∃r.D ∈ T
and fix an embedding hA of (PA, A,AA) into (I, d, w).
For every σ ∈ ∆A, ω ∈ WA such that σ ∈ CPA,ω be-
cause C ∈ Q(B,w), we modify hA as follows. Suppose
hA(σ, ω) = (e, v). By induction hypothesis, we have that
e ∈ CI,v. Since I |= T , there is some e′ ∈ DI,v

with (e, e′) ∈ rI,v. By induction hypothesis, there is
an embedding hD from (PD, D,DD) into (I, e′, v). Put
hA(σ ·wrD ·σ′, ω ·ω′) := hD(D ·σ′, ω′) for allD ·σ′ ∈ ∆D

and ω′ ∈ WD. Moreover, suppose that ω = w0 · · ·wn and
denote with v0, . . . , vn the n predecessor worlds of v, i.e.,
(vi, vi+1) ∈ E for all 0 ≤ i < n and vn = v. Then put for
all σ′ ∈ ∆D and 0 ≤ i < n: hA(σ · σ′, w0 · · ·wi) = (f, vi)
where hD(σ′, v0 · · · vi) = (f, ·).

It is not hard to verify that hA obtained after such modifi-
cation is an embedding of (P′A, A,AA) into (I, d, w) where
P′A is again the updated pre-interpretation.

For rule F3, the statement is an immediate consequence
of the induction hypothesis and the definition of embeddings.
This finishes the proof of Claim 1.

Claim 2. Let h be an embedding of (PA, A,AA) into some
(I, e, v) constructed in the proof of the previous Claim. Then,
the following points are true:

(A) h(d,w1) = (d1, v1) and h(d,w2) = (d2, v2) implies
d1 = d2;

(B) h(d1, w) = h(d1, v1) and h(d2, w) = (d2, v2) implies
v1 = v2;

(C) for every d ∈ ∆A, there is some w ∈ WA with h(d,w)
defined;

(D) for every w ∈ WA, there is some d ∈ ∆A with h(d,w)
defined.

Proof of Claim 2. The statement is a direct consequence of
the construction in Claim 1.

Claim 3. If (PA, A,AA) embeds into (I, e, v), then
(P′A, A,AA) embeds into (I, e, v) where P′A is the updated
pre-interpretation after applying the completion rules C1
and C2 of the intermediate phase of the algorithm.

Proof of Claim 3. Let h be the embeddding of (PA, A,AA)
into (I, e, v) constructed in the proof of the previous Claim.
By Points (A) and (C) from Claim 2, there is a unique element
e ∈ ∆ such that h(d,w) = (e, v) for some w; we denote this
element with [d]h. Likewise, by Points (B) and (D), there is
a unique world v ∈W such that h(d,w) = (e, v) for some e.
Thus, the mapping h′ defined by taking

h′(d,w) = ([d]h, [w]h)

is well-defined. We show that h′ is the required embedding.
We have to verify the three conditions for embeddings:

• Assume d ∈ BP′A,w, then by definition, we have d ∈
BPA,w. Thus h(d,w) is defined and we have h′(d,w) =
h(d,w) = (e, v) for some e, v. As h is an embedding,
we have e ∈ BI,v .
• Assume (e, f) ∈ rP

′
A,w, h′(e, w) = (e, w1), and

h′(f, w) = (f, w2). The definition of h′ and Point (B)
of Claim 2 imply that w := w1 = w2. Since (e, f) ∈
rP
′
A,w, we have f = e ·w0rD and one of the three possi-

bilities in the definition of the interpretation of role names
is the case. We distinguish cases.

– If w0 = tail(w) and (tail(e), w0)
r→ (D,DD),

then already (e, f) ∈ rPA,w, i.e., after the exhaus-
tive application of F1-F3. Since h′ is an extension
of h, and h was an embedding by assumption, we
also have that (e, f) ∈ rI,w.

– If w0 6= tail(w), (tail(w), w0) ∈ E∗, and
(tail(e), tail(w))

r→ (D,E3D), then we also have
(tail(e), w0)

r→ (D,DD). Thus, there is some v
such that (e, f) ∈ rPA,v, i.e., before application of
rule C2. Since h is an embedding, there are e′, f ′, v′
such that h(e, v) = (e′, v′), h(f, v) = (f ′, v′), and
(e′, f ′) ∈ rI,v′ . The latter and rigidity of roles im-
ply that (e′, f ′) ∈ rI,w. Moreover, by definition of
h′, we have e = [e]h and f = [f]h. Since addition-
ally h(e, v) = (e′, v′) and h(f, v) = (f ′, v′), we
get e = e′ and f = f ′, thus (e, f) ∈ rI,w.

– If w0 6= tail(w), (tail(w), w0) /∈ E∗, and
(tail(e), tail(w))

r→ (D, tail(w)), then we also have
(tail(e), w0)

r→ (D,DD). Thus, there is some v
such that (e, f) ∈ rPA,v, i.e., before application of
rule C2. We can proceed as in the previous case.

• Assume (v, w) ∈ E′d, h′(d, v) = (d1, v), and h′(d,w) =
(d2, w). The definition of h′ and Point (A) of Claim 2
imply that d := d1 = d2. Assume d = d′ · ŵrD and
ŵ = w0 . . . wn. Then by definition of E′d, we have to
distinguish the following two cases:

– If there is i ∈ {0, . . . , n − 1} such that v = wi,
w = wi+1, then already (v, w) ∈ Ed, i.e., before
any application of rule C1. Since h is an embed-
ding, there are e′, v′, w′ such that h(e, v) = (e′, v′),
h(e, w) = (e′, w′ and (v′, w′) ∈ E. Since, by def-
inition of h′, v = [v]h and h(e, v) = (e′, v′), we
have v = v′; analogously, we get w = w′. Thus
(v, w) ∈ EI.

– If (w, v) ∈ E′∗ and (v, w) ∈ E′, then either already
(v, w) ∈ Ed (i.e., before any application of C1) or
(v, w) ∈ E′d by an application of rule C1, i.e., C1
put (tail(v), tail(w)) ∈ E. Thus, there is X such
that (X, tail(v))

s→ (B,BB) and (BB, tail(w)) ∈
E. By rules F2 and C2 and the construction of PA,
we know that X = tail(d) = D. Hence, there is a
domain element e = d · vsB. By definition of PA,
we get (v, w) ∈ Ee. Since h is an embedding, there
are e, v′, w′ such that h(e, v) = (e′, v′), h(e, w) =
(e′, w′), and (v′, w′) ∈ EI. Since, by definition of
h′, v = [v]h and h(e, v) = (e′, v′), we have v = v′;
analogously, we get w = w′. Thus (v, w) ∈ EI.

This finishes the proof of Claim 3.

Finally, it should be clear that the following claim is an imme-
diate consequence of the definition of embeddings.

Claim 4. h′ constructed so far remains an embedding after
exhaustive application of rules B1-B3.

To finish the proof of the “if”-direction, assume that B ∈
Q(A,AA) and an arbitrary model I = (∆,W, (Iw)w∈W) of
T and d ∈ ∆, w ∈W with d ∈ AI,w. Combining Claims 1-4,
we have shown that there is an embedding of (PA, A,AA)
into (I, d, w) such that h(A,AA) = (d,w). By definition of
PA, we know that A ∈ BPA,AA. By definition of embedding,
we know that d ∈ BI,w.

For showing the “only if” direction, assume that B /∈
Q(A,AA). We provide a temporal model J =
(∆, T, (Iv)v∈W∗) of T such that there is a domain element
d ∈ ∆ and a world w ∈W with d ∈ AI,w and d 6∈ BI,w.

We first introduce some auxiliary notions. A world path
is a sequence w0 · · ·wn such that wi ∈ W for all i and
(wi, wi+1) ∈ E for 0 ≤ i < n. We denote with W ∗ the set of
all world paths with w0 = AA and with E the extension of E
toW ∗, i.e.,E = {(w,w′) ∈W ∗×W ∗ | (tail(w), tail(w′)) ∈
E}. Set now

T = (W ∗, E)

We define sequences ∆0,∆1, . . . and partial mappings
π0, π1, . . . with πi : ∆i×W ∗ → 2CN, and θ0, θ1, . . . with
θi : ∆i → CN. Our desired set ∆ is obtained in the limit.
To start the construction of I, set

M If A′ ∈ πi(d,w) and A′ ≡ ∃r.A ∈ T , then
1. add d′ to ∆i

set πi(d′, w) = Q(A,AA); θi(d′) = A

2. For all w′ 6= w such that (w′, w) ∈ E,
set πi(d′, w′)=Q(A,E3A)

3. For all w′ with Q(d′, w′) undefined after 1 and 2,
set πi(d′, w′)=Q(A, tail(w′))

Figure 6: Induction step rules

−∆0 = {d0};
−π0(d0, w) = Q(A, tail(w)) for all w ∈W ∗;
− θ0(d) = A,

where A is the concept name from the left-hand side from the
left-hand side of the subsumption.

For the induction step, we start with setting ∆i = ∆i−1,
πi = πi−1 and then inductively proceed according to the
rules in Figure 6. Finally, set ∆ =

⋃
i≥0 ∆i. The temporal

interpretation I = (∆, T, (Iw)w∈W∗) is given by

AI,w = {d ∈ ∆ | A ∈ π(d,w)};

rI,w = {(d, d′) | d′ ∈ ∆ because M was applied to π(d, v)

and ∃r.θ(d′) for some v}.

It is clear that I |= A 6v B, so it remains to show that I is a
model of the TBox. We make a case distinction according to
the possible definitions in T .
• A ≡ A1 u A2: By definition of I, d ∈ AI,w iff A ∈
π(d,w). By construction, π(d,w) is some set Q(·, ·)
from our algorithm. By rule F3, π(d,w) contains also
A1, A2, which yields d ∈ AI,w

i for i = 1, 2. The other
direction is analagous using B3.
• A ≡ ∃r.B:

Assume first that d ∈ AI,w and thus A ∈ π(d,w). By
construction, π(d,w) is some set Q(X,u) from our al-
gorithm. By rule F2, (X,u)

r→ (B,BB). Additionally,
by M-1, we have that π(d′, w) = Q(B,BB) and by def-
inition of the interpretation of role names, (d, d′) ∈ rI,w.
By initialization, B ∈ Q(B,BB) thus B ∈ π(d′, w) and
d′ ∈ BI,w. This implies d ∈ (∃r.B)I,w.
For the other direction, assume d ∈ (∃r.B)I,w, i.e., there
is some d′ with (d, d′) ∈ rI,w and d′ ∈ BI,w. The
former implies that there is some v such that d′ was
created due to application of M to X ∈ π(d, v), X ≡
∃r.θ(d′) ∈ T . Put Y = θ(d) and Y ′ = θ(d′). By
construction, we know that π(d,w) and π(d′, w) are of
the formQ(Y, y) andQ(Y ′, y′), respectively. By rule F2,
we have (Y, y)

r→ (Y ′, Y ′Y ′). We distinguish cases:

– If v = w, then, by M-1, π(d′, w) = Q(Y ′, Y ′Y ′),
π(d,w) = Q(Y, y), A′ ∈ Q(Y, y), and A′ ≡

∃r.Y ∈ T . Since d′ ∈ BI,w, B ∈ Q(Y ′, Y ′Y ′).
By rule B2, we have that A ∈ Q(Y, y), thus
d ∈ AI,w.

– If (w, v) ∈ E, then π(d′, w) = Q(Y ′,E3Y ′) by
M-2, thus B ∈ Q(Y ′,E3Y ′). By the comple-
tion rule C2 a) from the middle phase of the al-
gorithm, we have that (Y, tail(w))

r→ (Y ′,E3Y ′).
By rule B2, A ∈ Q(Y, tail(w)). By construction
of I and the fact that (w, v) ∈ E, we have that
π(d,w) = Q(Y, tail(w)), thus A ∈ π(d,w) and
d ∈ AI,w.

– If (v, w) ∈ E, then π(d′, w) = Q(Y ′,W) where
W = tail(w). By the completion rule C2 b) from
the middle phase of our algorithm, we have that
(Y,W)

r→ (Y ′,W). By rule B2, A ∈ Q(Y,W).
Since (v, w) ∈ E, π(d,w) is defined using M-3
and we have that π(d,w) = Q(Y,W). Hence A ∈
π(d,w) and d ∈ AI,w.

– Otherwise, π(d′, w) = Q(Y ′,W) where W =
tail(w). By M-3, π(d,w) is defined as Q(Y,W).
By the completion rule C2 c) from the middle phase
of our algorithm, we have that (Y,W)

r→ (Y ′,W).
By rule B2, A ∈ Q(Y,W), thus d ∈ AI,w.

• A ≡ E3B:
Assume first that d ∈ AI,w. By construction, π(d,w) is
some setQ(X,u) from our algorithm such that tail(w) =
u. By rule F1, we have (u,XB) ∈ E. By definition of I,
w′ = w ·XB ∈W ∗ and (w,w′) ∈ E. By initialization
of the algorithm, we have that B ∈ Q(X,XB). More-
over, by definition of I, we have π(d,w′) = Q(X,XB)

and hence d ∈ BI,w′ . Thus, d ∈ (E3B)I,w.
For the other direction assume that d ∈ (E3B)I,w, i.e.,
there are w0, . . . , wn with w0 = w, (wi, wi+1) ∈ E for
all 0 ≤ i < n and d ∈ BI,wn . By definition of W ∗ and
E, there are v0, . . . , vn ∈ W such that (vi, vi+1) ∈ E
for all 0 ≤ i < n. We distinguish cases:

– If d = d0, then π(d,wi) = Q(Y, vi) and vi =
tail(wi) for all 0 ≤ i ≤ n. By rule B1, we have
that A ∈ Q(Y, v0) and hence A ∈ π(d,w0). Thus,
d ∈ AI,w.

– If d 6= d0 and for each 0 ≤ i ≤ n, π(d,wi) is
defined using M-3 or M-1, we have vi = tail(wi)
and π(d,wi) = Q(Y, vi) for all 0 ≤ i ≤ n. Thus,
we can proceed as in the previous rule.

– If π(d,wj) is defined using M-2 for some j, then
so is π(d,w0) by M-2. Thus, v0 = E3X and
π(d,w0) = Q(Y,E3X) for some X . By rule B1,
we have A ∈ Q(Y,E3X) and hence d ∈ AI,w.

o

D.1 Local Roles
Figure 7 shows the rules needed, extending those in Section 5,
in order to deal with local roles. In particular, a variant (B2’)
of B2 is included, and F2 is slightly modified to specify that it
is only applied to rigid roles. We use RIG(T)to denote the set
of rigid roles occurring in T .

F1 If B ∈ Q(A,AX) & B ≡ E3B′ ∈ T , add (AX,AB′) to E

F2 If B ∈ Q(A,w), B ≡ ∃r.B′ ∈ T and r ∈ RIG(T),
set (A,w) r→ (B′, B′B′)

F3 If B∈Q(A,w) & B≡A1uA2 ∈T , add A1,A2 to Q(A,w)

B1 If B ∈ Q(A,w), (w′, w) ∈ E∗, and X ≡ E3B ∈ T ,
add X to Q(A,w′)

B2 If A ∈ Q(B,w), (A′, w′) r→ (B,w), and X ≡ ∃r.A ∈ T
add X to Q(A′, w′)

B2’ If A ∈ Q(B,w), A ≡ ∃r.A′, B′ ∈ Q(A′, A′A′) and
B′′ ≡ ∃r.B′ ∈ T , add B′′ to Q(B,w)

B3 If A1, A2 ∈ Q(B,w) & A ≡ A1 uA2 ∈ T
add A to Q(B,w)

Figure 7: FORWARD- and BACKWARD-completion rules

E CTLE◦
EL and CTLE3

EL with Increasing
Domains

In the design of TDLs one can make various assumptions on
the domain, e.g., increasing domains, that is, each world w in
W comes equipped with a domain ∆w such that ∆w ⊆ ∆w′

for all successor worlds w′ of w.
Formally, a temporal interpretation with increasing do-

mains based on an infinite tree T = (W,E) is a structure
I = (T, (Iw)w∈W) such that, for each w ∈W , Iw is a DL in-
terpretation with domain ∆w; for all w,w′ ∈W , (w,w′) ∈ E
implies ∆w ⊆ ∆w′ ; and rIw = rIw′ for all r ∈ Nrig and
w,w′ ∈W .

It is known that, for most Boolean-complete TDLs, reason-
ing with constant domains is not easier than with increasing
domains [Gabbay et al., 2003, Proposition 3.32]. We show
that, unexpectedly, subsumption relative to acyclic CTLE◦

EL -
and CTLE3

EL TBoxes with increasing domains is harder than
with constant domains. Intuitively, this can be explained by
the fact that increasing domains allow rigid roles to mimic
the behaviour of the A2-operator. Indeed, we will show
that subsumption relative to acyclic CTLE3,A2

EL TBoxes is
PSPACE-hard.

Theorem 8 Concept subsumption relative to acyclic CTLE◦
EL

and CTLE3
EL TBoxes with rigid roles and increasing domains

is PSPACE-hard.

Proof. The proof is by reduction of the validity problem for
quantified Boolean formulas. A quantified Boolean formula
(QBF) ϕ is of the form Q1x1 . . . Qnxk.ψ, where Qi ∈ {∃,∀}
and ψ is a Boolean with only variables x1, . . . , xk. From now
on, w.l.o.g. we assume ψ to be in conjunctive normal form,
that is, ψ = c1∧. . .∧cn. We aim at constructing in polynomial
time an acyclic TBox Tϕ such that for certain concept names
L0, E0, we have that Tϕ |= L0 v E0 iff ϕ is valid.
In a nutshell, a model of Tϕ and L0 is an evaluation tree for ϕ,
that is, a binary tree of depth k such that at each level i ≤ k
one of the nodes sets the variable xi to true and the other to
false. In other words, we aim at representing with each node
at level i a truth assignment to the variables x1, . . . , xi. More
precisely, we use the following signature.

• concept names L0, . . . , Lk to distinguish the levels of a
binary tree of depth n.
• rigid roles rij ,, for 1 ≤ i ≤ n, to represent the truth of a

clause ci at level j of the evaluation tree.
• concept names E0, . . . , Ek to evaluate in a bottom-up

fashion ψ.
For 1 ≤ j ≤ k, we use abbreviations Pj and Nj

• we use a concept name Pj to denote the following con-
junction

l

i≤n
xj occurs positively in ci

∃ri.>

• we use a concept name Nj to denote the following con-
junction

l

i≤n
xj occurs negatively in ci

∃ri.>

We are now ready to define the axioms of Tϕ providing the
core of the reduction. We start by defining the evaluation
tree (4). The propagation of the truth of a clause at jth-level to
the deeper levels is achieved by the rigid roles in the definitions
of Pj and Nj . Finally, we use concepts Ei to evaluate ϕ such
that quantifiers are respected (5)-(7). For 0 ≤ ` < k,

L` ≡ E3(L`+1 u P`+1) uE3(L`+1 u N`+1) (4)

Ek ≡ Lk u ∃r1.> u . . . u ∃rn.> (5)
For 0 ≤ i < k,

Ei ≡ Li uE3(Li+1 u Ei+1), if Qi+1 = ∃ (6)

For 0 ≤ i < k,

Ei ≡ Li uE3(Li+1 u Pi+1 u Ei+1)u
E3(Li+1 u Ni+1 u Ei+1), if Qi+1 = ∀ (7)

Following the intuitions provided above, it is not hard to see
that Tϕ |= L0 v E0 iff ϕ is valid.

For CTLE©
EL , the reduction clearly goes through by simply

replacing E3 with E©.
o

F Proofs for Section 6

Theorem 9 Concept subsumption relative to acyclic
CTLE3,A2

EL -TBoxes with rigid roles is PSPACE-complete.
Proof. The proof of the lower bound is by reduction of the
validity problem for quantified Boolean formulasA quantified
Boolean formula (QBF) ϕ is of the form Q1x1 . . . Qnxk.ψ,
where Qi ∈ {∃,∀} and ψ is a Boolean formula with only
variables x1, . . . , xk. From now on, w.l.o.g. we assume ψ
to be in conjunctive normal form, that is, ψ = c1 ∧ . . . ∧ cn.
We aim at constructing in polynomial time an acyclic TBox

Tϕ such that for certain concept names L0, E0, we have that
Tϕ |= L0 v E0 iff ϕ is valid.
In a nutshell, a model of Tϕ and L0 is an evaluation tree for ϕ,
that is, a binary tree of depth k such that at each level i ≤ k
one of the nodes sets the variable xi to true and the other to
false. In other words, we aim at representing with each node
at level i a truth assignment to the variables x1, . . . , xi. More
precisely, we use the following signature. In particular, we do
not make use of roles.

• concept names L0, . . . , Lk to distinguish the levels of a
binary tree of depth n.

• concept names Ci,j , for i ≤ n, j ≤ k, to represent the
‘truth’ of clause ci at level j of the evaluation tree.

• concept names E0, . . . , Ek to evaluate in a bottom-up
fashion ψ.

Moreover, we use the following abbreviations.

• For, j ≤ k, we use a concept name Pj to denote the
following conjunction

l

i≤n
xj occurs positively in ci

Ci,j

• For, j ≤ k, we use a concept name Nj to denote the
following conjunction

l

i≤n
xj occurs negatively in ci

Ci,j

We are now ready to define the axioms of Tϕ providing the
core of the reduction. We start by defining the evaluation
tree (8). We then propagate the truth of a clause at jth-level
to the deeper levels (9). Note that the use of abbreviations
P` and N` and definitions Ci,j allow to establish the truth
value of ci up to a ‘partial’ assignment of length `. Finally,
we use concepts Ei to evaluate ϕ such that quantifiers are
respected (10)-(12).

For 0 ≤ ` < k,

L` ≡ E3(L`+1 u P`+1) uE3(L`+1 u N`+1) (8)

For 1 ≤ i ≤ n, 1 ≤ j < k,

Ci,j ≡ A2Ci,j+1, (9)

Ek ≡ Lk u C1,k u . . . u Cn,k (10)

For 0 ≤ i < k,

Ei ≡ Li uE3(Li+1 u Ei+1), if Qi+1 = ∃ (11)

For 0 ≤ i < k,

Ei ≡ Li uE3(Li+1 u Pi+1 u Ei+1)u
E3(Li+1 u Ni+1 u Ei+1), if Qi+1 = ∀ (12)

Following the intuitions provided above, it is not hard to see
that Tϕ |= L0 v E0 iff ϕ is valid. This concludes the proof.

The proof straightforwardly works for CTLE©,A2
EL by replac-

ing above E3 with E©.
The upper bound is an immediate consequence of Lem-

mas 20 and 21 proved below and the observation that
complete can be implemented using only polynomial space.

o

We divide the proof of Lemma 10 into two lemmas,
Lemma 20 for termination (and argument for running in
PSPACE) and Lemma 21 for correctness.

Lemma 20 On input T , A,B, Algorithm 1 always terminates
and at any time maintains only polynomially sized structures.
More precisely, there is a polynomial p, such that the size of
every trace that is constructed in expand of Algorithm 1 is
bounded by p(n), where n = |T |.
Proof. First observe that, due to acyclicity of T the expan-
sion in Line 13 (∃r.B) can only be applied n times along
a trace. Thus, it is sufficient to show that traces become
periodic after a polynomial application of the expansion in
Line 17 (E3B). For this purpose, let us take a trace with
suffix (d,w1) · · · (d,wk) and let A1, . . . , Ak be the concept
names such that E3Ai lead to creation of wi.

Claim. If A = Ai = Aj for i < j, then Q(d,wi) ⊆ Q(d,wj)
after application of complete.
Proof of the Claim. Note that Q(d,wi) and Q(d,wj) are both
initialized with {A,>}. It is routine to verify (via induction
on the number of rule applications of R1-R12) that every rule
applied to Q(d,wi) can also be applied to Q(d,wj). This
finishes the proof of the Claim.

Thus, for k > n(n + 1), there is a concept name A and a
sequence i0 < . . . < in such that Ai0 = . . . = Ain . By the
Claim, we have

Q(d,wi0) ⊆ Q(d,wi2) ⊆ . . . ⊆ Q(d,win).

Since Q(d,win) ⊆ CN and |CN| ≤ n, we have that there are
different j, j′ ∈ {i0, . . . , in} such that Q(d,wj) = Q(d,wj′).
Consequently, the trace is periodic. Since the expansion in
Line 13 is applied at most n times along each trace, we get the
lemma for p(n) = n2(n+ 1). o

Lemma 21 On every input T , A0, B0, Algorithm 1 returns
true iff T |= A0 v B0.

Proof. For the “⇒”-direction, we show that after every call
to complete the trace together with Q embeds into every
model of T and A0. As traces can become cyclic (due to
Line 8), we have to consider unravellings of traces. It is im-
portant to notice that because of the structure of the algorithm,
there is at most one cycle in E. Let (σ,E,R) be a trace with
σ = (d0, w0) · · · (dn, wn) and Q a mapping. The unraveling
Iu = (∆u,Wu, (Iuw)w∈W) of a trace is defined as follows:
• ∆u = {d0, . . . , dn};
• Wu is the set of sequences of worlds v0 · · · vk such that
v0 = w0 and (vi, vi+1) ∈ E for all 0 ≤ i < n;

• rIu,w = R(r);
• Eu = {(u, v) ∈Wu ×Wu | (tail(u), tail(v)) ∈ E};

• d ∈ AIu,w iff A ∈ Q(d, tail(w)).
Let now be I = (∆,W, (Iw)w∈W) a temporal interpretation
and d ∈ ∆, w ∈W . We say that the unraveling Iu of a trace
embeds into (I, d, w) if there are functions h∆, hW such that:
• h∆(d0) = d and hW (w0) = w;

• (di, dj) ∈ rI
u,w implies (h∆(di), h∆(dj) ∈ rI,w

′
for

all w′ ∈W ;
• (wi, wj) ∈ Eu implies (hW (wi), hW (wj)) ∈ E∗;
• d ∈ AIu,w implies h∆(d) ∈ AI,hW (w).

Assume now that I |= T and choose d,w such that d ∈ AI,w
0 .

We show by induction on the number of calls to complete
that the unraveling of (σ,E,R) together with Q embeds into
(I, d, w) where (σ,E,R), Q is the state of the algorithm after
calling complete.

The induction base is immediate: we set h∆(d0) = d
and hW (w0) = w. Since Q(d0, w0) = {A0,>}, it re-
mains to note that d ∈ AI,w

0 by assumption. The first call
to complete applies only rules R1 and R2 for closing under
conjunction. Clearly, h∆, hW remains an embedding since
I |= T .

For the induction step, we make a case distinction on
which part of the algorithm has been applied before calling
complete.
Case 1: Expansion of the trace because of A ∈ Q(d̂, ŵ) such
that A ≡ ∃r.B ∈ T . This causes a new element (d′, ŵ)
and consequently a new domain element d′ ∈ ∆u such that
(d̂, d′) ∈ rIu,v for all v and d′ ∈ BIu,ŵ (note that, due to the
structure of the algorithm – expansion of ∃r before E3 – E
is acyclic in this case). By induction, there is an embedding
h∆, hW from (I, d0, w0) into (I, d, w); in particular, suppose
h∆(d̂) = e and hW (ŵ) = v. By definition of embedding,
we know that e ∈ AI,v. Since I |= T , there is an e′ ∈
BI,v such that (e, e′) ∈ rI,v. It should be clear that h′∆
defined as the extension of h∆ with h′∆(d′) = e′ together with
hW is an embedding (before calling complete). It is then
routine to verify that rules R1-R12 maintain the properties of
an embedding.

Case 2: Expansion of the trace because of A ∈ Q(d̂, ŵ) such
that A ≡ E3B ∈ T . Analogous to the previous case.
Case 3: Detection of periodicity; suppose σ,Q is periodic at
(i, j) and σ = (d0, w0) · · · (dn, wn), i.e., i < j, di = dj = dn,
and Q(di, wi) = Q(dj , wj). Then the edge (wj−1, wi) is
added to E. By induction, there is an embedding h∆, hW of
(Iu, d0, w0) into (I, d, w). Let d := di = dj , d̂ := h∆(d) and
vk = hW (wk) for all i ≤ m ≤ j. By construction of Iu and
the definition of embedding, we have that

A ∈ Q(d,wi) implies d̂ ∈ AI,vi . (∗)

By construction and (∗), we have that d̂ ∈ (A2Qcert(d) u
Q(d,wj−1))I,vj−1 . We need the following auxiliary claim,
the proof of which is straightforward by induction on the
number of rule applications.
Claim 1. For a trace with infix (d, v1) · · · (d, vm), we have

T |= A2Qcert(d) uQ(d, vi) v E3Q(d, vj)

for all 1 ≤ i < j ≤ m.

We apply Claim 1 to σ and the worlds wj−1 and wj from
the precondition and obtain that there is a world u0 such that
d̂ ∈ Q(d,wj)

I,u0 . We put hW (w0 · · ·wj−1wi) := v′j . We
repeat the above argument now for wi, wi+1. By construction
of Iu and (∗) and Q(d,wi) = Q(d,wj), we know that d̂ ∈
Q(d,wi)

I,u0 . By Claim 1 and I |= T , we know that there is
a world u1 such that (u0, u1) ∈ E∗ and d̂ ∈ Q(d,wi+1)I,u1 .
We can repeatedly apply the same arguments and obtain an
embedding of (Iu, d0, w0) into (I, d, w) in the limit. Again,
rules R1-R12 applied in complete preserve embeddings.
This finishes the proof of Case 3 and thus of the induction
step.
To finish the “⇒”-direction, assume that Algorithm 1 returns
true on input T , A0, B0, i.e., B0 ∈ Q(d0, w0) after termi-
nation. Moreover, suppose that I = (∆,W, (Iw)w∈W) is a
model of T and let d ∈ ∆, w ∈ W such that d ∈ AI,w

0 . By
what was said above, there is an embedding of the final trace
before terminating into (I, d, w). By definition of embedding
and B0 ∈ Q(d0, w0), we have that d ∈ BI,w

0 . This proves
that T |= A v B.

For the “⇐”-direction, assume that Algorithm 1 returns
false, i.e., B0 /∈ Q(d0, w0). We construct a temporal inter-
pretation I = (∆,W, (Iw)w∈W) and d ∈ ∆, w ∈ W such
that d ∈ AI,w

0 but not d ∈ BI,w
0 .

Note that the Q(d,w) might change during the run of Algo-
rithm 1; however, in what follows, we denote withQ(d,w) the
maximal set Q(d,w) that appears (well-defined since Q(d,w)
only grows). Analogously, we use QA2(d,w) and Qcert(d).
Moreover, we denote with W the set of all worlds created
during the run of the algorithm, which are not truncated at
some point due to periodicity (cf. Line 9); similarly, we de-
fine E and R(r) for each r ∈ ROL. Finally, observe that,
if a trace element (d,w) is created due to ∃r.B, we have
that Q(d,w′) = Q(d,w′′) for all w′, w′′ with (w′, w) ∈ E+,
(w′′, w) ∈ E+. This holds as well for different d, d′. This
justifies to write QE3(B) for Q(d,w′).

Intuitively, we want to use the “unraveling” of the structures
W,E,R(r) to define the desired interpretation I. However,
doing so naively does not suffice since some points (d,w)
would satisfy concepts of the form A2B which are not en-
forced. Thus, we will define a sequence of interpretation
I0, I1, . . . and the desired I is defined in the limit.

In our construction, domain elements σ ∈ ∆i take the
form σ = (r1, d1, w1) · · · (rn, dn, wn) where ri are rigid role
names, the di are domain elements created during the run
of the algorithm, and the wi are worlds created during the
construction of I. Worlds are sequences ω = w0 . . . wk of
worlds wi created in the algorithm or special worlds of the
form 〈σ, ω〉 whose purpose is to “break” unintended A2B.
We abbreviate σ↓ = dn and ω↓ = wk.

We start with an interpretation I0 =
(∆0, (W0, E0), (I0,w)w∈W) along with a function
π0 : ∆0 ×W0 → 2CN defined as follows:

• ∆0 = {(r, d0, w0)} where r is any role (not important);

• W0 = {w0}; E0 = ∅;
• π0((d, d0, w0), w0) = Q(d0, w0).

Now, Ii+1, πi+1 are obtained from Ii, πi by setting ∆i+1 =
∆i, Wi+1 = Wi, Ei+1 = Ei, πi+1 = πi, and applying one
of the rules in Figure 8. Note that rules C1 and C2 are just a
form of unraveling. However, C3 adds additional worlds to
break unwanted concepts of the form A2B. In rule C2, we
need the following property of our algorithm:

Claim 2. For all A ∈ Q(d,w), A ≡ E3B ∈ T , there is a w′

such that (w,w′) ∈ E∗ and B ∈ Q(d,w′).

Thus, there is a well-defined selection function wit(d,w,B)
that for all A ∈ Q(d,w), A ≡ E3B ∈ T returns such a w′
from Claim 2.

C1 If A ∈ πi(σ, ω) and A ≡ ∃r.B ∈ T , then
add σ′ = σ · (r, d′, ω) where d′ is the element that
was added in the expansion step applied to
A ∈ Q(σ↓, ω↓) and set πi+1(σ′, ω) = Q(d′, ω↓);

C2 If σ ∈ AIi,ω and A ≡ E3B ∈ T , then
add ω′ = ω · v to Wi, where v = wit(σ↓, ω↓, B);
set πi+1(σ′, ω′) = Q(σ′↓, ω′↓) for all σ′ ∈ ∆i

such that Q(σ′↓, ω′↓) defined;

C3 For some σ ∈ ∆i, ω ∈Wi,
add 〈σ, ω〉 to Wi+1 and put (ω, 〈σ, ω〉) ∈ Ei+1.

Figure 8: Induction step rules

Note that the application of rules C1-C3 leaves πi undefined
for some (σ, ω) ∈ ∆i ×Wi. For defining πi also for those
pairs, we proceed as follows. We say that σ is introduced in
ω if σ is of the form σ′ · (, , ω). Note that for every σ, the
ω where it is introduced is uniquely determined. For some
σ ∈ ∆i, ω ∈ Wi with πi(σ, ω) undefined, d = σ↓, w = ω↓,
and ω′ the world where σ was introduced in, we put:
• if w ∈ W and (ω, ω′) ∈ E+

i , then πi(σ, ω) = QE3(B)
where B is the concept name due to which d was created;
• if w ∈ W and (ω′, ω) ∈ E+

i , then πi(σ, ω) =

QA2(d, ω′↓);

• if w ∈ W and (ω′, ω) /∈ E∗i and (ω, ω′) /∈ E∗i , then
πi(σ, ω) = Qcert(d);
• if w = 〈σ′, ω′〉 and (ω, ω′) ∈ E∗i then πi(σ, ω) =
QE3(B), where B is the concept name due to which
d was created;
• if w = 〈σ′, ω′〉 and (ω′, ω) ∈ E+

i , then πi(σ, ω) =

QA2(d, ω′↓);
• if w = 〈σ′, ω′〉 and (ω′, ω) /∈ E∗i and (ω, ω′) /∈ E∗i , then
πi(σ, ω) = Qcert(d).

The desired temporal interpretation I = (∆,W, (Iw)w∈W) is
obtained in the limit. We first put

W =
⋃
i≥0

Wi, E =
⋃
i≥0

Ei,∆ =
⋃
i≥0

∆i, π =
⋃
i≥0

πi.

Then, the interpretation of role and concept names is as fol-
lows:

rI,ω = {(σ, σ · (r, d, w)) | σ, σ · (r, d, w) ∈ ∆};
AI,ω = {σ | A ∈ π(σ, ω)};

It is not hard to verify the following:

Claim 3. The constructed I is a model of T .

As (r, d0, w0) ∈ AI,w0

0 but (r, d0, w0) /∈ BI,w0

0 , this finishes
the proof of the Theorem. o

