
Finite Model Reasoning in Horn-SHIQ

Yazmı́n Ibañez-Garcı́a1, Carsten Lutz2, and Thomas Schneider2

1 KRDB Research Centre, Free Univ. of Bozen-Bolzano, Italy,{ibanezgarcia@inf.unibz.it}
2 Univ. Bremen, Germany, {clu, tschneider}@informatik.uni-bremen.de

Abstract. Finite model reasoning in expressive DLs such as ALCQI and SHIQ
requires non-trivial algorithmic approaches that are substantially differerent from
algorithms used for reasoning about unrestricted models. In contrast, finite model
reasoning in the inexpressive fragment DL-LiteF of ALCQI and SHIQ is
algorithmically rather simple: using a TBox completion procedure that reverses
certain terminological cycles, one can reduce finite subsumption to unrestricted
subsumption. In this paper, we show that this useful technique extends all the way
to the popular and much more expressive Horn-SHIQ fragment of SHIQ.

1 Introduction

Description logics (DLs) that include inverse roles and some form of counting such
as functionality restrictions lack the finite model property (FMP) and, consequently,
reasoning w.r.t. the class of finite models (finite model reasoning) does not coincide with
reasoning w.r.t. the class of all models (unrestricted reasoning). On the one hand, this
distinction is becoming increasingly important since DLs are nowadays regularly used
in database applications, where models are generally assumed to be finite. On the other
hand, finite model reasoning is rarely used in practice, mainly because for many popular
DLs that lack the FMP, no algorithmic approaches to finite model reasoning are known
that lend themselves towards efficient implementation.

Typical examples include the expressive DLsALCQI and SHIQ, which are both a
fragment of the OWL2 DL ontology language. While finite model reasoning in ALCQI
and SHIQ are known to have the same complexity as unrestricted reasoning, namely
EXPTIME-complete [9], the algorithmic approaches to the two cases are rather different.
For unrestricted reasoning, there is a wide range of applicable algorithms such as tableau
and resolution calculi, which often perform rather well in practical implementations. For
finite model reasoning, all known approaches rely on the construction of some system
of inequalities [3,9], and then solve this system over the integers; the crux is that the
system of inequalities is of exponential size in the best case, and consequently it is far
from obvious how to come up with efficient implementations. Note that the same is true
for the two-variable fragment of first-order logic with counting quantifiers (C2), into
which DLs such as ALCQI and SHIQ can be embedded [12,13], that is, all known
approaches to finite model reasoning in C2 rely on solving (at least) exponentially large
systems of inequalities.

Interestingly, the situation is quite different on the other end of the expressive power
spectrum. DL-LiteF is a very inexpressive DL that is used in database applications,
but lacks the FMP because it still includes inverse roles and functionality restrictions.

Building on a technique that was developed in a database context by Cosmadakis,
Kanellakis, and Vardi to decide the implication of inclusion dependencies and functional
dependencies in the finite [4], Rosati has shown that finite model reasoning in DL-LiteF
can be reduced (in polynomial time) to unrestricted reasoning in DL-LiteF [14]. In
fact, the reduction is conceptually simple and relies on completing the TBox by finding
certain cyclic inclusions and ‘reversing’ them. For example, the cycle

∃r− v ∃s ∃s− v ∃r (funct r−) (funct s−)

that consists of existential restrictions in the ‘forward direction’ and functionality state-
ments in the ‘backwards direction’ would lead to the addition of the reversed cycle

∃s v ∃r− ∃r v ∃s− (funct r) (funct s).

As a consequence, finite model reasoning in DL-LiteF does not require any new algorith-
mic techniques and can be implemented as efficiently as unrestricted reasoning. Given
that DL-LiteF is a very small fragment ofALCQI and SHIQ, these observations raise
the question whether the cycle reversion technique extends also to larger fragments of
these DLs. In particular, DL-LiteF is a ‘Horn DL’, and such logics are well-known to be
algorithmically more well-behaved than non-Horn DLs such as ALCQI and SHIQ.
Maybe this is the reason why cycle reversion works for DL-LiteF?

In this paper, we show that the cycle reversion technique extends all the way to
the expressive Horn-SHIQ fragment of SHIQ, which is rather popular in database
applications [6,11,5,2] and properly extends DL-LiteF and other relevant Horn fragments
such as ELIF . In particular, we show that finite satisfiability in Horn-SHIQ can be
reduced to unrestricted satisfiability in Horn-SHIQ by completing the TBox with
reversed cycles in the style of Cosmadakis et al. and of Rosati. While the reduction
technique is essentially the same as for DL-LiteF , the construction of a finite model in the
correctness proof is much more subtle and demanding. Another crucial difference to the
DL-LiteF case is that, when completing Horn-SHIQ TBoxes, the cycles that have to be
considered can be of exponential length, and thus the reduction is not polynomial. On first
glance, this of course casts a doubt on the practical relevance of the proposed reduction.
Still, we are confident that our approach will lead to implementable algorithms for finite
model reasoning in Horn-SHIQ. Specifically, the state-of-the-art of efficient reasoning
in Horn description logics is to use so-called consequence based calculi, as introduced
for Horn-SHIQ in [7] and implemented for example in the reasoners CEL, CB, and
ELK [1,7,8]. Instead of first completing the TBox and then handing over the completed
TBox to a reasoner, it seems well possible to integrate the reversion of cycles directly as
an inference rule into such a calculus. This avoids the detection of cycles by uninformed,
brute-force search, and instead searches for cycles in the consequences that have already
been computed by the calculus, anyway. Since the efficiency of consequence-based
calculi are largely due to the fact that, for typical inputs, the set of derived consequences
is relatively small, we expect that this will work well in practical applications. For now,
though, we leave it as future work to work out the details of such a calculus.

Some proof details are deferred to the appendix of the long version of the paper, to
be found at http://www.informatik.uni-bremen.de/tdki/research/papers.html

2 Preliminaries

The original definition of Horn-SHIQ is based on a notion of polarity and somewhat
unwieldy [6]; alternative definitions have been proposed later, see for example [10]. For
brevity, we directly introduce Horn-SHIQ TBoxes in a certain normal form similar to
the one used in [7].

Let NC and NR be countably infinite and disjoint sets of concept names and role
names. A Horn-SHIQ TBox T is a set of concept inclusions (CIs) that can take the
following forms:

K v A K v ⊥ K v ∃r.K ′ K v ∀r.K ′ K v (6 1 r K ′) K v (> n r K ′)

where K and K ′ denote a conjunction of concept names, A a concept name, r a (po-
tentially inverse) role, and n ≥ 1. Throughout the paper, we will deliberately confuse
conjunctions of concept names and sets of concept names. The empty conjunction is
abbreviated to >.

It was observed in [7] that, for the purposes of deciding unrestricted satisfiability, the
above form can be assumed without loss of generality; that is, every Horn-SHIQ TBox
T conformant with the original definition in [6] can be converted in polynomial time
into a TBox T ′ in the above form such that for all concept names A in T , we have that
A is satisfiable w.r.t. T iff A is satisfiable w.r.t. T ′. It is straightforward to verify that all
necessary transformations, such as coding out role hierarchies and transitive roles do not
rely on unrestricted models to be available and thus, the introduced TBox normal form
can be assumed w.l.o.g. also for finite satisfiability.

The semantics for Horn-SHIQ is given as usual in terms of interpretations I . For a
given TBox T and a concept inclusion C v D, we write T |= C v D if I |= C v D
for all models I of T , and T |=fin C v D if the same holds for all finite models. We
recall that, in Horn-SHIQ, (un)satisfiability and subsumption can be mutually reduced
to each other in polynomial time, and that this also holds in the finite. The following
examples show that, in Horn-SHIQ, finite and unrestricted reasoning do not coincide.

Example 1. Let T = { A v ∃r.B, B v ∃r.B, B v (6 1 r− >), AuB v ⊥ }. Then
A is satisfiable w.r.t. T , but not finitely satisfiable. In fact, when d ∈ AI in some model
I of T , then the CI B v ∃r.B and functionality assertion on r− enforces an infinite
chain r(d, d1), r(d1, d2), . . . with d ∈ AI , d 6∈ BI and d2, d3, · · · ∈ BI .
Let T ′ = {A1 v ∃r.A2, A2 v ∃r.(A1 uB),> v (6 1 r− >)}. The reader might want
to convince herself that T ′ 6|= A1 v B, but T ′ |=fin A1 v B.

Eliminating At-Least Restrictions

The usual normal form for Horn-SHIQ does not comprise at-least restrictions, that is,
CIs of the form K v (> n r K ′) are not allowed. This is achieved by replacing each
such CI with

K v ∃r.Bi, Bi v K ′, Bi uBj v ⊥ 1 ≤ i < j ≤ n (1)

where each Bi is a fresh concept name. If infinite models are admitted, it is quite easy to
see that this translation preserves the satisfiability of all concept names in T , exploiting

the tree model property of Horn-SHIQ. For finite satisfiability, the same construction
works, but a more refined argument is needed to show this.

Proposition 2. Let T ′ be obtained from T by replacing the CI K v (> n r K ′) with
the CIs (1), and let A be a concept name from T . Then A is finitely satisfiable w.r.t. T iff
A is finitely satisfiable w.r.t. T ′.
Proof. The “if” direction is trivial since every model of T ′ is also a model of T . For the
“only if” direction, let I be a finite model of T with AI 6= ∅. We construct a finite model
J of T ′ with AJ 6= ∅ by taking n copies of I and ‘rewiring’ all role edges across the
concept names Bi can be interpreted in a non-conflicting way.

Specifically, since I satisfies K v (> n r K ′) we can choose a function succ :
KI × {0, . . . , n− 1} → ∆I such that the following conditions are satisfied:

– for all d ∈ KI and i < n: (d, succ(d, i)) ∈ rI and succ(d, i) ∈ (K ′)I ;
– for all d ∈ KI and i < j < n: succ(d, i) 6= succ(d, j).

Then define the desired interpretation J by setting

∆J = {di | d ∈ ∆I and i < n}
EJ = {di | d ∈ EI and i < n} for all E ∈ NC \ {B0, . . . , Bn−1}
BJi = {di | d ∈ ∆I} for all i < n

sJ = {(di, ei) | (d, e) ∈ sI and i < n} for all s ∈ NR \ {r}
rJ = {(di, ei) | (d, e) ∈ rI , i < n, and d /∈ KI or e 6= succ(d, j) for any j}

∪ {(di, e(i+j) mod n) | (d, e) ∈ rI , i, j < n, and e = succ(d, j)}

It remains to verify that J is indeed a model of T ′. Clearly, the CIs in (1) are satisfied.
Moreover, it is not hard to verify that all concept inclusions in T are satisfied by J ,
using the fact that I is a model of T and the construction of J . o

From now on, we can thus safely assume that TBoxes do not contain at-least restrictions.
Note that the above translation is polynomial only if the numbers n in at-least restrictions
are coded in unary. The same is of course true in unrestricted reasoning with Horn-
SHIQ, where typically the same normal form is used.

3 Reduction to Unrestricted Satisfiability

We give a reduction of finite satisfiability to unrestricted satisfiability based on the
completion of TBoxes with certain reversed cycles. Let T be a Horn-SHIQ TBox.
A finmod cycle in T is a sequence K1, r1,K2, r2, . . . , rn−1,Kn, with K1, . . . ,Kn

conjunctions of concept names and r1, . . . , rn−1 (potentially inverse) roles that satisfies
Kn = K1 and

T |= Ki v ∃ri.Ki+1 and T |= Ki+1 v (6 1 r−i Ki) for 1 ≤ i < n.

By reversing a finmod cycle K1, r1,K2, r2, . . . , rn−1,Kn in a TBox T , we mean to
extend T with the concept inclusions

Kj+1 v ∃r−j .Kj and Kj v (6 1 rj Kj+1) for 1 ≤ j < n.

The completion Tf of a TBox T is obtained from T by exhaustively reversing finmod
cycles.

Example 3. The TBox T ′ from Example 1 entails (in unrestricted models)

A1uB v ∃r.A2, A2 v ∃r.(A1uB), A2 v (6 1 r− A1uB), A2uB v (6 1 r− A1).

Thus, (A1 uB), r, A2, r, (A1 uB) is a finmod cycle in T ′, which is reversed to

A2 v ∃r−.(A1uB), A1uB v ∃r−.A2, A1uB v (6 1 r A2), A1 v (6 1 r A2uB).

Another finmod cycle in T ′ is A1, r, A2, r, A1, reversed to

A2 v ∃r−.A1, A1 v ∃r−.A2, A2 v (6 1 r A1), A1 v (6 1 r A2).

Note that T ′f contains A1 v ∃r−.A2, A2 v ∃r.(A1 u B), and A2 v (6 1 r A1).
Consequently T ′f |= A1 v B, in correspondence with T ′ |=fin A1 v B.

The following result is the main result of this paper. It shows that TBox completion
indeed provides a reduction from finite satisfiability to unrestricted satisfiability.

Theorem 4. Let T be a Horn-SHIQ TBox and A a concept name. Then A is finitely
satisfiable w.r.t. T iff A is satisfiable w.r.t. the completion Tf of T .

The “only if” direction of Theorem 4 is an immediate consequence of the observation
that all CIs added by the TBox completion are actually entailed by the original TBox in
finite models.

Lemma 5. Let K1, r1, . . . , rn−1,Kn a finmod cycle in T , then for every 1 ≤ i < n,
T |=fin Ki+1 v ∃r−i .Ki and T |=fin Ki v (6 1 ri Ki+1).

Proof. We have to show that, if K1, r1, . . . , rn−1,Kn is a finmod cycle in T and I is a
finite model of T , then KIi ⊆ (6 1 ri Ki+1)

I and KIi+1 ⊆ (∃r−i .Ki)
I for 1 ≤ i < n.

We first note that, by the semantics of Horn-SHIQ, we must have |KI1 | ≤ · · · ≤ |KIn |,
thus Kn = K1 yields |KI1 | = · · · = |KIn |. Fix some i with 1 ≤ i < n. Using
|KIi | = |KIi+1|, KIi ⊆ (∃ri.Ki+1)

I , and KIi+1 ⊆ (6 1 r−i Ki)
I

, it is now easy to
verify that KIi ⊆ (6 1 ri Ki+1)

I and KIi+1 ⊆ (∃r−i .Ki)
I , as required. o

The “if” direction of Theorem 4 is much more demanding to prove. It requires to
construct a finite model of A and T based on the assumption that there is a (possibly
infinite) model of A and Tf . Such a construction is presented in the next section.

4 Constructing Finite Models

We show that the completion Tf of T captures all finite entailments of T , that is, we
prove the “if” direction of Theorem 4 above.

Assume that the concept name A is satisfiable w.r.t. Tf . Let CN(T) denote the set of
concept names used in T . A subset t ⊆ CN(T) is a type for T if there is a (potentially
infinite) model I of T and a d ∈ ∆I such that tpI(d) := {A ∈ CN(T) | d ∈ AI}

is identical with t. We use TP(T) to denote the set of all types for T . Our aim is to
construct a finite model I of Tf (and thus also of T) that realizes all types in TP(T).
Note that since A is satisfiable w.r.t. Tf , there is a type t for T with A ∈ t. Since this
type is realized in the finite model I of T that we construct, it follows that A is finitely
satisfiable w.r.t. T as desired.

Before we give details of the construction of I, we introduce some relevant notation
and preliminary results. For all t, t′ ∈ TP(Tf) and roles r, we write

– t→r t
′ if Tf |= t v ∃r.t′ and t′ is maximal with this property;

– t→1
r t
′ if t→r t

′ and Tf |= t′ v (6 1 r− t);
– t 1↔1

r t
′ if t→1

r t
′ and t′ →1

r− t.
– t ⇒1

r t′ if t →1
r t′ and there are s ⊆ t and s′ ⊆ t′ such that s 1↔1

r s′, but
Tf |= t′ v ∃r−.t does not hold.

A type partition is a set P ⊆ TP(T) that is minimal with the following conditions:

– P is non-empty;
– if t ∈ P and t 1↔1

r t
′, then t′ ∈ P .

We set P ≺ P ′ if there are t ∈ P and t′ ∈ P ′ with t′ (t. We will later be referring
to the strict partial order that is obtained by taking the transitive closure of ≺, denoted
by ≺+. A proof of the following observation can be found in the appendix.

Lemma 6. ≺+ is a strict partial order.

As a last bit of notation, if λ = s 1↔1
r s
′, then we use λ− to denote s′ 1↔1

r− s.

4.1 Constructing the Model

We construct I by starting with an initial interpretation and then exhaustively applying
four completion steps that we denote with (c1) to (c4). While constructing the sequence,
we will make sure that the following invariants are satisfied:

(i1) for each d ∈ ∆I , we have tpI(d) ∈ TP(Tf);
(i2) if (d, d′) ∈ rI , then tpI(d)→r tpI(d

′) or tpI(d
′)→r− tpI(d);

(i3) if Tf |= K v (6 1 r K ′), then I |= K v (6 1 r K ′).

We shall prove in Section 4.2 that each of the steps (c1) to (c4) indeed preserves these
invariants.

The initial interpretation I is defined by introducing an element for every type,
intepreting the concept names in the obvious way, and interpreting all role names as
empty: ∆I = TP(Tf); AI = {t ∈ TP(Tf) | A ∈ t}; rI = ∅. The four completion steps
are described in detail below. We prefer to apply rules with smaller numbers, that is, if
completion steps (ci) and (cj) are both applicable and i < j, then we apply (ci) first.

(c1) Select a d ∈ ∆I such that tpI(d)⇒1
r t, and d /∈ (∃r.t)I .

Add a fresh domain element e, and modify the extension of concept and role names
such that tpI(e) = t and (d, e) ∈ rI .

(c2) Select a type partition P that is minimal w.r.t. the order ≺+, a λ = s 1↔1
r s
′ with

s ∈ P , and an element d ∈ ∆I such that d ∈ sI and d /∈ (∃r.s′)I .
For each s ∈ P , set ns = |{d ∈ ∆I | d ∈ sI}|. Let nmax = max{ns | s ∈ P}.
Reserve fresh domain elements

∆ := {ds,i | s ∈ P and ns < i ≤ nmax}.

For each s ∈ P , define a set of s-instances

Is = {d ∈ ∆I | d ∈ sI} ∪ {ds,i | ns < i ≤ nmax}.

To proceed, we treat each λ = s 1↔1
r s
′ with s, s′ ∈ P separately. Thus, fix such

a λ. Define
Rλ := {(d, e) ∈ rI | d ∈ sI and e ∈ s′I}.

We first note that it is a consequence of invariant (i3) that

(∗) the relation Rλ is functional and inverse functional.

In fact, let (d, e1), (d, e2) ∈ Rλ. Then (d, e1), (d, e2) ∈ rI , d ∈ sI , and e1, e2 ∈
s′
I . By λ, we have Tf |= s v (6 1 r s′). Thus, (i3) yields e1 = e2. Inverse

functionality can be shown analogously.
Let R1

λ be the domain of Rλ, and let R2
λ be the range. By (∗), we have |R1

λ| = |R2
λ|.

By definition of ∆, we have |Is| = |Is′ |. Moreover, R1
λ ⊆ Is and R2

λ ⊆ Is′ . We can
thus choose a bijection πλ between Is \R1

λ and Is′ \R2
λ. Now extend I as follows:

• add all domain elements in ∆;
• extend rI with πλ, for each λ = s 1↔1

r s
′;

• extend rI with the converse of πλ, for each λ = s 1↔1
r− s

′;
• interpret concept names so that tpI(ds,i) = s for all ds,i ∈ ∆.

(c3) Select a d ∈ ∆I such that tpI(d)→1
r t and d /∈ (∃r.t)I .

Add a fresh domain element e, and modify the extension of concept and role names
such that tpI(e) = t and (d, e) ∈ rI .

(c4) Select a d ∈ ∆I such that tpI(d)→r t and d /∈ (∃r.t)I .
Add the edge (d, t) to rI , where t is the element for the type t introduced in the
initial interpretation I.

We briefly discuss the main effects of prioritizing the completion steps. It is important to
prefer (c1) over (c2): together with the preference of type partitions that are minimal w.r.t.
≺+ in (c2), this ensures that when (c2) is executed on type partition P , λ = s 1↔1

r− s
′

with s, s′ ∈ P , and d ∈ Is \ R1
λ, then not only tpI(d) ⊇ s, but actually tpI(d) = s.

This central property, put as Lemma 7 below, is essential to guarantee preservation
of invariants (i2) and (i3) by execution of (c2). Preferring (c1) and (c2) over (c3)
ensures that, when (c3) is executed, then there are no s ⊆ tpI(d) and s′ ⊆ t such that
s 1↔1

r s
′; and preferring (c3) over (c4) ensures that, when (c4) is executed, then we

have Tf 6|= tpI(d) v (6 1 r t). These statements are provided here only to help in
understanding the model construction. A formal proof is omitted at this point, but it can
be recovered from the proofs given in the subsequent sections.

4.2 Satisfaction of Invariants

Application of (c1) preserves all invariants. It is obvious that the invariants (i1) and
(i2) are preserved with each single application of (c1). We have to show that the same
is true for (i3). Assume that completion processed d ∈ ∆I with tpI(d)⇒1

r t, and that
e is the fresh domain element added. Assume to the contrary of what is to be shown
that Tf |= K v (6 1 r K ′) and there is a e′ ∈ ∆I distinct from e such that d ∈ KI ,
(d, e′) ∈ rI , and e, e′ ∈ K ′I . According to (i2), we distinguish the following cases:

– tpI(d)→r tpI(e
′)

Then Tf |= tpI(d) v ∃r.tpI(e′) and tpI(e
′) is maximal with this property. Since

tpI(d) →r t, we additionally have Tf |= tpI(d) v ∃r.t. Since K ⊆ tpI(d) and
e, e′ ∈ K ′

I implies K ′ ⊆ tpI(e
′) ∩ t, a simple semantic argument shows that

Tf |= K v ∃r.(tpI(e′) ∪ t). The maximality of tpI(e
′) thus implies t ⊆ tpI(e

′),
in contradiction to the fact that d /∈ (∃r.t)I was true before the completion step.

– tpI(e
′)→r− tpI(d).

Then Tf |= tpI(e
′) v ∃r−.tpI(d) and, additionally, we have Tf |= tpI(d) v ∃r.t.

Since K ⊆ tpI(d) and K ′ ⊆ tpI(e
′) ∩ t, a simple semantic argument shows that

Tf |= tpI(e
′) v t. Since tpI(e

′) is a type for Tf by (i1), it follows that t ⊆ tpI(e
′).

This contradicts the fact that d /∈ (∃r.t)I was true before the completion step.

Application of (c2) preserves all invariants. Invariant (i1) is clearly preserved by
each single application of (c2). We have to prove that the same is true for (i2) and (i3).
First, we show that the following property holds:

Lemma 7. If λ = s 1↔1
r s
′ and d ∈ Is \R1

λ, then tpI(d) = s.

To show that (i2) is preserved by step (c2), consider an arbitrary pair (d, d′) ∈ rI that
has been added in a step (c2). Hence πλ(d) = d′, i.e., there is some λ = s 1↔1

r s
′ such

that d ∈ Is \R1
λ and d′ ∈ Is′ \R2

λ. From Lemma 7, we obtain tpI(d) = s. Analogously,
considering λ′ = s′ 1↔1

r− s and the fact d′ ∈ Is′ \ R2
λ = Is′ \ R1

λ′ , we obtain from
Lemma 7 that tpI(d

′) = s′. Consequently, s 1↔1
r s
′ yields tpI(d) →r tpI(d

′) and
tpI(d

′)→r− tpI(d).

We now show that (i3) is preserved by step (c2). Let Tf |= K v (6 1 r K ′), and
assume to the contrary of what is to be shown that, after some application of (c2), there
are (d, d1), (d, d2) ∈ rI with d ∈ KI , d1, d2 ∈ K ′I , and d1 6= d2. We distinguish the
following cases:

– (d, d1) was added by an application of (c2), (d, d2) was not. By the former, there is
λ = s 1↔1

r s
′ such that d ∈ Is \R1

λ, d1 ∈ Is′ \R2
λ, and (d, d1) ∈ πλ. By Lemma 7,

d ∈ Is \ R1
λ yields tpI(d) = s. Moreover, d1 ∈ Is′ \ R2

λ implies d1 ∈ Is′ \ R1
λ− ,

and thus another application of Lemma 7 yields tpI(d1) = s′.
Since (d, d2) was not added by step (c2), (i2) gives the following subcases:
• tpI(d)→r tpI(d2). Thus Tf |= tpI(d) v ∃r.tpI(d2) and tpI(d2) is maximal

with this property. Since tpI(d) = s and by λ, Tf |= tpI(d) v ∃r.tpI(d2).
Using the facts that Tf |= K v (6 1 r K ′), K ⊆ tpI(d) = s, K ′ ⊆ tpI(d2),

and K ′ ⊆ tpI(d1) = s′, an easy semantic argument shows that Tf |= tpI(d) v
∃r.(tpI(d2) ∪ s′). The maximality of tpI(d2) thus yields s′ ⊆ tpI(d2). Thus,
d ∈ (∃r.s′)I was true before step (c2) was applied, which is a contradiction to
d /∈ R1

λ.
• tpI(d2)→r− tpI(d). Then Tf |= tpI(d2) v ∃r−.s. By λ, we have Tf |= s v
∃r.s′. Since K ⊆ s, K ⊆ tpI(d2), K ⊆ tpI(d1) = s′, and Tf |= K v (6
1 r K ′), a simple semantic argument shows that s′ ⊆ tpI(d2). This again
means that d ∈ (∃r.s′)I was true before step (c2) was applied, in contradiction
to d /∈ R1

λ.
– both (d, d1) and (d, d2) were added by an application of (c2). Then there are λ1 and
λ2, such that, for i ∈ {1, 2}, we have

λi = si
1↔1

r s
′
i, (d, di) ∈ πλi , d ∈ Isi \R1

λi
, di ∈ Is′i \R

2
λi
.

Applying Lemma 7 to λi and d ∈ Isi \ R1
λi

yields si = tpI(d), for i ∈ {1, 2}.
Consequently, s1 = s2. We next show s′1 = s′2, thus λ1 = λ2.
For uniformity, we use s to denote s1 and s2. From λi, we obtain Tf |= s v ∃r.si
and si is maximal with this property, for i ∈ {1, 2}. Note that di ∈ Is′i \ R

2
λi

implies di ∈ Is′i \R
1
λ−i

. Applications of Lemma 7 to λ−i and di ∈ Is′i \R
1
λ−i

yield

tpI(di) = si. Using the facts that Tf |= s v ∃r.si for i ∈ {1, 2}, K ⊆ tpI(d) = s,
K ′ ⊆ tpI(di) = si for i ∈ {1, 2}, and Tf |= K v (6 1 r K ′), an easy semantic
argument shows that Tf |= s v ∃r.(s1 ∪ s2). The maximality of s1 and s2 thus
implies s1 = s2 as desired.
Hence, λ1 = λ2 and (d, d1), (d, d2) ∈ πλ1

. Since πλ1
is a bijection, we obtain

d1 = d2, a contradiction.

Application of (c3) and (c4) preserves all invariants. It is obvious that the invariants
(i1) and (i2) are preserved with each single application of (c3) or (c4). To show that the
same is true for (i3), we can use the same proof as for (c1) because the assumptions of
(c3) and (c4) differ from that of (c1) in weakening tpI(d) ⇒1

r t to tpI(d) →1
r t and

tpI(d)→r t, respectively, which is sufficient for that proof.

4.3 Termination of Model Construction

We show that the constructed interpretation I is indeed finite.

Proposition 8. ∆I is finite.

Proof. To analyze the termination of the construction of I , we associate a certain directed
tree T = (V,E) with the model I that makes explicit the way in which I was constructed.
Note that only the completion steps (c1) to (c3) introduce new domain elements and
that (c1) and (c3) introduce a single new element with each application whereas (c2)
introduces a whole (finite) set of fresh elements. Also note that each application of a
completion step is triggered by a single domain element d for which some existential
restriction is not yet satisfied. Now, the tree T is defined as follows:

– V consists of all subsets of ∆I that were introduced together by a single application
of one of the completion steps (c1) to (c3); additionally, the set of all elements in
the initial interpretation I is a node in V (in fact, the root node);

– the edge (v, v′) is included in E if the elements in v′ were introduced by an applica-
tion of a completion step to an element d of v. We call this element the trigger of v′

and denote it with dv′ .

To show that ∆I is finite, it clearly suffices to show that V is finite. The outdegree of T
is finite since every rule application introduces only finitely many elements. By König’s
Lemma, it thus remains to show that T is of finite depth. We first note that an easy
analysis of the completion steps (c1) to (c3) reveals the following property:

(∗) if (v1, v2), (v2, v3) ∈ E, then there are d0, . . . , dk ∈ v2 and roles r0, . . . , rk−1 s.t.

• d0 = dv2 ∈ v1, d1, . . . , dk ∈ v2, and dk = dv3 ∈ v2;
• tpI(di)→1

ri tpI(di+1) for all i < k.

Now assume towards a contradiction that the depth of T is larger than 2|TP(Tf)| + 1
and choose a concrete path v1 · · · vn with v1 the root of T and n > 2|TP(Tf)|+ 1. This
path gives rise to a corresponding sequence of triggers dv1 , . . . , dvn . Since the length
of this sequence exceeds 2|TP(Tf)|, there must be i, j with 1 ≤ i < j ≤ n and such
that tpI(dvi) = tpI(dvj) and j > i + 1. By applying (∗) multiple times, we obtain a
sequence of domain elements d0, . . . , dk and roles r0, . . . , rk−1 such that

1. d0 = dvi ∈ vi−1, d1 ∈ vi, and dp = dvj ∈ vj−1;

2. tpI(d`)→1
r`

tpI(d`+1) for ` < k.

3. d0, . . . , dk contains all elements dvi , . . . , dvj .

Since tpI(dvi) = tpI(dvj) and by Point 2, tpI(d0), r0, . . . , rk−1, tpI(dk) is a finmod
cycle in Tf . Since all finmod cycles in Tf have been reversed, we have

tpI(d0)
1↔1

r0 tpI(d1)
1↔1

r1 · · ·
1↔1

rn−1
tpI(dn). (†)

In the appendix, we prove the following claim:

Claim. If step (c1) or step (c3) is triggered by d ∈ ∆I and generates a new element
e ∈ ∆I , then there is no role r such that tpI(d)

1↔1
r tpI(e).

Since dvi ∈ vi−1 and d1 ∈ vi, d1 was generated by the application of a completion step
triggered by d0. By (†) and the claim, this completion step must be (c2). By definition
of (c2) and (†), all elements d1, . . . , dk have been introduced by exactly this application
of (c2). This leads to a contradiction: we have d1 ∈ vi and dk ∈ vj−1, and since
j > i+1, vi 6= vj−1. Consequently, d1 and dk were introduced by different applications
of completion steps. o

4.4 Correctness of Model Construction

To complete the proof of the “if” direction of Theorem 4, it remains to show the following.

Proposition 9. I is a model of Tf .

Proof. We show that for every axiom K v C ∈ Tf , we have that I |= K v C. We
distinguish the following cases:

– C = A. Let d ∈ KI . Then K ⊆ tpI(d) and by (i1) tpI(d) ∈ TP(Tf). Since
Tf |= K v A, this yields A ∈ tpI(d) and thus d ∈ AI .

– C = ⊥. Follows from (i1). Indeed since for every d ∈ ∆I , tp(d) ∈ TP(Tf),
KI = ∅.

– C = ∃r.K ′. Let d ∈ KI . Then we have that K ⊆ tpI(d). Since Tf |= K v ∃r.K ′,
we have that tpI(d) →r t

′ for some t′ with K ′ ⊆ t′. Thus there is some d′ with
K ′ ⊆ tpI(d

′) such that (d, d′) ∈ rI was added by an application of (c1), (c2), (c3)
or (c4). In fact, if no such d′ is added by (c1) to (c3), then the edge (d, d′) ∈ rI
will clearly be added by (c4).

– C = ∀r.K ′. Let d ∈ KI and (d, d′) ∈ rI , We have that K ⊆ tpI(d). Further, by
(i2), we can distinguish the following cases:

• tpI(d) →r tpI(d
′). Then Tf |= tpI(d) v ∃r.tp(d′) and tp(d′) is maximal

with this property. Since Tf |= K v ∀r.K ′, we have that Tf |= tpI(d) v
∃r.tp(d′) ∪ K ′, and the maximality of tp(d′) yields K ′ ⊆ tp(d′), and thus
d′ ∈ K ′I .

• tpI(d
′) →r− tpI(d). Then Tf |= tpI(d

′) v ∃r−.tpI(d). Together with Tf |=
K v ∀r.K ′, we obtain Tf |= tpI(d

′) v K ′. Since tpI(d
′) ∈ TP(Tf) by (i1),

we obtain K ′ ⊆ tpI(d
′) and thus d′ ∈ K ′I .

– C = (6 1 r K)′. Follows from (i3). o

5 Conclusion

We have presented a reduction from finite satisfiability in Horn-SHIQ to unrestricted
satisfiability, extending the technique introduced for DL-LiteF in [14]. As discussed
in the introduction, we believe that our technique is a more suitable basis for efficient
implementation than the techniques for fullALCQI and SHIQ based on exponentially
large systems of inequalities.

As future work, we plan to develop a consequence based calculus for finite satis-
fiability in Horn-SHIQ and to extend the results obtained in this paper from finite
satisfiability to answering conjunctive queries over ABoxes, assuming finite models.
While we believe that the constructions given in this paper can be easily extended to
instance query answering over ABoxes, the treatment of full conjunctive queries requires
significant modification of the model construction.

References

1. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL – a polynomial-time reasoner for life science
ontologies. In Proc. of IJCAR-06, volume 4130 of LNCS, pages 287–291. Springer, 2006.

2. M. Bienvenu, C. Lutz, and F. Wolter. First-order rewritability of atomic queries in Horn
description logics. In Proc. of IJCAI-13. IJCAI/AAAI, 2013.

3. D. Calvanese. Finite model reasoning in description logics. In Proc. of KR-96, pages 292–303.
Morgan Kaufmann, 1996.

4. S.S. Cosmadakis, P.C. Kanellakis, and M.Y. Vardi. Polynomial-time implication problems for
unary inclusion dependencies. J. ACM, 37(1):15–46, 1990.

5. T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and G. Xiao. Towards practical query answering
for Horn-SHIQ. In Proc. of DL-12, volume 846 of CEUR-WS.org, 2012.

6. U. Hustadt, B. Motik, and U. Sattler. Reasoning in description logics by a reduction to
disjunctive datalog. J. Autom. Reasoning, 39(3), 2007.

7. Y. Kazakov. Consequence-driven reasoning for Horn SHIQ ontologies. In Proc. of IJCAI-09,
pages 2040–2045, 2009.

8. Y. Kazakov, M. Krötzsch, and F. Simančı́k. Unchain my EL reasoner. In Proc. of DL-11,
volume 745 of CEUR-WS.org, 2011.

9. C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning in description
logics. Information and Computation, 199:132–171, 2005.

10. C. Lutz and F. Wolter. Non-uniform data complexity of query answering in description logics.
In Proc. of KR-12. AAAI Press, 2012.

11. M. Ortiz, S. Rudolph, and M. Šimkus. Query answering in the Horn fragments of the descrip-
tion logics SHOIQ and SROIQ. In Proc. of IJCAI-11, pages 1039–1044. IJCAI/AAAI,
2011.

12. L. Pacholski, W. Szwast, and L. Tendera. Complexity results for first-order two-variable logic
with counting. SIAM J. Comput., 29(4):1083–1117, 2000.

13. I. Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. J. of
Logic, Language and Information, 14(3):369–395, 2005.

14. R. Rosati. Finite model reasoning in DL-Lite. In Proc. of ESWC-08, volume 5021 of LNCS,
pages 215–229. Springer, 2008.

A Proofs for Section 2

Proof that J is a (finite) model of T ′. The construction ensures that the number of
r-successors (and -predecessors) in any A ∈ CN of every (x, i) is the same as that for x.
This observation will be used to show that the axioms in T are satisfied by J .

We first need an auxiliary fact which says that, for every d ∈ ∆I and every s-
successor e of d in I , the i-th copy of d in J has exactly one copy of e as an s-successor.

Fact 1 Let s be a role, di ∈ ∆J , and let {e ∈ ∆I | (d, e) ∈ sI} = {e1, . . . , e`} for
some ` > 0. Then {ej ∈ ∆I | (di, ej) ∈ sI} = {ej11 , . . . , e

j`
` }, for some j1, . . . , j` ∈

{0, . . . , n− 1}.
This fact is due to the construction of sJ : consider a given di ∈ ∆J and (possibly
inverse) role s. If s is neither r nor r−, then every ek contributes exactly one s-successor
eik of di. The same holds if s = r and d /∈ KI . If s = r and d ∈ KI , then each
ek = succ(d, j) for some j contributes exactly one s-successor e(i+j) mod n

k of di, and
every other ek contributes eik. For s = r−, then every ek ∈ KI with d = succ(ek, j)

for some j contributes e(i−j) mod n
k , and every other ek contributes eik.

Fact 1 implies the following fact, which says that all qualified and unqualified number
restrictions in d ∈ ∆I are preserved in every di ∈ ∆J .

Fact 2 Let di ∈ ∆J and D = (./ s n C) where ./ ∈ {6,>}, s is a role or inverse role,
and C is either a conjunction of concept names, or the negation of such a conjunction,
or >, or ⊥. Then d ∈ DI iff di ∈ DJ .

This is an immediate consequence of Fact 1 and the observation that e and eji satisfy the
same concept names. Fact 2 includes the cases s = r and s = r−, and it implies that
existential, and universal restrictions are preserved – for the latter it is necessary to allow
that C is a negated conjunction.

We now prove the central property that J is a model of T ′, proceeding axiom-wise.
We distinguish the following cases.

– L v A′ and L v ⊥, both in T . These are satisfied because they are satisfied by I
and due to the construction: every d in I and every di in J are instances of the same
non-Bi concept names.

– L v ∃s.L′ in T . Let di ∈ LJ . Then d ∈ LI due to the construction. Since I
satisfies the axiom, d ∈ (> 1 s L′)I . With Fact 2, we conclude di ∈ (> 1 s L′)J ,
hence di ∈ (∃s.L′)J . This argument includes the cases s = r and s = r−.

– L v ∀s.L′ in T . In the argument above, replace “∈ (> 1 s L′)...” with “/∈ (>
1 s ¬L′)...”.

– L v (6 1 s L′) in T . Then di ∈ LJ implies d ∈ LI , hence d ∈ (6 1 s L′)I and,
due to Fact 2, di ∈ (6 1 s L′)I .

– L v (> m s L′) in T . Apply the same argument as above.
– Bi v K ′ and Bi uBj v ⊥. Follows from the construction.
– K v ∃r.Bi. Let dj ∈ KJ , which implies d ∈ KI .

Let e = succ(d, (i− j) mod n). Then the construction yields that (dj , ei) ∈ rJ —
because i = (j + (i− j) mod n) mod n — and ei ∈ BJi . Hence dj ∈ (∃r.Bi)J .

o

B Proofs from Section 4

Lemma 6. ≺+ is a strict partial order.

Proof. Since ≺+ is transitive by definition, it remains to establish irreflexivity and
asymmetry. To this end, it suffices to show that ≺ is acyclic in the sense that there are
no type partitions P0, . . . , Pn, n ≥ 0, such that P0 ≺ · · · ≺ Pn = P0. Assume to the
contrary that there are such P0, . . . , Pn. By reversing the order, we can assume that
P0 � · · · � Pn = P0. Then there are, for each i < n, types ti ∈ Pi and t′i+1 ∈ Pi+1

such that ti (t′i+1. For uniformity, set tn = t0 and t′0 = t′n.
Let i < n. By definition of type partitions and since t 1↔1

r t
′ implies t′ 1↔1

r− t
for all types t, t′ and roles r, we can derive from ti, t

′
i ∈ Pi the existence of types

s0,i, . . . , ski,i ∈ Pi, ki ≥ 0, and roles r0,i, . . . , rki−1,i such that

ti = s0,i
1↔1

r0,i s1,i
1↔1

r1,i · · ·
1↔1

rki−1,i
ski,i = t′i.

For each i, we thus find a sequence

ti, r0,i, s1,i, . . . , ski−1,i, rki−1,i, t
′
i (∗)

that satisfies the prerequisites for finmod cycles, namely

T |= sj,i v ∃rj,i.sj+1,i (2)
T |= sj+1,i v (6 1 rj,i sj,i) (3)

for all j = 0, . . . , ki (but this sequence need not be a finmod cycle since ti = t′i is not
guaranteed). Note that we cannot have ki = 0 for all i, since then

t0 (t′1 = t1 (t′2 = t2 (· · · (t′n = tn,

in contradiction to tn = t0. In the following, we can thus assume that ki > 0 for at least
one i.

Because of (3), we have Tf |= ti v ∃r0,i.s1,i and Tf |= s1,i v (6 1 r−0,i ti). Because
of ti (t′i+1, we thus obtain Tf |= t′i+1 v ∃r0,i.s1,i and Tf |= s1,i v (6 1 r−0,i t

′
i+1).

Consequently, the following sequences also satisfy conditions (2) and (3) for i = n− 1:

t′n, r0,n−1, s1,n−1, . . . , skn−1−1,n−1, rkn−1−1,n−1, t
′
n−1

t′n−1, r0,n−1, s1,n−1, . . . , skn−1−1,n−1, rkn−1−1,n−1, t
′
n−2

...
t′1, r0,0, s1,0, . . . , sk0−1,0, rk0−1,0, t

′
0.

Since t′0 = t′n, we can concatenate all these sequences to a finmod cycle. As ki > 0
for at least one i, this cycle is non-empty, and the construction of Tf ensures that the
reversed cycle is also present in Tf . This yields Tf |= s1,n−1 v ∃r−0,n−1.t′n. Since
tn

1↔1
r0,n−1

s1,n−1, we have Tf |= s1,n−1 v ∃r−0,n−1.tn−1 and tn−1 is maximal with
this property. This is a contradiction to tn−1) t′n. o

Lemma 7. If λ = s 1↔1
r s
′ and d ∈ Is \R1

λ, then tpI(d) = s.

Proof. Let λ = s 1↔1
r s
′ and d ∈ Is \ R1

λ. If d is of the form ds,i, then we have
tpI(d) = s by construction of I . Thus assume that d is not of this form, that is, d ∈ ∆I .
Since d ∈ Is, we have s ⊆ tpI(d). It thus remains to show that tpI(d) ⊆ s.

Since s ⊆ tpI(d) and by λ, we have Tf |= tpI(d) v ∃r.s′. Let ŝ′ ⊇ s′ be maximal
such that Tf |= tpI(d) v ∃r.ŝ′. Note that, by λ and since s ⊆ tpI(d) and s′ ⊆ ŝ′, we
have Tf |= tpI(d) v (6 1 r ŝ′). The maximality of ŝ thus yields tpI(d) →1

r ŝ
′. We

distinguish two cases:

– ŝ′ →1
r− tpI(d).

Then λ′ = tpI(d)
1↔1

r ŝ
′ holds. Assume that tpI(d) 6⊆ s, in contrary to what

we have to show. Then s (tpI(d). Recall that P is the type partition that the
current step c2 treats, and that s, s′ ∈ P . By λ′, there is a type partition P ′ with
tpI(d), ŝ

′ ∈ P ′. Since s (tpI(d), we have P ′ ≺ P . Since d /∈ R1
λ, we had

d /∈ (∃r.s′)I before the current step, thus also d /∈ (∃r.ŝ′)I . Summing up, before
the current step we had tpI(d), ŝ

′ ∈ P ′, λ′ = tpI(d)
1↔1

r ŝ
′, d ∈ tpI(d), and

d /∈ (∃r.ŝ′)I . Consequently, step c2 was applicable also to P ′. Since P ′ ≺ P , this
contradicts that the current step is treating P .

– ŝ′ →1
r− tpI(d) is not the case.

By λ and since s ⊆ tpI(d) and s′ ⊆ ŝ′ , we have Tf |= ŝ′ v (6 1 r− tpI(d)).
Since ŝ′ →1

r tpI(d) is not the case, we must thus have Tf 6|= ŝ′ v ∃r−.tpI(d). By
λ and since s ⊆ tpI(d) and s′ ⊆ ŝ′, it thus follows that tpI(d)⇒ ŝ′. Consequently,
step c1, which is preferred over c2, has been applied before, adding an e ∈ ∆I such
that (d, e) ∈ rI and e ∈ sI . This means that d ∈ R1

λ, contrary to our assumption
that it is not.

o

The following is the remaining ingredient to the completeness proof (Claim in the proof
of Proposition 8).

Lemma 10. If step (c1) or step (c3) is triggered by d ∈ ∆I and generates a new
element e ∈ ∆I , then there is no role r such that tpI(d)

1↔1
r tpI(e).

Proof. Assume towards a contradiction that there is a role r such that tpI(d)
1↔1

r tpI(e).
We consider the following cases, both leading to a contradiction:

– step (c1) is triggered by d ∈ ∆I . Then, there is λ = t 1↔1
s t
′ such that t ⊆

tpI(d), t
′ ⊆ tpI(e), and tpI(d)→1

s tpI(e) but Tf 6|= tpI(e) v ∃s−.tpI(d). From
tpI(d)→1

s tpI(e), it follows that Tf entails:

tpI(d) v ∃s.tpI(e), tpI(e) v (6 1 s− tpI(d)).

Furthermore, since tpI(d)
1↔1

r tpI(e), Tf also entails:

tpI(e) v ∃r−.tpI(d), tpI(d) v (6 1 r tpI(e)).

Then, the finmod cycle tpI(d), s, tpI(e), r
−, tpI(d) occurs in Tf . Since every fin-

mod cycle in Tf is reversed, we have in particular that tpI(e) v ∃s−.tpI(d) ∈ Tf ,
in contradiction to Tf 6|= tpI(e) v ∃s−.tpI(d).

– step (c3) is triggered by d ∈ ∆I . Then tpI(d)→1
s tpI(e) for some role s. Given

the preference order in which the completion steps (c1)–(c3) are applied, we have
that tpI(d)

1↔1
s tpI(e) cannot hold. In particular, it is not the case that tpI(e)→1

s−

tpI(d); hence either Tf 6|= tpI(d) v (6 1 s tpI(e)) or Tf 6|= tpI(e) v ∃s−.tpI(d).
From the assumption that tpI(d)

1↔1
r tpI(e), we can conclude – using the same

argument as in the previous case – that the finmod cycle tpI(d), s, tpI(e), r
−, tpI(d)

occurs in Tf . Thus, by construction, the reversed cycle also occurs in Tf . Hence

tpI(d) v (6 1 s tpI(e)), tpI(e) v ∃s−.tpI(d) ∈ Tf ;

in contradiction to Tf 6|= tpI(d) v (6 1 s tpI(e)) and Tf 6|= tpI(e) v ∃s−.tpI(d).
o

	Finite Model Reasoning in Horn-SHIQ

