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Abstract. We revisit non-monotonic description logics based on circum-
scription (with preferences) and prove several decidability results for their
satisfiability problem. In particular, we consider circumscribed descrip-
tion logics without the finite model property (DL-LiteF andALCFI) and
with fixed roles (DL-LiteF and a fragment of DL-LiteR), improving upon
previous decidability results that are limited to logics which have the finite
model property and do not allow to fix roles during minimization.

1 Introduction

During the evolution from frame systems to description logics (DLs), nonmono-
tonic inferences and constructs (such as those supported by the LOOM sys-
tem in the 1990s) have disappeared from the mainstream. However, a range of
knowledge engineering requirements kept interest in nonmonotonic DLs alive,
see e.g. [21,23,5] for more details. In fact, along the years all of the major non-
monotonic semantics have been adapted to DLs, including the integration of
default rules and DLs [2,12,20,16,17], circumscription [7,22], and variations of
autoepistemic logics, preferential semantics and rational closure [8,11,14,15,10].
In this paper, we focus on circumscription, which was first applied in the DL
context by Gerd Brewka to whom this volume is dedicated [7]. The general idea
of circumscription is to select a subclass of the classical models of the knowl-
edge base by minimizing the extension of some selected predicates that represent
abnormal situations. During minimization, the interpretation of the other pred-
icates can be fixed or vary freely. To achieve a faithful modeling, in addition it
is often necessary to allow a preference order on the minimized predicates, that
is, if P1 is preferred to P2, then we allow the interpretation of P2 to become
larger (or change in an orthogonal way) if this allows the interpretation of P1 to
become smaller.

All these aspects of circumscription are incorporated in the circumscription
patterns studied in [6,5], where a range of (un)decidability results for circum-
scribed DLs based on circumscription patterns has been obtained. The positive
results are mostly obtained by using a filtration type of construction as known
from modal logic [4], which is limited to logics that enjoy the finite model prop-
erty. The negative results show that a main cause of undecidability is to allow
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role names (binary relations) to be minimized or fixed during minimization in-
stead of minimizing/fixing only concept names (unary relations). However, many
popular description logics such as those underlying the OWL ontology language
recommended by the W3C do not enjoy the finite model property; moreover,
minimizing/fixing roles would be useful as a modeling tool for applications.

In this paper, we contribute to a better understanding of the computational
properties of circumscribed DLs without the finite model property and with fixed
role names. Regarding the former, we deviate from the filtration approach and
prove decidability by reduction to the (decidable) first-order theory of set systems
with a binary predicate expressing that two sets have the same cardinality [13].
The reduction is inspired by reductions of inseparability problems for DL TBoxes
to BAPA (Boolean Algebra with Presburger Arithmetic) from [19]. We note
that the surprisingly close relationship between inseparability (and conservative
extensions) of DL TBoxes and circumscribed DLs has been exploited to prove
results in both areas before: complexity results for circumscribed DLs have been
used to investigate the complexity of deciding inseparability and conservative
extensions in [18]. Conversely, undecidability results for inseparability proved in
[18] have been used in [5] to prove undecidability results for circumscribed EL
TBoxes. Regarding fixed roles, we show that decidability results can be obtained
for members of the DL-Lite family of inexpressive DLs. Considering two such
members, we show that decidability results can be both obtained by reduction
to the afore mentioned theory of set systems and by the original filtration-style
method from [5].

In detail, our results are as follows (all referring to concept satisfiability rela-
tive to circumscribed knowledge bases as introduced in Section 2):

1. Circumscribed ALCFI without minimized roles and fixed roles is decidable
where ALCFI is the basic DL ALC extended with functional and inverse
roles. This extends the previous decidability results for DLs such as ALCI
and ALCQ which enjoy the finite model property [6].

2. Circumscribed DL-LiteFboolwith fixed roles (but no minimized roles) is de-
cidable where DL-LiteFboolis DL-Lite with boolean concept connectives and
functional roles. Note that, in addition, DL-LiteFboolis another example of a
decidable circumscribed DL without the finite model property.

3. Circumscribed DL-LiteRbool with fixed roles (but no minimized roles) is decid-
able if it is additionally assumed that no minimized or fixed role is subsumed
by a varying role, where DL-LiteRbool is DL-Lite with boolean concept con-
nectives and role inclusions.

2 Preliminaries

The alphabet of description logics (DLs) consists of three (pairwise disjoint)
sets: a set NI of individual names, denoted a, b, . . . , a set NC of concept names,
denoted A,B, . . . , and a set NR of role names, denoted P . A role, denoted R, is
either a role name or an inverse role, that is, an expression of the form P−. As a
convention, we set R− = P if R = P−. We consider two members of the DL-Lite
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family of DLs [9,1]. The concepts C of DL-LiteFbool are defined inductively as
follows:

B ::= ⊥ | � | Ai | ∃R,

C ::= B | ¬C | C1 � C2.

The concepts of the form B are called basic. A concept inclusion in DL-LiteFbool
is of the form C1 � C2, where C1 and C2 are DL-LiteFbool concepts. A TBox T in
DL-LiteFbool is a finite set of concept inclusions in DL-LiteFbool and functionality
assertions func(R), where R is a role.

Concept inclusions in DL-LiteRbool are defined in the same way as concept
inclusions in DL-LiteFbool. A TBox T in DL-LiteRbool is a finite set of concept
inclusions in DL-LiteRbool and role inclusions R1 � R2, where R1 and R2 are
roles.

The concepts C of the DL ALCFI are defined inductively as follows:

C ::= ⊥ | � | Ai | ¬C | C1 � C2 | ∃R.C.

Concept inclusions and TBoxes T in ALCFI are defined in the same way as
TBoxes in DL-LiteFbool, where concepts in DL-LiteFbool are replaced by concepts
in ALCFI.

An ABox A is a finite set of assertions of the form A(a) and P (a, b). We
use P−(a, b) to denote the assertion P (b, a). By Ind(A) we denote the set of
individual names in A. A knowledge base (KB, for short) is a pair K = (T ,A)
with a TBox T and an ABox A.

The semantics of DL knowledge bases is defined as usual, see [3] for details.
An interpretation I = (ΔI , ·I) is given by its domain ΔI and an interpretation
function that associates with every concept name A a set AI ⊆ ΔI , with every
role name P a relation P I ⊆ ΔI × ΔI , and with every individual name a an
element aI ∈ ΔI . We make the unique name assumption (aI 	= bI if a 	= b). We
denote by CI ⊆ ΔI the interpretation of a (complex) concept C in I and say
that an interpretation I is a model of a KB K = (T ,A) if

– CI ⊆ DI , for all C � D ∈ T ;
– RI ⊆ SI , for all R � S ∈ T ;
– RI is a partial function, for all func(R) ∈ T ;
– aI ∈ AI , for all A(a) ∈ A;
– (aI , bI) ∈ P I , for all R(a, b) ∈ A.

Given a DL L, concept satisfiability relative to L KBs is the following problem:
given a concept C in L and a KB K in L, decide whether there exists a model
I of K such that CI 	= ∅. Concept satisfiability is NP-complete for DL-LiteFbool
and DL-LiteRbool, and ExpTime-complete for ALCFI.

To define DLs with circumscription, we start by introducing circumscription
patterns. Such a pattern describes how individual predicates are treated during
minimization.

Definition 1 (Circumscription pattern, <CP). A circumscription pattern
is a tuple CP of the form (≺,M, F, V ), where ≺ is a strict partial order over M ,
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and M , F , and V are mutually disjoint and exhaustive subsets of NC ∪ NR, the
minimized, fixed, and varying predicates, respectively. By 
, we denote the re-
flexive closure of ≺. Define a preference relation <CP on interpretations by setting
I <CP J iff the following conditions hold:

1. ΔI = ΔJ and, for all a ∈ NI, a
I = aJ ,

2. for all p ∈ F , pI = pJ ,
3. for all p ∈ M , if pI 	⊆ pJ then there exists q ∈ M , q ≺ p, such that qI ⊂ qJ ,
4. there exists p ∈ M such that pI ⊂ pJ and for all q ∈ M such that q ≺ p,

qI = qJ .

A circumscribed knowledge base with circumscription pattern CP = (≺,M, F, V )
and KB K is denoted by CircCP(K). An interpretation I is a model of CircCP(K)
if it is a model of K and no J <CP I is a model of K.

In this paper, we consider the decidability and complexity of concept satisfia-
bility relative to circumscibed KBs : a concept C is satisfiable relative to a circum-
scribed KB CircCP(T ,A) if some model I of CircCP(T ,A) satisfies CI 	= ∅. By
(concept) satisfiability problem relative circumscribed KBs we mean the prob-
lem to decide whether a given concept C is satisfiable relative to a given cir-
cumscribed KB. Other reasoning problems such as subsumption and instance
checking relative to circumscribed KBs can be reduced to concept satisfiability
relative to circumscribed KBs [6].

3 Decidability for DL-LiteFbool

We show decidability of concept satisfiability relative to circumscribed DL-
LiteFbool KBs with fixed roles and without minimized roles. Note that fixed
roles easily lead to undecidability of concept satisfiability relative to circum-
scribed KBs, such as for the circumscribed version of the popular lightweight
(and tractable) DL EL [5]. Also note that DL-LiteFbool does not have the finite
model property. An example showing this is given by the KB K = (T ,A), where

T = {A � ∃P, ∃P− � ∃P,A � ¬∃P−, func(P−)}, A = {A(a)}.

It is easy to see that K is satisfiable but has no finite model. Thus, approaches
to reasoning in circumscribed DLs that are based on filtration [6] cannot be
employed in this case.

We prove decidability by reduction to the first-order theory of set systems with
a binary predicate expressing that two sets have the same cardinality, which is
decidable [13]. Formally, the language SC of set systems with cardinality is de-
fined as follows. Its terms are constructed from variablesX1, X2, . . . (interpreted
as sets) and constants 0 (the empty set) and 1 (the whole set) using the binary
function symbols ∩ (intersection), ∪ (union), and the unary function symbol
· (complement). As usual, we prefer the infix notation for the binary function
symbols and write, e.g., X ∩ Y instead of ∩(X,Y ). Atomic SC formulas are of
the form
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– B1 = B2 and B1 ⊆ B2, where B1 and B2 are terms;
– |B1| = |B2| and |B1| ≤ |B2|, where B1 and B2 are terms.

SC formulas are now constructed in the standard way using quantification, con-
junction and negation. We are interested in the satisfiability of SC sentences in
structures of the form A = (2Δ,∩,∪, ·, ∅, Δ), where Δ is a non-empty set. We
call such structures SC structures. An SC model M consists of an SC structure
A and an interpretation function XM

i ⊆ Δ of the variables Xi in A. The truth
of SC sentences in an SC model is defined in the obvious way, for example,

– M |= B1 = B2 if BM
1 = BM

2 ;
– M |= |B1| = |B2| if |BM

1 | = |BM
2 |.

Decidability of satisfiability of SC sentences in SC models is proved in [13]:

Theorem 1. Satisfiability of SC sentences is decidable.

Suppose that a KB K = (T ,A), a circumscription pattern CP = (≺,M, F, V ),
and a concept C0 are given such that no role name is minimized in CP (that is,
M contains no role names). We encode satisfiability of C0 relative to CircCP(K)
as a satisfiability problem for SC sentences.

Take for every concept name B in K∪{C0} and any B of the form ∃P or ∃P−

such that P occurs in K∪{C0}, an SC variable XB. Then define inductively for
every subconcept C of K ∪ {C0} an SC term Cs:

Bs = XB, ⊥s = 0, �s = 1,

(¬C)s = Cs, (C1 � C2)
s = Cs

1 ∩Cs
2 .

We also set
T s = {Cs

1 ⊆ Cs
2 | C1 � C2 ∈ T }.

If T and C0 do not contain roles, then clearly C0 is satisfiable relative to (un-
circumscribed) T iff the SC sentence ∃X

(
¬(Cs

0 = 0) ∧
∧

α∈T s α
)
is satisfiable

where X is the sequence of variables occurring in T s or Cs
0 . To extend this to

an encoding of satisfiability of C0 relative to (uncircumscribed) T with roles, it
is sufficient to state that X∃P is empty iff X∃P− is empty for every role name P
and to state for functional roles R that the cardinality of X∃R is not smaller that
the cardinality of X∃R− . Thus, we extend T s to T s,e by adding the following SC
formulas to T s:

(¬(X∃P = 0) ↔ ¬(X∃P− = 0)),

for every role name P in K ∪ {C0}, and

|X∃R| ≥ |X∃R− |

for every role R with func(R) ∈ T . We prove that C0 is satisfiable relative to
T iff the SC formula ϕ = ∃X

(
¬(Cs

0 = 0) ∧
∧

α∈T s,e α
)
is satisfiable. First

let I be a model of T such that CI
0 	= ∅. Define an SC structure M based on

A = (2Δ,∩,∪, ·, ∅, Δ) by setting Δ = ΔI , XM
A = AI for all concept names A,

and XM
∃R = {d ∈ Δ | ∃d′ (d, d′) ∈ RI} for all roles R. It is readily checked that M

satisfies ϕ. Conversely, assume that a model M based on A = (2Δ,∩,∪, ·, ∅, Δ)
satisfies ϕ. Define I by setting ΔI = Δ,
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– AI = XM
A for all concept names A;

– P I = XM
∃P ×XM

∃P− for all roles P with neither func(P ) nor func(P−) in T ;
– and defining RI as a surjective function with domain XM

∃R and range XM
∃R−

if func(R) ∈ T (such a function exists since |XM
∃R| ≥ |XM

∃R− | for every role R
with func(R) ∈ T ).

One can check that I satisfies T and that CI
0 	= ∅.

To encode circumscription, we define a second translation Cm of every sub-
concept C in K ∪ {C0}. Cm is defined in exactly the same way as Cs except
that we use fresh SC variables YB instead of the SC variables XB used in the
translation Cs. We define T m and T m,e in exactly the same way as T s and T s,e

with XB replaced by YB.
Assume now that the ABox A is empty. Then we can encode satisfiability of

C0 relative to CircCP(K) in a straightforward way by considering satisfiability of
the SC sentence

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈T s,e

α ∧ ∀Y (Y <CP X → ¬
∧

α∈T m,e

α)
)

(1)

whereX is as above, Y is the sequence of variables occuring in T m and Y <CP X
stands for the conjunction of

XB = YB,

for each concept name B in F and B of the form ∃P or ∃P− with P ∈ F ,
∧

A∈M

((YA 	⊆ XA) →
∨

B∈M,B≺A

(YB ⊂ XA)),

and ∨

A∈M

((YA ⊂ XA) ∧
∧

B∈M,B≺A

(YB = XB)).

We now extend the encoding above to KBs with non-empty ABox A. To encode
the ABox, take for every individual name a ∈ Ind(A) an SC variable Xa and
define the set of SC formulas As as follows:

(A1) |Xa| = 1 for all a ∈ Ind(A), where |Xa| = 1 abbreviates the conjunction of
|Xa| > |0| and ∀X((X ⊂ Xa) → (X = 0)).

(A2) Xa∩Xb = 0 for a 	= b and a, b ∈ Ind(A). These formulas encode the unique
name assumption.

(A3) Xa ⊆ XA if A(a) ∈ A for a ∈ Ind(A).
(A4) Xa ⊆ X∃P if P (a, b) ∈ A for some b.
(A5) Xa ⊆ X∃P− if P (b, a) ∈ A for some b.
(A6) 0 = 1 if there exists a role R with func(R) ∈ T and a, b, b′ with b 	= b′ such

that R(a, b), R(a, b′) ∈ A.
(A7) If func(R) ∈ T and func(R−) 	∈ T , then let XR be the set of a ∈ Ind(A)

such that there exists b with R(a, b) ∈ A and let YR be the set of b ∈ Ind(A)
such that there exists a with R(a, b) ∈ A. Include

|X∃R \ (
⋃

a∈XR

Xa)| ≥ |X∃R− \ (
⋃

a∈YR

Xa)|
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in As. (Note that for such R we can remove from T s the formulas |X∃R| ≥
|X∃R− | since they are implied.)

Define Am analogously to As with XB replaced by YB (note that we do not
introduce fresh variables Ya since the interpretation of individual names is fixed).
Set Ks = (T s,e,As) and Km = (T m,e,Am). Now, it is readily checked that C0

is satisfiable relative to CircCP(K) if the following SC sentence is satisfiable:

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈Ks

α ∧ ∀Y (Y <CP X → ¬
∧

α∈Km

α)
)

(2)

We have proved the following result:

Theorem 2. Satisfiability of concepts relative to circumscribed DL-LiteFboolKBs
without minimized roles is decidable.

4 Decidability for ALCFI
We show decidability of concept satisfiability for circumscribed ALCFI KBs
without minimized and fixed roles. The proof is again by reduction to the theory
of set systems with a binary predicate expressing that two sets have the same
cardinality. Note that decidability of concept satisfiability for circumscribed KBs
without minimized and fixed roles has been proved using filtration in [6] for DLs
with the finite model property such as ALCI and ALCF . As an extension of
DL-LiteFbool, ALCFI does not have the finite model property.

Consider a circumscribe ALCFI KB K = CircCP(T ,A) where the pattern
CP = (≺,M, F, V ) has no minimized or fixed role names, and a ALCFI-concept
C0. We encode satisfiability of C0 relative to CircCP(K) as a satisfiability problem
for an SC sentence.

Take for every concept name B in K ∪ {C0} and any concept B of the form
∃P.C or ∃P−.C which occurs in K ∪ {C0}, an SC variable XB. Then define
inductively for every subconcept C of K ∪ {C0} an SC term Cs as before:

Bs = XB, ⊥s = 0, �s = 1,

(¬C)s = Cs, (C1 � C2)
s = Cs

1 ∩Cs
2 .

By sub(K ∪ {C0}) we denote the closure under single negation of the sub-
concepts that occur in K ∪ {C0}. A type t is a subset of sub(K ∪ {C0}) such
that

– ⊥ 	∈ t and � ∈ t;
– ¬C ∈ t iff C 	∈ t, for all ¬C ∈ sub(K ∪ {C0});
– C1 � C2 ∈ t iff C1, C2 ∈ t, for all C1 �C2 ∈ sub(K ∪ {C0}).

We use ts as an abbreviation for the SC term
⋂

C∈tC
s. To encode the behavior of

roles we, intuitively, decompose roles R into roles Rt,t′ such that two individuals
d, d′ are in relation Rt,t′ iff they are in relation R and d is in t and d′ is in t′.
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We cannot directly talk about Rt,t′ in SC and so we introduce variables denoting
the domain and range ofRt,t′ , respectively: for any pair t, t′ of types and any role
R introduce an SC variable XR,t,t′ . Intuitively XR,t,t′ stands for all individuals
which are in t and which are in the relation R to an individual in t′. Define T r

as the union of {Cs
1 ⊆ Cs

2 | C1 � C2 ∈ T } and the following SC formulas:

(a) ts ∩ XR,t′,t′′ = 0 if t 	= t′, for all types t, t′. These formulas state that an
individual in t cannot be in the domain of Rt′,t′′ for t 	= t′.

(b) ts ⊆
⋃

C∈t′ XR,t,t′ if ∃R.C ∈ t. These formulas state that if d is in t and
t contains some ∃R.C, then d must be in relation R to some d′ in t′ with
C ∈ t′.

(c) ts ∩XR,t,t′ = 0 if ¬∃R.C ∈ t and C ∈ t′.
(d) XR,t,t′ ∩XR,t,t′′ = 0 if R is functional and t′ 	= t′′.

Now we extend T r to T r,e by adding the following SC formulas to T r:

(¬(XP,t,t′ = 0) ↔ ¬(XP−,t′,t = 0)),

for every role name P in K ∪ {C0}, and

|XR,t,t′ | ≥ |XR−,t′,t|

for every role R with func(R) ∈ T . We show that C0 is satisfiable relative to T
iff the SC sentence ∃X

(
¬(Cs

0 = 0) ∧
∧

α∈T r,e α
)
is satisfiable where X is the

sequence of variables occurring in T r,e or Cs
0 .

First let I be a model of T such that CI
0 	= ∅. Define an SC model M based

on A = (2Δ,∩,∪, ·, ∅, Δ) by setting Δ = ΔI , XM
A = AI for all concept names

A, XM
∃R.C = {d ∈ Δ | ∃d′ ∈ CI and (d, d′) ∈ RI} for all ∃R.C ∈ sub(K,∪{C0}),

and

XM
R,t,t′ = {d ∈ (ts)M | ∃d′ ∈ (t′s)M and (d, d′) ∈ RI},

for all roles R and types t, t′. It is readily checked that M satisfies ϕ. Conversely,
assume that a model M based on A = (2Δ,∩,∪, ·, ∅, Δ) satisfies ϕ. Define I by
setting ΔI = Δ,

– AI = XM
A for all concept names A;

– P I =
⋃

t,t′ X
M
P,t′,t ×XM

P−,t,t′ for all roles P with func(P ), func(P−) 	∈ T ;

– RI is the union of surjective functions ft,t′ with domain XM
R,t,t′ and range

XM
R−,t′,t if func(R) ∈ T (where t, t′ range over all types).

One can check that I satisfies T and that CI
0 	= ∅.

To encode circumscription, we again define a second translation Cn of every
subconcept C in K ∪ {C0}. Cn is defined in exactly the same way as Cs except
that we use fresh SC variables YB instead of the SC variables XB used in the
translation Cs. We also introduce fresh SC variables YR,t,t′ for every role R and
types t, t′. Now define T n and T n,e in exactly the same way as T r and T r,e,
where the variables X are replaced by the corresponding variables Y .
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Assume again that the ABox A is empty. Then we can encode satisfiability
of C0 relative to CircCP(K) in a straightforward way by considering satisfiability
of the SC sentence

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈T r,e

α ∧ ∀Y (Y <a
CP X → ¬

∧

α∈T n,e

α
)
) (3)

where X is as above, Y is the sequence of variables occuring in T m and now
Y <a

CP X is obtained from Y <CP X by taking the equations XA = YA for
concept names A ∈ F only. (The remaining equations involving X∃R do not
make sense here.)

We extend the encoding above to KBs with non-empty ABox A. Take again
for every individual name a ∈ Ind(A) an SC variable Xa and define a set Ar of
SC formulas by taking the formulas in (A1), (A2), (A3), and (A6) from above
as well as the following:

– for all R(a, b) ∈ A and all types t1, t2 include

(Xa ⊆ ts1) ∧ (Xb ⊆ ts2) → (Xa ⊆ XR,t1,t2),

into Ar.
– Assume, as in (A7), that func(R) ∈ T and func(R−) 	∈ T . Let XR be the set
of a ∈ Ind(A) such that there exists b with R(a, b) ∈ A and let YR be the set
of b ∈ Ind(A) such that there exists a with R(a, b) ∈ A. Include for all types
t, t′ the formula

|XR,t,t′ \ (
⋃

a∈XR

Xa)| ≥ |XR−,t′,t \ (
⋃

a∈YR

Xa)|

into Ar.

Define An analogously to Ar with variables X replaced by the corresponding
variables Y . Set Kr = (T r,e,Ar) and Kn = (T n,e,An). Now, it is readily checked
that C0 is satisfiable relative to CircCP(K) if the following SC sentence is satisfi-
able:

∃X
(
¬(Cs

0 = 0) ∧
∧

α∈Kr

α ∧ ∀Y (Y <a
CP X → ¬

∧

α∈Kn

α
)
) (4)

We have proved the following result:

Theorem 3. Satisfiability of concepts relative to circumscribed ALCFI KBs
without minimized and fixed roles is decidable.

5 Decidability for DL-LiteRbool

We prove decidability of concept satisfiability relative to circumscribed DL-
LiteRbool knowledge bases with fixed roles and without minimized roles under the
additional assumption that no varying role is subsumed by a fixed role. In con-
trast to the previous two sections, our approach is to use a filtration-style tech-
nique to establish a finite (in fact, single exponential) model property. To capture
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the mentioned syntactic restriction, we call a circumscribed KB CircCP(T ,A) in
DL-LiteRbool role-layered if for each role inclusion R � S ∈ T either R ∈ F or
S ∈ V .

For a concept C0, ABox A, and TBox T , we denote by cl(C0, T ,A) the set
of subconcepts of concepts in C0, A, and T . The concept-size of C0 and a KB
(T ,A) is the cardinality of cl(C0, T ,A).

Lemma 1. Let C0 be a concept in DL-LiteRbool and CircCP(T ,A) a KB in DL-
LiteRbool that is role-layered and does not contain minimized roles. If C0 is satis-
fiable relative to CircCP(T ,A), then it is satisfied in a model J of CircCP(T ,A)
with |ΔJ | ≤ 2n + |Ind(A)|, where n is the concept size of C0 and (T ,A).

Proof. Let I be a model of CircCP(T ,A) satisfying C0. Set Ind
I(A) = {aI | a ∈

Ind(A)}. Define on ΔI the equivalence relation ∼ by setting d ∼ d′ iff

{C ∈ cl(C0, T ,A) | d ∈ CI} = {C ∈ cl(C0, T ,A) | d′ ∈ CI}

and d, d′ 	∈ IndI(A) or d = d′ (this is needed to respect the unique name as-
sumption). We use [d] to denote the equivalence class of d w.r.t. ∼. Let J be
the following interpretation:

ΔJ = {[d] | d ∈ ΔI}
AJ = {[d] | d ∈ AI}
PJ = {([d1], [d2]) | ∃d ∈ [d1], d

′ ∈ [d2] s.t. (d, d
′) ∈ P I}

aJ = [aI ].

We show that J is a model of CircCP(T ,A) that satisfies C0. It is standard to
show the following by induction on C:

Claim 1. For all d ∈ ΔI and C ∈ cl(C0, T ,A): d ∈ CI iff [d] ∈ CJ .

Claim 1 implies that J satisfies C0 and is a model of the KB (T ,A). To prove
that J is a model of CircCP(T ,A), it thus remains to show that J is minimal
w.r.t. <CP. Assume for a proof by contradiction that there exists a model J ′ of
T and A such that J ′ <CP J . Define I ′ as follows:

ΔI′
= ΔI

AI′
=

⋃

[d]∈AJ′
[d]

P I′
=

⋃

([d1],[d2])∈PJ′
[d1]× [d2] if P ∈ V

P I′
= P I if P ∈ F

aI
′
= aI .

Observe that, by construction, each fixed concept name A has the same inter-
pretation in I and I ′.
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Claim 2. Let d, d′ ∈ ΔI′
and let R be a role occurring in T . Then

1. if R ∈ V , then (d, d′) ∈ RI′
iff ([d], [d′]) ∈ RJ ′

;
2. if R ∈ F , then (d, d′) ∈ RI′

implies ([d], [d′]) ∈ RJ ′
.

For Point 1, assume first that R ∈ V . Let (d, d′) ∈ RI′
. By construction (d, d′) ∈

[d1] × [d2], for some ([d1], [d2]) ∈ RJ ′
. Clearly, [d1] = [d] and [d2] = [d′]. The

converse direction is by construction. For Point 2, assume R ∈ F and let (d, d′) ∈
RI′

. Then (d, d′) ∈ RI . By construction ([d], [d′]) ∈ RJ . Then, using R ∈ F and
the semantics it follows that ([d], [d′]) ∈ RJ ′

.

Claim 3: For all d ∈ ΔI′
and C ∈ cl(C0, T ,A): d ∈ CI′

iff [d] ∈ CJ ′
.

The proof is by induction on the structure of C, where the interesting case is
C = ∃R. If R ∈ V , Claim 3 follows directly from Point 1 of Claim 2. Assume
that R ∈ F . By Point 2 of Claim 2, d ∈ (∃R)I

′
implies [d] ∈ (∃R)J

′
. Conversely,

assume that [d] ∈ (∃R)J
′
. Clearly, we have that ([d], [d′]) ∈ RJ ′

, for some
[d′] ∈ ΔJ ′

. Since R ∈ F , ([d], [d′]) ∈ RJ , i.e. [d] ∈ (∃R)J . By Claim 1, d ∈ (∃R)I

and using that R ∈ F we obtain that d ∈ (∃R)I
′
.

We now prove that I ′ is a model of T and A. Indeed, if d ∈ CI′
1 \ CI′

2

for some C1 � C2 ∈ T , then, by Claim 3, [d] ∈ CJ ′
1 \ CJ ′

2 which contradicts
the assumption that J ′ is a model of T . Let R � S ∈ T and assume that
(d, d′) ∈ RI′ \ SI′

. If R and S are varying, by Point 2 of Claim 2 we obtain
that ([d], [d′]) ∈ RJ ′ \ SJ ′

in contradiction to J ′ being a model of T . If R and
S are fixed, then (d, d′) ∈ RI \ SI in contradiction to I being a model of T .
Finally, if R is fixed and S varying, by Point 2 of Claim 2, ([d], [d′]) ∈ RJ ′

and
Point 1 implies that ([d], [d′]) 	∈ SJ ′

, again a contradiction. These three cases are
exhaustive since our circumscribed knowledge base is role-layered. Therefore, I ′

is a model of T . That I ′ is a model of A follows directly from the construction
of I ′.

Finally, notice that for each A ∈ NC, A
I �AI′

iff AJ �AJ ′
, where � = ⊆,⊇.

Consequently, since M ⊆ NC, J ′ <CP J implies I ′ <CP I. Therefore, I is not a
model of CircCP(T ,A) and we have derived a contradiction. ��

The single exponential model property just proved implies the following de-
cidability result.

Theorem 4. Satisfiability of concepts relative to circumscribed role-layered DL-
LiteRbool KBs without minimized roles is decidable.

Note that we also obtain a NExpNP-upper bound for checking concept satisfi-
ability: given C0 and CircCP(T ,A) guess a model I with |ΔI | ≤ 2n + |Ind(A)|,
where n is the concept size of C0 and (T ,A) and then check using an NP-oracle
whether I is a model of C0 and CircCP(T ,A).

6 Open Problems

We briefly discuss some computational problems regarding DLs with circum-
scription that remain open.
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– First note that we have not proved any new results for circumscription pat-
terns with minimized roles. In particular, the decidability and complexity of
circumscribed reasoning in DL-LiteFbool and DL-LiteRbool with minimized roles
remains open.

– Our concern in this was paper was decidability of reasoning in circumscribed
DLs without the finite model property and/or fixed roles instead of a detailed
complexity analysis. Thus, the complexity of reasoning in circumscribed DL-
LiteFbool KBs with fixed roles (and without minimized roles), the complexity
of reasoning in circumscribed ALCFI KBs without fixed and minimized
roles, and the complexity of reasoning in role-layered circumscribed DL-
LiteRbool KBs without minimized roles remains open. For ALCFI, we con-
jecture concept satisfiability to be NExpNP-complete. Note that, in this case,
hardness follows from the NExpNP-lower bound for ALC established in [6].

– It remains open whether the condition of being role-layered is necessary for
obtaining the finite model property/decidability result for DL-LiteRbool.

– Finally, it would be of great interest to extend our results to more expressive
ontology and query languages and, for example, to consider the decidability
and complexity of conjunctive query answering relative to circumscribedKBs.
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