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ABSTRACT. The uniform first-order theory of ground tree rewrite graphs is thefs#l pairs consisting

of a ground tree rewrite system and a first-order sentence that holds gmaph defined by the ground
tree rewrite system. We prove that the complexity of the uniform firstrottteory of ground tree
rewrite graphs is iATIME(22”""™ O(n)). Providing a matching lower bound, we show that there
is some fixed ground tree rewrite graph whose first-order theory ésfoaATIME (22" ™, poly(n))
with respect to logspace reductions. Finally, we prove that there exigisdagiound tree rewrite graph
together with a single unary predicate in form of a regular tree languadetisat the resulting structure
has a non-elementary first-order theory.

1. INTRODUCTION

A ground tree rewrite system is a term rewrite system where rules do ntinorariables (neither
on the left-hand side nor on the right-hand side). So, rules replaceesslily subtrees. Ground tree
rewrite systems were first studied in the term rewriting community [7, 12, 1Bgrevthey are also
known as ground term rewrite systems.

Recently, ground tree rewrite systems were also studied in the contextifidateon of infinite
state systems [30]. The main motivation for this is that ground tree rewritensystan be seen as a
generalization of pushdown systems. These are a hatural abstraciegueitial recursive programs.
Rules of a ground tree rewrite system can be applied concurrently atetiff positions of a tree.
This allows to model recursive progams with the additional ability to spawn néthseads that are
hierarchically structured, which in turn may terminate and return some valdlesitgarents.

One of the most important and oldest decidability results for ground tresteesystems was
shown more than 20 years ago by Dauchet and Tison [13]: The transitiqgh @f a ground tree
rewrite system (called a ground tree rewrite graph in the following) hasidalde first-order theory.
Actually, Dauchet and Tison even showed that the first-order theoaygrbund tree rewrite graph
extended by the transitive closure of the edge relation is decidable (angsgis that first-order logic
with reachability is decidable for ground tree rewrite graphs). The psb&fauchet and Tison uses
a tree automata construction, which yields a non-elementary algorithm. Thstiedlde question
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of complexity. While the first-order theory of a ground tree rewrite gragibreled by the transitive
closure of the edge relation may have non-elementary complexity (this hoédslglfor the infinite
binary tree, which is a pushdown graph [42]), the precise complexity eofitht-order theories of
ground tree rewrite graphs remained open. As the main contribution of thier pae solve this
problem. We prove the following:

e The first-order theory of every ground tree rewrite graph belongsedactimplexity class
ATIME(22°""™  O(n)) (doubly exponential alternating time, where the number of alterna-
tions is bounded linearly), whereis the length of the input formula.

e There exists a fixed ground tree rewrite graph withAGHME (22"
first-order theory.

The upper bound AATIME(22"™, O(n)) even holds uniformly, which means that the ground tree
rewrite system may be part of the input, i.e.is the sum of the length of the input formula and the
length of the description of the ground tree rewrite system. Let us remarkhin@omplexity class
ATIME(22™™ poly(n)) appears also in other contexts. For instance, Presburger Arithmetic (the

first-order theory of N, +)) is known to be complete foXTIME (22" poly(n)) [2], see [11] for
similar results.

The upper bound oATIME (22" O(n)) is shown by the method of Ferrante and Rackoff [16].
Basically, the idea is to show the existence of a winning strategy of the duplinsa Ehrenfeucht-
Frais&e game, where the duplicator chooses “small” (w.r.t. to a predefined normgets. This
method is one of the main tools for proving upper bounds for FO-theoriesliVifle the upper bound
proof into two steps. In a first step, we will reduce the FO-theory fooaigd tree rewrite graph to the
FO-theory for a very simple word rewrite graph, where all word rewtrites replace one symbol by
another symbol. The alphabet will consist of all trees, whose size isdealdoy a singly exponential
function in the input size (hence, the alphabet size is doubly exponentla imput size; this is the
reason for the doubly exponential time bound). Basically, we obtain a exadthis alphabet from a
treet by cutting off some upward-closed s@tin the tree and taking the resulting sequence of trees.
Intuitively, the setC' consists of all nodes of ¢ such that the subtree rootednis “large”. Here,
“large” has to be replaced by a concrete vatwe= N such that a sequence ofrewrite steps applied
to atree cannot touch a node from the upward-closed’ se€learly,m depends om. In our context,

n will be exponential in the input size and so will. In a second step, we provide an upper bound for
the FO-theory of a word rewrite graph of the above form.

Perhaps it is worth mentioning that for proving our upper bound reseltcamnot make use of
Gaifman’s locality theorem [18] since the resulting formulas in Gaifman nororah ftan become
non-elementary in the size of the original first-order formula [14]. An elgary upper bound on
the size of Gaifman normal formulas was shown for structures of boudegete in [14]. However,
ground tree rewrite graphs have unbounded degree. This also s@redly Hanf's theorem [23]
does not seem to be of any use for our problem.

For the lower bound, we prove in a first step hardnes@fiXP (doubly exponential nondeter-
ministic time). This is achieved by an encoding 4" x 22") tiling problem. In this tiling problem,
we are given a wora of lengthn over some fixed set of tiles, and it is asked, whether this word can
be completed to a tiling of an array of sig?" x 22"), where the wordv is an initial part of the first
row. There exists a fixed set of tiles, for which this proble@NdEXP-complete. From this fixed set
of tiles, we construct a fixed ground tree rewrite graph such that therioipholds: From a given
word w of lengthn over the tiles, one can construct (in logspace) a first-order formulatattates
to true in our fixed ground tree rewrite graph if and only if the wards a positive instance of the

, poly(n))-complete
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(22" x 22") tiling problem. Our construction is inspired by [20], where it is shown thattioglel
checking problem for a fragment of the logic EF (consisting of thosedEfiilas, where on every
path of the syntax tree at most one EF-operator occurs) over groemdetwrite graphs is complete
for the classPNEXP. In a second step, we show that ANEXP lower bound can easily be lifted
to ATIME(22"""™  poly(n)). For this, we have to consider an alternating version of & x 22")
tiling problem.

We conclude the paper with a proof sketch for the following result: Theistsea fixed ground
tree rewrite graph together with a single unary predicate in form of a negaglanguage such that the
resulting structure has a non-elementary first-order theory. This ieslibwn by a reduction from
first-order satisfiability of finite binary words, which is non-elementary].[42should be noted that
the first-order theory of a pushdown graph extended by regulay pnadicates still has an elementary
first-order theory (it is an automatic structure of bounded degreeghtmnfirst-order theory belongs
to 2EXPSPACE by a result from [27]).

A short version of this paper appeared in [22].

2. RELATED WORK

2.1. Other decidability and complexity resultsfor ground treerewrite systems. Other important
algorithmic problems that are decidable for ground tree rewrite systems are:

e confluence [12, 37], which in fact can be decided in polynomial time [2]), 1

e reachability [7, 15} recurrent reachability [30, 31], and recurrent reachability with multiple
regular fairness constraints [44],

o fair termination [43], and

e model checking certain fragments of LTL [45, 44].

The decidability of first-order logic with reachability for ground tree rewgitaphs implies that model
checking of the CTL-fragment EF is decidable for ground tree rewraplys; the precise complexity
was recently shown to be non-elementary [20].

2.2. Pushdown graphs. As remarked above, ground tree rewrite systems generalize pushgiswn s
tems. Muller and Schupp proved that every pushdown graph (the trangiiéph of a pushdown
system) has a decidable monadic second-order (MSO) theory [36]. dA&ds first-order logic by
the ability to quantify over subsets of the universe. Most temporal logigs (€TL, CTL, modal
u~calculus) can be translated into MSO and are therefore decidable asted@wvn graphs. Precise
complexity results can be found in [5, 36, 49, 50].

Loding proved in [29] that a ground tree rewrite graph has boundedaviddk if and only if it is
a pushdown graph.

1Actua||y, Brainerd [7] showed that a set of trees is regular if and onlyigfthe set of trees that can be reached from a
single tree via a ground tree rewriting system, where both translation$fecéve. This generalizes a result ofiBhi for
strings.



2.3. Algorithmic limitations. Ground tree rewrite graphs do not share all the nice algorithmic prop-
erties of pushdown graphs. For instance, the infinite grid is easily seem fentbeddable into) a
ground tree rewrite graph, which implies that ground tree rewrite grajthsaw undecidable MSO-
theory exist. In fact, most linear-time and branching-time temporal logicsasitfiL and CTL have
undecidable model checking problems over ground tree rewrite grapti3Q, 44]).

Concerning the first-order theory, mild generalizations of ground treeiteesystems lead to
undecidable first-order theories. Undecidability holds for linear andarasing term rewrite systems
[46], right ground Noetherian rewrite systems [33], and linear cambmawrite systems [48]. In
all these papers, undecidability is shown for fragments of first-ordeéc lwigh only one quantifier
alternation.

2.4. Formalisms related to ground tree rewrite systems. Several other extensions of pushdown
systems with multithreading capabilities have been considered in [6, 24, B4AB®Ng these ex-
tensions, the class of process rewrite systems [34], which generalizd®btri nets and pushdown
systems by providing hierarchical structures to threads, seem to havedighections with ground
tree rewrite systems. Lugiez and Schnoebelen proved decidability otigditst-order logics on PA-
processes by using tree-automata techniques [32]. Mayr’s praaggtersystems hierarchy [35] was
recently refined via ground tree rewrite systems [21].

Recently, Lin extended ground-tree rewrite systems with a finite controthetitis acyclic but
with possible self-loops, so called weakly-extended ground tree rewsteras [28]. It is shown
that reachability, recurrent reachability and (the complement of) mo@ekatg deterministic LTL is
NP-complete for this extension.

The class of ground tree rewrite graphs is contained in the class of ttematic structures
[3], whose FO-theories are (non-elementarily) decidable. In [27],shisvn that (i) for every tree
automatic structure of bounded degree (which means that the Gaifmamtgapounded degree) the
FO-theory belongs toBXPTIME and that there is a fixed tree automatic structure of bounded degree
with a 3EXPTIME-complete FO-theory. Note that in general, ground tree rewrite graghsoaof
bounded degree.

2.5. Applications of the method of Ferrante and Rackoff. Recall that the method of Ferrante and
Rackoff is the main technical tool in our proof that the first-order thedigvery ground tree rewrite
graph belongs to the complexity cla&IME(22°""™, O(n)). Further applications of this technique
in computer science can be found in [40] (for the theory of queuesigi2®] (for nested pushdown
trees).

3. PRELIMINARIES

By Z we denote théntegersand byN = {0, 1, ...} the set ofnon-negative integerd-ori,j € Z we
define the intervali, j] = {i,7+ 1,..., 75} and[j] = [0, j].

For an alphabeti (possibly infinite), we denote witd*™ = A* \ {e} the set of all non-empty
words overA. The length of the wordv € A* is denoted byw|. For B C A, we denote witHw|p
the number of occurrences of symbols fr@rin the wordw.

Let f : A — B be a mapping. Fod’ C A, we denote withf[A’ : A" — B the restriction of
fto A'. For setsA, B,C (where A and B may have a non-empty intersection) and two mappings
f:A— Candg: B — C, we say thaff andg arecompatibleif f[(A N B) = g[(A N B). Finally,



for mappingsf : A — C andg : B — C with AN B = (), we definef Wg: AUB — C as the
mapping with(f W g)(a) = f(a) fora € Aand(f W g)(b) = g(b) forb € B.

3.1. Complexity theory. We will deal with alternating complexity classes, see [8, 38] for more de-
tails. Analternating Turing-machinés a nondeterministic Turing-machine, where the set of states
is partitioned into existential and universal states. A configuration with\zetsal (resp. existential)
state isacceptingf every (resp. some) successor configuration is acceptingltémationin a com-
putation of an alternating Turing-machine is a transition from a universi@ &iaan existential state

or vice versa. For functiongn) anda(n) with a(n) < t(n) for all n > 0 let ATIME(¢(n), a(n))
denote the class of all problems that can be decided on an alternating-matctgne in timei(n)

with at mosta(n) alternations. It is known tha&TIME(¢(n), t(n)) is contained in DSPACE(n)) if

t(n) > n[8].

3.2. Labelled graphs. A (directed)graphis a pair(V, —), whereV is a set ohodesand— C V' xV
is a binary relation. Aabelled graphis a tuple® = (V, %, {%| a € X}), whereV is a set ofnodes

¥ is a finite set ofactions and= is a binary relation o/ for all « € ¥. We note that (labelled)
graphs may have infinitely many nodes. kv € V, we definedg (u, v) as the length of a shortest

undirected path betweanandv in the graph(V, ,cs; ). Forn € N andu € V let S, (&, u) =

{v € V| dg(u,v) < n} be thesphereof radiusn aroundu. Moreover, foru;,...,u; € V let
Sn(B,u1,. .. uk) = Uj<ijcp Sn(®,u;). We identify S, (&, uq, . .., ui) with the substructure ab
induced by the se$,, (&, u1, ..., u;), where in addition every; (1 < i < k) is added as a constant.
For two labelled graph&; and®- with node set; andVs, respectively, and nodes, . .., ux € Vi,
v1,. ..,k € Vo, we will consider isomorphismg: S, (&1, u1, ..., ug) = Sp(H2,v1,...,vx). Such
an isomorphism has to mag to v;. We write S, (&1, u1, ..., ug) = Sp(Ba,v1,. .., vg) if there is an
isomorphismf : S, (&1, u1, ..., ur) = Sp(Ba,v1, ..., vk).

Lemma 3.1. Let &, &, be labelled graphs with the same set of actions and nodelgeasnd V5,
respectively. Lewt € VF, v € VF, v € Vi, andv € Va such thatu ¢ Sp,y1(®;,w) and
v & SQnJrl(@Q,@). Finally, let f : Sn(ﬁl,ﬂ) — Sn(ﬁg,@) and f, : Sn(Qﬁl,u) — Sn(052,v) be
isomorphisms. Thefiw ' : S, (&1, u,w) — Sp(B2,v,7) is an isomorphism as well.

Proof. The lemma is obvious, once one realizes that the conditignSs,, +1(®1, %) implies that the
spheresS,, (61, u) andS, (81, u) are disjoint and that there is no edge between the two spheres (and
similarly for the spheres,, (&2, v) andS, (&2, v)). ]

Later, we have to lift a relatior> on a setA to a larger set. We will denote this new relation

again by—. Two constructions will be needed. Assume thats a binary relation on a set and let

A C B. We lift — to the setB™ of non-empty words oveB as follows: For alk,,v € BT, we have

u — v if and only if there arer,y € B* anda, b € A such thatt — b andu = zay, v = xby. Note
that this impliegu| = |v|. The second construction lifts C A x A from AtoN x A as follows: For
a,b € Aandm,n € Nlet (m,a) — (n,b) if and only if m = n anda — b. Note that(N x A, —)
consists ofYy many disjoint copies of A, —). Moreover,((A U {$})* \ {$} T, —) (where$ ¢ A'is

a new symbol) is isomorphic tdN x A1, —).

Example 3.2. For the relation— = {(a,b), (b,a)} the corresponding relation dm, b} is shown
in Figure 1. The relation- lifted to N x {a, b} is simply the disjoint union of all 2-cycles

(a,n) Z(b,n)
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Figure 1: A finite portion of the relations from Example 3.2 extended {@, b} .

foralln € N.
For a labelled grapts = (V, %, {%] a € ¥}), we define the labelled graph
et = (V2 {Slae D). (3.1)

Note that by the above definitiod; is lifted to a relation or// .

3.3. First-order logic. We will consider first-order logic with equality over labelled graphs. Thus,
for a setX of actions, we have for each € ¥ a binary relation symbak(z,y) in our signature.

The meaning ofi(z,y) is of coursex —*» y. If @(x1,...,z,) is a first-order formula with free
variablesty, ..., z,, ® = (V,%,{%| a € £}) is alabelled graph, and, . . . , v, € V, then we write
& = (v, ...,v,) if p evaluates to true i®, when variabler; is instantiated by; (1 < i <n). The

first-order theoryof a labelled transition grap® is the set of all first-order sentences (i.e., first-order
formulas without free variableg) with & = . In the final Section 6, we will consider the first-order
theory of a labelled graph with an additional unary predicate. qummtifier rankof a first-order
formula is the maximal number of nested quantifierspinWe will need the following well known
lemma, which goes back to work of Fischer and Rabin [17].

Lemma 3.3. LetX be a set of actions. Given a first-order formulér, y) of quantifier rankqr(6)

and a binary-coded integer (let m be the number of-bits in the binary representation gJ, one
can compute in logspace a first-order formélgz, y) of quantifier rankO(log(j) + qr(6)) and size
O(m - log(j) + m - |6]) such that for every labelled graph = (V, %, {%| a € £}) and all nodes
u,v € V we have:® = 6/ (u,v) if and only if there is a directed path of lenggHrom « to v in the
graph(V,{(s,t) | & = 0(s, 1)}).

Proof. Before we defing’ (z,y), let us inductively define for each € N a formula(z,y) such
that for allu, v € V we have® = vy (u,v) if and only if there is a directed path of leng2h from u
tov in the graphV, {(s,t) | & = 6(s,t)}). We define

Yo(x,y) = 6O(x,y), and
Vp(z,y) = EIzVu,v(((u =zANv=2)V(u=zAv= y)) — wkl(u,v)> for k > 1.

Note that the size of(z,y) is O(k + |0]) and the quantifier rank & + qr(6).
Let U C N be the set of all positions of the binary representatiof whose bit is set td, i.e.,

j =2 Letm = |U| and leth, ..., h, be some enumeration &f. We can now define
07 (x,y) as
0 (x,y) = I, Tyme <x1 =T N Tpr1 =Y A /\ whi($i,$i+1)>.

i€[1,m]
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From the binary representation gfwe can easily comput# (z, 7). Moreover, the size ¥/ (z,y) is
bounded byO(m - log(j) + m - |#|) and the quantifier rank is bounded ®ylog(j) + qr()). [

One of most successful techniques for proving upper bounds focdimplexity of first-order
theories is the method of Ferrante and Rackoff [16]. We will apply this meith&kction 4.2. The
following result is shown in [16f.

Theorem 3.4. Let® be a labelled graph, and I8t be the set of nodes &f. Assume that for every
nodev € V we have a normu| € N (in our application,V will be a set of words and the norm
of a word will be its length). Let,, = {v € V | |v|] < n}. Moreover, fork,¢ > 0, let =4, be
an equivalence relation on the set and letH : N> — N be a function such that the following
properties hold for all;, ¢ € N, @,7 € V*:

(a) Ifw =5 v, thenu andv satisfy the same quantifier-free formulas in the structbire

(b) If @ =, vandl > 0, then for allu € V there exist®) € Vi, ¢) With (7, u) =g11,-1 (U, v).
Then, for every quantifier-free formuta(zo, ..., x¢) and all quantifiersQo,...,Q, € {3,V} we
have thath = Qoxo - - - Quxy : Y (o, ..., xz,) if and only if

& |= Qoo € Vig,0@171 € Vi(ie—1) -+ Qewe € Vo) = (o, - -+, T0).
We will use Theorem 3.4 in Section 4.2, where the functib(k, ¢) will be exponential irk + ¢.

3.4. Trees. Let < denote the prefix order od*, i.e.,z < y for x,y € N* if there is some: € N*
such thaty = xz. A setD C N* is calledprefix-closedf for all z,y € N*, x < y € D implies
x € D. Aranked alphabeis a collection of finite and pairwise disjoint alphabelts= (A;);c(y) for
somek > 0 such thatd, # 0. For simplicity we identifyA with Uie[k] A;. A ranked tregover the
ranked alphabet) is a mapping : D; — A, whereD, C [1, k]* satisfies the following:

e D, is non-empty, finite, and prefix-closed, and

e for eachz € D, with t(x) € A; we haverl, ..., xi € D, andxj ¢ D, for eachj > i.
We say thatD, is thedomainof ¢ and call its elementsodes In caset(x) € A, for some noder,
thenz1 is theleft childandz2 theright child of z. A leafof ¢ is a noder with t(x) € Ap. Aninternal
nodeof ¢ is a node, which is not a leaf. We also refeeta D, as theroot of t. By Trees 4 we denote
the set of all ranked trees over the ranked alphabdDefinesize(t) as the number of nodes in a tree
t. Itis easy to show that the number of all trees froraes 4 of size at most: is bounded by A|™.

Example 3.5. AssumeAy = {a,b}, A; = {g}, andAs = {f}. Figure 2 shows a tree € Treesy
with size(s) = 11. The domainD; of this tree is
{e,1,2,11,12,21,22, 111,121, 1211, 221}.
Let ¢t be a ranked tree and letbe a node of. For eachr € [1,k|* we definexD, = {zy €
[1,k]* | y € D;} andz~*D; = {y € [1,k]* | zy € D;}. By t* we denote theubtree ot with root
z, i.e., the tree with domaim,,. = 2~ D, defined ag**(y) = t(zy). Lets,t € Trees4 and letx be

a node oft. We definet[z/s] to be the tree that is obtained by replacirgin ¢ by s, more formally
Dt[z/s} = (D¢ \ D) U zDg with

) ty) if y € D\ xDya
te/slly) = {s(z) if y =xzwith z € D;.

2The actual statement in [16] is stronger, but for our purpose theavesthktement in Theorem 3.4 is sufficient.
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For two ranked trees andt, let diff(s,t) = |Ds \ D;|. Thusdiff(s,t) is the number of nodes that
belong to the trea but not to the tree.

Example 3.6. Consider the tree from Figure 2 and the treefrom Figure 3. We have
D\ D; = {11,12,22,111,121,1211, 221}
and henceliff (s, t) = 7.

Let C be a prefix-closed subset 6. We define the string of subtreesC as follows: IfC = (),
thent\ C = t. If C # (), thent \ C = t1 ... t+'m wherevy, ..., v, is a list of all nodes from
((C -N) N Dy) \ C in lexicographic order. Intuitively, we remove from the trethe prefix-closed
subset” and list all remaining maximal subtrees. Foe N and a treg we define the prefix-closed
subseup(t,n) C D, as

up(t,n) = {v € Dy | size(t*’) > n}.
Note thatt \ up(t,n) is a list of all maximal subtrees of size at mesin ¢, listed in lexicographic
order.

Example 3.7. Consider the tree from Figure 2. Then
C={e1,2,12} C D,
is prefix-closed. We have
s\ C = g(a), g(b),a,g(a)
(here, we denote trees by their corresponding term expressionsyeagedparate the trees in the se-
quences \ C with the symbol “,”). Moreover, we hav€' = up(s, 2).



Atreet € Treesy is achainif D, # {¢} and for every internal node € D, there is at most
one childui of » such thatui is internal. Hence, a chainhas a unique maximal (with respect to the
prefix relation) internal nodmax(¢) € N*. Note that a chain consists of at least two nodes.

Example 3.8. The treef in Figure 3 is a chain witlnax(¢) = 2111.

Lemma 3.9. Let A be a ranked alphabet and leinks = {m € N | m > 1, A,,, # (0}. Then, for all
n > 1, the following are equivalent:

(a) There is a chain € Trees 4 with exactlyn leaves.
(b) Thereis a tree € Trees, with exactlyn leaves.
(c) There exist numbers,, € N (for eachm € ranks) suchthatn =1+ > dp, - (m —1).

méEranks M

Proof. Implication (a) = (b) is trivial. Now, assume (b) and lete Trees4 has exactly leaves.
We show (c) by induction on the size of We distinguish two cases. The case= 1 is clear; set
d,, = 0 for all m € ranks. Now, assume thdathasn > 2 leaves. Then, there must exist an internal
nodeu € D, such that all children ofi are leaves. Let < a < n be the rank of the symbo(u). By
replacingu by a leaf (labelled with an arbitrary constant frodp), we get a strictly smaller tree with
n — (a — 1) many leaves (note that= 1 is possible). Since < n we haven — (a — 1) > 1. By
induction, there exisf,,, € N (m € ranks) suchthate — (a —1) =1+, dy - (m —1). Thus,
we haven =1+ (do +1) - (@ = 1) + 3, cranks\ {a} @m - (M — 1).

Finally, for the implication(c) = (a), assumethat =1+ . d,, -(m—1). Take a chain
t that consists 0f . ....«s m internal nodesq,,, of which are labelled with a symbol of ramk. All

other nodes are leaves. It is a simple observationtthas exactly: leaves. ]
The following lemma follows directly from Lemma 3.9.

Lemma 3.10. Let A be a ranked alphabet and lednks = {m € N | m > 1, 4,, # (0}. Then,
for every treet € Treess and every prefix-closed subs@tof D, the following holds, where is
the length of the string \ C: There exist numberg,, € N (for eachm € ranks) such thatn =

1+ ZmEranks A - (m - 1)'

3.5. Ground tree rewrite graphs. A ground tree rewrite system (GTRS)tupleR = (A, %, R),
whereA is a ranked alphabe}; is finite set of actions, an® C Trees4 x X X Trees4 Is a finite set
of rewrite rules. A rule(s, a, s) is also written ag — s’. Theground tree rewrite grapllefined by
Ris

B(R) = (Treesa, %, {-| a € B}),
where for eacl: € ¥, we havet - #' if and only if there exist a rul¢s - s') € R andx € D,
such that'* = s andt’ = t[z/s'].

Example 3.11. We define a GTRRR = (A4, %, R) as follows. Let4, = {a,b}, A1 = {g}, and
Ay ={f}, X = {a,b}, and letR consist of the following two rules:

a % g(a), bl g(b).

Take a tre€(ay, as, ..., a,), whereay, ..., a, € {a,b}, that does not contain a subtree of the form
g(a) or g(b). Then, the (weakly) connected componentgfR ) that containg(ay, as, ..., a,) con-
sists of all trees of the form(g* (a1), "2 (az), ..., g (a,)) for iy, ...,i, > 0. These trees form an
n-dimensional grid, where edges in dimensior j < k are labelled withu;. Figure 4 shows the
connected component &f(R) that containgf(a, b).
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(glo(@),0) —b+ f(g(g(a)).9() —L> F(g(g(a)).9(g(b))

F(g(a),b) ——b—+ £(g(a),g(6) —L» F(9(a),9(g(®)))

F(ab) b+ f(a,g(b) —L—+ F(a,g(a(0)))

Figure 4: A finite part of the grap#(R)

The next two lemmas are obvious:

Lemma3.12. LetR = (A, %, R) be a GTRS and let be the maximal size of a tree that appears in
R. Lets andt be ranked trees such thdg ) (s, t) < n. Thensize(t) < size(s) + 7 - n.

Lemma3.13. LetR = (A, %, R) be a GTRS and let be the maximal size of a tree that appears in
R. Lets andt be ranked trees such thdiff(s,t) > r - n. Thendgg)(s,t) > n.

Recall the definition of the graphi* from (3.1).

Lemma3.14. LetR = (A, X, R) be a GTRS and let be the maximal size of a tree that appears in
R. Lett be aranked treep € N, and letC C up(¢,r - n) be prefix-closed. Then we have

Su(B(R),t) = Su(&(R)",t\ C).
Proof. Lett \ C = t;---t,,. Hence, there is a treewith m leaves such that results froms by
replacing the™ leaf of s by ¢; (1 < i < m), let us writet = s[ty, ta, ..., t,] for this. Recall that the
subtree rooted in a node fro@i C up(t,r - n) has size strictly larger than- n. Therefore, a node
from C cannot be accessed by doing at mosewrite steps. Hence, every tréec S, (&(R),t) can
be written (uniquely) ag’' = s[t},t,,...,t,,]. Moreover, the mapping — t|t,---t,, defines an
isomorphism fromS,,(6(R),t) to S, (&(R)™,t\ C). O

Remark 3.15. Note that if the wordw € Treesj results from the string\ C' by permuting the trees
in the string, then we still havg, (B(R),t) = S,(B(R)T, w).

The main goal of this paper is to study the complexity of the following set thataliéhe uniform
first-order theory of ground tree rewrite graphs

{(R,¢) | R =(A,%, R)isaGTRSy is an FO-sentence over the signatur&gfk ), &(R) = ¢}.

4. AN ATIME(2Z*"™ O(n)) UPPER BOUND

In this section we will prove the following result:
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Theorem 4.1. The uniform first-order theory of ground tree rewrite graphs belonghéccomplexity
classATIME(27*™  O(n)).

It suffices to prove Theorem 4.1 for the case that the underlying daalghabetA contains a
symbol of rank at least two. A ground tree rewrite graph, where all sygnibave rank at most 1
is in fact a suffix rewrite graph on words. Such a graph is first-orderpnetable in a fulll’|-ary
treel™ (with I" finite), where the defining first-order formulas can be easily computedl ihe suffix
rewrite system. Finally, the first-order theory of a full tdge(with || > 2) is complete for the class
ATIME(2°™ O(n)) (under log-lin reductions) [11, 47].

The proof of Theorem 4.1 will be divided into two steps. In a first stepwilereduce the FO-
theory for a given ground tree rewrite graph to the FO-theory for a sienple word rewrite graph of
the form® ™, where® is a finite labelled graph. Note thatlif is the set of nodes ab, thenV ™ is
the set of nodes ab™. Moreover, every edge i " replaces a single symbol in a word by another
symbol. In our reduction, the size of the 3étwill be doubly exponential in the input size (which
is the size of the input formula plus the size of the input GTRS). In a sedepdwe will solve the
FO-theory of a simple word structugg® on an alternating Turing machine. More precisely, we will
show the following result:

Theorem 4.2. There exists an alternating Turing-machifé, which accepts precisely those pairs
(&, ¢), where® is a finite labelled graph ang is an FO-sentence over the signature@®fwith
&t = ¢. Moreover,M runs in timeO(n‘*! - |¢|), wheren is the number of nodes @f and/ is the
quantifier rank ofp. Finally, the number of alternations is bounded®y).

We prove Theorem 4.2 in Section 4.2. Together with our first reductioepiem 4.2 yields
Theorem 4.1.

4.1. Proof of Theorem 4.1. In this section, we will prove Theorem 4.1. L& = (A,%, R) be a
GTRS over the ranked alphabdtand letr be the maximal size of a tree that appearsiin Let
® = B(R) and lety be an FO-sentence of quantifier rafik 1 over the signature ab. We want to
check, whethe# |= ¢. Define the sets

ranks = {meN|m>1, A, #0},
M = {1+ Z dp, - (m —1) | dp, € N for m € ranks}.
me&ranks

Note that by Lemma 3.9, we hawec M if and only if there exists a tree (or chaih¥ Trees4 with
exactlyn leaves. Also note that/ = N \ {0} in caseA; # 0. Let

p = max(ranks) > 2
denote the maximal rank of a symbol fran We define a function

int: M — NU{oo}

as follows: Letm € M. If A; # 0 (i.e., there exists a unary symbol), then we isetm) = oc.
If A1 = 0, then letint(m) be the maximal number of internal nodes in a ttee Trees4 with
exactlym leaves (this maximum exists #; = 0; in factint(m) < m — 1). The intuition behind
settingint(m) = oo in caseA; # () is that there exist arbitrarily large trees withleaves. Note that
int(1) = 0.

Lemma4.3. For everym € M we havent(m) > 7.

—_
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Proof. It suffices to show the lemma for the cade = (). In this case, the lemma can be shown by
induction onm. The casen = 1is clear. Letm € M \ {1} and lett € Trees4 be a tree withm
leaves andnt(m) many internal nodes. Let € D, be an internal node such that all childrenucdre
leaves. Let(u) € A, with ¢ > 2. If we replaceu by a leaf, we obtain a tree witht(m) — 1 many
internal nodes angh — ¢+ 1 € M many leaves. We must haire(m — g+ 1) = int(m) — 1 (if there
would be a tree withn — ¢ + 1 leaves and more thant(m) — 1 many internal nodes, then we would
obtain a tree withn leaves and more thant(m) many internal nodes by replacing an arbitrary leaf
by a node withy children). Moreover, by induction (note that- 2), we havent(m —q¢+1) > %.
Hence, we geint(m) > 2= 4 1 = ==L > ™ (sincep > g). O

Lemma 4.4. Assume thatl; = (). For everym € M there exists a chain with leaves andnt(m)
many internal nodes.

Proof. Letm € M. By definition, there exists a trgec Trees with m leaves andnt(m) internal
nodes. It is easy to restructurénto a chain so that the number of leaves and the number of internal
nodes is not changed. More precisely, take atreef (¢, ...,t,) (in term notation) withm leaves
andint(m) internal nodes, which is not a chain. By induction, we can assume thatieye < i < n)
is either a chain or the constamtc A, (for some arbitrarily chosea € Ag). Sincet is not a chain
there existl < ¢ < j < n such that;; andt; are chains. Choose an arbitrary chilcf the the
maximal internal nodenax(¢;) of the chaint;; hencez is a leaf oft;. Take the tree
t/ = f(tl, . ,ti_1,ti[x/t]‘],ti+1, . ,tj_l, a,tj+1, . ,tn).
This tree has the same number of leaves and internal node€astinuing this way, we finally obtain
a chain. ]
For numberd < i < jlet
Tli,j] = {t € Treesa | i <size(t) < j}.

For0 <: < /let

o(i)=L-r-7-4". ((p—l)or-4i+1)+p-r'4i <r?.p.200), (4.2)
Note that we have ‘ '

o(i+1)>0(i)+p-r-3-4>0()+r-3-4 (4.2)
forall0 <7 < /. Let
U=T[1,0) +7r-p-4Y.

Moreover, for every) < i < £ let

U = T[l,0(d)] CU,

V; = T[1,r-41CU, (4.3)

Wi = {alur,...,ug) | ¢> 1,0 € Ag,ur,...,uq € Vi}\ V; CU. (4.4)
Note thatsize(t) < r - p-4' + 1 forallt € W; andV; N W; = (). We consider the séf as a finite
alphabet and the set§, V;, andWW; as subalphabets. Note that

U| < |AleOFrpa” (4.5)
Define the language
Z={weU"||w €M} (4.6)

over the alphabdt’. Note thatZ = U™ in caseAd, # ). On the se{N x Z) U U we define a labelled
graph&; with label set as follows: Take an actiom € Y. By our general lifting constructions from
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Section 3.2, the binary relatiof> on Trees 4 is implicitly lifted to a binary relation oril'rees*Aj and
N x Trees}. Since(N x Z) NU = §, % can be viewed as a binary relation x x Z) U U; simply
take the disjoint union of the relations ¢N x Z) andU. Finally, we define th&-labelled graph

G =((Nx2)uU, B, {Z]oex)). (4.7)
Forawordw = wjus -+ u, € U* with uq, ..., u, € U we define

n
Jwl = size(us).
=1

We define the sets

Zi = AweV;W,ViNZ||w|+int(Jw]) > o(4)}, (4.8)
Note thatZ; = V*W,;V;*NZ in caseA; # () (clearly, we set+o0o = oo for every numben). Assume
that the first-order sentengeis of the formQz, -+ Q11 Qoxo : ¥, whereQy, ..., Q, € {¥,3}
andq is quantifier-free. Fob < i < ¢—1 and elements;;1,...,s, € (N x Z)UU let us define the

set
Li(sit1,---,80) = Li US54 (61, Si41,- - -, 50).

We define a first-order sentenge (with quantifiers relativized to the seis(s;1, ..., s¢)) over the
signature of5; as
o1 = Qure € Ly Q1701 € Ly—1(¢) -+ Qozo € Lo(21,...,20) : 9. (4.9)

We want to show tha®s |= ¢ if and only if §; = ;. For this, we need the following lemma, which
is the main technical contribution in this section. The reader might skip the ptdio$t reading.

Lemma4.5. Assume that

e 0 <i <Y,

e 5 = (Si+17~- ,Sg) S (([N X Z) U U)e_i with 8 € Lj U 53,4,7'(61,83'_;,_1,... ,Sg) for all
Jeli+1,4,

o t= (tig1,.--,te) € Treesﬁ_i, and

o f:5,11(61,5) — Syi+1(®,1) is an isomorphism such thgt.S,i+1(S1, s;) is the identity
forall j € [i+ 1,4 witht; € Ujyq 0rsj € Uiyq.

Then, the following holds:

(a) Forallt; € Trees, there exists; € L; U S5.4:(61,3) and an isomorphism : S, (61, s;,5) —
S,i(®,t;,) such thatf andg are compatibld and g[S,: (&1, s;) is the identity for allj € [i, /]
witht; € U; or s; € U;.

(b) Forall s; € L; U S3,4i(61,5) there exists; € Trees4 and an isomorphismg : S, (61, s:,5) —
S,i(®,t;,t) such thatf and g are compatible ang[S,: (&1, s;) is the identity for allj € [i, /]
witht; € U; or s; € U;.

Before we prove the lemma, let us provide some intuition. For case (a) weasiltdlly distin-
guish two cases: In caseis “close” to some tree in the tuple then the simulating; can safely be
chosen ag; itself. In caset; is “far” to all trees int, we distinguish two cases: Either the sizetpf

exceeds (¢) from (4.1) or not. If|t;| > o (), thens; will be chosen as a pair frofm} x Z; for some
fresh numben that does not appear as a first component of any eleméntind where the second

SRecall the definition of compatible functions from the beginning of Section 3.
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component of; consists basically of; \ C for some prefix-closed subsétof ¢;’s nodes. Intuitively,
this means that; does not have to be “too big” in order to simulate only “small” subtrees of;
have to be accounted for. Lemma 3.14 will be crucial. In dg$e< (i), we can prove that we can
sets; = t; € U;. For case (b) we can proceed similarly, but the main crux is that for daofeat
s; € N x Z; we can build a tre¢; € Trees,4 such that the spheres of radifsarounds; andt; are
isomorphic. For building the latter trees, we have to distinguish the case #wheh () and the case
whenA4; = 0.

Proof. Let f : S;i+1(61,5) — Sui+1(8,1) be an isomorphism such th#fS,i+1(S1, s;) is the
identity for alli +- 1 < j < ¢ with t; € U;q ors; € U;4y. Let us first prove statement (a). Let
t; € Trees 4. We distinguish two cases:

Case 1t; € S3.4:(®,t). Note that this implies that belongs to the range of the isomorphigrand
that

Syi(B,t;,t) C Sy (6,1).
Then,weset; = f~1(t;) € S54:(S1,5). We defingy as the restriction of to the setS,: (&1, s;,35) C
Syi+1(61,5). Now, assume that € U, i.e.,size(t;) < o(i). We have to show that[Sy: (&1, s;) is
the identity. Lett; (i + 1 < j < ¢) such thatlg (¢;,¢;) < 3 - 4°. With Lemma 3.12 it follows

. . (4.2)
size(t;) <size(t;) +r-3-4"<o(i)+r-3-4 < o(i+1).

Hence,t; € Uiy and f]Si+1(S1, s;) is the identity. Sincels, (s, s;) = de(ti,t;) < 3 - 4%, we
haveS4i(61, Si) - S4¢+1(61, Sj). It follows thathS4¢(61, Si) is the identity. |f8i e U, then we
can argue analogously.

Case 24; ¢ S3.4:(®,t). We will find s; € L; and an isomorphisifi’ : S, (&1, s;) — Sy (8, t;) such
thats; & S3.4:(S1,3). Then, Lemma 3.1 implies that= (f[S4:(&1,3))w f is an isomorphism from
S4i (61, 84,5) 10 54 (8, t;, t), which is compatible withf. Moreover, we will show that if; € U; or
s; € U;, thenf’ is the identity.

In order to finds;, lett; \up(t;, 7-4%) = uy - - - u,,. Recall that the latter string is the lexicographic
order of all maximal subtrees of whose size is at most- 4°. Hence size(u;) < r - 4% for eachj,
l.e.,u; € V; (see (4.3)).

Case 2.1size(t;) > o(i). We must have; # u;, because otherwisgize(t;) < r - 4° < (i), which
is a contradiction. Therefore, there must exisK j7 < m, asymbola € A of rankqg > 1, and a
prefix-closed subse&t C up(t;,r - 4') such thatv(uy, . .., u;+4—1) € W; (see (4.4)) and

tz‘ \ C = Uq - uj_la(uj, e ,Uj+q_1)Uj+q Uy
Letw = ¢; \ C. By Lemma 3.10, we haviev| € M. By the definition of the mappinmt, we have
|w] + int(Jw]) > size(t;) and hencdw]| + int(Jw|) > o (i) by assumption. Thus, we getc Z; by
definition of Z; in (4.8). Choose a number e N such that: does not appear as a first component of
a pair from{s;11,...,s¢} N (N x Z). Finally, we set

S; = (n,w) ENx Z; CL;.

Due to the choice of:, we haves; ¢ S,(61,5) for all p. Moreover, with Lemma 3.14 we get
S (61, 8i) =2 S4(8,t;). Finally,size(t;) > o (i), i.e.,t; ¢ U;, ands; € U.
Case 2.2.size(t;) < o(i), i.e.,t; € U;. We sets; = t; € U;. Note thatS,:(®,t;) C U, which
implies S4i (&1, s;) = S4:(®,t;). Assume that; € S5,i(61,5). We will deduce a contradiction.
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Leti+1 < j < ¢such thatlg, (s;,s;) < 3- 4, Sinces; € U, we must have; € U as well (there is
no path inG; between the sef§ andN x 7). Moreover, with Lemma 3.12 we get

: (4.2)
size(s;) <size(s;) +r-3-4'<o(i)+r-3-4" < o(i+1),
i.e., s; € Uiyq. This implies thatf[Syi+1 (&1, s;) is the identity. Hencel; € S3.4:(®,¢;), a con-
tradiction. We can finally choose fgt the identity isomorphism 084 (&1, s;) = S4i(8,t;). This
proves (a).
Let us now prove (b). Let; € L; U S5.4:(S1,3). Again, we distinguish two cases.
Case l.s; € S3,4i(61,5). This implies
S4i(S1,84,5) C Syir1(61,3).
We sett; = f(s;) € S5.4:(®, ). We can conclude as in Case 1 for the proof of point (a) above.
Case 2.s; ¢ S5.4i(61,3). Hence,s; € L;. We will find ¢; € Trees4 and an isomorphisnf’ :
S4i(61,8i) — S4u(®,t;) such thatt; ¢ Ss.4:(8,t). Then, Lemma 3.1 implies that the mapping
g = (f154i(61,3)) W f' is an isomorphism fron ;i (&1, s;,35) t0 S, (&, t;,t), which is compatible
with f. Moreover, we will show that if; € U; or s; € U;, thenf’ is the identity.
Case 2.1.s; € U; C Treesy. We sett; = s; € U;, which impliesSy:(®,¢;) € U. Thus,
Syi(61,5:) = Sy(®,t;). Assume that; € S5.,:(®,%). We will deduce a contradiction. Let
i+ 1 < j < {suchthatls(t;,t;) <3-4'. Lemma 3.12 implies

. . (4.2)
size(t;) <size(t;) +7-3-4"<o(i)+r-3-4" < o(i+1).

This implies thatf [.S,+1 (&1, s;) is the identity. Hences; € S3.4:(61, s5), a contradiction. We can
finally choose forf’ the identity isomorphism 08 (&1, s;) = S4i (8, ;).

Case2.2s; € Nx Z;. Lets; = (n,uy - Up) Withuy, ..., up, € V,UW;,m € M, and|uy - - - up |+

int(m) > o(i). There is exactly on¢ < j < m with u; € W;. Letu; = a(vq,...,vq) With g > 1,
a € Ay andvy, ..., v, € V;. Define the string
W= UL Uj_1V] - - Vglhjg] - - U (4.10)

of lengthm + ¢ — 1. Sincem € M, we also haven + ¢ —1 € M.

Case 2.2.1A; # (). Then, we can choose fora tree with the following properties:

o t; \ up(t;,r - 4') = w. For this, we connect all trees, . .., u,, to one tree using a chain
of symbols of rank at least 2, starting fromy € W;. Sincem € M, this is possible by
Lemma 4.4 (applied to the ranked alphalet A,).

o t; ¢ S3.,4i(®,1) andsize(t;) > o(i). This can be enforced by adding a long enough chain of
unary symbols to the root.

With Lemma 3.14, the first point implieS,: (&1, s;) = S, (8, t;). Moreover, sincaize(t;) > o (i),
we havet; € U;.
Case 2.2.2A; = () and thusint(m) < co. Note thatjw| = |uy - - - un| — 1, i.e.,
lw] + int(m) = |uq - - - up| + int(m) — 1 > o(4).
Every tree in the string has size at most- 4°. Hence, we havéw| < (m +q — 1) - r - 4°. We get

(m4q—1)-7r-4" +int(m) > o(i).
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Moreover, sincent(m) > %‘11 by Lemma 4.3, we haver + ¢ — 1 < int(m) - (p — 1) + ¢ <
int(m) - (p — 1) + p. We get
(int(m) - (p— 1) +p) -7 -4 +int(m) > o(i).
Solving this inequality foint(m) yields
i 2 FOTE
Plugging in the definition of (i) from (4.1) yields

int(m) > £-r-7-4" (4.12)
We now define + 1 different trees’, ..., ¢, ; as follows.
We first fix a sequencey, . . ., ine(m) Of symbols fromA \ 4y such that that every chain, where

the j*" internal node is labelled with; has exactlyn leaves. By Lemma 4.4 such a sequence exists.
In the following, we consider chains witlt(m) + 1 many internal nodes such that the following
hold:
e The ;" internal node { < j < int(m)) is labelled witha; and the maximal internal node is
labelled witha € A, (thus, such a chain has + ¢ — 1 leaves).
e Every internal node belongs td,2}* (thus, every internal node, which is not the root, is
either the first or the second child of its parent node).
e All leaves in the chain are labelled with some fixed constamt A.
This means that such a chain is uniquely determined by its maximal internaknedenax(t) €
{1,2}nt(m) We writet = chain(u).
Letu,v € {1,2}"0(™) such thatu = zay andv = zbz with z,y,z € {1,2}*, a,b € {1,2},
a # b. Definediff(u,v) = |y|+ 1 (= |z| + 1). Recall also the definition of théff-value for two trees
from Section 3.4. Then, we have

diff(chain(u), chain(v)) > diff (u, v). (4.12)
In fact, diff (chain(u), chain(v)) > 2 - diff (u, v) holds.
Sinceint(m) > £-r-7-4° by (4.11), we can find + 1 stringswy, . . ., wey 1 € {1,2}"™) such
that for allk # k' we have '
diff (wg, wy) > r -7 - 4" (4.13)
We may for instance set
wy, = 1int(m)—€-7“-7~4i1(k—1)~r~7~4i2(€—k+1)~r~7-4i‘

Let us define the chair), = chain(wy) forall 1 < k < ¢+ 1. Hence, (4.12) and (4.13) imply
diff(cp, cpr) > -7 -4 (4.14)

for all k # k’. Moreover, every chaip, has exactlyn + ¢ — 1 leaves. Finally, the treg, is obtained
from the chairry, as follows: We replace thechildren of the maximal internal nodeax(cy) (which

is labelled witha € A,) by vy, ..., v4 (in this order). All othem — 1 leaves are replaced by the trees
U, ..., Uj—1,Ujt1, - . ., Un (the order does not matter). It follows that the strifig, up(t,r - 4°) is

a permutation of the string from (4.10). With Lemma 3.14 and Remark 3.15 this ensures that

S4i(61, Si) = S4i(Q5, t;f)

forall 1 <k < ¢+ 1. Moreover, since each of the tree§ ..., uj_1,v1,...,Vg, Ujs1,. .-, Um € V;
has size at most- 4%, the number of nodes in the subtree/pfooted at a leaf of;, may grow by at
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mostr - 4!, when we replace the leaf by one of the tregs. .., u;j_1,v1, ..., Vg, Uji1, - - -, Up. ThIS
implies
: I : i (4.14) i
diff (¢}, ) > diff(cg,cpr) — 7 -4 > "r-6-4°,
providedk # k’. Hence, Lemma 3.13 implies
de (th, thr) > 6 - 4° (4.15)
for all k # k’. We claim that there is at least ohe< & < ¢+ 1 such that) & S34:(®,%). In order
to obtain a contradiction, assume that for edch k£ < £ + 1 there exists somg, (i + 1 < h < /)
such thatdg (), t,) < 3 - 4°. Since there are onl§— ¢ < ¢ such trees,,, the pigeon hole principle
implies that there exist # k' andh with de (), t,) < 3 -4° anddg(t),,t,) < 3-4". Hence,
de(th,t.) < 6 - 4%, which contradicts (4.15). We finally set = t,., wherek is chosen such that
th, & Ss.4:(®,1). Finally, note thasize(t;) = |u1 - - - up | + int(m) > o (i) (i.e.,t; ¢ U;) ands; € U.
This concludes the proof of the lemma. L]

Lemma 4.5 allows us to prove the following lemma:

Lemma4.6. Assume that

o —1<i<Y,

® 5= (Sit1,...,8¢0) € (Nx Z)UU)EiZ’ with s € LjUS3_4j(Sj+1, ...,sp)forall j € [i+1,4],
o t=(tiy1,...,ts) € Trees; *, and

o f:5,+1(61,5) — Sy+1(®,1) is an isomorphism such th&t.S,i+1(S1, s;) is the identity

forall j € [i+ 1,¢] witht; € Uiy or s; € Usy1.
Then, for every quantifier-free first-order formujaover the signature o¥ and all Qg,...,Q; €
{¥,3} we have

GI ‘: Qix; € Li(g) ce Q0$0 S Lo(xl, e ,l‘i,g) : 1/)(1‘0, .. .,l‘i,g)
<

& = Qixi--- Qoxo : Y(zo, ..., 24, t).

Proof. The lemma can be shown by induction grstarting withi = —1. For the induction base
(z = —1), note that the existence of the isomorphigmnsures that and¢ satisfy the same quantifier-
free formulas. The induction step uses Lemma 4.5 and the classical badkrimnargument from the
proof of the Ehrenfeucht-Fisee-Theorem. L]

Settingi = ¢ in Lemma 4.6, it follows® = ¢ if and only if &1 = ¢1, wherey; is from (4.9).

For the remainder of the poof of Theorem 4.1, we proceed as followssiWgify the sentence
1 (which is not an ordinary first-order sentence due to the additionatreants for the variables
Zo, - .., xg) and the structur&; further, so that we can finally apply Theorem 4.2. In a first step
(Step 1 below), we eliminate in the formula the relativation of the variables; to the spheres
S3.4i (61, it1, .-, 2¢) € Li(xiy1,...,2¢). Then, the structur&; will be freplaced by an isomor-
phic structureS; (using an intermediate isomorphic cof). These is done in Step 2 and Step 3
below. The structur&; will be almost of the formT™ for a finite labelled graplt (these are the
structures appearing in Theorem 4.2). The only difference is that tkeraa of&3 is a regular lan-
guage of the formA*©A* (for finite alphabets\ and©) instead of the set of all non-empty finite
words (as it is the case f&f+). Also the constraint sets; C L;(w;i1,...,x,) from &, will be
mapped to simple regular languagesdp. We finally transformSs into a structureS, = <+ by
enlarging the finite alphabet over which words fr@p are defined (Step 4).
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Step 1.Recall that quantifiers i, are relativized to the sets
Li(xig1, ..., x0) = Li US54 (61, Tig1, - - -, Tp).

Note thatr; € S3.4i (&1, %it1,...,2¢) Means tha\/ﬁzﬂrl ds, (zi,24) < 3-4% holds. By Lemma 3.3
we can find an equivalent first-order formula of s@€(¢ — i) - i + (¢ — i) - |Z]) < O(2 + ¢ - |%))

and quantifier rank) (i) < O(¢) (we take the formuld(z,y) = (x =y V \ cx 0(z,y) V o(y,T))

in Lemma 3.3; note that the binary representatior oft’ has only 2 1-bits). After replacing the
constraintse; € S5.4i(61,zit1,...,x¢) for 1 < ¢ < ¢, the resulting equivalent sentence has size
lo| +O(£3 + £2 - |$|) and quantifier rank (¢).

Step 2.1t remains to eliminate constraints of the forme L; = (N x Z;) U U;. In order to do this,
we will change the labelled gragh; to a labelled graph of the fori* for a finite labelled grapfx.
The basic idea will be to change the alphbeby taking words over ot/ of some bounded length as
the new symbols; the resulting alphabet will be thelget U” below.

In the following, we assume that; = () (and hencént(m) < oo for all m); the cased; # ) is
the simpler one.

In order to cope with the length constrajat| € M in the definition of the sef; from (4.8), we
define for0 < ¢ < ¢ the sets

U = {weU"||w|+1 € ranks},
V/ = {weV||w/+1E¢€ranks} CU".
We have
U] < (U] + 1P S (4] + 1) e @imrat) () 4200002, (4.16)

Moreover, for0 < i < ¢ let us defind¥V/ as the set of all minimal words (with respect to the factor
relation on wordsyy € V*W;V.* with |w| € M (and hencev € Z by (4.6)) andw|+int(|w|) > o(i)
(and hencev € Z; by (4.8)). It follows that for such a word we have

[wl +int(|w]) = (p—1) -7 4" =1 < 0(d).

Since|w| < Jw] andint(|w|) > =L by Lemma 4.3, we have
p

-1 ‘
]w|+|w| —(p=1)-r-4—-1<0(i)
p—1
or equivalently
_ _1)2 ,
w < 2=t oy 4 DT iy,
Hence, for alkv € W/ we have
lw| < o(@) +p-r-4+1. (4.17)
Let us set
(4.1)
y=c(l)+p-r-4+1 < p-r? 200 p.palp1=p. 2. 200, (4.18)

which is an upper bound for the right-hand side of (4.17). Notethsiexponential in our input size.
Let

U'={weZ||w <~}
which contains all alphabei$” (0 < : < ¢) as well ad/. We have

(

(4.5) 4.1)
U"| < (U +1)7 < (JA] 4 1) @@+ T2 42700708 (4.19)
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which is doubly exponential in our input size.

For the further discussion, it is important that element&’of) U” are viewed as single symbols.
For awordw € (U’ U U")* we can define an expanded wasch(w) € U* in the natural way (e.g.
exp((a)(abba)(b)(ba)) = aabbabba). Note that for every wordy € U’*U"U’* we havelexp(w)| €
M (i.e., exp(w) € Z). Vice versa, for every wordv € Z there exists at least one word €
U™U"U" with exp(w’) = w. Moreover, for every wordv € V/*W/V/* we havelexp(w)| € M and
lexp(w)| + int(|exp(w)|) > o(i). Vice versa, ifw € V*W;V:* N Z with |w]| + int(Jw]) > o(7) (i.e.,
w € Z;), then there exists at least one wartl € V;*W/V/* with exp(w’) = w. This allows us to
replace the constraint s&t = {w € V;*W;V;* N Z | |w| + int(Jw|) > o (i)} by the setV/*W/V/*.
Note that for a wordv € Z; there may exist several words € V/*W/V/* with exp(w’) = w. This
is not a problem: by taking the sistx Z; in the structureS,, we basically takely many copies ofv.

By our lifting construction from Section 3.2, every binary relatién (¢ € X) on Trees, is
defined onU’ U U” C Trees}; and hence orfiiN x U"*U”U’*) U U. Using this, it follows that our

labelled grapl®; = (N x Z) U U, %, {%] o € £}) is isomorphic to the labelled graph
Gy = ((INx U™U"U™)UU, B, {Z|0ex}).
The isomorphism maps the constraint 5et= (N x Z;) UU; to (N x V/*W/V/*) U U;.
Step 3.In order to get rid of the direct product witk in N x V/*W/V/* we add a new symbd to

the alphabet/’ U U”. We lift the relations” (¢ € ¥) from U"* to (U” U {$})* in the standard way

($ does not occur in the left-hand and right-hand sides of the relafiensThen, the labelled graph
G2 (and hences,) is isomorphic to the graph

Gz = (Uu{$HU"(U'u{sH*ul, %, {Z|oecx)).

The isomorphism map¥ identically toU and the setN x {w} (for w € U"U"U’") is mapped
bijectively onto the set of those words frof’ U {$})*U” (U’ U {$})* \ U, whose projection onto
the subalphabét” is w. Hence, the constraint setx V/*WW/V/* is mapped to the set

(Vi u{sh) wi(iu{sp\U. (4.20)

Step 4.In order to express in first-order logic that a word belongs to the abtmvataint set (4.20), we
introduce another symbek. Hence, our final alphabet is

F=U'uU"U{$,#}.
With (4.16) and (4.19), the size dfcan be estimated as
U] =2+[U'| +|U"] < |A]| (4.21)

Next, we define a finite labelled gragh= (T, ¥/, {%| a € ¥'}) with node sel as follows. The set
of actions is

QO(Z)p2 s

¥ =X2Ur.
The set of transitions is defined as follows. By our lifting construction fBeution 3.2, every binary
relation % (o € ) on Trees 4 is defined ol ($ and# do not occur in the left-hand and right-hand
sides of the relation§). Moreover, fora € T' we define the relation
= = {(a, #)}.
Finally, using the construction from Section 3.2, we define the labelled graph
G, =3,
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We will construct a sentencgg, over the signature ab, such thais; | ¢ ifand only if 4 | ¢4.
Using the edge relation$ (a € T'), we can express € QF (for Q C T) as

/\ —Jy : a(x,y).
acT\Q

Moreover, a constraint:| > k (saying that there are at ledsbccurrences of symbols frofain the
word z) can be expressed as

Hyly--.,yk( Nvizvn NV a(ﬂ%%))-

J#3’ JE[L,k] €2
This allows us to express e.:|o = k orz € Q. Hence, a constraint € L; = (N x Z;) UU; in ¢
can be replaced by the formula
(ze (VVUWU{SHT A lzlwr =1 A2 gU) vV zel,

of sizeO(|T']). (for the correctness of this formula it is important thgn W/ = () which follows from
V; N W; = ). The size of the resulting sentenggcan be bounded biy| + O(¢3 + 2 - |3 +¢-|T))
and its quantifier rank is stitD(¢).

We can now conclude the proof of Theorem 4.1. Recall that our ovgeall is to check, whether
® = ¢ holds. By the above constructions, this is equivaler®to~= ¢4. By Theorem 4.2, this can
be decided on an alternating Turing machine in time

O(IT1°® - |ipa]) < poly (T + || + %)
usingO(¢) < O(|¢|) many alternations. Recall from (4.21) that < |A] *. Hence, we can

bound the running time byoly(|A|2°’?*™* 4 || 4 |%|), which is doubly exponential in the input
size. This concludes the proof of Theorem 4.1.

20([)p2 o

4.2. Proof of Theorem 4.2. Let us fix a finite labelled grapts = (V,%,{%| o € ¥}) and let
n = |V|. We want to decide the first-order theory®f . For this we can w.l.0.g. assume that- 2.
Moreover, we can assume thdt= V x V' and that the edge from € V tob € V is labelled
with (a, b) (the original edge relations are definable by disjunctions in this new gr&pir)decision
procedure for the first-order theory 6f" uses the method of Ferrante and Rackoff from Section 3.3
for the functionH (k,¢) = n**“2 + k. For this, we define a suitable equivalence relatioyy
on k-tuples overl’*. The definition of this equivalence relation uses a simpler equivalendérela
=4 defined on words, which corresponds to counting and comparing syrapdis the threshold
d. The main combinatorial lemma for the equivalereg, is Lemma 4.8. It rougly says that if
u =, vandu € V*, then one can always find a “short” wordsuch that(w, u) =5, (v,v). This
corresponds to point (b) in Theorem 3.4. To apply the method of Feraat&ackoff, we also have
to show that = o v implies thatu andv satisfy the same quantifer-free formulaséii (point (a)
in Theorem 3.4). This is stated in Lemma 4.9.

Recall that for a word: € A* over a finite alphabefl anda € A, |u|, denotes the number of
occurrences of in u. Ford > 1 andu,v € A*, we writeu =, v if for all a € A the following holds:

o [uo = [v]q OF

e (|ul, > dand|v|, > d)
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Note that=, is an equivalence relation and that=; ., v impliesu = v.
Let A and B be finite alphabets. For two words= aias - --ai € A* andv = b1bs - - - b, € B*
of the same lengtk we define the convolution ® v = (a1, b1)(ag, b2) - - - (ag, bi) € (A x B)F.

Lemma4.7. Leta € N, u,v € T* (wherel is a finite alphabet)y’ € V* with |u| = |v/], u =4., v,
and|v| > « - n - |T|. Then there exists’ € V* with [v| = [v/| andu @ v’ =, v @ V.

Proof. Leta € T'andb € V. Consider the valuesi, ;, = |u ® u'|(4 ) andn, = [v|,. Finding a word
v' € V* such thatv'| = |v| andu ® v’ =, v ® v’ is equivalent to finding numbers, ;, (which will
be|v ® v'|(45)) such that

® > ey Nap =g foralla € I' and

® Mgy =Ngp OF (Mg > avandng, > o) forallacI',be V.
Note thatu =,.,, v implies

meb =n, OF (meb >a-nandng, > a-n)
beV bev
forall a € I'. Also recall thatV'| = n. We choose the numbers ; as follows, where: € I':
o If D ey Map = ng, thenwe seh, = my forallb € V.
o If > ey Map > a-nandn, > a - n, then (sincgV| = n) there must be at least ohec V/
with mg , > a. We first sety, j, = mqy forallb € V with m, ;, < a.. For all remaining € V/
(which satisfym,; > a) we setn,; to some value> o such that the total suh,_;, 14
becomes:,. Sincen, > « - n this is possible.

L]
For all k,¢ € N we define an equivalence relatier, , on the setV*)* of k-tuples of words
overV as follows: Let(u, ..., ux), (vi,...,vx) € (V)E. Then(uy,...,ug) =k (v1,...,vx) if

and only if the following conditions hold:

(@) Foralll <i,j <k, |u;| = |u;| ifand only if |v;| = |vj].

(b) Foralll <i <k, u; =v; of Ju;| > n*++1 and|v;| > nFH1

(c) Foralll < ¢ < k the following holds: Letl < i1 < is--- < i, < k be exactly those indices
such thatju;| = |u;,| = -+ = |u,,,|- Hence,|v;| = |vy| = -+ = |v;,,| due to (a). Then
Uiy @ Uiy @ =+ @ Uj,, = Vip @ Vjyg Q-+ QU wherea = nftt.

Lemma4.8. Letk > 0,¢ >0, (u1,...,ux) =ge (v1,...,0k), and letug; € V*. Then there exists
Vk+1 € V* such thaqkarl’ < pktetl + k and (ul, ey Uk, uk+1) =k+1,-1 (’01, ceey Uk, Uk+1).
Proof. Assume thatu,...,u;) =g ¢ (vi,...,v) and letu, € V*. We distinguish several cases:

Case 1.|ugi1] # |u;| forall1 < i < k.

Case 1.1Jup 1| < n*+F1 Then, we must haviy,, 1| # |v;| forall 1 < i < k (if |v;| = Jugpi1] <
nF*++1 then we must have; = v; by (b) and hencéus, 1| = |u;]). We setog 1 = ug1.

Case 1.2 |uj41| > nFT1. Choose a numbex with nF 1 < X < k1 4k and|v;| # A for
all 1 < i < k. We will find a wordvy; such thafvg1| = A andug1 = vi41 for a = n’. Since
lug1| > n*+1 there exists a symbal € V such thatug 1|, > n*7* > n® = a. If X > |upyq],
then we simply increase the number of occurrencesiofu; until a word of length\ is reached.
If A < |ugy1], then|uy, 1| > n’*1. Hence, there even exisisc V with |uy, 1], > n‘. We remove
one of the occurrences afin u;,1. We can repeat this step until a word of lengtis reached.

21



Case 2.|ugy1| = |u;| forsomel < i < k. Letl < iy < iy--- < i, < k be exactly those indices
such thatug1| = |ui, | = -+ = |ui,,|. Letu = u;, @ ujy, ® - - Q@ u,, andv = v, RV, @ -+ @ v;,,.
Point (c) impliesu =,,¢+1 v.

Case 2.1|uj;1| < nFTL Hence, we havéy;| < n* 1. This implies|u;| = |v;| < n*+*1 by
(b). We setuy1 = vgy1. Note thatv;, = u;,, ..., v, = u;,, by (D). This implies

Uiy & Uiy @+ -+ @ Uj,,, @ U1 = Viy @ Vi & -+ @ V4, @ V1
for all c.

Case 2.2|up, 1| > n*+*1, Hence, we haveu| = |u;| > nFT+1. This implies|v| = |v;| > nkT+!
by (b). We have to choose a worgl, ; with |vy1| = |v;| andu®@ug, 1 =4 v@vp41 for a = nf. This
is possible by Lemma 4.7: Note that n = n‘*! and thusu =,., v. In order to apply Lemma 4.7
we set in addition/ = w1, v' = vgyq, andl’ = V™, This implies

k+0+1 L

lv] >n =nn-nF>n n.-nm=a-n-|.

Hence, Lemma 4.7 can be applied indeed. ]
Recall the definition of the infinite graph™ from (3.1).

Lemma4.9. If (uq,...,u;) =xo (v1,...,v;), then the tuplegu,, ..., u;) and(vy, ..., v;) satisfy
the same quantifier-free formulas in the grapii.

Proof. By symmetry, it suffices to prove the following two points:
(@) Ifu; = u; then also; = v;.

(b) If u; b, u; for some(a,b) € V x V then alsa; o), v;.

Let us first prove (a). W.l.o.g. assume that 1 andj = 2. Let2 < i1 < iy < --- < i,, be those
indices such thafu,| = |ua| = |u;| = -+ = |us,|. Since(ui,...,ux) =ko (v1,...,v;), We get
lv1] = |v2| = |vg, | = -+ = |vg,, | @nduy @ ug @ ujy @ -+ @ Uy, = V1 @ V2 QU @ -+ @ vy, for
a = n > 2. Sinceu; = ug, all symbols that occur in; ® ug ® u;;, @ --- ® u;,, are of the form
(a,a,---)forsomea € V. Hence, the same has to hold for® v, ® v;, ® - - - ® v;,, . But this means
thatv1 = V9.

For point (b), assume first that= b. Thus,u; = u; and|u;|, > 0. By point (a), we already
know thatv; = v;. If i = j, then we can w.l.0.g. assume that j = 1. Let]l < i) <ip < -+ <'ipp
be those indices such that| = |u;, | = -+ = |u,,,|. Since(u,...,u;) =ko (v1,...,v;), We get
o] = |vi, | =+ = v, | andug @ uy, @ -+ R uy,, =q V1 QUi -+ Qu;, fora=mn > 2. Since
lui|qe > 0, the wordu; ® u;, ® --- ® u;,, contains at least one occurrence of a symbol of the form

(a,0)

(a,...). Hence, the same holds for ® v;, ® - -- ® v;,,. But this means that; —— v;. If i # j,
then we can argue similarly.
Finally, let us assume that# . We must have # j. W.l.o.g. assume that= 1 andj = 2. Let

us choose the indices< i; < iy < --- < i, as for the proof of point (a) above. Sinae M us,

the following holds for the word = u; ® us ® u;, ® - - - ® u;,, : u contains exactly one occurrence of
a symbol of the forma, b, . . .) and all other symbols in are of the form(c, ¢, . ..) for ¢ € V. Again,
the same has to be true for ® v, @ v;, ® - - - @ v, (only here it is important that > 2 and not just

b
n > 1). Hencew; (@b, . O
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We can now prove Theorem 4.2. Let= Qoxo - - - Qpzy : Y(xo, . . ., x¢) be a first-order formula
of quantifier rank/ + 1 over the signature &b, whereQy, . .., Q; € {V, 3} andy is quantifier-free.
For0 <i</(letL; = {w € VT | |w| < n'*2 +i}. Theorem 3.4 (wWithH (k, ) = n*++2 1 k),
Lemma 4.8, and 4.9 imply th&™ |=  if and only if

& = Qizo € Lo+~ Quzy € Ly = Y(x0, - - ., p).

This can be decided on an alternating Turing machine in tie‘*?2 - ||) with ¢ alternations by
guessing words; € L; either existentially (ifQ); = d) or universally (ifQ); = V) and then verifying
the statemend(zo, ..., z¢).

5. AN ATIME(22™™  poly(n)) LOWER BOUND

In this section, we will prove that there exists a fixed GTRS such that thesgmnding ground
tree rewrite graph has a&TIME (22" poly(n))-complete first-order theory. This will be achieved
using a suitable tiling problem. Tiling problems turned out to be an important toptéeing hardness
and undecidability results in logic, see e.g. [4]. In a first step we will ptoweiness foENEXP
(doubly exponential non-deterministic time) in Section 5.2. In Section 5.3, wefimallly push the
lower bound toATIME(22""™  poly(n)).

5.1. Tiling systems. A tiling systemis a tupleS = (©,H, V), where© is a finite set oftile types
H C © x © is ahorizontal matching relationandV C © x © is avertical matching relation A
mappingo : [0,k — 1] x [0,k — 1] — © (wherek > 0) is ak-solution for S if for all (z,y) €
[0,k — 1] x [0, k — 1] the following holds:

eifx<k—1,0(x,y)=0,ando(z+ 1,y) = ¢, then(d,d) [H and

eify<k—1,0(x,y) =60,ando(z,y +1) =6, then(6,¢)
Let Solx(S) denote the set of ak-solutions forS. Letw = wgy---w,—1 € O" be a word and
let £ > n. With Sol,(S,w) we denote the set of alt € Sol(.5) such thatr (x,0) = w, for all
x € [0,n — 1]. For atiling systens we define itg22" x 22") tiling problemas follows:

(22" x 22") TILING PROBLEM FOR TILING SYSTEMS = (6, H,V)

INPUT: Awordw € ©".
QUESTION: DoesSolyn (S, w) # () hold?

The following proposition is folklore, see also [4, 9].

Proposition 5.1. [4, 9] There is some fixed tiling systefig whose(22" x 22") tiling problem is
2NEXP-hard under logspace reductions.
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5.2. Hardness for 2NEXP. Let us fix the tiling systent, = (©¢, Ho, Vo) of Proposition 5.1 whose
tiling problem is hard fo2NEXP. We now define a fixed GTRE, = (A4, 3, R) and prove that the
first-order theory of5(Ry) is 2NEXP-hard under logspace reductions. We define

Ap = {@,]l,]l]t,]li,@,@]t,@i},

Ay = Oy,

Ao = {e}, and

X = {E,r,h,u,mT,mi,}U@OUAo.

The set of rewrite rule® is given as follows:

1) X X5 X for eachX Ao,

2) X N X for eachX € {1, O} (this will correspond tanarkinga leaf),

(3) X; NEN X for eachX € {1, 0} (this will correspond teelectinga leaf),

(4) X4 s © for eachX € {1, 0},

(5) o(V,V) % Q,

(6) 0(X;) —2 (X;) forall 6 € ©g, X € {1,0},

(7) o(V, X;) — X; for eachX € {1, 0}, and

(8) (X}, V) — X, for eachX € {1,0}.

For the rest of this section we fi&; = &(Ry). Let us fix an inputw = 6y --- 6,1 € ©™ of the

(22" x 22") tiling problem for.Sy. Our goal is to compute in logspace frama first-order sentence
overy: such that

SO|22n (So,w) 75 & |: ©.
For each subsdt C 3, we define—— = U, er —;. The following lemma follows immediately from
Lemma 3.3 (take the formut&(z, y) = V. cr (2, v))-

Lemma 5.2. Given a subset of actions C ¥ andj € [0, 27+1] (in binary) one can compute in
logspace a first-order formul®’ (z, ) such that for allt, ¢’ € Trees 4 we have®, = I'V(t,t') if and

. I \i
only ift (—)? t' in &y.

In casel’ = {7} is a singleton, we also write’ (z, y) for the fqrmularj(x,y) of Lemma 5.2.
Moreover, for subsefs,, ..., Ty C T andjy, ..., ji € N, we write[T'}' - - - TV*](x, y) for the formula

k
Jzo, ..., xk: (o= ANxKp =y A /\Fg"(xi_l,wi)).
=1
Atreet € Trees, is atile treeif t = 6(t’) for somet’ € Trees 4 such that the following holds:
e O € Oy,
e The label of every leaf of is from {0, 1}.
e The distance of every leaf ofto the root oft’ isn + 1.
e Every internal node of is labeled withe.
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Example5.3. Thisis atiletreeincase + 1 = 3:

|
o/ \o
SN N,
I VA N A

Let us fix a tile tree¢. Note thatt has preciselp™t! = 22" leaves. Hence, there is a one-to-one
correspondence betwefh 2"+! — 1] and leaves of by means of their lexicographic ordersinFor
each leaf\ letlex()\) € [0,2""!—1] be the position oA among all leaves w.r.t. the lexicographic order
(starting with0). The intention is that represents thé-labeled grid elemertM, N) € [0,2%" —1]?,
where each leak that is a left (resp. right) child represents l{Hﬁ‘%jth least significant bit of the
2"-bit binary presentation af/ (resp. of N): In case\ is a left child, thert(A) = O (resp.t(\) = 1)
if and only if the L@Jth least significant bit of\/ equalsd (resp.1) and analogously if is a right
child this corresponds t&/. For the tile tree from Example 5.3 we havé/ = 1+4+ 8 = 13 and
N =38.

We say a leah of a treet is markedif t(\) = X; for someX € {0, 1}. We say a leah of a tree
tis selectedf t(\) = X; for someX € {0, 1}. A marked tile treds a tree that can be obtained from
a tile treet by markingeveryleaf of . For the rest of this section, 1 = 2"+ — (n + 2).

Lemma 5.4. One can compute in logspace a first-order formmlarked(z) such that for every tree
t € Treesa\(o,,1,,0} With precisely2"t! marked leaves we haveéy, = marked(t) if and only if the
marked leaves afare the leaves of some (unique) marked tile subtree of

Proof. The idea is to express the following: Whenever we select any af'ttié marked leaves, we
can execute from the resulting tree some sequence from the lankitiage’«? {¢, r}"+10,. Let us

explain the intuition behind this. Assume we have selected exactly one pftHenarked leaves of
¢, and lett’ be the resulting tree. First, note that after executing the sequéhce ! from ¢/, we have
replaced each of the marked leaves/ofvith the symbol®, reaching some tre€’. Second, when
executingu” from t”” we have reached, in caseontained a marked tile subtree, some tféahat
has a chain of the following form as a subtree, wh&re {0, 1} andfd € O:

T
VAN
.<'<7\7

O

Finally, from¢”" we can now “shrink” this subtree to the tréeX;) by executing some sequence from
{¢,r}"*! followed by executing. Formally, we definenarked(x) as follows:

vy (my(@,y) = 32 (2T P10y, ) )
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Note that in this formulay runs over all trees that can be obtained by selecting a marked leaf of
x. Basically, in this way we quantify over all marked leaves:ofNote that the formulanarked(z)
ensures that the marked leavescadre all at the same depthin L]

A grid treeis a treet for which every leaf is inside a subtreetathat is a tile tree.

Lemma5.5. One can compute in logspace a first-order formgital (=) such that for allt € Trees4
we have® |= grid(t) if and only ift is a grid tree.

Proof. The formulagrid will be a conjunction of the following two statements: (i) every leaf is either
labeled withO or 1, (ii) for each leaf oft that we can mark via the action;, we can mar"+! — 1
further leaves reaching some tréavith &, = marked(¢'). Formally,grid(z) is the conjunction of

/\ _\a(.ﬁ, .1‘),
a€Ao\{0,1}
which realizes (i), and the formula

Yy <mT(x, y) — Elz(minﬂfl(y, z) A marked(z))> ,
which realizes (ii). ]

A marked grid treds a tree that can be obtained from a grid ttd®y replacing exactly one tile
subtree oft by some marked tile tree. Selected grid treés a tree that can be obtained from some
marked grid treé by selectingorecisely onenarked leaf\ of . In that caselex(\) € [0,27+! — 1]
is the lexicographical position of within the marked tile tree.

Lemma 5.6. One can compute in logspace for each [1,n + 1] a first-order formula bif(x) such
that for every selected grid treewith selected leak we have that thé" least significant bit ofex()\)
is 1if and only if&( = bit;(¢).

Proof. We define bit(z) = Jy: [2"" P {l, 7} 17 (z, y). ]

Lemma 5.7. One can compute for eache {<,=} in logspace a first-order formula,(x, y) such
that for every two selected grid tregsandt, with selected leave; and A\, we have® = oo (L1, t2)
if and only iflex(\1) o lex(\2).

Proof. We only treat the case wherequals<; its definition should be self-explanatory:

\/ (hbitj(x)Abitj(y»A A <bitz-<w><»bit,-<y>>)

JE€[1,n+1] 1<i<y
L

Recall that the unique marked tile subtree of a marked grid#tmepresents &-labeled grid
element(M, N) € [0,22" — 1] for somed € ©,. Therefore, let us defind/ (t) = M, N(t) = N,
and©(t) = 6.

Lemmab5.8. One can compute in logspace first-order formulgéz), ¢; v (x, 2'), i v (z, "), where
6 € ©p andi € {0, 1} such that for all marked grid treesandt’ the following holds:

(1) &g = wp(t) ifand only if©¢(t) = 6,

(2) &9 = @i m(t, ') ifand only ifM(t) + i = M(t'), and

(3) &g = @i n(t,t')ifand only if N(¢) +i = N(¢').
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Proof. For point (1) we definey(x) as follows:
3y : [msh® " NP (L} 6] (2, )
For the remaining points (2) and (3), we only give the formplay(z, z’), i.e., we wish to express
that for any two marked grid treesandt’ we have® |= p1 (¢, ") ifand only if M (¢) +1 = M(t').
Let us fix two marked grid treesandt’. Assume we have selected among 2ié' marked leaves
of t some leaf\. Recall that\ represents one of tH¥" bit positions ofM (¢) if and only if X is aleft
child, otherwise it would represent a bit position/gf¢). Hence we will only be interested in leaves
of t andt#’ which are left children. For this sake, let us express that the selecfeaf eaelected grid
treez is a left child via the formuldeft(z):
left(z) = 32,2" (h(z,2") AN U(Z,2"))
Our formulag; /(z, y) is defined as follows:
A,y (my(x,2") Amy(y,y') Ap=(a',y) A Os(a’,2") A4y ) A left(a’) Aoy Adpa) -
Thus, we select a positigne [0, 2™ — 1] that is set td) (resp.1) in the binary representation f (¢)
(resp.M (t)). The formulay; (z, y, 2', ') is defined as

Vz((mi(x, 2) AN p<(z,2') Nleft(z)) — 14(z, z))/\

Vz((mi(y, 2) N p<(z,9) Nleft(z)) — Oy4(z, z)>

It expresses that each bit at some position that is smallerharset tol (resp. 0) in the binary
representation ol (¢) (resp. M (t')). The formulay, expresses that the binary representations of
M (t) and M (t") agree on each position that is bigger thafrormally,y»(z, y, 2’,y') is defined as

Vu,v( (my (2, w) Amy(y,v) Ap=(u,v) A pe(a’,u) Aleft(u)) = (L4(u, u) ¢ 1i(v, v)))
U]

We define the formulsol(x) as the conjunction of the following formulas, whenerk(z1, z2) is
an abbreviation fom?" " (21, z2) A marked(z):
e risagridtree:
grid(x)
e Whenever we mark two tile subtrees:mothat represent the same grid element, thelabels
agree:

vy, 2 < (mark(z, y) A mark(z, 2) A o (Y, 2) Apon(y,2)) =\ (po(y) <> @a(2)) )
[AS(SH

e Whenever we mark a tile subtreeothat corresponds to the grid elemént, N) andM <
22" — 1 there exists some tile subtreeothat corresponds to the grid elemént + 1, V')
and the horizontal matching relation is satisfied:

Vy((mark(x, y) A Jz(my(y, z) A Os(z, 2) Aleft(z))) —

Fy (mark(z,y) A1 (0, 0) Aoy A\ (aly) Ao (y')))>
(6,0")€H
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e Analogously to the previous formula, we can express that whenever weantiée subtree of
x that corresponds to the grid eleménf, N) andN < 22" — 1 there exists some tile subtree
of z that corresponds to the grid elemédt’, N + 1) and the vertical matching relation is
satisfied.

Finally we can construct a formula,(x) that guarantees that grid elemerit0) is labeled byd;
(recall thatw = 6y - - - 6,,_1) for eachj € [0,n — 1]:

ayo,...,ym( A (mark(a, ) A o, (97)) A Y2(my(yo, 2) - O4(2,2)) A
j€[0,n—1]

N\ Cera(yi—1,y) A SOO,N(yjl,yj)))
jE€[l,n—1]

Our final formulay is defined ag = Jz(sol(x) A ., (x)). It follows by construction that
Solyon (Sp,w) #0 <= &g = .

With Proposition 5.1 we get:

Theorem 5.9. The first-order theory o8 is 2NEXP-hard under logspace reductions.

5.3. Pushing hardnessto ATIME(22*"™ poly(n)). Letus fix atiling systens = (©, H, V). Given
0,0’ € Soli(S) we sayo’ extendsr verticallyif o’(z,0) = o(z, k — 1) for eachz € [0,k — 1]. Let
Soli(S, o) be the set of alb’ € Sol,(S) such that’ extendss vertically. The standard encoding of
Turing machine computations into tilings shows that there is a fixed tiling syStem (01, Hy, V1)

such that the following problem is hard faTIME(22°""™ | poly(n)) under logspace reductions.

LINEARLY ALTERNATING (22" x 22") TILING PROBLEM (FOR 1)

INPUT: Awordw = 6y46; ---0,,_1 € OF, wheren is odd.
QUESTION: Doesdoy € Solyen (S1, w)Voa € Solyen (S1,01) -+ Jop, € Solyen (S1,0p-1) : true
hold?

The idea is that the quantified solutiomsrepresent subcomputations of an alternating Turing-ma-
chine, where all states in the subcomputation are either existentiaigibdd) or universal (ifi
is even). Our definition of vertical extension of solutions ensures thaeteabcomputations can
be combined into on single computation of the alternating Turing-machine. A simi¢éadeng of
alternating Turing machines by tiling systems can be found in [9].

Let &, be the fixed GTRS graph that is obtained fra@y of Section 5.2 when we replace the
tiling system$, by S;.

Corollary 5.10. The first-order theory o8, is hard for ATIME(22°""™ , poly(n)) under logspace
reductions.

Proof. We recycle the proof presented in Section 5.2. We adapt the formulaswted in Section
5.2 to the fixed tiling systens; (instead ofSy). Recall that we can compute in logspace a formula
sol(x) such that for every treewe have that; = sol(t) if and only if ¢ corresponds to 22" -solution
for Sy. Itis an easy exercise to construct in logspace a forrtlauch that for any two tregsand
t' each satisfyingol we have®, | ext(t,t') if and only if the solution corresponding tbextends
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that of¢ vertically. We obtain that a word (with n = |w| odd) is a positive instance of the linearly
alternating(22" x 22") tiling problem if and only if&;; is a model of the sentence

4y <so|(m) A ow(x) A Vs ((sol(:rg) Aext(zy,x2)) — -+ Jxy (sol(zy) A ext(zn_1, xn))> ) .

L

We should remark that hardness aTIME(22"™ poly(n)) can be also proved using the
method of Compton and Henson [11] (monadic interpretation of addition or laugnbers). The
use of tilings has the advantage of giving an almost generic reduction.eCrhbr hand, the method
of [11] yields completeness under the slightly stronger log-lin reductions.

6. THE FIRSTFORDER THEORY WITH REGULAR UNARY PREDICATES

Fora GTRSR = (A4, %, R) and a set of treef C Trees4, we denote withH&(R), L) the structure
that results from the labelled gragi{R) by adding the sef as an additional unary predicate. Note
thatif L is a regular set of trees, thé& (R ), L) is a tree automatic structure, and hence has a decidable
first-order theory.

By the following result, ouATIME (22", O(n)) upper bound for the first-order theory of a
ground tree rewrite graph does not carry over to ground tree rewaighg expanded by a regular
unary predicate.

Theorem 6.1. There exists a fixed GTRS, = (4,3, R) and a fixed regular tree language C
Trees 4 such that the first-order theory ¢&(R2), L) is non-elementary.

Proof sketch The proof idea is an adaption of the proof of Theorem 2 in [20] andriséenly shortly
sketched. We reduce from the satisfiability problem for first-order logér binary words. Binary
words are considered as structures over the signatte’;, <), whereP, andP; are unary relations
(representing those positions, where the lettdr @&1d 1, respectively), and wher€ is the natural
order relation on positions. The idea is that a tree Treess (WhereA; = {e} and Ay = {0,1})
corresponds to the unique word oV, 1} that one obtains by simply reading the yield string (the
sequence of node labels when traversing the leaves in lexicograplei ofd. Letyield(t) denote
the yield string oft.

We translate a given first-order sentegoever the signaturépPy, P;, <) into afirst-order formula
Y(x) over the signature of66(R2), L) such that for every treec Trees4 we have:yield(t) = ¢ if
and only if(&(R2), L) = v (t). Assume that, ..., z, are the variables that occur in Bounding
a variabler; (1 < i < n) of  to a certain position in the worgeld(¢) is simulated by labelling the
corresponding leaf of the treeby a chain of unary symbols of length In order to keep the GTRS
R fixed, this chain has to be built up inrewrite steps that are controlled by the formuiér). In
order to verify an atomic predicatg < x; in the treet one has to check, whether tinabelled node
of ¢ is lexicographically smaller than thelabelled node. To do this using a fixed GTRS, one first
replaces the chain of lengtl{resp. ;) that identifies the position to whicty (resp.,z;) is bound by a
special constant (resp.b). Again, this process has to be controlled by the formt(a). Finally, we
can checkr; < x; using the regular set of trees that contain a uniei&belled leaf and a unique
labelled leaf, and the-labelled leaf is lexicographically smaller than th&abelled leaf. This regular
set will be the sef. in the theorem. ]
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7. OPEN PROBLEMS

We proved that the uniform first-order theory of ground tree rewritgphis belongs to the com-
plexity classATIME(22*"™ O(n)) and that there exists a fixed ground tree rewritie graph with an
ATIME(22"""™  O(n))-complete first-order theory.

A complexity gap in this context exists for the first-order theory of the dap-gewrite graph of
a semi-Thue system (word rewrite system): It is known t@B¥PSPACE-hard and decidable but it

is not known to be elementary [26]. One may try to tackle this problem usingitpods similar to
those used in this paper.

An important open problem concerning ground tree rewrite graph cosdesimulation equiv-
alence. It is not known whether the following problem is decidable: Gaeround tree rewrite
systemR and two trees andt, ares andt are bisimilar in the grapi®(R)? For pushdown graphs
this problem is decidable [41] but not elementary, as was recently shofii id further question
is the complexity of deciding bisimilarity between a ground tree rewrite systenadimite system,
lying betweerPSPACE andcoNEXP [20].
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