
Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP

Meghyn Bienvenu
CNRS & Université Paris Sud

Orsay, France

Balder ten Cate
UC Santa Cruz

Santa Cruz, CA, USA

Carsten Lutz
University of Bremen
Bremen, Germany

Frank Wolter
University of Liverpool

Liverpool, UK

ABSTRACT
Ontology-based data access is concerned with querying incom-
plete data sources in the presence of domain-specific knowledge
provided by an ontology. A central notion in this setting is that
of an ontology-mediated query, which is a database query cou-
pled with an ontology. In this paper, we study several classes of
ontology-mediated queries, where the database queries are given
as some form of conjunctive query and the ontologies are formu-
lated in description logics or other relevant fragments of first-order
logic, such as the guarded fragment and the unary-negation frag-
ment. The contributions of the paper are three-fold. First, we
characterize the expressive power of ontology-mediated queries in
terms of fragments of disjunctive datalog. Second, we establish
intimate connections between ontology-mediated queries and con-
straint satisfaction problems (CSPs) and their logical generaliza-
tion, MMSNP formulas. Third, we exploit these connections to ob-
tain new results regarding (i) first-order rewritability and datalog-
rewritability of ontology-mediated queries, (ii) P/NP dichotomies
for ontology-mediated queries, and (iii) the query containment
problem for ontology-mediated queries.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query languages;
H.2.5 [Database Management]: Heterogeneous Databases

Keywords
Ontology-Based Data Access; Query Answering; Query Rewriting

1. INTRODUCTION
Ontologies are logical theories that formalize domain-specific
knowledge, thereby making it available for machine processing.
Recent years have seen an increasing interest in using ontologies in
data-intensive applications, especially in the context of intelligent
systems, the semantic web, and in data integration. A much studied
scenario is that of answering queries over an incomplete database
under the open world semantics, taking into account knowledge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

provided by an ontology [19, 18, 16]. We refer to this as ontology-
based data access (OBDA).

There are several important use cases for OBDA. A classical one
is to enrich an incomplete data source with background knowledge,
in order to obtain a more complete set of answers to a query. For ex-
ample, if a medical patient database contains the facts that patient1
has finding Erythema Migrans and patient2 has finding Lyme dis-
ease, and the ontology provides the background knowledge that a
finding of Erythema Migrans is sufficient for diagnosing Lyme dis-
ease, then both patient1 and patient2 can be returned when query-
ing for patients that have the diagnosis Lyme disease. This use of
ontologies is also central to query answering in the semantic web.
OBDA can also be used to enrich the data schema (that is, the re-
lation symbols used in the presentation of the data) with additional
symbols to be used in a query. For example, a patient database
may contain facts such as patient1 has diagnosis Lyme disease and
patient2 has diagnosis Listeriosis, and an ontology could add the
knowledge that Lyme disease and Listeriosis are both bacterial in-
fections, thus enabling queries such as “return all patients with a
bacterial infection” despite the fact that the data schema does not
include a relation or attribute explicitly referring to bacterial infec-
tions. Especially in the bio-medical domain, applications of this
kind are fueled by the availability of comprehensive professional
ontologies such as SNOMED CT and FMA. A third prominent ap-
plication of OBDA is in data integration, where an ontology can
be used to provide a uniform view on multiple data sources [40].
This typically involves mappings from the source schemas to the
schema of the ontology, which we will not explicitly consider here.

We may view the actual database query and the ontology as two
components of one composite query, which we call an ontology-
mediated query. OBDA can then be described as the problem
of answering ontology-mediated queries. The database queries
used in OBDA are typically unions of conjunctive queries, while
the ontologies are typically specified in an ontology language that
is either a description logic, or, more generally, a suitable frag-
ment of first-order logic. For popular choices of ontology lan-
guages, the data complexity of ontology-mediated queries can be
CONP-complete, which has resulted in extensive research on find-
ing tractable classes of ontology-mediated queries, as well as on
finding classes of ontology-mediated queries that are amenable to
efficient query answering techniques [17, 29, 32]. In particular,
relevant classes of ontology-mediated queries have been identified
that admit an FO-rewriting (i.e., that are equivalent to a first-order
query), or, alternatively, admit a datalog-rewriting. FO-rewritings
make it possible to answer ontology-based queries using traditional
database management systems. This is considered one of the most
promising approaches for OBDA, and is currently the subject of
significant research activity, see for example [18, 28, 30, 31, 42].

The main aims of this paper are (i) to characterize the expressive
power of ontology-mediated queries, both in terms of more tradi-
tional database query languages and from a descriptive complexity
perspective and (ii) to make progress towards complete and decid-
able classifications of ontology-mediated queries, with respect to
their data complexity, as well as with respect to FO-rewritability
and datalog-rewritability.

We take an ontology-mediated query to be a triple (S,O, q)
where S is a data schema, O an ontology, and q a query. Here,
the data schema S fixes the set of relation symbols than can occur
in the data and the ontology O is a logical theory that may use
the relation symbols from S as well as additional symbols. The
query q can use any relation symbol that occurs in S or O. As
ontology languages, we consider a range of standard description
logics (DLs) and several fragments of first-order logic that embed
ontology languages such as Datalog± [15], namely the guarded
fragment (GF), the unary negation fragment (UNFO), and the
guarded negation fragment (GNFO). As query languages for q, we
focus on unions of conjunctive queries (UCQs) and unary atomic
queries (AQs). The latter are of the form A(x), with A a unary
relation symbol, and correspond to what are traditionally called
instance queries in the OBDA literature (note that A may be a
relation symbol from O that is not part of the data schema). These
two query languages are among the most used query languages
in OBDA. In the following, we use (L,Q) to denote the query
language that consists of all ontology-mediated queries (S,O, q)
with O specified in the ontology language L and q specified in the
query language Q. For example, (GF,UCQ) refers to ontology-
mediated queries in whichO is a GF-ontology and q is a UCQ. We
refer to such query languages (L,Q) as ontology-mediated query
languages (or, OBDA languages).

In Section 3, we characterize the expressive power of OBDA lan-
guages in terms of natural fragments of (negation-free) disjunctive
datalog. We first consider the basic description logic ALC. We
show that (ALC,UCQ) has the same expressive power as monadic
disjunctive datalog (abbreviated MDDlog) and that (ALC,AQ) has
the same expressive power as unary queries defined in a syntac-
tic fragment of MDDlog that we call connected simple MDDlog.
Similar results hold for various description logics that extendALC
with, for example, inverse roles, role hierarchies, and the univer-
sal role, all of which are standard operators included in the W3C-
standardized ontology language OWL2 DL. Turning to other frag-
ments of first-order logic, we then show that (UNFO,UCQ) also
has the same expressive power as MDDlog, while (GF,UCQ) and
(GNFO,UCQ) are strictly more expressive and coincide in expres-
sive power with frontier-guarded disjunctive datalog, which is the
DDlog fragment given by programs in which, for every atom α in
the head of a rule, there is an atom β in the rule body that contains
all variables from α.

In Sections 4 and 5, we study ontology-mediated queries from
a descriptive complexity perspective. In particular, we establish an
intimate connection between OBDA query languages, constraint
satisfaction problems, and MMSNP. Recall that constraint satis-
faction problems (CSPs) form a subclass of the complexity class
NP that, although it contains NP-hard problems, is in certain ways
more computationally well-behaved. The widely known Feder-
Vardi conjecture [24] states that there is a dichotomy between
PTIME and NP for the class of all CSPs, that is, each CSP is ei-
ther in PTIME or NP-hard. In other words, the conjecture asserts
that there are no CSPs which are NP-intermediate in the sense of
Ladner’s theorem. Monotone monadic strict NP without inequal-
ity (abbreviated MMSNP) was introduced by Feder and Vardi as
a logical generalization of CSP that enjoys similar computational

properties [24]. In particular, it was shown in [24, 33] that there is
a dichotomy between PTIME and NP for MMSNP sentences if and
only if the Feder-Vardi conjecture holds.

In Section 4, we observe that (ALC,UCQ) and many other
OBDA languages based on UCQs have the same expressive power
as the query language coMMSNP, consisting of all queries whose
complement is definable by an MMSNP formula with free vari-
ables. In the spirit of descriptive complexity theory, we say that
(ALC,UCQ) captures coMMSNP. In fact, this result is a conse-
quence of the results in Section 3 and the observation that MDDlog
has the same expressive power as coMMSNP. It has fundamental
consequences regarding the data complexity of ontology-mediated
queries and the containment problem for such queries, which we
describe next.

First, we obtain that there is a dichotomy between PTIME and
CONP for ontology-mediated queries from (ALC,UCQ) if and only
if the Feder-Vardi conjecture holds, and similarly for many other
OBDA languages based on UCQs. To appreciate this result, re-
call that considerable effort has been directed towards identifying
tractable classes of ontology-mediated queries. Ideally, one would
like to classify the data complexity of every ontology-mediated
query within a given OBDA language such as (ALC,UCQ). Our
aforementioned result ties this task to proving the Feder-Vardi con-
jecture. Significant progress has been made in understanding the
complexity of CSPs and MMSNPs [14, 12, 34], and the connection
established in this paper facilitates the transfer of techniques and
results from CSP and MMSNP in order to analyze the data com-
plexity of query evaluation in (ALC,UCQ). We also consider the
standard extension ALCF of ALC with functional roles and note
that, for query evaluation in (ALCF ,AQ), there is no dichotomy
between PTIME and CONP unless PTIME = NP.

To establish a counterpart of (GF,UCQ) and (GNFO,UCQ) in
the MMSNP world, we introduce guarded monotone strict NP (ab-
breviated GMSNP) as a generalization of MMSNP; specifically,
GMSNP is obtained from MMSNP by allowing guarded second-
order quantification in the place of monadic second-order quan-
tification, similarly as in the transition from MDDlog to frontier-
guarded disjunctive datalog. The resulting query language coGM-
SNP has the same expressive power as frontier-guarded disjunctive
datalog, and therefore, in particular, (GF,UCQ) and (GNFO,UCQ)
capture coGMSNP. We observe that GMSNP has the same expres-
sive power as the extension MMSNP2 of MMSNP proposed in
[37]. It follows from our results in Section 3 that GMSNP (and
thus MMSNP2) is strictly more expressive than MMSNP, clos-
ing an open problem from [37]. We leave it as an open problem
whether GMSNP is computationally as well-behaved as MMSNP,
that is, whether there is a dichotomy between PTIME and NP if the
Feder-Vardi conjecture holds.

The second application of the connection between OBDA and
MMSNP concerns query containment. It was shown in [24] that
containment between MMSNP sentences is decidable. We use this
result to prove that query containment is decidable for many OBDA
languages based on UCQs, including (ALC,UCQ) and (GF,UCQ).
Note that this refers to a very general form of query contain-
ment in OBDA, as recently introduced and studied in [10]. For
(ALCF ,AQ), this problem (and every other decision problem dis-
cussed below) turns out to be undecidable.

In Section 5, we consider OBDA languages based on atomic
queries and establish a tight connection to (certain generalizations
of) CSPs. This connection is most easily stated for Boolean atomic
queries (BAQs): we prove that (ALC,BAQ) captures the query lan-
guage that consists of all Boolean queries definable as the com-
plement of a CSP. Similarly (ALC,AQ) extended with the uni-

versal role captures the query language that consists of all unary
queries definable as the complement of a generalized CSP, which
is given by a finite collection of structures enriched with a con-
stant symbol. We then proceed to transfer results from the CSP
literature to the ontology-mediated query languages (ALC, BAQ)
and (ALC, AQ). First we immediately obtain that the existence
of a PTIME/CONP dichotomy for these ontology-mediated query
languages is equivalent to the Feder-Vardi conjecture. Then we
show that query containment is not only decidable (as we could
already conclude from the connection with coMMSNP described
in Section 4), but, in fact, NEXPTIME-complete. Finally, taking
advantage of recent results for CSPs [35, 26, 13], we are able
to show that FO-rewritability and datalog-rewritability, as proper-
ties of ontology-mediated queries, are decidable and NEXPTIME-
complete for (ALC, AQ) and (ALC,BAQ).

The results in Sections 4 and 5 just summarized are actually
proved not only forALC, but also for several of its extensions. This
relies on the equivalences between DL-based OBDA-languages es-
tablished in Section 3.

Related Work A connection between query answering in DLs
and the negation-free fragment of disjunctive datalog was first
discovered and utilized in the influential [39, 29], see also [44].
This research is concerned with answer-preserving translations of
ontology-mediated queries into disjunctive datalog. In contrast to
the current paper, it does not consider the expressive power of
ontology-mediated queries, nor their descriptive complexity. A
connection between DL-based OBDA and CSPs was first found and
exploited in [36], in a setup that is different from the one studied in
this paper. In particular, instead of focusing on ontology-mediated
queries that consist of a data schema, an ontology, and a database
query, [36] concentrates on ontologies while quantifying univer-
sally over all database queries and without fixing a data schema. It
establishes links to the Feder-Vardi conjecture that are incompara-
ble to the ones found in this paper, and does not consider the expres-
sive power and descriptive complexity of queries used in OBDA.

2. PRELIMINARIES
Schemas, Instances, and Queries. A schema is a finite collec-
tion S = (S1, . . . , Sk) of relation symbols with associated arity.
A fact over S is an expression of the form S(a1, . . . , an) where
S ∈ S is an n-ary relation symbol, and a1, . . . , an are elements
of some fixed, countably infinite set const of constants. An in-
stance D over S is a finite set of facts over S. The active domain
adom(D) of D is the set of all constants that occur in the facts
of D. We will frequently use boldface notation for tuples, such as
in a = (a1, . . . , an), and we denote by () the empty tuple.

A query over S is semantically defined as a mapping q that as-
sociates with every instance D over S a set of answers q(D) ⊆
adom(D)n, where n ≥ 0 is the arity of q. If n = 0, then we say
that q is a Boolean query, and we write q(D) = 1 if () ∈ q(D) and
q(D) = 0 otherwise.

A prominent way of specifying queries is by means of first-order
logic (FO). Specifically, each schema S and domain-independent
FO-formula ϕ(x1, . . . , xn) that uses only relation names from S
(and, possibly, equality) give rise to the n-ary query qϕ,S, defined
by setting for all S-instances D,

qϕ,S(D) = {(a1, . . . , an) ∈ adom(D)n | D |= ϕ[a1, . . . , an]}.

To simplify exposition, we assume that FO-queries do not contain
constants. We use FOQ to denote the set of all first-order queries, as
defined above. Similarly, we use CQ and UCQ to refer to the class
of conjunctive queries and unions of conjunctive queries, defined

as usual and allowing the use of equality. AQ denotes the set of
atomic queries, which are of the formA(x) withA a unary relation
symbol. Each of these is called a query language, which is defined
abstractly as a set of queries. Besides FOQ, CQ, UCQ, and AQ, we
consider various other query languages introduced later, including
ontology-mediated ones and variants of datalog.

Two queries q1 and q2 over S are equivalent, written q1 ≡ q2,
if for every S-instance D, we have q1(D) = q2(D). We say that
query language Q2 is at least as expressive as query language Q1,
written Q1 � Q2, if for every query q1 ∈ Q1 over some schema
S, there is a query q2 ∈ Q2 over S with q1 ≡ q2. Q1 andQ2 have
the same expressive power ifQ1 � Q2 � Q1.

Ontology-Mediated Queries. We introduce the fundamentals of
ontology-based data access. An ontology language L is a fragment
of first-order logic (i.e., a set of FO sentences), and an L-ontology
O is a finite set of sentences from L. We introduce various ontol-
ogy languages throughout the paper, including descriptions logics
and the guarded fragment.

An ontology-mediated query over a schema S is a triple
(S,O, q), where O is an ontology and q a query over S ∪ sig(O),
with sig(O) the set of relation symbols used in O. Here, we call
S the data schema. Note that the ontology can introduce symbols
that are not in the data schema. As explained in the introduction,
this allows the ontology to enrich the schema of the query q. Of
course, we do not require that every relation of the data schema
needs to occur in the ontology. We have explicitly included S in
the specification of the ontology-mediated query to emphasize that
the ontology-mediated query is interpreted as a query over S.

The semantics of an ontology-mediated query is given in terms
of certain answers, defined next. A finite relational structure over
a schema S is a pair B = (dom,D) where dom is a non-empty
finite set called the domain of B and D is an instance over S with
adom(D) ⊆ dom. When S is understood, we use Mod(O) to
denote the set of all finite relational structures B over S ∪ sig(O)
such that B |= O. Let (S,O, q) be an ontology-mediated query
with q of arity n. The certain answers to q on an S-instance D
given O is the set certq,O(D) of tuples a ∈ adom(D)n such that
for all (dom,D′) ∈ Mod(O) with D ⊆ D′ (that is, all models of
O that extend D), we have a ∈ q(D′).

Note that all ontology languages considered in this paper enjoy
finite controllability, meaning that finite relational structures can
be replaced with unrestricted ones without changing the certain an-
swers to unions of conjunctive queries [6, 7].

Every ontology-mediated query Q = (S,O, q) can be seman-
tically interpreted as a query qQ over S by setting qQ(D) =
certq,O(D) for all S-instances D. Taking this view one step fur-
ther, each choice of an ontology language L and query languageQ
gives rise to a query language, denoted (L,Q), defined as the set
of queries q(S,O,q) with S a schema, O an L-ontology, and q ∈ Q
a query over S∪ sig(O). We refer to such query languages (L,Q)
as ontology-mediated query languages (or, OBDA languages).

Example 1 The left-hand side of Table 1 shows an ontology O
that is formulated in the guarded fragment of FO. Consider the
ontology-mediated query (S,O, q) with data schema and query

S = {ErythemaMigrans, LymeDisease,

HereditaryPredisposition, finding, diagnosis, parent}
q(x) = ∃y(diagnosis(x, y) ∧ BacterialInfection(y)).

For the instance D over S that consists of the facts

finding(pat1, jan12find1) ErythemaMigrans(jan12find1)

diagnosis(pat2,may7diag2) Listeriosis(may7diag2)

∀x(∃y(finding(x, y) ∧ ErythemaMigrans(y)) ∃finding.ErythemaMigrans v ∃diagnosis.LymeDisease

→ ∃y(diagnosis(x, y) ∧ LymeDisease(y)))

∀x((LymeDisease(x) ∨ Listeriosis(x)) → BacterialInfection(x)) LymeDisease t Listeriosis v BacterialInfection

∀x(∃y.(HereditaryDisposition(y) ∧ parent(x, y)) → HereditaryDisposition(y))) ∃parent.HereditaryDisposition v HereditaryDisposition

Table 1: Example ontology, presented in (the guarded fragment of) first-order logic and the DL ALC

>∗(x) = > (C uD)∗(x) = C∗(x) ∧D∗(x)

⊥∗(x) = ⊥ (C tD)∗(x) = C∗(x) ∨D∗(x)

A∗(x) = A(x) (∃R.C)∗(x) = ∃y R(x, y) ∧ C∗(y)

(¬C)∗(x) = ¬C∗(x) (∀R.C)∗(x) = ∀y R(x, y) → C∗(y)

Table 2: First-order translation of ALC-concepts

we have certq,O(D) = {pat1, pat2}.

Description Logics for Specifying Ontologies. In description
logic, schemas are generally restricted to relations of arity one
and two, called concept names and role names, respectively. For
brevity, we speak of binary schemas. We briefly review the basic
description logic ALC. Relevant extensions of ALC will be intro-
duced later on in the paper.

An ALC-concept is formed according to the syntax rule

C,D ::= A | > | ⊥ | ¬C | C uD | C tD | ∃R.C | ∀R.C

where A ranges over concept names and R over role names. An
ALC-ontology O is a finite set of concept inclusions C v D,
with C and D ALC-concepts. We define the semantics of ALC-
concepts by translation to FO-formulas with one free variable, as
shown in Table 2. An ALC-ontology O then translates into the set
of FO-sentences O∗ = {∀x.(C∗(x) → D∗(x)) | C v D ∈ O}.
On the right-hand side of Table 1, we show theALC-version of the
guarded fragment ontology displayed on the left-hand side. Note
that, although the translation is equivalence-preserving in this case,
in general, the guarded fragment is a more expressive ontology lan-
guage than ALC. Throughout the paper, we do not explicitly dis-
tinguish between a DL ontology and its translation into FO.

We remark that, from a DL perspective, the above definitions of
instances and certain answers correspond to making the standard
name assumption (SNA) in ABoxes, which in particular implies the
unique name assumption. We make the SNA only to facilitate uni-
form presentation; the SNA is inessential for the results presented
in this paper.

Example 2 Let O and S be as in Example 1. For q1(x) =
BacterialInfection(x), the ontology-mediated query (S,O, q1) is
equivalent to the union of conjunctive queries LymeDisease(x) ∨
Listeriosis(x). For q2(x) = HereditaryDisposition(x), the
ontology-mediated query (S,O, q2) is equivalent to the query de-
fined by the datalog program

P (x) ← HereditaryDisposition(x) goal(x) ← P (x)

P (x) ← parent(y, x) ∧ P (y)

but not to any first-order query.

3. OBDA AND DISJUNCTIVE DATALOG
We show that for many OBDA languages, there is a natural frag-

ment of disjunctive datalog with exactly the same expressive power.

A disjunctive datalog rule ρ has the form

S1(x1) ∨ · · · ∨ Sm(xm)← R1(y1) ∧ · · · ∧Rn(yn)

withm ≥ 0 and n > 0. We refer to S1(x1)∨· · ·∨Sm(xm) as the
head of ρ, and to R1(y1) ∧ . . . ∧ Rn(yn) as the body of ρ. Every
variable that occurs in the head of a rule ρ is required to also occur
in the body of ρ. Empty rule heads are denoted ⊥. A disjunctive
datalog (DDlog) program Π is a finite set of disjunctive datalog
rules with a selected goal predicate goal that does not occur in rule
bodies and only in goal rules of the form goal(x) ← R1(x1) ∧
· · · ∧ Rn(xn). The arity of Π is the arity of the goal relation.
Relation symbols that occur in the head of at least one rule of Π
are intensional (IDB) predicates of Π, and all remaining relation
symbols in Π are extensional (EDB) predicates.

Every DDlog program Π of arity n naturally defines an n-ary
query qΠ over the schema S that consists of the EDB predicates
of Π: for every instance D over S, we have

qΠ(D) = {a ∈ adom(D)n | goal(a) ∈ D′

for all D′ ∈ Mod(Π) with D ⊆ D′}.

Here, Mod(Π) denotes the set of all instances over S′ that sat-
isfy all rules in Π, with S′ the set of all IDB and EDB predicates
in Π. Note that the DDlog programs considered in this paper are
negation-free. Restricted to this fragment, there is no difference
between the different semantics of DDlog studied e.g. in [21].

We use adom(x) in rule bodies as a shorthand for “x is in the
active domain of the EDB predicates”. Specifically, whenever we
use adom in a rule of a DDlog program Π, we assume that adom
is an IDB predicate and that the program Π includes all rules of the
form adom(x) ← R(x) where R is an EDB predicate of Π and x
is a tuple of distinct variables that includes x.

A monadic disjunctive datalog (MDDlog) program is a DDlog
program in which all IDB predicates with the possible exception of
goal are monadic. We use MDDlog to denote the query language
that consists of all queries defined by an MDDlog program.

3.1 Ontologies Specified in Description Logics
We show that (ALC,UCQ) has the same expressive power as

MDDlog and identify a fragment of MDDlog that has the same ex-
pressive power as (ALC,AQ). In addition, we consider the exten-
sions of ALC with inverse roles, role hierarchies, transitive roles,
and the universal role, which we also relate to MDDlog and its
fragments. To match the syntax of ALC and its extensions, we
generally assume schemas to be binary throughout this section.1

(ALC,UCQ) and MDDlog. The first main result of this section is
Theorem 1 below, which relates (ALC,UCQ) and MDDlog.

Theorem 1 (ALC,UCQ) and MDDlog have the same expressive
power.

1In fact, this assumption is inessential for Theorems 1 and 3 (which
speak about UCQs), but required for Theorems 2, 4, and 5 (which
speak about AQs) to hold.

Proof. (sketch) We start with giving some intuitions about an-
swering (ALC,UCQ) queries which guide our translation of such
queries into MDDlog programs. Recall that the definition of certain
answers to an ontology-mediated query on an instance D involves
a quantification over all models of O which extend D. It turns
out that in the case of (ALC,UCQ) queries (and, as we will see
later, more generally for (UNFO,UCQ) queries), it suffices to con-
sider a particular type of extensions of D that we term pointwise
extensions. Intuitively, such an extension of D corresponds to at-
taching domain-disjoint structures to the elements of D. Formally,
for instances D ⊆ D′, we call D′ a pointwise extension of D if
D′ \ D is the union of instances {D′a | a ∈ adom(D)} such that
adom(D′a) ∩ adom(D) ⊆ {a} and adom(D′a) ∩ adom(D′b) = ∅
for a 6= b. The fact that we need only consider models of O which
are pointwise extensions of D is helpful because it constrains the
ways in which a CQ can be satisfied. Specifically, every homomor-
phism h from q to D′ gives rise to a query q′ obtained from q by
identifying all variables that h sends to the same element, and to
a decomposition of q′ into a collection of components q′0, . . . , q′k
where the ‘core component’ q′0 comprises all atoms of q′ whose
variables h sends to elements of D and for each D′a in the image of
h, there is a ‘non-core component’ q′i, 1 ≤ i ≤ k, such that q′i com-
prises all atoms of q′ whose variables h sends to elements of D′a.
Note that the non-core components are pairwise variable-disjoint
and share at most one variable with the core component.

We now detail the translation from an ontology-mediated query
(S,O, q) ∈ (ALC,UCQ) into an equivalent MDDlog program. Let
sub(O) be the set of subconcepts (that is, syntactic subexpressions)
of concepts that occur in O, and let cl(O, q) denote the union of
sub(O) and the set of all CQs that have at most one free variable,
use only symbols from q, and whose number of atoms is bounded
by the number of atoms of q. A type (for O and q) is a subset of
cl(O, q). The CQs present in cl(O, q) include all potential ‘non-
core components’ from the intuitive explanation above. The free
variable of a CQ in cl(O, q) (if any) represents the overlap between
the core component and the non-core component.

We introduce a fresh unary relation symbol Pτ for every type τ ,
and we denote by S′ the schema that extends S with these addi-
tional symbols. In the MDDlog program that we aim to construct,
the relation symbols Pτ will be used as IDB relations, and the sym-
bols from S will be the EBD relations.

We will say that a relational structure B over S′ ∪ sig(O) is
type-coherent if Pτ (d) ∈ B just in the case that

τ = {q′ ∈ cl(O, q) | q′ Boolean ,B |= q′} ∪
{C ∈ cl(O, q) | C unary,B |= C[d]}.

Set k equal to the maximum of 2 and the width of q, that is, the
number of variables that occur in q. By a diagram, we mean a
conjunction δ(x1, . . . , xn) of atomic formulas over the schema S′,
with n ≤ k variables. A diagram δ(x) is realizable if there exists
a type-coherent B ∈ Mod(O) that satisfies ∃xδ(x). A diagram
δ(x) implies q(x′), with x′ a sequence of variables from x, if every
type-coherent B ∈ Mod(O) that satisfies δ(x) under some variable
assignment, satisfies q(x′) under the same assignment.

The desired MDDlog program Π consists of the following col-
lections of rules:∨

τ⊆cl(O,q)

Pτ (x)← adom(x)

⊥ ← δ(x) for all non-realizable diagrams δ(x)

goal(x′)← δ(x) for all diagrams δ(x) that imply q(x′)

Intuitively, these rules ‘guess’ a pointwise extension D′ of D.
Specifically, the types Pτ guessed in the first line determine which

subconcepts of O are made true at each element of D′. Since
MDDlog does not support existential quantifiers, the D′a parts of
D′ cannot be guessed explicitly. Instead, the CQs included in the
guessed types determine those non-core component queries that
matched in the D′a parts. The second line ensures coherence of the
guesses and the last line guarantees that q has the required match
in D′. It is proved in the full version of this paper that the MDDlog
query qΠ is indeed equivalent to (S,O, q).

For the converse direction, let Π be an MDDlog program. For
each unary IDB relation A of Π, we introduce two fresh unary re-
lations, denoted by A and Ā. The ontology O enforces that Ā
represents the complement of A, that is, it consists of all inclusions
of the form

> v (A t Ā) u ¬(A u Ā).

Let q be the union of (i) all conjunctive queries that constitute the
body of a goal rule, as well as (ii) all conjunctive queries obtained
from a non-goal rule of the form

A1(x1) ∨ · · · ∨Am(xm)← R1(y1) ∧ · · · ∧Rn(yn)

by taking the conjunctive query

Ā1(x1) ∧ · · · ∧ Ām(xm) ∧R1(y1) ∧ · · · ∧Rn(yn).

It can be shown that the ontology-mediated query (S,O, q), where
S is the schema that consists of the EDB relations of Π, is equiva-
lent to the query defined by Π. o

ALC with Atomic Queries. We characterize (ALC,AQ) by a
fragment of MDDlog. This query language has the same expres-
sive power as the OBDA language (ALC,ConQ), where ConQ de-
notes the set of all ALC-concept queries, that is, queries C(x)
with C a (possibly compound) ALC-concept. Specifically, each
query (S,O, q) ∈ (ALC,ConQ) with q = C(x) can be ex-
pressed as a query (S,O′, A(x)) ∈ (ALC,AQ) where A is a
fresh concept name (that is, it does not occur in S ∪ sig(O)) and
O′ = O ∪ {C v A}. As a consequence, (ALC,AQ) also has the
same expressive power as (ALC,TCQ), where TCQ is the set of
all CQs that take the form of a directed tree with a single answer
variable at the root.

Each disjunctive datalog rule can be associated with an undi-
rected graph whose nodes are the variables that occur in the rule
and whose edges reflect co-occurrence of two variables in an atom
in the rule body. We say that a rule is connected if its graph is
connected, and that a DDlog program is connected if all its rules
are connected. An MDDlog program is simple if each rule contains
at most one atom R(x) with R an EDB relation; additionally, we
require that, in this atom, every variable occurs at most once.

Theorem 2 (ALC,AQ) has the same expressive power as unary
connected simple MDDlog.

Proof. (sketch) The translation from (ALC,AQ) to unary con-
nected simple MDDlog queries is a modified version of the trans-
lation given in the proof of Theorem 1. Assume that (S,O, q) with
q = A(x) is given. We now take types to be subsets of sub(O) and
then define diagrams exactly as before (with k = 2). The MDDlog
program Π consists of the following rules:∨

τ⊆sub(O)

Pτ (x)← adom(x)

⊥ ← δ(x) for all non-realizable diagrams δ(x)

of the form Pτ1(x) ∧ Pτ2(x),
Pτ (x) ∧A(x), or
Pτ1(x1) ∧ S(x1, x2) ∧ Pτ2(x2)

goal(x)← Pτ (x) for all Pτ with A ∈ Pτ

Clearly, Π is unary, connected, and simple. Equivalence of the
queries (S,O, q) and qΠ is proved in the full version of this paper.

Conversely, let Π be a unary connected simple MDDlog pro-
gram. It is easy to rewrite each rule of Π into an equivalent ALC-
concept inclusion, where goal is now regarded as a concept name.
For example, goal(x) ← R(x, y) is rewritten into ∃R.> v goal
and P1(x) ∨ P2(y) ← R(x, y) ∧ A(x) ∧ B(y) is rewritten into
A u ∃R.(B u ¬P2) v P1. Let O be the resulting ontology and
let q = goal(x). Then the query qΠ is equivalent to the query
(S,O, q), where S consists of the EDB relations in Π. o

Note that the connectedness condition is required since one cannot
express MDDlog rules such as goal(x) ← adom(x) ∧ A(y) with
y 6= x in (ALC,AQ). Multiple variable occurrences in EDB rela-
tions have to be excluded because programs such as goal(x) ←
A(x), ⊥ ← R(x, x) (return all elements in A if the instance con-
tains no reflexive R-edge, and return the active domain otherwise)
also cannot be expressed in (ALC,AQ).

Extensions of ALC. We identify several standard extensions of
(ALC,UCQ) and (ALC,AQ) that have the same expressive power,
and some that do not. We introduce the relevant extensions only
briefly and refer to [4] for more details.
ALCI is the extension ofALC in which one can state that a role

name R is the inverse of a role name S, that is, ∀xy(R(x, y) ↔
S(y, x)); ALCH is the extension in which one can state that a
role name R is included in a role name S, that is, ∀xy(R(x, y)→
S(x, y)); S is the extension ofALC in which one can require some
roles names to be interpreted as transitive relations; ALCF is the
extension in which one can state that some role names are inter-
preted as partial functions; and ALCU is the extension with the
universal role U , interpreted as dom×dom in any relational struc-
ture B with domain dom. Note that U should be regarded as a log-
ical symbol and is not a member of any schema. All these means
of expressivity are included in the OWL2 DL profile of the W3C-
standardized ontology language OWL2 [47].

We use the usual naming scheme to denote combinations of
these extensions, for example ALCHI for the union of ALCH
andALCI and SHI for the union of S andALCHI. The follow-
ing result summarizes the expressive power of extensions of ALC.

Theorem 3

1. (ALCHIU ,UCQ) has the same expressive power as MDDlog
and as (ALC,UCQ).

2. (S,UCQ) and (ALCF ,UCQ) are strictly more expressive than
(ALC,UCQ).

Proof. (sketch) In Point 1, we start with (ALCIU ,UCQ), for which
the result follows from Theorem 6 in Section 3.2 since ALCIU is
a fragment of UNFO. Role inclusions ∀xy(R(x, y) → S(x, y))
do not add expressive power since they can be simulated by adding
to the ontology the inclusions ∃R.C v ∃S.C for all C ∈ sub(O),
and replacing every atom S(x, y) in the UCQ byR(x, y)∨S(x, y).

For Point 2, we separate (S,UCQ) from (ALC,UCQ) by show-
ing that the following ontology-mediated query (S1,O1, q1) can-
not be expressed in (ALC,UCQ): S1 consists of two role names
R and S, O1 states that these role names are both transitive, and
q1 = ∃xy(R(x, y) ∧ S(x, y)). For (ALCF ,UCQ), we show that
(S2,O2, q2) cannot be expressed in (ALC,UCQ), where S2 con-
sists of role name R and concept name A,O2 states that R is func-
tional, and q2 = A(x). Detailed proofs are provided in the full ver-
sion of this paper. They rely on a characterization of (ALC,UCQ)
in terms of colored forbidden patterns [38], which is a by-product

of the connection between (ALC,UCQ) and MMSNP that will be
established in Section 4. o

The next result is interesting when contrasted with Point 2 of Theo-
rem 3: when (ALC,UCQ) is replaced with (ALC,AQ), then the ad-
dition of transitive roles no longer increases the expressive power.

Theorem 4 (ALC,AQ) has the same expressive power as
(SHI,AQ).

Proof. (sketch) The proof of Theorem 2 given above actually shows
that unary connected simple MDDlog is at least as expressive as
(ALCI,AQ). Thus, (ALC,AQ) has the same expressive power as
(ALCI,AQ). Now it is folklore that in ALCI transitive roles can
be replaced by certain concept inclusions without changing the cer-
tain answers to atomic queries. This can be done similarly to the
elimination of role inclusions in the proof above, see [39, 45]. Thus
(ALCI,AQ) has the same expressive power as (SHI,AQ), and the
result follows. o

It follows from [45] that this observation can be extended to all
complex role inclusions that are admitted in the description logic
SROIQ. In contrast, the addition of the universal role on the
side of the OBDA query language extends the expressive power
of (ALC,AQ). Namely, it corresponds, on the MDDlog side, to
dropping the requirement that rule bodies must be connected. For
example, the MDDlog query goal(x)← adom(x)∧A(y) can then
be expressed using the ontology O = {∃U.A v goal} and the AQ
goal(x).

Theorem 5 (ALCU ,AQ) and (SHIU ,AQ) both have the same ex-
pressive power as unary simple MDDlog.

We close this section with a brief remark about Boolean atomic
queries (BAQs), that is, queries of the form ∃x.A(x), where A is
a unary relation symbol. Such queries will be considered in Sec-
tion 5. It is possible to establish modified versions of Theorems 2
to Theorem 5 above in which AQs are replaced by BAQs and unary
goal predicates by 0-ary goal-predicate, respectively.

3.2 Ontologies Specified in First-Order Logic
Ontologies formulated in description logic are not able to speak

about relation symbols of arity greater than two.2 To overcome this
restriction, we consider the guarded fragment of first-order logic
and the unary-negation fragment of first-order logic [6, 46]. Both
generalize the description logic ALC in different ways. We also
consider their natural common generalization, the guarded nega-
tion fragment of first-order logic [7]. Our results from the previous
subsection turn out to generalize to all these fragments. We start by
considering the unary negation fragment.

The unary-negation fragment of first-order logic (UNFO) [46]
is the fragment of first-order logic that consists of those formulas
that are generated from atomic formulas, including equality, us-
ing conjunction, disjunction, existential quantification, and unary
negation, that is, negation applied to a formula with at most one
free variable. Thus, for example, ¬∃xyR(x, y) belongs to UNFO,
whereas ∃xy¬R(x, y) does not. It is easy to show that everyALC-
TBox is equivalent to a UNFO sentence.

Theorem 6 (UNFO,UCQ) has the same expressive power as
MDDlog.
2There are actually a few DLs that can handle relations of unre-
stricted arity, such as those presented in [19]. We do not consider
such DLs in this paper, but remark that large fragments of them can
be translated into UNFO.

Proof. (sketch) The translation from MDDlog to (UNFO,UCQ)
is given by Theorem 1. Here, we provide the translation from
(UNFO,UCQ) to MDDlog. Let Q = (S,O, q) ∈ (UNFO,UCQ)
be given. We assume that O is a single UNFO sentence that is in
the normal form generated by the following grammar:

ϕ(x) ::= > | ¬ϕ(x) | ∃y(ψ1(x, y) ∧ · · · ∧ ψn(x, y))

where each ψi is either a relational atom or a formula with at most
one free variable generated by the same grammar, and the free vari-
ables in ψi are among x,y. Note that no equality is used and that
all generated formulas have at most one free variable. Easy syn-
tactic manipulations show that every UNFO-formula with at most
one free variable is equivalent to a disjunction of formulas gener-
ated by the above grammar. In the case of O, we may further-
more assume that it is a single such sentence, rather than a disjunc-
tion, because certq,O1∨O2(D) is the intersection of certq,O1(D)
and certq,O2(D), and MDDlog is closed under taking intersections
of queries.

Let sub(O) be the set of all subformulas of O with at most one
free variable z (we apply a one-to-one renaming of variables as
needed to ensure that each formula in sub(O) with a free variable
has the same free variable z). Let k be the maximum of the number
of variables in O and the number of variables in q. We denote by
clk(O) the set of all formulas ϕ(x) of the form

∃y(ψ1(x, y) ∧ · · · ∧ ψn(x, y))

with y = (y1, . . . , ym),m ≤ k, where each ψi is either a relational
atom that uses a symbol from q or is of the form χ(x) or χ(yi), for
χ(z) ∈ sub(O). Note that, as in the proof of Theorem 1, clk(O)
contains all CQs that use only symbols from q and whose size is
bounded by the size of q. A type τ is a subset of clk(O); the set of
all types is denoted type(O).

We introduce a fresh unary relation symbol Pτ for each type τ ,
and we denote by S′ the schema that extends S with these addi-
tional relations. As before, we call a structure B over S′ ∪ sig(O)
type-coherent if for all types τ and elements d in the domain of B,
we have Pτ (d) ∈ B just in the case that τ is the (unique) type
realized at d in B. Diagrams, realizability, and “implying q” are
defined as in the proof of Theorem 1. It follows from [46] that it
is decidable whether a diagram implies a query, and whether a di-
agram is realizable. The MDDlog program Π is defined as in the
proof of Theorem 1, except that now in the first rule, τ ranges over
types in type(O). In the full version of this paper, we prove that
the resulting MDDlog query qΠ is equivalent to Q. o

Next, we consider the guarded fragment of first-order logic (GF).
It comprises all formulas built up from atomic formulas using
the Boolean connectives and guarded quantification of the form
∃x(α∧ϕ) and ∀x(α→ ϕ), where, in both cases, α is an atomic for-
mula (a “guard”) that contains all free variables of ϕ. To simplify
the presentation of the results, we consider here the equality-free
version of the guarded fragment. We do allow one special case of
equality, namely the use of trivial equalities of the form x = x as
guards, which is equivalent to allowing unguarded quantifiers ap-
plied to formulas with at most one free variable. This restricted
form of equality is sufficient to translate every ALC TBox into an
equivalent sentence of GF.

It turns out that the OBDA language (GF, UCQ) is strictly more
expressive than MDDlog.

Proposition 1 The Boolean query

(†) there are a1, . . . , an, b, for some n ≥ 2, such that A(a1),
B(an), and P (ai, b, ai+1) for all 1 ≤ i < n

is definable in (GF,UCQ) and not in MDDlog.

Proof. Let S consist of unary predicates A,B and a ternary predi-
cate P , and let Q be the S-query defined by (†). It is easy to check
thatQ can be expressed by the (GF,UCQ) query qS,O,∃xU(x) where

O = ∀xyz (P (x, z, y)→ (A(x)→ R(z, x))) ∧
∀xyz (P (x, z, y)→ (R(z, x)→ R(z, y))) ∧
∀xyz (R(x, y)→ (B(y)→ U(y)))

We show in the full version of this paper that Q is not expressible
in MDDlog using the colored forbidden patterns characterization
mentioned in the proof sketch of Theorem 3. o

As fragments of first-order logic, the unary-negation fragment
and the guarded fragment are incomparable in expressive power.
They have a common generalization, which is known as the
guarded-negation fragment (GNFO) [8]. This fragment is defined
in the same way as UNFO, except that, besides unary negation, we
allow guarded negation of the form α ∧ ¬ϕ, where the guard α
is an atomic formula that contains all the variables of ϕ. Again,
for simplicity, we consider here the equality-free version of the
language, except that we allow the use of trivial equalities of the
form x = x as guards. As we will see, for the purpose of OBDA,
GNFO is no more powerful than GF. Specifically, (GF, UCQ) and
(GNFO, UCQ) are expressively equivalent to a natural generaliza-
tion of MDDlog, namely frontier-guarded DDlog. Recall that a
datalog rule is guarded if its body includes an atom that contains all
variables which occur in the rule [27]. A weaker notion of guard-
edness, which we call here frontier-guardedness, inspired by [5,
7], requires that, for each atom α in the head of the rule, there is
an atom β in the rule body such that all variables that occur in α
occur also in β. We define a frontier-guarded DDlog query to be a
query defined by a DDlog program in which every rule is frontier-
guarded. Observe that frontier-guarded DDlog subsumes MDDlog.

Theorem 7 (GF,UCQ) and (GNFO,UCQ) have the same expres-
sive power as frontier-guarded DDlog.

Theorem 7 is proved in the full version of this paper via transla-
tions from (GNFO,UCQ) to frontier-guarded DDlog and back that
are along the same lines as the translations from (UNFO,UCQ) to
MDDlog and back. In addition, we use a result from [8] to obtain
a translation from (GNFO,UCQ) to (GF,UCQ).

4. OBDA AND MMSNP
We show that MDDlog captures coMMSNP and thus, by the re-

sults obtained in the previous section, the same is true for many
OBDA languages based on UCQs. We then use this connection
to transfer results from MMSNP to OBDA languages with UCQs,
linking the data complexity of these languages to the Feder-Vardi
conjecture and establishing decidability of query containment. We
also propose GMSNP, an extension of MMSNP inspired by frontier
guarded DDlog, and show that (GF,UCQ) and (GNFO,UCQ) cap-
ture coGMSNP, and that GMSNP has the same expressive power
as a previously proposed extension of MMSNP called MMSNP2.

An MMSNP formula over schema S has the form
∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ with X1, . . . , Xn monadic second-
order (SO) variables, x1, . . . , xm FO-variables, and ϕ a conjunc-
tion of quantifier-free formulas of the form

ψ = α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n,m ≥ 0,

where each αi is of the formXi(x),R(x) (withR ∈ S), or x = y,
and each βi is of the form Xi(x). In order to use MMSNP as a

query language, and in contrast to the standard definition, we ad-
mit free FO-variables and speak of sentences to refer to MMSNP
formulas without free variables. To connect with the query lan-
guages studied thus far, we are interested in queries obtained by
the complements of MMSNP formulas: each MMSNP formula Φ
over schema S with n free variables gives rise to a query

qΦ,S(D) = {a ∈ adom(D)n | (adom(D),D) 6|= Φ[a]}

where we set (adom(D),D) |= Φ to true when D is the empty
instance (that is, adom(D) = ∅) and Φ is a sentence. We observe
that the resulting query language coMMSNP has the same expres-
sive power as MDDlog.

Proposition 2 coMMSNP and MDDlog have the same expressive
power.

Proof. Let Φ = ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ be an MMSNP for-
mula with free variables y1, . . . , yk, and let qΦ,S ∈ coMMSNP be
the corresponding query. We can assume w.l.o.g. that all implica-
tions ψ = α1∧· · ·∧αn → β1∨· · ·∨βm in ϕ satisfy the following
properties: (i) n > 0 and, (ii) each variable that occurs in a βi atom
also occurs in an αi atom. In fact, we can achieve both (i) and (ii)
by replacing violating implications ψ with the set of implications
ψ′ that can be obtained from ψ by adding, for each variable x that
occurs only in the head of ψ, an atom S(x) where S is a predicate
that occurs in Φ and x is a tuple of variables that contains x once
and otherwise only fresh variables that do not occur in Φ. Define an
MDDlog program ΠΦ that consists of all implications in ϕ whose
head is not ⊥ plus a rule

goal(y1, . . . , yk)← ϑ ∧ adom(y1) ∧ · · · ∧ adom(yk)

for each implication ϑ → ⊥ in ϕ. It can be proved that qΦ,S =
qΠΦ,S for all schemas S. Finally, it is straightforward to remove
the equalities from the rule bodies in ΠΦ.

Conversely, let Π be a k-ary MDDlog program and assume
w.l.o.g. that each rule uses a disjoint set of variables. Reserve
fresh variables y1, . . . , yk as free variables for the desired MM-
SNP formula, and let X1, . . . , Xn be the IDB predicates in Π and
x1, . . . , xm the FO-variables in Π that do not occur in the goal
predicate. Set ΦΠ = ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ where ϕ is the
conjunction of all non-goal rules in Π plus the implication ϑ′ → ⊥
for each rule goal(x) ← ϑ in Π. Here, ϑ′ is obtained from ϑ
by replacing each variable x ∈ x whose left-most occurrence in
the rule head is in the i-th position with yi, and then conjunctively
adding yi = yj whenever the i-th and j-th position in the rule head
have the same variable. It can be proved that qΠ,S = qΦΠ,S for all
schemas S. o

Thus, the characterizations of OBDA languages in terms of
MDDlog provided in Section 3 also establish the descriptive com-
plexity of these languages by identifying them with (the comple-
ment of) MMSNP. Furthermore, Proposition 2 allow us to trans-
fer results from MMSNP to OBDA. We start by considering the
data complexity of the query evaluation problem: for a query q,
the evaluation problem is to decide, given an instance D and a tu-
ple a of elements from D, whether a ∈ q(D). Our first result is
that the Feder-Vardi dichotomy conjecture for CSPs is true if and
only if there is a dichotomy between PTIME and CONP for query
evaluation in (ALC,UCQ), and the same is true for several other
OBDA languages. For brevity, we say that a query language has a
dichotomy between PTIME and CONP, referring only implicitly to
the evaluation problem.

The proof of the following theorem relies on Proposition 2 and
Theorems 1, 3, and 6. It also exploits the fact that the Feder-Vardi

dichotomy conjecture can equivalently be stated for MMSNP sen-
tences [24, 33]. Some technical development is needed to deal with
the presence of free variables. Details are in the full version of this
paper.

Theorem 8 (ALC,UCQ) has a dichotomy between PTIME and
CONP iff the Feder-Vardi conjecture holds. The same is true for
(ALCHIU ,UCQ) and (UNFO,UCQ).

Recall that (ALCF ,UCQ) and (S,UCQ) are two extensions of
(ALC,UCQ) that were identified in Section 3 to be more expres-
sive than (ALC,UCQ) itself. It was already proved in [36] (The-
orem 27) that, compared to ontology-mediated queries based on
ALC, the functional roles of ALCF dramatically increase the
computational power. This is true even for atomic queries.

Theorem 9 ([36]) For every NP-Turing machine M , there is a
query q in (ALCF ,AQ) such that the complement of the word
problem of M has the same complexity as evaluating q, up to
polynomial-time reductions. Consequently, (ALCF ,AQ) does not
have a dichotomy between PTIME and CONP (unless PTIME =
NP).

We leave it as an open problem to analyze the computational power
of (S,UCQ).

There are other interesting results that can be transferred from
MMSNP to OBDA. Here, we consider query containment. Specif-
ically, the following general containment problem was proposed in
[10] as a powerful tool for OBDA: given ontology-mediated queries
(S,Oi, qi), i ∈ {1, 2}, decide whether for all S-instances D, we
have certq1,O1(D) ⊆ certq2,O2(D).3 Applications include the
optimization of ontology-mediated queries and managing the ef-
fects on query answering of replacing an ontology with a new, up-
dated version. In terms of OBDA languages such as (ALC,UCQ),
the above problem corresponds to query containment in the stan-
dard sense: an S-query q1 is contained in an S-query q2, written
q1 ⊆ q2, if for every S-instance D, we have q1(D) ⊆ q2(D).
Note that there are also less general (and computationally simpler)
notions of query containment in OBDA that do not fix the data
schema [19].

It was proved in [24] that containment of MMSNP sentences
is decidable. We thus obtain the following result for OBDA lan-
guages.

Theorem 10 Query containment is decidable for the OBDA lan-
guages (ALC,UCQ), (ALCHIU ,UCQ), and (UNFO,UCQ).

Note that this result is considerably stronger than those in [10],
which considered only containment of ontology-mediated queries
(S,O, q) with q an atomic query since already this basic case
turned out to be technically intricate. The treatment of CQs and
UCQs was left open, including all cases stated in Theorem 10.

We now consider OBDA languages based on the guarded frag-
ment and GNFO. By Proposition 1, (GF,UCQ) and (GNFO,UCQ)
are strictly more expressive than MDDlog and we cannot use
Proposition 2 to relate these query languages to the Feder-Vardi
conjecture. Theorem 7 suggests that it would be useful to have
a generalization of MMSNP that is equivalent to frontier-guarded
DDlog. Such a generalization is introduced next.
3In fact, this definition is slightly different from the one used in
[10]. There, containment is defined only over instances D that are
consistent w.r.t. O1 and O2, i.e., where there is at least one finite
S-structure (dom,D′) such that D ⊆ D′ and D′ ∈ Mod(Oi).

A formula of guarded monotone strict NP (abbreviated GM-
SNP) has the form ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ with X1, . . . , Xn
SO variables of any arity, x1, . . . , xn FO-variables, and ϕ a con-
junction of formulas

ψ = α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n,m ≥ 0,

where each αi is of the form Xi(x), R(x) (with R ∈ S), or
x = y, and each βi is of the form Xi(x). Additionally, we re-
quire that for every head atom βi, there is a body atom αj such that
αj contains all variables from βi. GMSNP gives rise to a query
language coGMSNP in analogy with the definition of coMMSNP.
It can be shown by a straightforward syntactic transformation that
every MMSNP formula is equivalent to some GMSNP formula.
Together with Proposition 1 and Theorem 7, this yields the second
statement of the following lemma; the first statement can be proved
similarly to Proposition 2.

Theorem 11 coGMSNP has the same expressive power as
frontier-guarded DDlog and is strictly more expressive than coMM-
SNP.

Although defined in a different way, GMSNP is essentially the
same logic as MMSNP2, which is studied in [37]. Specifically,
MMSNP2 is the extension of MMSNP in which monadic SO-
variables range over sets of domain elements and facts, and where
atoms of the form X(R(x)) are allowed in place of atoms X(x)
with X an SO-variable and R from the data schema S. Addi-
tionally, a guardedness condition is imposed, requiring that when-
ever an atom X(R(x)) occurs in a rule head, then the atom R(x)
must occur in the rule body. Formally, the SO-variables Xi are
interpreted in an instance D as sets π(Xi) ⊆ adom(D) ∪ D and
D |=π X(R(x1, . . . , xn)) if R(π(x1), . . . , π(xn)) ∈ π(X). We
observe the following.

Proposition 3 GMSNP and MMSNP2 have the same expressive
power.

Details for the proofs of both Theorem 11 and Lemma 3 are in the
full version of this paper. In [37], it was left as an open question
whether MMSNP2 is more expressive than MMSNP, which is re-
solved by the results above.

We leave it as an interesting open question whether Theo-
rem 8 can be extended to (GF,UCQ) and (GNFO,UCQ), that is,
whether GMSNP (equivalently: MMSNP2) has a dichotomy be-
tween PTIME and NP if the Feder-Vardi conjecture holds. While
this question is implicit already in [37], the results established in
this paper underline its significance from a different perspective.

5. OBDA AND CSP
We show that OBDA languages based on AQs capture CSPs

(and generalizations thereof), and we transfer results from CSPs to
OBDA languages. In comparison to the previous section, we obtain
a richer set of results, and often even worst-case optimal decision
procedures. Recall that each finite relational structure B over a
schema S gives rise to a constraint satisfaction problem which is to
decide, given a finite relational structure A over S, whether there is
a homomorphism from A to B (written A → B). In this context,
the relational structure B is also called the template of the CSP.

CSPs give rise to a query language coCSP in the spirit of the
query language coMMSNP introduced in the previous section. In
its basic version, this language is Boolean and turns out to have ex-
actly the same expressive power as (ALC,BAQ), where BAQ is the

class of Boolean atomic queries. To also cover non-Boolean AQs,
we consider two natural generalizations of CSPs. First, a general-
ized CSP is defined by a finite set F of templates, rather than only
a single one [25]. The problem then consists in deciding, given an
input structure A, whether there is a template B ∈ F such that
A → B. Second, in a (generalized) CSP with constant symbols,
both the template(s) and the input structure are endowed with con-
stant symbols [23, 1]. To be more precise, let S be a schema and
c = c1, . . . , cm a finite sequence of distinct constant symbols. A
finite relational structure over S ∪ c has the form (A, d1, . . . , dm)
with A a finite relational structure over A that, in addition, inter-
prets the constant symbols ci by elements di of the domain dom of
A, for 1 ≤ i ≤ m. Let (A,a) and (B,b) be finite relational struc-
tures over S ∪ c. A mapping h is a homomorphism from (A,a) to
(B,b), written (A,a)→ (B,b), if it is a homomorphism from A
to B and h(ai) = bi for 1 ≤ i ≤ m. A (generalized) CSP with
constant symbols is then defined like a (generalized) CSP, based on
this extended notion of homomorphism.

We now introduce the query languages obtained from the differ-
ent versions of CSPs, where generalized CSPs with constant sym-
bols constitute the most general case. Specifically, each finite set of
templates F over S∪c with c = c1, . . . , cm gives rise to anm-ary
query coCSP(F) that maps every S-instance D to

{d ∈ adom(D)m |∀(B,b)∈ F : (D,d) 6→ (B,b)},

where we view (D,d) as a finite relational structure whose do-
main is adom(D). The query language that consists of all such
queries is called generalized coCSP with constant symbols. The
fragment of this query language that is obtained by admitting only
sets of templates F without constant symbols is called generalized
coCSP, and the fragment induced by singleton sets F without con-
stant symbols is called coCSP.

Example 3 Selecting an illustrative fragment of Examples 1 and 2,
let

O = {∃parent.HereditaryDisposition v HereditaryDisposition}
S = {HereditaryDisposition, parent}

Moreover, let q2(x) = HereditaryDisposition(x) be the query
from Example 2. To identify a query in coCSP with constant sym-
bols that is equivalent to the ontology-mediated query (S,O, q2),
let B be the following template:

parent
a b

HereditaryDisposition

parent parent

It can be shown that for all instances D over S and for all d ∈
adom(D), we have d ∈ certq2,O(D) iff (D, d) 6→ (B, a) and thus
the query coCSP(B) is as required.

The following theorem summarizes the connections between
OBDA languages with (Boolean) atomic queries, MDDlog, and
CSPs. Note that we consider binary schemas only.

Theorem 12 The following are lists of query languages that have
the same expressive power:
1. (ALCU ,AQ), (SHIU ,AQ), unary simple MDDlog, and gener-

alized coCSP with one constant symbol;

2. (ALC,AQ), (SHI,AQ), unary connected simple MDDlog, and
generalized coCSPs with one constant symbol such that all tem-
plates are identical except for the interpretation of the constant
symbol;

3. (ALCU ,BAQ), (SHIU ,BAQ), Boolean simple MDDlog, and
generalized coCSP;

4. (ALC,BAQ), (SHI,BAQ), Boolean connected simple MDDlog,
and coCSP.

Moreover, given the ontology-mediated query or monadic datalog
program, the correponding CSP template is of at most exponential
size and can be constructed in time polynomial in the size of the
template.

Proof. The equivalences between OBDA languages and fragments
of MDDlog have been proved in Section 3. We give a proof of the
remaining claim of Point 1, namely that (ALCU ,AQ) and general-
ized coCSP with one constant symbol are equally expressive. We
extend the notation used in the proof of Theorem 1. For simplic-
ity, throughout this proof we regard ∀R.C as an abbreviation for
¬∃R.¬C.

Let Q = (S,O, A(x)) be an ontology-mediated query formu-
lated in (ALCU ,AQ). A type forO is a set τ ⊆ sub(O) and tp(O)
denotes the set of all types for O. We say that τ ∈ tp(O) is re-
alizable if there is an A = (dom,D) ∈ Mod(O) and a d ∈ dom
such that C ∈ τ iff A |= C∗[d] for all C ∈ sub(O). A set of
types T ⊆ tp(O) is realizable in a Q-countermodel if there is an
A ∈ Mod(O) that realizes exactly the types in T and such that
A 6∈ τ for at least one τ ∈ T .

Let C be the set of all T ⊆ tp(O) that are realizable in a Q-
countermodel and maximal with this property. Note that the num-
ber of elements of C is bounded by the size of O since for any two
distinct T1, T2 ∈ C, there must be a concept ∃U.D ∈ sub(O) such
that ∃U.D ∈ τ for all τ ∈ T1 and ∃U.D 6∈ τ for all τ ∈ T2 or vice
versa; otherwise, we can take the disjoint union of any structures
A1,A2 which show that T1, T2 are realizable in a Q-countermodel
to obtain Q-countermodel that realizes T1 ∪ T2. For R ∈ S, we
call a pair (τ1, τ2) of types R-coherent if ∃R.C ∈ τ1 for every
∃R.C ∈ sub(O) such that C ∈ τ2.

With each T ∈ C, we associate the canonical S-structure BT

with domain T and the following facts:

• B(τ) for all τ ∈ T and B ∈ S such that B ∈ τ ;

• R(τ1, τ2) for all τ1, τ2 ∈ T and R ∈ S such that (τ1, τ2) is
R-coherent.

Note that the construction of BT is well-known from the literature
on modal and description logic. For example, BT can be viewed
as a finite fragment of a canonical model of a modal logic that is
constructed from maximal consistent sets of formulas [11]. Al-
ternatively, BT can be viewed as the result of a type elimination
procedure [41].

We obtain the desired set F of CSP templates by setting

F = {(BT , τ) | T ∈ C, τ ∈ T,A 6∈ τ}.

One can show that for every S-instance D and d ∈ adom(D), there
exists (BT , τ) ∈ F with (D, d)→ (BT , τ) iff d 6∈ qS,O,A(x)(D).
Thus, the ontology-mediated query Q is equivalent to the query
defined by F .

Conversely, assume that F is a finite set of S-structures with one
constant. Take some (B, b) ∈ F , and for every d in the domain
dom(B) of B, create some fresh concept name Ad. Let A be an-
other fresh concept name, and set

OB,b = {Ad v ¬Ad′ | d 6= d′} ∪
{Ad u ∃R.Ad′ v ⊥ | R(d, d′) 6∈ B, R ∈ S} ∪
{Ad uB v ⊥ | B(d) 6∈ B, B ∈ S} ∪
{> v t

d∈dom(B)
Ad, ¬Ab v A}

Consider the ontology-mediated query QB,b = (S,OB,b, A(x)).
One can show that for every S-instance D and d ∈ adom(D),
(D, d) → (B, b) iff d 6∈ qQB,b(D). Thus, QB,b is the desired
query ifF is a singleton. For the general case, letO be the disjunc-
tion over all OB,b with (B, b) ∈ F . Note that O can be expressed
in ALCU : first, rewrite each OB,b into a single inclusion of the
form > v CB,b and then set

O = {> v t
(B,b)∈F

∀U.CB,b}.

Using the above observation about the queries QB,b, it is not hard
to show that the (ALCU ,AQ)-query Q = (S,O, A(x)) is equiva-
lent to the query coCSP(F).

This completes the proof of Point 1. The proofs of Points 2 to 4
are similar and given in the full version of this paper. o

Theorem 12 allows us to transfer results from the CSP world to
OBDA, which, in light of recent progress on CSPs, turns out to be
very fruitful. We start with data complexity.

Theorem 13 (ALC,BAQ) has a dichotomy between PTIME and
CONP iff the Feder-Vardi conjecture holds. The same is true for
(SHIU ,AQ), and (SHIU ,BAQ).

Since SHIU -ontologies can be replaced by ALCU-ontologies in
ontology-mediated queries due to Theorem 5, the “if” direction of
(all cases mentioned in) Theorem 13 actually follows from Theo-
rem 8. The “only if” direction is a consequence of Theorem 12.
We now consider further interesting applications of Theorem 12,
in particular to deciding query containment, FO-rewritability, and
datalog rewritability.

5.1 Query Containment
In Section 4, we have established decidability results for query

containment in OBDA languages based on UCQs. For OBDA lan-
guages based on AQs and BAQs, we even obtain a tight complexity
bound. It is easy to see that query containment in coCSP is char-
acterized by homomorphisms between templates. Consequently,
it is straightforward to show that query containment for general-
ized coCSP with constant symbols is NP-complete. Thus, The-
orem 12 yields the following NEXPTIME upper bound for query
containment in OBDA languages. The corresponding lower bound
is proved in the full version of this paper by a non-trivial reduction
of a NEXPTIME-complete tiling problem.

Theorem 14 Query containment in (SHIU ,AQ∪BQ) is in NEX-
PTIME. It is NEXPTIME-hard already for (ALC,AQ) and for
(ALC,BAQ).

It is a consequence of a result in [10] that query containment is
undecidable for ALCF . We show in the full version of this paper
how the slight gap pointed out in Footnote 3 can be bridged.

5.2 FO- and Datalog-Rewritability
One prominent approach to answering ontology-mediated

queries is to make use of existing relational database systems or
datalog engines, eliminating the ontology by query rewriting [18,
22, 20]. Specifically, an ontology-mediated query (S,O, q) is FO-
rewritable if there exists an FO-query over S that is equivalent to
it and datalog-rewritable if there exists a datalog program over S
that defines it. We observe that every ontology-mediated query that
is FO-rewritable is also datalog-rewritable.

Proposition 4 If Q = (S,O, q) is an ontology-mediated query
with O formulated in equality-free FO and q a UCQ, then qQ is

preserved by homomorphisms. Consequently, it follows from [43]
that if qQ is FO-rewritable, then qQ is rewritable into a UCQ (thus
into datalog).

Example 2 illustrates that ontology-mediated queries are not al-
ways rewritable into an FO-query, and the same holds for datalog-
rewritability. It is a central problem to decide, given an ontology-
mediated query, whether it is FO-rewritable and whether it is
datalog-rewritable. By leveraging the CSP connection, we show
that both problems are decidable and pinpoint their complexities.

On the CSP side, FO-rewritability corresponds to FO-
definability, and datalog-rewritability to datalog-definability.
Specifically, an S-query coCSP(F) is FO-definable if there is an
FO-sentence ϕ over S such that for all finite relational structures
A over S, we have A |= ϕ iff A 6→ B for all B in F . Similarly,
coCSP(F) is datalog-definable if there exists a datalog program Π
that defines it. FO-definability and datalog-definability have been
studied extensively for CSPs, culminating in the following results.

Theorem 15 Deciding, for a given finite relational structure B
without constant symbols, whether coCSP(B) is FO-definable is
NP-complete [35]. The same is true for datalog-definability [26].4

Combining the preceding theorem with Theorem 12, we ob-
tain NEXPTIME upper bounds for deciding FO-rewritability and
datalog-rewritability of queries from (SHI,BAQ).

To capture the more important AQs rather than only BAQs, we
show that Theorem 15 can be lifted, in a natural way, to general-
ized CSPs with constant symbols. The central step is provided by
Proposition 5 below. For each finite relational structure B with
constant symbols c1, . . . , cn, let us denote by Bc the correspond-
ing relational structure without constant symbols over the schema
that contains additional unary relations P1, . . . , Pn, where each Pi
denotes the singleton set that consists of the element denoted by ci.

Proposition 5 For every set of homomorphically incomparable
structures B1, . . . ,Bn with constant symbols,

1. coCSP(B1, . . . ,Bn) is FO-definable iff coCSP(Bc
i) is FO-

definable for 1 ≤ i ≤ n.
2. coCSP(B1, . . . ,Bn) is datalog-definable iff coCSP(Bc

i) is
datalog-definable for 1 ≤ i ≤ n.

A proof of Proposition 5 is provided in the full version of this
paper. It relies on the characterization of FO-definable CSPs as
those CSPs that have finite obstruction sets; this characterization
was given in [2] for structures without constant symbols and fol-
lows from results in [43] for the case of structures with constant
symbols.

Note that every set of structures B1, . . . ,Bn has a sub-
set B′1, . . . ,B

′
m which consists of homomorphically incompa-

rable structures such that coCSP(B1, . . . ,Bn) is equivalent to
coCSP(B′1, . . . ,B′m). We use this observation to establish the an-
nounced lifting of Theorem 15.

Theorem 16 FO-definability and datalog-definability of general-
ized CSP with constant symbols is NP-complete.

Proof. To decide whether a generalized CSP with constant symbols
given as a set of templates F = {B1, . . . ,Bn} is FO-definable,
it suffices to first guess a subset F ′ ⊆ F and then to verify that
4An NP algorithm for datalog-definability is implicit in [26], based
on results from [9], see also [13]. We thank Benoit Larose and
Liber Barto for pointing this out.

(i) coCSP(Bc) is FO-definable for each B ∈ F ′, and (ii) for each
B ∈ F there is a B′ ∈ F ′ such that B → B′. By Theorem 15,
this can be done in NP. Correctness follows from Proposition 5 and
the fact that whenever there is a subset F ′ satisfying (i) and (ii),
then by the observation above there must be a subset F ′′ ⊆ F ′ of
homomorphically incomparable structures such that coCSP(F ′′) is
equivalent to coCSP(F ′), which by (ii) is equivalent to coCSP(F).
Datalog-definability can be decided analogously. o

From Theorems 12 and 16, we obtain a NEXPTIME upper bound
for deciding FO-rewritability and datalog-rewritability of ontology-
mediated queries based on DLs and (B)AQs. The corresponding
lower bounds are proved in the full version of this paper using a
reduction from a NEXPTIME-hard tiling problem (in fact, the same
problem as in the lower bound for query containment).

Theorem 17 It is in NEXPTIME to decide FO-rewritability and
datalog-rewritability of queries in (SHIU ,AQ∪BAQ). Both prob-
lems are NEXPTIME-hard for (ALC,AQ) and (ALC, BAQ).

Modulo a minor difference in the treatment of instances that are not
consistent (see Footnote 3), it follows from a result in [36] that FO-
rewritability is undecidable for (ALCF ,AQ). In the full version of
this paper, we show how to bridge the difference and how to modify
the proof so that the result also applies to datalog-rewritability.

Theorem 18 FO-rewritability and datalog-rewritability are unde-
cidable for (ALCF ,AQ) and (ALCF ,BAQ).

6. CONCLUSION
Another query language frequently used in OBDA with descrip-

tion logics is conjunctive queries. The results in this paper imply
that there is a dichotomy between PTIME and CONP for (ALC,CQ)
if and only if the Feder-Vardi conjecture holds. We leave it open
whether there is a natural characterization of (ALC,CQ) in terms
of disjunctive datalog.

We mention two natural lines of future research. First, it would
be interesting to understand the data complexity and query con-
tainment problem for (GF,UCQ) and (GNFO,UCQ). In particu-
lar, we would like to know whether Theorems 8 and 10 extend to
(GF,UCQ) and (GNFO,UCQ). As explained in Section 4, resolving
this question for Theorem 8 is equivalent to clarifying the compu-
tational status of GMSNP and MMSNP2.

Another interesting topic for future work is to analyze
FO-rewritability and datalog-rewritability of ontology-mediated
queries based on UCQs (instead of AQs) as a decision problem.
It follows from our results that this is equivalent to deciding FO-
definability and datalog-definability of MMSNP formulas (or even
GMSNP formulas).

Acknowledgements. We thank Benoit Larose and Liber Barto for
discussions on datalog-definability of CSPs, and Florent Madeleine
and Manuel Bodirsky for discussions on MMSNP.

Meghyn Bienvenu was supported by the ANR project PAGODA
(ANR-12-JS02-007-01). Balder ten Cate was supported by NSF
Grants IIS-0905276 and IIS-1217869. Carsten Lutz was supported
by the DFG SFB/TR 8 “Spatial Cognition”.

7. REFERENCES
[1] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.

Characterizing schema mappings via data examples. ACM
Trans. Database Syst., 36(4), 2011.

[2] A. Atserias. On digraph coloring problems and treewidth
duality. In LICS, 2005.

[3] F. Baader, M. Bienvenu, C. Lutz, and F. Wolter. Query and
predicate emptiness in description logics. In KR, 2010.

[4] F. Baader, D. Calvanese, D. L. McGuiness, D. Nardi, and
P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

[5] J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo.
Walking the complexity lines for generalized guarded
existential rules. In IJCAI, 2011.

[6] V. Bárány, G. Gottlob, and M. Otto. Querying the guarded
fragment. In LICS, 2010.

[7] V. Bárány, B. ten Cate, and M. Otto. Queries with guarded
negation. PVLDB, 5(11), 2012.

[8] V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation.
In ICALP, 2011.

[9] L. Barto and M. Kozik. Constraint satisfaction problems of
bounded width. In FOCS, 2009.

[10] M. Bienvenu, C. Lutz, and F. Wolter. Query containment in
description logics reconsidered. In KR, 2012.

[11] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic.
Cambridge University Press, 2001.

[12] M. Bodirsky, H. Chen, and T. Feder. On the complexity of
MMSNP. SIAM J. Discrete Math., 26(1):404–414, 2012.

[13] A. Bulatov. Bounded relational width. In preparation.
http://www.cs.sfu.ca/ abulatov/mpapers.html.

[14] A. A. Bulatov. On the CSP dichotomy conjecture. In CSR,
2011.

[15] A. Calì, G. Gottlob, and T. Lukasiewicz. A general
datalog-based framework for tractable query answering over
ontologies. In PODS, 2009.

[16] A. Calì, G. Gottlob, and A. Pieris. Towards more expressive
ontology languages: The query answering problem. Artif.
Intell., 193, 2012.

[17] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Data complexity of query answering in description
logics. In KR, 2006.

[18] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family. J. Autom.
Reasoning, 39(3), 2007.

[19] D. Calvanese, G. D. Giacomo, and M. Lenzerini. On the
decidability of query containment under constraints. In
PODS, 1998.

[20] B. Cuenca Grau, M. Kaminski, and B. Motik Computing
Datalog Rewritings Beyond Horn Ontologies. In IJCAI, 2013

[21] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog.
ACM Trans. Database Syst., 22(3), 1997.

[22] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, and G. Xiao.
Towards practical query answering for Horn-SHIQ. In DL,
2012.

[23] T. Feder, F. R. Madelaine, and I. A. Stewart. Dichotomies for
classes of homomorphism problems involving unary
functions. Theor. Comput. Sci., 314(1-2), 2004.

[24] T. Feder and M. Y. Vardi. The computational structure of
monotone monadic SNP and constraint satisfaction: A study
through datalog and group theory. SIAM J. Comput., 28(1),
1998.

[25] J. Foniok, J. Nesetril, and C. Tardif. Generalised dualities
and maximal finite antichains in the homomorphism order of
relational structures. Eur. J. Comb., 29(4), 2008.

[26] R. Freese, M. Kozik, A. Krokhin, M. Maróti, R. KcKenzie,
and R. Willard. On Maltsev conditions associated with
omitting certain types of local structures. In preparation.
http://www.math.hawaii.edu/∼ralph/Classes/619/
OmittingTypesMaltsev.pdf

[27] G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: a
deductive query language with linear time model checking.
ACM Trans. Comput. Log., 3(1), 2002.

[28] G. Gottlob and T. Schwentick. Rewriting ontological queries
into small nonrecursive datalog programs. In KR, 2012.

[29] U. Hustadt, B. Motik, and U. Sattler. Reasoning in
description logics by a reduction to disjunctive datalog. J.
Autom. Reasoning, 39(3), 2007.

[30] S. Kikot, R. Kontchakov, V. V. Podolskii, and
M. Zakharyaschev. Exponential lower bounds and separation
for query rewriting. In ICALP, 2012.

[31] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and
M. Zakharyaschev. The combined approach to query
answering in DL-Lite. In KR, 2010.

[32] A. Krisnadhi and C. Lutz. Data complexity in the EL family
of DLs. In LPAR, 2007.

[33] G. Kun. Constraints, MMSNP, and Expander Structures.
http://arxiv.org/abs/0706.1701v1, 2007.

[34] G. Kun and J. Nesetril. Forbidden lifts (NP and CSP for
combinatorialists). Eur. J. Comb., 29(4), 2008.

[35] B. Larose, C. Loten, and C. Tardif. A characterisation of
first-order constraint satisfaction problems. Logical Methods
in Comp. Sci., 3(4), 2007.

[36] C. Lutz and F. Wolter. Non-uniform data complexity of
query answering in description logics. In KR, 2012.

[37] F. R. Madelaine. Universal structures and the logic of
forbidden patterns. Logical Methods in Comp. Sci., 5(2),
2009.

[38] F. R. Madelaine and I. A. Stewart. Constraint satisfaction,
logic and forbidden patterns. SIAM J. Comput., 37(1), 2007.

[39] B. Motik. Reasoning in description logics using resolution
and deductive databases. PhD thesis, 2006.

[40] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies. J.
Data Semantics, 10, 2008.

[41] V. R. Pratt. Models of program logics. In FoCS, 1979.
[42] R. Rosati and A. Almatelli. Improving Query Answering

over DL-Lite Ontologies. In KR, 2010.
[43] B. Rossman. Homomorphism preservation theorems. J.

ACM, 55(3), 2008.
[44] S. Rudolph, M. Krötzsch, and P. Hitzler.

Type-elimination-based reasoning for the description logic
SHIQbs using decision diagrams and disjunctive datalog.
Logical Methods in Comp. Sci., 8(1), 2012.

[45] F. Simancik. Elimination of complex RIAs without automata.
In DL, 2012.

[46] B. ten Cate and L. Segoufin. Unary negation. In STACS,
2011.

[47] W3C OWL Working Group. OWL 2 Web Ontology
Language. http://www.w3.org/TR/owl2-overview/, 2012.

APPENDIX
A. PROOFS FOR SECTION 3

A.1 Proofs for Section 3.1

We remark that the direction “from (ALC,AQ) to MDDlog” of
Theorem 1 is actually a consequence of Theorem 6, which makes
a strictly more general statement. We still provide it here (and in
the main paper) as a warmup for the proof of Theorem 6. As an
extra bit of notation, we say that an assignment π of elements of
an instance D to the variables of a CQ q is a match of q in D if D
satisfies q under π.

Theorem 1. (ALC,UCQ) and MDDlog have the same expressive
power.

Proof. (continued) We establish here the correctness of the transla-
tion from (ALC,UCQ) to MDDlog. Letm be the arity of (S,O, q).
We have to show the following.

Claim. For all instances D over S and all a ∈ adom(D)m, we
have a ∈ certq,O(D) iff a ∈ qΠ(D).

“if”. Assume that a /∈ certq,O(D). Then there is a (dom′,D′) ∈
Mod(O) such that D ⊆ D′ and a /∈ q(D′). For each b ∈
adom(D), let µ(b) be the unique type realized at b in D′, that is,

µ(b) = {q′ ∈ cl(O, q) | q′ is Boolean and D′ |= q′}∪
{C ∈ cl(O, q) | C is unary and D′ |= C[b]}.

Let D′′ be the instance that consists of the atoms in D and the atom
Pµ(b)(b) for each b ∈ adom(D). It can be verified that D′′ is a
model of Π. In particular, it follows from the construction of D′′

and the fact that a /∈ q(D′) that whenever a diagram δ(x) has a
match π in D′′ and δ(x) implies q(x′), then π(x′) 6= a. Since D′′

is a model of Π and goal(a) /∈ D′′, we have a 6∈ qΠ(D).

“only if”. Assume that a 6∈ qΠ(D), and let D′ ∈ Mod(Π) be
such that D ⊆ D′ and D′ does not contain goal(a). We assume
w.l.o.g. that adom(D) = adom(D′). Note that the first two rules
of Π ensure that for each a ∈ adom(D), there is a unique type
µ(a) such that Pµ(a)(a) ∈ D′. The second rule further ensures
that for each a ∈ adom(D), there is a model (doma,Da) of O
in which µ(a) is realized at a. We may assume that these models
have disjoint domains. Let (dom′′,D′′) be the relational structure
obtained by first taking the union of (doma,Da)a∈adom(D), and
then adding all facts from D. To prove that a /∈ certq,O(D), it
suffices to show that

(i) (dom′′,D′′) is a model of O, and

(ii) a 6∈ q(D′′).

For Point (i), let µ(d) be the unique type realized by d in
(doma,Da), for all d ∈ doma. It is not difficult to show by
induction on the structural complexity of C that for all concepts
C ∈ cl(O, q) ∩ sub(O) and all d ∈ dom′′, we have

(dom′′,D′′) |= C(d) iff C ∈ µ(d) (1)

(refer to the proof of Theorem 2 for details). Since cl(O, q) by
definition includes C and D whenever C v D is inO, this implies
Point (i) as desired.

It thus remains to establish Point (ii). Assume to the contrary
that there is a disjunct q′(x′) of q such that a ∈ q′(D′′), that is,
there is a match π of q′(x′) in D′′ such that π(x′) = a. We de-
fine a diagram δ(x) based on the restriction of the original model
D′ of Π , as follows: δ(x) contains (a) all atoms A(x) such that
π(x) ∈ adom(D′) and A(π(x)) ∈ D′ (where A can be either
a concept name or of the form Pτ), (b) all atoms R(x, y) such
that π(x), π(y) ∈ adom(D′) and R(π(x), π(y)) ∈ D′, and (c) all
atoms Pµ(d)(zd) (with zd a fresh variable) such that Pµ(d)(d) ∈ D′

and there is some π(w) ∈ domd. Atoms of type (c) are used to han-
dle the case in which a Boolean subquery q′′ of q′ is mapped inside

Dd, but the element d does not itself belong to the image of π. We
remark that the mapping π can be straightforwardly extended to a
match for δ(x) in D′ by setting π(zd) = d. Since δ(x) is satisfied
in D′ under π and π(x′) = a, by the last rule of Π, we can obtain
the desired contradiction by showing that δ(x) implies q′(x′).

Thus, let (dom,B) ∈ Mod(O) be a type-coherent structure, and
let τ be a match of δ(x) in B. Consider the following CQs:

• q0 is the restriction of q′ to those variables that π maps to ele-
ments of D;

• for each a ∈ adom(D) such that some element of doma is in
the range of π, the CQ qa is obtained by first taking the restric-
tion of q′ to those variables that π maps to elements of doma

and then identifying all variables that π maps to the same ele-
ment (preserving the names of free variables).

Clearly, each qa has at most one free variable, which, if it exists, is
mapped to a by π.

We start by showing that q0 is satisfied in B under τ . For
role atoms in q0, this is immediate since all such atoms also be-
long to δ(x). Thus, consider some concept atom A(x) ∈ q0.
Since A(x) ∈ q′ and π is a match for q′ in D′′, we have
A(π(x)) ∈ D′′. Then using the fact that A ∈ cl(O, q) ∩ sub(O)
and Equation (1) above, we obtain A ∈ µ(π(x)). We know that
Pµ(π(x))(π(x)) ∈ D′, so by construction of δ(x), we must have
Pµ(π(x))(x) ∈ δ(x), hence Pµ(π(x))(τ(x)) ∈ B. Using the
type-coherence of B and the fact that A ∈ µ(π(x)), we obtain
A(τ(x)) ∈ B, as desired.

Now consider a query qa. By construction, the length of qa can-
not exceed the length of q, and so qa ∈ cl(O, q). Since qa has a
match in Da (such that, if qa has a free variable, it is mapped to a)
and Da realizes the type µ(a) at a, we must have qa ∈ µ(a). By
construction of δ(x), there is an atom Pµ(a)(x) ∈ δ(x). Since τ
is a match for δ(x) in B, we must have Pµ(a)(τ(x)) ∈ B. Then,
using the fact that B is type-coherent, we can find a match τa of qa
in B (such that, if qa has a free variable, τa maps it to τ(x)). It is
not hard to see that the matches τ and τa can be assembled into a
match τ ′ of q′ in B which coincides with τ on x′. o

Theorem 2 (ALC,AQ) has the same expressive power as unary
connected simple MDDlog.

Proof. (continued) We establish here the correctness of the trans-
lation from (ALC,AQ) to MDDlog. That is, we show that, for every
instance D and elements a ∈ adom(D), we have a ∈ certq,O(D)
if and only if a ∈ qΠ(D).

“if”. Assume that a 6∈ certq,O(D). Then there is (dom,D′) ∈
Mod(O) with D ⊆ D′ such that a 6∈ q(D′). For each b ∈
adom(D), let µ(b) be the unique type realized at b in D′. Let D′′

be the instance that consists of the atoms in D and an atom Pµ(b)(b)
for each b ∈ adom(D). It can be checked that D′′ is a model of Π.
Since goal(a) /∈ D′′, we obtain a 6∈ qΠ(D).

“only if”. Assume that a 6∈ qΠ(D) and let D′ be a model
of Π with D ⊆ D′ that does not contain goal(a). For each
b ∈ adom(D), let µ(b) be a type such that Pµ(b)(b) ∈ D′ (in fact,
the rules in Π enforce that there is exactly one such µ(b)). Note that
A 6∈ µ(a). Also note that each type µ(b) must be realizable in some
model of O (else, there would be a rule forbidding Pµ(b) atoms).
Thus, for each b ∈ adom(D), we can find a model (domb,Db) of
O in which the type µ(b) is realized at b. We may assume that these
models have disjoint domains. Let (dom′′,D′′) be obtained by first
taking the union of (domb,Db)b∈adom(D), and then adding all facts

in D. By construction, D ⊆ D′′ and a 6∈ q(D′′). It remains to
show that (dom′′,D′′) is a model of O.

Let µ(d) be the unique type realized by d in (doma,Da), for all
d ∈ doma. We show the following by induction on the structural
complexity of C:

(∗) For every concept C ∈ sub(O) and every d ∈ dom′′, we have
(dom′′,D′′) |= C(d) iff C ∈ µ(d).

Note that it follows from (∗) that (dom′′,D′′) is a model of O.
For the base case, first suppose that A ∈ µ(d), with A a concept

name and d ∈ doma. Then A(d) ∈ Da ⊆ D′′, so (dom′′,D′′) |=
A(d). Next suppose that (dom′′,D′′) |= A(d). Then A(d) ∈ D′′,
so either A(d) ∈ Da, or d = a and A(d) ∈ D. In the former case,
we immediately obtain A ∈ µ(d). In the latter case, note that if
A 6∈ µ(d), then Π would contain the rule ⊥ ← Pµ(d)(x) ∧ A(x),
and this would yield a contradiction since {A(d), Pµ(d)(d)} ⊆ D′.

The inductive step for the Boolean operators is trivial, so we con-
sider only the case of the ∃R constructor (the argument for the ∀R
constructor is similar). Thus, let C = ∃R.D and d ∈ doma, and
suppose that C ∈ µ(d). Then (doma,Da) |= ∃R.D(d), so there
exists e ∈ doma such that R(d, e) ∈ Da and (doma,Da) |=
D(e). It follows that D ∈ µ(e), and hence by the induction hy-
pothesis, we must have (dom′′,D′′) |= D(e). Since Da ⊆ D′′,
we have R(d, e) ∈ D′′, which yields (dom′′,D′′) |= C(d).

Conversely, suppose (dom′′,D′′) satisfies ∃R.D(d), that is,
there is an element e such that (dom′′,D′′) satisfies R(d, e) and
D(e). If e ∈ doma, the claim (∗) follows immediately from the
induction hypothesis. Otherwise, we must have that e ∈ adom(D)
and, by induction hypothesis, D ∈ µ(e). It follows that ∃R.D ∈
µ(d), because otherwise Pµ(d)(x) ∧R(x, y) ∧ Pµ(e)(y) would be
a non-realizable diagram, and Π would derive an inconsistency.

o

Theorem 3.
1. (ALCHIU ,UCQ) has the same expressive power as MDDlog

and as (ALC,UCQ).

2. (S,UCQ) and (ALCF ,UCQ) are strictly more expressive than
(ALC,UCQ).

To complete the proof of Theorem 3, we need to show that
the queries from (S,UCQ) and (ALCF ,UCQ) indicated in the
proof sketch cannot be expressed in (ALC,UCQ), or equivalently,
MDDlog. We start by providing a means of identifying queries
which cannot be expressed in MDDlog, using the notion of colored
instances, defined as follows:

Definition 1 Let S be a schema and C be a set of unary predicates
(colors) {C1, . . . , Cn} disjoint from S. A C-colored S-structure is
an S ∪ C-structure (dom,D) such that

• For every d ∈ dom, Ci(d) ∈ D for some i;

• If Ci(d) ∈ D, then Cj(d) 6∈ D for every j 6= i.

D is called a C-coloring of an S-structure D′ if D′ is the S-reduct
of D′.

Now for each k > 0, fix Ck with |Ck| = k and Ck ∩S = ∅. Then
a k-coloring of D is simply a Ck-coloring of D.

We will also utilize the notion of forbidden pattern problems
from [38, 34, 12], whose definition we recall here.

Definition 2 Given a set F of C-colored S-structures (called for-
bidden patterns), we define Forb(F) as the set of all S-structures
D such that there exists a C-coloring D′ of D for which F 6→ D′

for every F ∈ F . The forbidden patterns problem defined by F is
to decide whether a given S-structure belongs to Forb(F).

Analogously to coMMSNP, we can define a query language
coFPP consisting of all those Boolean queries qF,S defined by

qF,S(D) = 1 iff (adom(D),D) 6∈ Forb(F)

with F a set of C-colored S-structures. It follows directly from
results in [38] that coMMSNP and coFPP have the same expressive
power. Combining this result with Proposition 2 (from Section 4),
we obtain the following:

Proposition 6 coFPP and Boolean MDDlog have the same ex-
pressive power.

We use Proposition 6 in the proof of the following lemma, whose
purpose is to establish a sufficient condition for non-expressibility
in MDDlog.

Lemma 1 A Boolean query Q over schema S does not belong to
MDDlog if for every m,n > 0, there exist S-instances D0 and
D1 with Q(D0) = 0 and Q(D1) = 1 such that for every m-
coloring B0 of (adom(D0),D0), there exists anm-coloring B1 of
(adom(D1),D1) such that from every substructure of B1 having
at most n elements there is a homomorphism to B0.

Proof. Assume for a contradiction that the conditions of the lemma
hold for every n,m > 0 but that Q is equivalent to some query
in MDDlog. Then, by Proposition 6, there is a set F of C-colored
S-structures such that for all S-instances D, we have Q(D) = 1 if
and only if (adom(D),D) 6∈ Forb(F). Let m0 = |C|, and let n0

be the maximal number of elements in the domain of some F ∈ F .
We can assume w.l.o.g. that C = Cm0 .

Take S-instances D0 and D1 satisfying the conditions of the
lemma for m0, n0. As Q(D0) = 0, there exists a C-coloring B0

of (adom(D0),D0) such that F 6→ B0 for every F ∈ F . It fol-
lows that there exists a C-coloring B1 of (adom(D1),D1) such
that from every substructure of B1with at most n0 elements, there
exists a homomorphism to B0. Since Q(D1) = 1, we know that
there must exist some F ∈ F such that F → B1. As F contains at
most n0 elements, we can compose this homomorphism with the
previous homomorphism to obtain a homomorphism of F into B0,
contradicting the fact that (adom(D0),D0) ∈ Forb(F). o

Using the preceding lemma, we can now prove that the queries
mentioned in the proof sketch cannot be expressed in MDDlog.

Lemma 2 There exist queries in (S,UCQ) which do not belong to
MDDlog.

Proof. Consider Q = (S,O, q) where S = {R,S}, O asserts
transitivity of R and S, and q = ∃xy(R(x, y) ∧ S(x, y)).

We apply Lemma 1. Assume that m,n > 0 are given. Let
k = n− 1 and k′ = mk+2 + 1. Define D1 and D0 as follows:

• D1 has elements e, f and a1, . . . , ak and b1, . . . , bk and the
atoms R(e, a1), R(ak, f) and R(ai, ai+1) for 1 ≤ i < k, and
S(e, a1), S(ak, f) and S(bi, bi+1) for 1 ≤ i < k.

• D0 has elements e1, . . . , ek
′

and f1, . . . , fk
′

as well as
aj1, . . . , a

j
k for 1 ≤ j ≤ k′ and bi,j1 , . . . , bi,jk for 1 ≤ j <

i ≤ k′. The atoms of D0 consist of:

– R(ei, ai1), R(aik, f
i), and R(aij , a

i
j+1) for 1 ≤ i ≤ k′ and

1 ≤ j < k;

– S(ei, b
i,j
1) and S(bi,jk , fj) for 1 ≤ j < i ≤ k′, and

S(bi,jl , bi,jl+1) for 1 ≤ l < k and 1 ≤ j < i ≤ k′.
It is readily checked that Q(D0) = 0 and Q(D1) = 1, as re-
quired. Let B0 be an m-coloring of (adom(D0),D0). Since
k′ = mk+2 + 1, we can find i, i′ with i > i′ such that the
colorings of ei, ai1, . . . , aik, f

i and ei
′
, ai

′
1 , . . . , a

i′
k , f

i′ coincide.
Define an m-coloring of (adom(D1),D1) by taking the color-
ing of ei, ai1, . . . , aik, f

i for e, a1, . . . , ak, f and the coloring of
bi,i

′

1 , . . . , bi,i
′

k for b1, . . . , bk. Denote by B1 the resulting colored
structure.

Consider a subset C of adom(B1) having at most n elements,
and let B′1 be the restriction of B1 to the elements in C. We define
a function h from C to adom(B0) as follows:

• If e 6∈ C, then let h be the restriction of the following mapping
to C: h(al) = ai

′
l , h(bl) = bi,i

′

l and h(f) = f i
′
;

• If f 6∈ C, then let h be the restriction of the following mapping
to C: h(al) = ail , h(bl) = bi,i

′

l and h(e) = ei;

• Otherwise there exists ai0 6∈ C. Then let h be the restriction
of the following mapping to C: h(e) = ei, h(al) = ail for
all l < i0, h(al) = ai

′
l for all l > i0, h(bl) = bi,i

′

l for all
1 ≤ l ≤ k, and h(f) = f i

′
.

It is easily verified that h is a homomorphism from B′1 to B0.
o

Lemma 3 There exist queries in (ALCF ,UCQ) which do not be-
long to MDDlog.

Proof. Consider Q = (S,O, ∃x.A(x)) where S = {S,A} and
O states that S is functional. Set D1 = {S(a, b), S(a, c)} and
D0 = {S(a, b)}. Note that qQ(D1) = 1 (since no model of O
contains D1) and qQ(D0) = 0. Let B0 be any m-coloring of
(adom(D0),D0). We define anm-coloring B1 of D1 by assigning
a, b the same colors as in B0 and giving c the same color as b. Then
the mapping sending a to itself and b, c to b defines a homomor-
phism from B1 to B0 (and hence also defines a homomorphism
from any substructure of B1 to B0). It follows by Lemma 1 thatQ
is not definable in MDDlog. o

Theorem 5 (ALCU ,AQ) and (SHIU ,AQ) both have the same ex-
pressive power as unary simple MDDlog.

Proof. We first show

• (ALCU ,AQ) is at least as expressive as unary simple MDDlog;

• unary simple MDDlog is at least as expressive as
(ALCIU ,AQ).

For Point 1, let Π be a unary simple MDDlog program. The rewrit-
ing of each rule of Π into an equivalent ALCU-concept inclusion
is similar to the proof of Theorem 2 except that now one also has
to concider non-connected bodies. They can be translated using the
universal role. For example,

P1(x) ∨ P2(y)← A(x) ∧B(y)

is rewritten into A u ∃U.(B u ¬P2) v P1.
Now consider Point 2. The translation from (ALCIU ,AQ) to

unary simple MDDlog queries is a modified version of the trans-
lation given in the proof of Theorem 2 for the translation from
(ALC,AQ) to connected unary simple MDDlog queries.

Assume that (S,O, q) with q = A(x) is given. As in Theorem 2,
we take types to be subsets of sub(O). The MDDlog program Π
consists of the following rules:∨

τ⊆sub(O)

Pτ (x)← adom(x)
⊥ ← δ(x) for all non-realizable diagrams δ(x)

of the form Pτ1(x1) ∧ Pτ2(x2),
Pτ (x) ∧A(x), or
Pτ1(x1) ∧ S(x, y) ∧ Pτ2(x2)

goal(x)← Pτ (x) for all Pτ with A ∈ Pτ
Note that the only difference with the rules in the proof of Theo-
rem 2 is the presence of rules of the form

⊥ ← Pτ1(x1) ∧ Pτ2(x2)

which are not connected. Π is still unary and simple. Equivalence
of (S,O, q) and qΠ can now be proved similarly to Theorem 2.

It remains to be shown that (ALCIU ,AQ) and (SHIU ,AQ)
are equally expressive. But this is again folkore [39, 45]: it is
known that for every SHIU -ontologyO, there exists anALCIU -
ontology O′ (possibly using additional concept names) such that
(i) O′ |= O and (ii) for every A ∈ Mod(O), there exists a model
A′ ∈ Mod(O′) with the same domain and interpreting the con-
cept names of O in the same way as A and interpreting the role
names as relations containing their interpretation in A. It follows
that (ALCIU ,AQ) and (SHIU ,AQ) are equally expressive. o

We briefly discuss Boolean atomic queries (BAQs), i.e., queries
of the form ∃x.A(x), where A is a unary relation symbol. BAQs
behave similarly to AQs and one can show modified versions of
Theorems 2 to Theorem 5 above in which AQs are replaced by
BAQs and unary goal predicates by 0-ary goal-predicate, respec-
tively.

Theorem 19 Theorems 2 to Theorem 5 hold if AQs are replaced by
BAQs and unary goal predicates by 0-ary goal-predicate, respec-
tively.

Proof. We show the required modifications to the proof of The-
orem 2. The remaining results are proved by similar modifica-
tions and left to the reader. For the translation from (ALC,BAQ) to
Boolean connected simple MDDlog, the only difference to the pro-
gram constructed in the proof of Theorem 2 is that rules of the form
goal(x)← Pτ (x) are replaced by rules of the form goal← Pτ (x).
Conversely, for the translation from Boolean connected simple
MDDlog to (ALC,BAQ), we regard goal as a concept name and
take the BAQ ∃x.goal(x). The rewriting of goal rules must also be
accordingly modified. For example, goal ← R(x, y) is rewritten
into ∃R.> v goal. o

A.2 Proofs for Section 3.2

Theorem 6 (UNFO,UCQ) has the same expressive power as
MDDlog.

Proof. (continued) We establish here the correctness of the
translation from (UNFO,UCQ) to MDDlog. That is, we show
that, for every instance D and elements a ∈ adom(D), we have
a ∈ certq,O(D) if and only if a ∈ qΠ(D). The “if” direction pro-
ceeds exactly as in the proof of Theorem 1, so here we focus on the
“only if” direction.

“only if”. Assume that a 6∈ qΠ(D) and let D′ be a model of
Π with D ⊆ D′ that does not contain goal(a). For each a ∈

adom(D), let µ(a) be the unique type such that Pµ(a)(a) ∈ D′,
and let (doma,Da) be a model of O in which µ(a) is realized
at a. Note that such a model must exist because otherwise the dia-
gram Pµ(a)(x) would be non-realizable and Π would include a rule
⊥ ← Pµ(a)(x). We may assume that these models have disjoint
domains. Let (dom′′,D′′) be obtained by first taking the union
of (doma,Da)a∈adom(D), and then adding to it all facts of D. We
show that

(i) (dom′′,D′′) is a model of O, and
(ii) a 6∈ q(D′′).

We start with the first claim. Let µ(d) be the unique type realized
by d in (doma,Da), for all d ∈ doma. We show the following by
induction on the structure of ϕ:

(∗) For all ϕ ∈ clk(O) and d ∈ dom′′, we have that ϕ ∈ µ(d) iff
(dom′′,D′′) |= ϕ[d].

Note that ϕ may be either a sentence or a formula with exactly one
free variable, and in the former case, we interpret ϕ[d] as ϕ. Since
all types µ(d) must include the sentence O, (∗) implies (i).

The base case (ϕ = >) and the inductive step for formulas of
the form ¬ψ(x) are omitted since they are straightforward. Thus,
let ϕ be a formula from clk(O) of the form ∃y

∧
i ψi(x,y), and let

d ∈ doma. We may assume that ϕ is connected, meaning that the
graph whose nodes are the subformulas ψi and containing an edge
between ψi and ψj if they share a variable, is connected. This is
because, if ϕ is not connected, then the claim follows immediately
from the analogous claims for each of the connected components of
ϕ. We present the proof for the case where ϕ has answer variable x
(the argument for sentences is similar).

First suppose that ϕ ∈ µ(d), which means (doma,Da) |= ϕ[d].
It follows that there is an assignment π of elements of doma to the
variables x,y such that π(x) = d and for every i, (doma,Da) |=
ψi(π(x,y)). If ψi is an atomic formula, then using the fact that
Da ⊆ D′′, we obtain (dom′′,D′′) |= ψi(π(x,y)). If ψi is not
atomic, then it must have at most one free variable u. We thus have
that (doma,Da) |= ψi[π(u)], so ψi ∈ µ(π(u)). Applying the
induction hypothesis, we obtain (dom′′,D′′) |= ψi[π(u)]. It fol-
lows that π is a satisfying assignment for ϕ in (dom′′,D′′), hence
(dom′′,D′′) |= ϕ[d].

Conversely, suppose (dom′′,D′′) |= ϕ[d], that is, (dom′′,D′′)
satisfies

∧
i ψi(x,y) for some assignment π of elements of dom′′

to the variables x,y such that π(x) = d. First assume that the
image of π is entirely contained in doma. Using the induction
hypothesis to treat the non-atomic ψi as before, we then get that
(doma,Da) |= ϕ[d], hence ϕ ∈ µ(d) as required.

Next suppose that the image of π is not wholly contained in
doma, and let I be the set consisting of the elements of adom(D)
that are in the range of π. By the connectedness assumption and
the fact that d ∈ doma, the set I contains a. In what follows, we
will define a number of formulas by syntactic operations on ϕ. It
will follow from the definition of clk(O) that each of these formu-
las again belongs to clk(O), and hence, is subject to the induction
hypothesis. Let ϕ′ be obtained from ϕ by identifying all variables
z, z′ such that π(z) = π(z′) ∈ I . We assume that the free variable
x retains its name, and use ψ′i to denote the conjunct of ϕ′ which
corresponds to ψi. For each b ∈ I , let zb ∈ y ∪ {x} be the unique
variable in ϕ′ with π(zb) = b. Let ϕ′b be the restriction of ϕ′ to
those ψ′i which contain only variables z with π(z) ∈ domb, with
free variable zb. We have (dom′′,D′′) |= ϕ′b[b] via the restriction
of π to the variables in ϕ′b, thus, by the earlier argument (since all
witnessing elements are contained in domb), we have ϕ′b ∈ µ(b).
Let ϕ′0 be ϕ′, but with free variable za instead of x. Note that
(dom′′,D′′) |= ϕ′0[a].

Consider the diagram δ obtained by taking the restriction of D′

to I , and then replacing each b ∈ I with zb. Since δ is made true by
D′, and D′ is a model of Π, we have that δ is a realizable diagram.
Moreover, using the fact that Pµ(b)(zb) ∈ δ and ϕ′b ∈ µ(b) for
every b ∈ I , one can show that the diagram δ implies the query ϕ′0.
This together with the realizability of δ yields ϕ′0 ∈ µ(a), hence
(doma,Da) |= ϕ′0[a]. Let π′ be a satisfying assignment of ϕ′0
in Da such that π′(za) = a. We use π′ to construct a satisfying
assignment π′′ of ϕ′ mapping x to d, such that the range of π′′ lies
entirely inside doma. The assignment π′′ is defined as follows: for
all u with π(u) in doma, set π′′(u) = π(u); for all other u, set
π′′(u) = π′(u). To see that π′′ is indeed a satisfying assignment
of ϕ′, note that each conjunct of ϕ′ contains, besides za, either only
variables u with π(u) ∈ doma, or only variables u with π(u) 6∈
doma. The former conjuncts are satisfied because π is a match, and
the latter conjuncts are satisfied because π′ is a match. Moreover,
π′′(x) = d. Therefore, (doma,Da) |= ϕ[d] and hence ϕ ∈ µ(d)
as required.

Finally, we can show (ii) in a similar way. We suppose, for the
sake of contradiction, that a ∈ q(D′′) under some assignment π to
the existentially quantified variables in q. Let b be the elements of
adom(D) belonging to the range of π (here again we focus on the
case in which q is connected and contains at least one free variable).
Then, in the same way as above, we can decompose q into unary
subqueries qb that are satisfied in the different subinstances Db with
b ∈ b, and conclude that qb ∈ µ(b) for each b ∈ b. We can
then show that the diagram obtained by taking all facts in D′ over
elements in b and replacing each b ∈ b by zb implies the query q.
This yields the desired contradiction since D′ is a model of Π.

o

Proposition 1. The Boolean query

(†) there are a1, . . . , an, b, for some n ≥ 2, such that A(a1),
B(an), and P (ai, b, ai+1) for all 1 ≤ i < n

is definable in (GF,UCQ) and not in MDDlog.

Proof. Let S consist of unary predicates A,B and a ternary predi-
cateP , and letQ be the S-query defined by (†). A (GF,UCQ) query
expressing Q was given in the body of the paper. It thus remains
to show that Q cannot be expressed in MDDlog. We make use
of the characterization of MDDlog queries in terms of k-colorings
provided by Lemma 1.

Assume that m,n are given. Let k = mn + 2n. Define S-
instances D1 and D0 as follows:

• D1 has elements d1, . . . , dk, e and the atoms A(d1), B(dk),
and P (di, e, di+1) for 1 ≤ i < k.

• D0 has elements d1, . . . , dk, and e1, . . . , ek and the following
atoms: A(d1), B(dk), and P (di, ej , di+1) whenever 1 ≤ i <
k, 1 ≤ j < k, and j 6= i.

It is readily checked that Q(D1) = 1 and Q(D0) = 0, as required.
Let B0 be an m-coloring of D0. Define an m-coloring B1 of D1

by giving all elements of {d1, . . . , dk} exactly the same color as in
B0. Choose i with n < i < k − n in such a way that for every
sequence dl, . . . , dl+n with l > 1 and l + n < k there exists a se-
quence dl′ , . . . , dl′+n with l′ > 1 and l′+n < k such that the col-
oring of dl, . . . , dl+n coincides with the coloring of dl′ , . . . , dl′+n
and i 6∈ {l′, l′ + n}. Such an i exists since k ≥ mn + 2n. Now
give e the color of ei. One can now easily construct, for every
structure corresponding to an n-element subset of B1, a homomor-
phism to B0. o

Theorem 7 (GF,UCQ) and (GNFO,UCQ) have the same expressive
power as frontier-guarded DDlog.

Proof. We start by describing the translation from frontier-
guarded DDlog to (GNFO,UCQ). Let Π be a frontier-guarded
DDlog query. It is easily verified that if we write out the impli-
cation symbol in a frontier-guarded DDlog rule using conjunction
and negation, the resulting formula belongs to GNFO. Thus, we
can take O to be the set of all non-goal rules of Π, viewed as a
GNFO sentence, and let q be the UCQ that consists of all bod-
ies of rules whose conclusion contains the IDB relation goal. It is
easy to check that the ontology-mediated query (S,O, q), where S
is the schema consisting of all EDB relations, is equivalent to the
frontier-guarded DDlog query qΠ.

Next, we explain how to translate (GNFO, UCQ) to frontier-
guarded DDlog. Since every sentence of GF is equivalent to a
sentence of GNFO [8], this also yields a translation of (GF,UCQ)
to frontier-guarded DDlog. Recall that we used a specific normal
form for UNFO sentences. For GNFO, we can use an analogous
normal form. Specifically, we can assume that O is generated by
the following grammar:

ϕ(x) ::= > | α(x) ∧ ¬ϕ(x) | ∃y(ψ1(x, y) ∧ · · · ∧ ψn(x, y))

where each ψi is either a relational atom or a formula generated
by the same grammar whose free variables are among x,y. The
“guard” α is an atomic formula, possibly an equality, containing
all variables in x.

Let sub(O) be the set of all subformulas ofO. Let k be the max-
imum of the number of variables in O and the number of variables
in q. For ` ≥ 0, we denote by cl`k(O) the set of all formulas χ(x)
with x = (x1, . . . , x`) of the form

∃y(ψ1(x, y) ∧ · · · ∧ ψn(x, y))

with y = (y1, . . . , ym), m+ ` ≤ k, and such that each ψi is either
an atomic formula that uses a symbol from q or is of the form χ(z)
for some χ(z′) ∈ sub(O).

A guarded `-type τ is a subset of cl`k(O) that contains at least
one atomic relation (possibly equality) containing all variables
x1, . . . , x`, and also contains the sentence O itself. We denote the
set of all guarded `-types by type`(O). Note that, by definition,
there are no guarded `-types for ` greater than the maximal arity of
a relation from S.

We now proceed the same way as we did in the case of UNFO
(but using guarded `-types instead of unary types). We introduce a
fresh `-ary relation symbol Pτ for each guarded `-type τ , and we
denote by S′ the schema that extends S with these additional rela-
tions. Diagrams, realizability, and implying a query are defined in
the same way as before. The DDlog program is also constructed
in essentially the same manner, except that the first rule of the pro-
gram is replaced by the following:∨
τ a guarded `-type

withR(x) ∈ τ

Pτ (x)← R(x) for each relation R of arity ` ≥ 0.

We establish the correctness of the translation. That is, we
show that, for every instance D and elements a = a1, . . . , an ∈
adom(D), we have a ∈ certq,O(D) if and only if a ∈ qΠ(D).

“if”. Assume that a 6∈ certq,O(D). Then there is (dom,D′) ∈
Mod(O) with D ⊆ D′ such that a 6∈ q(D′). For every fact R(b)
of D, let µ(b) be the unique guarded `-type (with ` = |b|) realized
at a in D′. Let D′′ be the instance that consists of the atoms in D
and the atom Pµ(a)(b) for each fact R(b) in D. It can be checked
that D′′ is a model of Π. Since goal(a) /∈ D′′, a 6∈ qΠ(D).

“only if”. Assume that a 6∈ qΠ(D) and let D′ be a model of Π
with D ⊆ D′ that does not contain goal(a). We say that a tuple
b is “live” in D if D contains R(b) for some relation symbol R.
For each live tuple b of D, let µ(b) be the unique guarded `-type
(with ` = |b|) such that Pµ(b)(b) ∈ D′, and let (domb,Db) be a
model ofO in which µ(b) is realized at b (such a model must exist
because otherwise the diagram Pµ(b)(x) would be non-realizable
and Π would include a rule ⊥ ← Pµ(b)(x)). We may assume
that for distinct live tuples b and c, domb and domc overlap only
(possibly) on {b} ∩ {c}. Let (dom′′,D′′) be obtained by first
taking the union of (domb,Db) for all live tuples b of D, and then
adding to it all facts of D. We show that

(i) (dom′′,D′′) is a model of O and

(ii) a 6∈ q(D′′).

For all live tuples d of Db, let µ(d) be the unique guarded `-
type realized by d in (domb,Db), for all d ∈ doma. Note that a
tuple d may be live in Db for several different choices of b, but
then the guarded `-type realized by d in each such (domb,Db) is
the same: otherwise, there must be some atom R(y) that belongs
to µ(b), but not to µ(b′), and then the diagram Pµ(b′)(x) ∧R(y)
is non-realizable and thus ruled out by Π.

Claim (i) is proved by establishing the following, by induction
on the length of ϕ:

(∗) For all formulas ϕ(x) ∈ cl`k(O) and for each live `-tuple d of
D′′, we have (dom′′,D′′) |= ϕ[d] iff ϕ ∈ µ(d).

We omit the proofs of (∗) and of (ii), as they proceed similarly to
the proofs of Theorem 1 and 6. o

B. PROOFS FOR SECTION 4
In Section B.1, we start by establishing a central technical result

about MMSNP extended with constant symbols which allows us
to lift key results from MMSNP sentences to coMMSNP queries
(with free variables). Then in Section B.2, we provide the proofs
for the results stated in Section 4 of the main paper.

B.1 MMSNP with Constant Symbols
For readability, throughout this subsection, we will adopt a more

convenient notation for schemas and structures involving constant
symbols. If S is a schema and c a (possibly empty) set of constant
symbols, then we will use Sc as a shorthand for S ∪ c. A Sc-
structure B will be given by a pair (dom(B), ·B), where dom(B)
is a finite, non-empty set and ·B is a function assigning to each
n-ary predicate in S an n-ary relation PB over dom(B) and to
each constant symbol c ∈ c an element cB ∈ dom(B). We use
adom(B) to denote the active domain of B, and we call B an
active domain structure if dom(B) = adom(B).

Our objective is to establish the following theorem, which lifts
the containment and dichotomy results for MMSNP sentences [24]
to coMMSNP queries:

Theorem 20 coMMSNP has a dichotomy between PTIME and
CONP iff the Feder-Vardi conjecture holds. Containment of coMM-
SNP queries is decidable.

We prove Theorem 20 in several steps. We consider the language
MMSNP with constant symbols (abbreviated MMSNPc), consisting
of all sentences which can be obtained from MMSNP formulas by
replacing each free variable by a constant symbol. The evaluation
problem for MMSNPc consists in deciding whether an MMSNPc
sentence with schema S and constant symbols c holds in a given

Sc-structure B. The containment problem for MMSNPc is to de-
cide for two MMSNPc sentences Ψ1,Ψ2 with relations S and con-
stants symbols c, whether B |= Ψ1 implies B |= Ψ2 for all Sc-
structures B. We use Ψ1 ⊆ Ψ2 to denote containment.

MMSNPc will serve as a bridge between coMMSNP queries
(with free variables) and MMSNP sentences. More precisely, we
will first show that evaluation of coMMSNP queries is polynomi-
ally equivalent to evaluation of MMSNPc sentences, and show a
polynomial reduction from coMMSNP query containment to con-
tainment of MMSNPc sentences. Afterwards, we will move from
MMSNPc sentences to MMSNP sentences, again showing poly-
nomial equivalence of the evaluation problems and a polynomial
reduction for containment.

To link coMMSNP queries and MMSNPc, it will actually prove
more convenient to suppose that MMSNPc sentences are inter-
preted over active domain structures, whereas to relate MMSNPc
with plain MMSNP, we will wish to work over arbitrary struc-
tures. Thus, as a preliminary step, we relate the two variants of
the MMSNPc evaluation and containment problems.

Lemma 4 The evaluation problem for MMSNPc restricted to ac-
tive domain structures is polynomially equivalent to the evaluation
problem for MMSNPc (over general structures).

Proof. Let Φ = ∃X1 · · · ∃X`∀x1 · · · ∀xmϕ be an MMSNPc sen-
tence over schema S and constants c, which is interpreted over
active domain structures. Pick a fresh second-order variable Y
and a fresh constant c not appearing in c. Let ϕ′ be the formula
obtained from ϕ by replacing every conjunct ψ1 → ψ2 of ϕ by
ψ1 → (ψ2 ∨ Y (c)). Let χ be the conjunction of all formulas of
the formR(x1, . . . , xk)→ ¬Y (xi), whereR is a k-ary relation in
S, and xi is one of the variables among x1, . . . , xk. Define a new
MMSNPc sentence

Φ′ = ∃X1 · · · ∃X`∃Y ∀x1 · · · ∀xm(ϕ′ ∧ χ)

We claim that the evaluation problem for Φ over active domain
structures is polynomially equivalent to the evaluation problem for
Φ′ over general structures. The first reduction is trivial since for
every Sc-structure A such that dom(A) = adom(A), we have A |=
Φ if and only if A |= Φ′. To see why, notice that χ ensures that Y is
false everywhere on the active domain, so the additional disjuncts
have no effect. For the second reduction, we remark that B |= Φ′

for a general Sc-structure B if and only if dom(B) 6= adom(B)
(since we can trivially satisfy Φ′ by sending c to an element outside
the active domain and including that element in Y) or dom(B) =
adom(B) and B |= Φ.

It remains to be shown that every evaluation problem for
MMSNPc over general structures is polynomially equivalent to an
evaluation problem for MMSNPc over active domain structures.
Let Φ be an MMSNPc sentence with schema S and constant sym-
bols c, and select a fresh monadic second order variable Y , a fresh
input relation Elem, and and a fresh constant symbol c. We define
Φ′ as the sentence over S∪{Elem}∪ c∪{c} obtained from Φ by:

• replacing every conjunct ψ1 → ψ2 by ψ1 ∧
∧
t∈T Elem(t) →

ψ2 ∨ Y (c), where T is the set of terms appearing in ψ1 → ψ2,

• adding a new conjunct Elem(x)→ ¬Y (x), and

• adding Y to the initial sequence of existentially quantified
monadic second-order variables.

We claim that the evaluation problem for Φ over general structures
is polynomially equivalent to the evaluation problem for Φ′ over
active domain structures. For the first reduction, we have that for
every Sc-structure B, B |= Φ if and only if B′ |= Φ′, where B′

extends B by setting ElemB′
= dom(B) and letting cB

′
be any

element in dom(B). For the other reduction, we have that for every
S ∪ {Elem} ∪ c ∪ {c}-structure B with dom(B) = adom(B),
B |= Φ′ if and only if either ElemB 6= dom(B) or B′ |= Φ,
where B′ is obtained by taking the S ∪ c-reduct of B. o

Lemma 5 Containment of MMSNPc over active domain structures
is polynomially reducible to containment of MMSNPc (over arbi-
trary structures).

Proof. Consider MMSNPc sentences Φ1,Φ2 with schema S and
constants c. We apply the construction from the first part of the
proof of Lemma 4 to obtain MMNSPc sentences Φ′1 and Φ′2 with
the property that B |= Φ′i for a general Sc-structure B if and only
if dom(B) 6= adom(B) or dom(B) = adom(B) and B |= Φi
(for i ∈ {1, 2}). It is readily verified that Φ1 ⊆ Φ2 for the class of
active domain structures if and only if Φ′1 ⊆ Φ′2. o

By the preceding lemmas, we can choose to work with active do-
main structures. It is then straightforward to relate the evaluation
and containment problems for coMMSNP queries with the corre-
sponding problems for MMSNPc sentences.

Lemma 6 The evaluation problem for coMMSNP is polynomially
equivalent to the evaluation problem for MMSNPc. Containment
of coMMSNP queries is polynomially reducible to containment of
MMSNPc sentences.

The next step, and the core technical contribution of this subsec-
tion, is to relate the evaluation and containment of MMSNPc sen-
tences to the analogous problems for MMSNP sentences. To sim-
plify the technical constructions, it will prove convenient to work
with forbidden pattern problems [38, 34, 12].

We extend forbidden patterns problems to handle constant sym-
bols, by simply substituting S ∪ c-structures for S-structures in
Definitions 1 and 2. We denote by FPPc the class of forbidden pat-
terns problems thus defined, and use FPP to refer to the restriction
to structures without constant symbols. Note that both FPPc and
FPP define problems over structures, not instances (although this
distinction is irrelevant in the absence of constant symbols).

It was shown in [38] that MMSNP sentences and FPP have the
same expressive power. This result can be straightforwardly ex-
tended to handle constant symbols:

Lemma 7 MMSNPc and FPPc have the same expressive power
(over structures with constant symbols).

By the previous lemma and the fact that FPP is a subset of FPPc,
to show polynomial equivalence of MMSNPc and MMSNP it suf-
fices to show that every problem in FPPc is polynomially equiva-
lent to some problem in FPP. To formulate the reductions, we will
require some additional notation and terminology, which we intro-
duce next.

Let S be a schema, c = {c1, . . . , cn} be a set of constant sym-
bols, and P = {P1, . . . , Pn} be a set of unary predicates which do
not appear in S. We will abbreviate S ∪ P to SP .

We define operations which allow us to transform SP -structures
into Sc-structures, and vice-versa. With every SP -structure B with
PB
i 6= ∅ for all 1 ≤ i ≤ n, we associate the Sc-structure Bc,

called the collapse of B, by factorizing through the PB
i . Specif-

ically, let ∼ be the smallest equivalence relation such that when-
ever d, d′ ∈ PB

i for some i, then d ∼ d′. Then dom(Bc) is
{[d] | d ∈ ∆B}, where [d] denotes the equivalence class of d
w.r.t. ∼. For convenience, when [d] = {d}, we will use d in

place of [d]. Set cB
c

i = [d], for some d ∈ PB
i , and define RBc

as follows: ([d], [e]) ∈ RBc

if and only if there exist d′ ∈ [d]
and e′ ∈ [e] such that (d′, e′) ∈ RB. Note that the mapping
g : d 7→ [d] defines an S-homomorphism from B to Bc, which
we call the canonical homomorphism.

For a Sc-structure A, we define the SP -structure Â which inter-
prets the predicates in S in the same way as A and interprets the
predicates in P as follows: P Â

i = {cAi }. With every Sc-structure
B, one can associate a finite set of finite SP -structures, Bac, called
its anti-collapse, such that the following two properties hold:

1. for all SP -structures A:
B → Ac (and Ac is defined) if and only if there exists B′ ∈
Bac such that B′ → A.

2. for all Sc-structures A:
B→ A iff there exists B′ ∈ Bac such that B′ → Â.

To employ the anti-collapse Bac for the reduction of FPPc to
FPP, we require some properties from the construction of Bac (cf.
pages 43-45 of [1]). The domain ∆B′

of each B′ ∈ Bac consists
of ∆B \ {cB1 , . . . , cBn } (the unnamed individuals in B) together
with the union

⋃
1≤i≤nDi of fresh non-empty (but possibly not

mutually disjoint) sets D1, . . . , Dn with PB′
i = Di. Moreover, in

Point 1 and Point 2 we have the following more detailed statement:

(1a) if h : B → Ac (and Ac is defined), and g : A → Ac is
the canonical homomorphism, then h′ : B′ → A can be
chosen in such a way that h′(d) ∈ g−1(h(d)) for all unnamed
individuals d in B and h′(d) ∈ g−1(cA

c

i) for all d ∈ Di.
(1b) if h : B′ → A, then h′ : B → Ac can be defined such that

h′(cBi) = cA
c

i and h′(d) = g(h(d)) if d is not named.

(2b) if h : B′ → Â, then h′ : B → A can be constructed in such
a way that h′(d) = h(d) for all unnamed d.

In what follows, we will be interested in colorings of SP -
structures which respects the intuitive meaning of the predicates
Pi. A C-coloring B[C] of a SP -structure B is said to be a uniform
C-coloring of B if for every 1 ≤ i ≤ n, d, d′ ∈ PB

i implies that
d and d′ have the same color in B[C]. Given a set G of C-colored
SP -structures, we define Forbun(G) as the set of SP -structures A
such that there exists a uniform C-coloring A[C] of A such that there
exists no G ∈ G with G→ A[C].

We are now ready to present the reduction from FPPc to FPP.
Suppose that we are given a FPPc problem defined by the set F of
C-colored Sc-structures (where C = {T1, . . . , Tk}). We construct
a set G which contains all uniform C-colored SP -structures G such
that

• There exists F ∈ F and a member F′ of the anti-collapse of the
Sc-reduct of F such that G is the C-coloring of F′ defined as
follows:
(†) d ∈ TG

j iff d is unnamed in F and d ∈ TF
j or there exists

1 ≤ i ≤ n such that d ∈ Di and cFi ∈ T
F
j .

(Note that we require that in the resulting structure TG
j ∩TG

j′ =

∅ for j 6= j′, otherwise G is not in G).

It is easy to see that this construction guarantees that every G ∈ G
is such that PG

i 6= ∅ for every 1 ≤ i ≤ n.
We let Gu = G ∪ U , where U is the set of all SP ∪ C-structures

of the form {Pi(d), Pi(e), Tj(d), T`(e)} with 1 ≤ i ≤ n and 1 ≤
j < ` ≤ k.

Notice that Forbun(G) = Forb(Gu).

Lemma 8 FPPc is polynomially equivalent to FPP. Specifically:

• For all SP -structures A, A ∈ Forb(Gu) iff Ac is undefined or
Ac ∈ Forb(F);

• For all Sc-structures A, A ∈ Forb(F) iff Â ∈ Forb(Gu).

Proof. First let A be a SP -structure such that A ∈ Forb(Gu).
Since Forb(Gu) = Forbun(G), we have A ∈ Forbun(G), and so
there exists a uniform C-colored expansion A[C] of A such that
there exists no G ∈ G with G → A[C]. Assume the collapse
Ac is defined (i.e., PA

i 6= ∅ for 1 ≤ i ≤ n). We want to show
Ac ∈ Forb(F). By uniformity of A[C], we obtain a C-colored
Sc-structure Ac[C] extending Ac by setting d ∈ T

Ac[C]
j iff d is

unnamed and d ∈ TA[C]
j or d = cA

c

i and PA[C]
i ⊆ T

A[C]
j . Assume

for a contradiction that h : F → Ac[C] for F ∈ F . Then h is a
homomorphism from the Sc-reduct Fr of F to the Sc-reduct Ac

of Ac[C]. By (1a), we find F′ ∈ (Fr)ac and h′ : F′ → A such
that h′(d) ∈ g−1(h(d)) for all unnamed individuals d in Fr and
h′(d) ∈ g−1(cA

c

i) for all d ∈ Di. Let F′[C] be the C-coloring of
F′ defined with (†). To see that F′[C] is well-defined, note that d ∈
Di ∩Dj implies that PF′

i ∩P
F′

j 6= ∅, which yields PA
i ∩PA

j 6= ∅,
hence cA

c

i = cA
c

j . It follows that cA
c

i and cA
c

j have the same colour
in Ac[C], and thus also in F, which ensures that each element in
F′ is assigned a unique colour by (†). Now to obtain the desired
contradiction, we show that h′ is a SP ∪ C-homomorphism from
F′[C] to A[C]. Let d ∈ dom(F′) and d ∈ TF′[C]

j . If d is unnamed in

F, then d ∈ TF′[C]
j implies that d ∈ TF

j . Hence h(d) ∈ TAc[C]
j and

h′(d) ∈ g−1(h(d)) ⊆ T
A[C]
j . If d ∈ Di, then d ∈ TF′[C]

j implies

cFi ∈ T
F
j , hence cA

c

i ∈ T
Ac[C]
j and PA[C]

i ⊆ T
A[C]
j . From h′(d) ∈

g−1(cA
c

i), we know that there exists a sequence A`1 , . . . , A`p of
predicates from {P1, . . . , Pn} such that h′(d) ∈ AA[C]

`1
,A`p = Pi,

and AA[C]
`k
∩ AA[C]

`k+1
6= ∅ for every 1 ≤ k ≤ `p. By uniformity

of A[C] and PA[C]
i ⊆ T

A[C]
j , we obtain AA[C]

`1
⊆ T

A[C]
j , hence

h′(d) ∈ TA[C]
j .

Conversely, if Ac is undefined, then A ∈ Forb(Gu) since PG
i 6=

∅ for all G ∈ G and 1 ≤ i ≤ n, and so any uniform C-coloring of
A will avoid Gu. Assume now that Ac ∈ Forb(F). There exists a
C-colored expansion Ac[C] of Ac such that there exists no F ∈ F
with F→ Ac[C]. We define a (uniform) C-colored expansion A[C]
of A in the obvious way; let g : A→ Ac be the canonical mapping
and set TA[C]

j = g−1(T
Ac[C]
j), for 1 ≤ j ≤ k. Assume for a

contradiction that G → A[C] for G ∈ G. Then G is obtained
from some F ∈ F and some member F′ of the anti-collapse of
the Sc-reduct of F as described in (†). Assume h : G → A[C].
Then h : F′ → A and so, by (1b) there exists h′ : Fr → Ac

that can be defined such that h′(cF
r

i) = cA
c

i and h′(d) = g(h(d))
if d is not named, where Fr is the Sc-reduct of F. We derive a
contradiction by showing that h′ a homomorphism from F to Ac[C].
First suppose that d ∈ TF

j , and d is unnamed in F. Then d ∈ TG
j ,

hence h(d) ∈ T
A[C]
j . It follows from the definition of TA[C]

j that

h′(d) = g(h(d)) ∈ T
Ac[C]
j . Next consider the case where cFi ∈

TF
j . Then there must exist e such that e ∈ TG

j and e ∈ PG
i . It

follows that h(e) ∈ T
A[C]
j and h(e) ∈ P

A[C]
i . The definition of

T
A[C]
j together with g(h(e)) = c

Ac[C]
i yields h′(cFi) = c

Ac[C]
i ∈

T
Ac[C]
j .
The second statement follows easily from the first, since for ev-

ery Sc-structure A, we have A = (Â)c. o

Lemma 9 Containment of FPPc is polynomially reducible to con-
tainment of FPP.

Proof. Consider Forb(F1) and Forb(F2), both over Sc. Let Gu,1
and Gu,2 be the corresponding FPPs over schema SP , which satisfy
statements in Lemma 8. We claim that Forb(F1) ⊆ Forb(F2) iff
Forb(Gu,1) ⊆ Forb(Gu,2).

For the first direction, suppose that Forb(F1) ⊆ Forb(F2). Let
A be a ΣP -structure such that A ∈ Forb(Gu,1). If Ac is undefined,
then we immediately obtain A ∈ Forb(Gu,2). Otherwise, we have
Ac ∈ Forb(F1), and hence Ac ∈ Forb(F2) and A ∈ Forb(Gu,2).

For the second direction, suppose that Forb(Gu,1) ⊆
Forb(Gu,2), and let B be a Sc-structure such that B ∈ Forb(F1).
Then applying the previous lemma, we have B̂ ∈ Forb(Gu,1),
hence B̂ ∈ Forb(Gu,2). Again applying the lemma, we obtain
B ∈ Forb(F2). o

By combining in a straightforward manner Lemmas 4 to 9, we
obtain Theorem 20.

B.2 Proofs for Section 4
Theorem 8. (ALC,UCQ) has a dichotomy between PTIME and
CONP iff the Feder-Vardi conjecture holds. The same is true for
(ALCHIU ,UCQ) and (UNFO,UCQ).

Proof. Easily obtained by combining Proposition 2 and Theorems
1, 3, 6, and 20. o

Theorem 10. Query containment is decidable for the OBDA lan-
guages (ALC,UCQ), (ALCHIU ,UCQ), and (UNFO,UCQ).

Proof. Here again we straightforwardly combine Proposition 2 and
Theorems 1, 3, 6, and 20 o

Theorem 11. coGMSNP has the same expressive power as
frontier-guarded DDlog and is strictly more expressive than coMM-
SNP.

Proof. The proof of the first part follows the lines of the proof of
Proposition 2 and is omitted. It thus remains to show that coGM-
SNP is strictly more expressive than coMMSNP. Note first that it
is at least as expressive: we can convert any MMSNP formula into
an equivalent one satisfying conditions (i) and (ii) from the proof
of Proposition 2, and clearly every such MMSNP formula is also
a GMSNP formula. To see that coGMSNP is indeed strictly more
expressive than coMMSNP, note that by Proposition 1, there is a
(GF,UCQ) query q that is not expressible in MDDlog. By Propo-
sition 2, q is not expressible in coMMSNP; by Theorem 7 and the
first part of Theorem 11, q is expressible in coGMSNP. o

Proposition 3 GMSNP and MMSNP2 have the same expressive
power.

Proof. For simplicity, we prove the result for sentences (no free
variables) and without equality in the body of implications.

We start by proving that every MMSNP2 sentence is equivalent
to a GMSNP sentence. Assume Φ = ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ
is a MMSNP2 sentence. Introduce for each Xi a monadic SO-
variable X1

i and, for every R ∈ S of arity n, an n-ary SO-variable
XR
i . Now replace inϕ everyXi(x) byX1

i (x) and everyXi(R(x))
by XR

i (x). The resulting formula is a GMSNP sentence that is
equivalent to Φ.

Conversely, assume we are given a GMSNP sentence Φ =
∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ. It is straightforward to show that Φ
is equivalent to a GMSNP sentence in which

• each Xi(x) in the head of an implication is guarded by an input
relation: for every Xi(x) in the head of an implication ψ there
exists an R ∈ S such that R(y) is in the body of ψ and x ⊆ y.
(If this is not the case, one can introduce additional conjuncts
R(y) in the body of implications).

• ϕ is closed under identifying individual variables: if ψ′ is the
result of identifying variables in an implication ψ of ϕ, then ψ
is a conjunct of ϕ (module renaming of individual variables).

• the individual variables used in distinct implications of ϕ are
disjoint.

It follows that we may also assume that distinct occurrences of SO-
variables Xi in ϕ determine distinct atoms Xi(xi). From now we
assume that Φ satisfies these conditions.

For the translation, we take for every atom A = Xi(x) in the
head of an implication ψ in ϕ, a fresh second-order domain and
fact variable XA. Moreover, we fix a guard RA(yA) with RA ∈ S
forA from the body of the (unique) implication in whichA occurs.
Consider now an implication ψ in ϕ of the form

R1(x1) ∧ · · · ∧Rk(xk) ∧Xk+1(xk+1) ∧ · · · ∧Xn(xn)

→ Xn+1(xn+1) ∨ · · · ∨Xm(xm)

First replace all atoms Aj = Xj(xj), n + 1 ≤ j ≤ m, by
XAj (RAj (yAj)), where RAj (yAj) is the guard for Aj selected
above. Next consider every possible choice

Ak+1 = Xk+1(zk+1), . . . , An = Xn(zn)

of atoms in the heads of implications in ϕ such that the compo-
nentwise mappings ρl : xl → zl, k + 1 ≤ l ≤ n, are bijections
between the sets of variables in xl and zl and replace everyXl(xl),
k + 1 ≤ l ≤ n, by

XAl(RAl(y
′
l))

where y′l is obtained from the guard RAl(yAl) associated with Al
above by replacing each ρl(x) by x and each individual variable
that is not in the range of ρl by some fresh individual variable.
Let ψ′ be the conjunction over all implications derived from ψ in
this manner, let ϕ′ be the conjunction of all of the ψ′, and let Φ′

be the resulting MMSNP2 sentence when existential quantification
over non-monadic variables is replaced by existential quantification
over all XA such that A an atom in a head of an implication of ϕ.
Note that Φ′ contains all individual variables in Φ, but may also
contain additional individual variables not in Φ.

We show that Φ and Φ′ are equivalent. Assume first that
(adom(D),D) |= Φ′. Take an assignment π for the second-
order domain and fact variables of Φ′ such that (adom(D),D) |=π

∀x1 · · · ∀xmϕ′. For every non-monadic second-order variable X
of Φ, define π(X) as the union of all

{ρ(x) | RA(ρ(yA)) ∈ π(XA), ρ injective variable assignment},

such that A = X(x) appears in the head of some implication
in ϕ and RA(yA) is the guard selected for A. We show that
(adom(D),D) |=π Φ. Assume for a contradiction that this is not
the case. Take an implication ψ in ϕ of the form

R1(x1) ∧ · · · ∧Rk(xk) ∧Xk+1(xk+1) ∧ · · · ∧Xn(xn)

→ Xn+1(xn+1) ∨ · · · ∨Xm(xm)

and let ρ be an individual variable assignment such that
(adom(D),D) 6|=π,ρ ψ. We may assume that ρ is injective. The
following holds:

1. for every 1 ≤ i ≤ k, we have Ri(π(xi)) ∈ D.

2. for every k + 1 ≤ i ≤ n, there exists Ai = Xi(zi) in
the head of some implication of ϕ with RAi(z

′
i) the guard se-

lected for Ai, and an injective variable assignment ρi such that
RAi(ρi(z

′
i)) ∈ π(XAi) and ρi(zi) = ρ(xi) ∈ π(Xi).

3. for no n + 1 ≤ i ≤ m does there exist Ai = Xi(zi) in
the head of some implication of ϕ with RAi(z

′
i) the guard se-

lected for Ai, and an injective variable assignment ρ′ such that
RAi(ρ

′(z′i)) ∈ π(XAi) and ρ′(zi) = ρ(xi) ∈ π(Xi).

Consider the following sequences of atoms

Ak+1 = Xk+1(zk+1), . . . , An = Xn(zn)

An+1 = Xn+1(xn+1), . . . , Am = Xm(xm)

It follows from construction of Φ′ that the formula ϕ′ contains the
implication

ζ = R1(x1) ∧ · · · ∧Rk(xk) ∧
XAk+1(RAk+1(y′k+1)) ∧ · · · ∧XAn(RAn(y′n))

→ XAn+1(RAn+1(yAn+1)) ∨ · · · ∨XAm(RAm(yAm))

where the y′i are defined in the same way as earlier. Let µ be an
individual variable assignment satisfying:

• µ(x) = ρ(x) for x in the image of ρ

• µ(u) = ρi(z) if u is the fresh variable introduced to replace
z ∈ z′i

Note that such an assignment must exist since every variable in
Φ′ is in the image of exactly one assignment among ρ and the ρi.
It follows from the properties of µ and points 1 and 2 above that
the body of the implication ζ is satisfied under assignments π, µ.
From point 3, we can derive that none of the head atoms is sat-
isfied under π, µ. It follows that the implication ζ is refuted, so
(adom(D),D) 6|= Φ′, and we have the desired contradiction.

For the other direction, assume that (adom(D),D) |= Φ.
Take an assignment π for the SO-variables of Φ such that
(adom(D),D) |=π ∀x1 · · · ∀xm ϕ. Now define, for A = X(x)
in the head of an implication of ϕ with selected guard RA(yA):

π(XA) = {RA(ρ(yA)) ∈ D | ρ(x) ∈ π(X),

ρ variable assignment}

It can be verified that (adom(D),D) |= Φ′. o

C. PROOFS FOR SECTION 5
Theorem 12 In each case, the following query languages are
equally expressive:

• (ALCU ,AQ), (SHIU ,AQ), unary simple MDDlog, and gener-
alized coCSP with one constant symbol;

• (ALC,AQ), (SHI,AQ), unary connected simple MDDlog, and
generalized coCSPs with one constant symbol such that all tem-
plates are identical except for the interpretation of the constant
symbol;

• (ALCU ,BAQ), (SHIU ,BAQ), Boolean simple MDDlog, and
generalized coCSP;

• (ALC,BAQ), (SHI,BAQ), Boolean connected simple
MDDlog, and coCSP.

Moreover, given the ontology-mediated query or monadic datalog
program, the correponding CSP template is of at most exponential
size and can be constructed in time polynomial in the size of the
template.

Proof. Recall that the equivalences between the OBDA languages
and fragments of monadic disjunctive datalog have been proved
already. Moreover, Point 1 has been proved in the paper. It thus
remains to be proved that the following query languages are equally
expressive:

(a) (ALC,AQ) and generalized coCSPs with one constant sym-
bol such that all templates are identical except for the interpretation
of the constant symbol;

(b) (ALC,BAQ) and coCSP;
(c) (ALCU ,BAQ) and generalized coCSP.
We use the notation from the proof of Point 1. In particular, BT

denotes the canonical S-structure with domain T . For (a), assume
S, O, and A(x) are given, where O is an ALC-ontology. Let T be
the set of all types τ that are realizable for O and define

F = {(BT , τ) | τ ∈ T,A 6∈ τ}.

One can show that for every S-instance D and d ∈ adom(D):
(D, d) → (BT , τ) for some (BT , τ) ∈ F iff d 6∈ qS,O,A(x)(D).
Thus, the query defined by (S,O, A(x)) is equivalent to the query
defined by F .

Conversely, assume that F is a finite set of S ∪ {c}-structures
which coincide except for the interpretation of the constant sym-
bol c, and let B be the S-reduct of these structures. Take for every
d in the domain dom(B) of B a fresh concept name Ad, let A be
another fresh concept name, and set

O = {Ad v ¬Ad′ | d 6= d′} ∪
{Ad u ∃R.Ad′ v ⊥ | R(d, d′) 6∈ B, R ∈ S} ∪
{Ad uB v ⊥ | B(d) 6∈ B, B ∈ S} ∪

{> v t
d∈dom(B)

Ad} ∪

{
l

(B,b)∈F

¬Ab v A}

One can show that for every S-instance D and d ∈ adom(D),
(D, d)→ (B, b) for some (B, b) ∈ F iff d 6∈ qS,O,A(x)(D). Thus
(S,O, A(x)) expresses the same query as F .

For (b) assume that a query (S,O, ∃x.A(x)) ∈ (ALC,BAQ) is
given. We assume w.l.o.g. thatO 6|= > v ∃U.A because otherwise
we have qQ(D) = 1 for all S-instances D, and so qQ is trivial.
Let T be the set of all types τ ⊆ sub(O) that are realized in a
model A of O with A 6|= ∃x.A(x). Since O 6|= > v ∃U.A, the
set T is non-empty. One can show that for every S-instance D:
D → BT iff QS,O,∃x.A(x)(D) = 0. Thus, the query defined by
(S,O,∃x.A(x)) is equivalent to the query defined by BT .

Conversely, for a CSP template B over schema S, we construct
an ontology-mediated query (S,O, q) as follows. Take for every
d in the domain dom(B) of B a fresh concept name Ad, let A be
another fresh concept name, and set q = ∃x.A(x) and

O = {Ad uAd′ v A | d 6= d′} ∪
{Ad u ∃R.Ad′ v A | R(d, d′) 6∈ B, R ∈ S} ∪
{Ad uB v A | B(d) 6∈ B, B ∈ S} ∪
{> v t

d∈dom(B)
Ad}

The query (S,O, ∃x.A(x)) is equivalent to the query defined by
the template B.

The proof of Point (c) is similar and left to the reader.
o

Theorem 14 Query containment in (SHIU ,AQ∪BQ) is in NEX-
PTIME. It is NEXPTIME-hard already for (ALC, AQ) and for
(ALC,BAQ).

Proof. We provide the proof of the lower bound. The proof is by
reduction of a NEXPTIME-hard 2n × 2n-tiling problem. An in-
stance of this tiling problem is given by a natural number n > 0
and a triple (T, H, V) with T a non-empty, finite set of tile types
including an initial tile Tinit to be placed on the lower left corner,
H ⊆ T× T a horizontal matching relation, and V ⊆ T× T a ver-
tical matching relation. A solution for the 2n × 2n-tiling problem
for (T, H, V) is a map f : {0, . . . , 2n−1}×{0, . . . , 2n−1} → T
such that f(0, 0) = Tinit, (f(i, j), f(i + 1, j)) ∈ H for all
i < 2n − 1, and (f(i, j), f(i, j + 1)) ∈ V for all j < 2n − 1. It is
NEXPTIME-complete to decide whether an instance of the 2n×2n-
tiling problem has a solution.

For the reduction, let n > 0 and (T, H, V) be an instance of the
2n × 2n-tiling problem with T = {T1, . . . , Tp}. We construct a
schema S, twoALC-ontologiesO1 andO2, and a queryE(x) with
E a unary relation symbol such that (T, H, V) has a solution if and
only if qS,O1,E(x) ⊆ qS,O2,E(x) if and only if qS,O1,∃x.E(x) ⊆
qS,O2,∃x.E(x).

We first define an ontology G (for grid) which encodes the
2n × 2n-grid. To define G, we use role names x and y to rep-
resent the 2n × 2n-grid and two binary counters X and Y for
counting from 0 to 2n − 1. The counters use concept names
X0, . . . , Xn−1, X0, . . . , Xn−1 and Y0, . . . , Yn−1, Y 0, . . . , Y n−1

as their bits, respectively.
G contains the inclusions

Xi v ¬Xi, Y i v ¬Yi,

for i = 0, . . . , n− 1. Counters are relevant only if the concept

Def = (
l

0=1..n−1

(Xi tXi)) u (
l

0=1..n−1

(Yi t Y i))

is true. G contains the following well-known inclusions stating
that the value of the counter X is incremented when going to x-
successors (and Def is true) and the value of the counter Y is
incremented when going to y-successors (and Def is true): for
k = 0, . . . , n− 1,

Def u
l

j=0..k−1

Xj v Pk

where

Pk = (Xk → ∀x.(Def → Xk)) u (Xk → ∀x.(Def → Xk))

and

Def u t
j=0..k−1

Xj v Qk

where

Qk = (Xk → ∀x.(Def → Xk)) u (Xk → ∀x.(Def → Xk))

and similarly for Y and y. G also states that the value of the counter
X does not change when going to y-successors and the value of
the counter Y does not change when going to x-successors: for
i = 0, . . . , n− 1,

Def uXi v ∀y.(Def → Xi), Def uXi v ∀y.(Def → Xi)

and similarly for Y and x. In addition, G states that when the
counter X is 2n − 1, there is no x-successor (with Def) and if
the counter Y is 2n − 1, there is no y-successor (with Def):

Def uX0 u · · · uXn−1 v ∀x.(Def → ⊥)

and

Def u Y0 u · · · u Yn−1 v ∀y.(Def → ⊥)

This finishes the definition of G. Define the schema

SG = {x, y,X0, . . . , Xn−1, X0, . . . , Xn−1} ∪
{Y0, . . . , Yn−1, Y 0, . . . , Y n−1}.

We set O2 = G ∪ {E v E} (the latter inclusion merely serves to
ensure E is part of the schema of O2).

We now extend G to another ontology Gt. In addition to the
inclusions in G, Gt states that Tinit holds at (0, 0):

¬X0 u · · · u ¬Xn−1 u ¬Y0 u · · · u ¬Yn−1 v Tinit

and that the tiling is complete on Def:

Def v t
i=1..p

Ti,

Next, Gt states that if a tiling condition is violated, then a concept
name E is true. For all i 6= j:

Ti u Tj v E,

for all (i, j) 6∈ H:

Ti u ∃x.Tj v E,

and for all (i, j) 6∈ V :

Ti u ∃y.Tj v E.

Finally, E is propagated along x and y:

∃x.E v E, ∃y.E v E

We set O1 = Gt and show:

Claim. The following conditions are equivalent:

1. the 2n × 2n-tiling problem for (T, H, V) has no solution;

2. qSG ,O1,E(x) is not contained in qSG ,O2,E(x);

3. qSG ,O1,∃x.E(x) is not contained in qSG ,O2,∃x.E(x).

Assume first that (T, H, V) admits no 2n×2n-tiling. Define a SG-
instance DG as follows. We regard the pairs (i, j) with i ≤ 2n − 1
and j ≤ 2n − 1 as constants and let

• x((i, j), (i+ 1, j)) ∈ DG for i < 2n − 1 and

• y((i, j), (i, j + 1)) ∈ DG for j < 2n − 1.

We also set

• Xk(i, j) ∈ DG if the kth bit of i is 1,

• Xk(i, j) ∈ DG if the kth bit of i is 0,

• Yk(i, j) ∈ DG if the kth bit of j is 1, and

• Y k(i, j) ∈ DG if the kth bit of j is 0.

Then

• qSG ,O2,E(x)(DG) = ∅ and

• qSG ,O2,∃x.E(x)(DG) = 0

since DG counts correctly, and hence is satisfiable w.r.t. O2. How-
ever, since (T, H, V) admits no 2n × 2n-tiling, it follows that

• (0, 0) ∈ qSG ,O1,E(x)(DG);

• qSG ,O1,∃x.E(x)(DG) = 1.

We have proved Points 2 and 3.

Conversely, assume that (T, H, V) admits a 2n×2n-tiling given
by f : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → T. We show that
qSG ,O1,∃x.E(x)(D) = 0 for all SG-instances D which are satisfi-
able w.r.t. O2. Then Points 2 and 3 are refuted, as required.

Assume D is satisfiable w.r.t.O2. We define a model (dom,D′)
of O1 with D′ ⊇ D as follows: the domain of D′ coincides with
adom(D). Symbols from SG are defined in D′ in exactly the same
way as in D. To define the facts involving tile types Tk associate
with every d ∈ adom(D) such that Def applies to d, the uniquely
determined pair v(d) = (i, j) given to the values of the counters
X and Y by Def. Then set Tk(d) ∈ D′ iff f(v(d)) = Tk. Note
that D′ contains no facts involving E. It is readily checked that the
resulting structure is a model of O1. o

Proposition 4. If Q = (S,O, q) is an ontology-mediated query
with O formulated in equality-free FO and q a UCQ, then qQ is
preserved by homomorphisms. Consequently, it follows from [43]
that if qQ is FO-rewritable, then qQ is rewritable into a UCQ (thus
into datalog).

Proof. Let h : D1 → D2 be a homomorphism, and a a tu-
ple from adom(D1) such that a ∈ qQ(D1). Furthermore, sup-
pose for the sake of contradiction that h(a) 6∈ qQ(D2). Then
there is a finite relational structure (dom2,D

′
2) |= O such that

D2 ⊆ D′2 and h(a) 6∈ q(D′2). Let (dom1,D
′
1) be the in-

verse image of (dom2,D
′
2) under h. More precisely, dom1 =

adom(D1)∪(dom2\adom(D2)), and D′1 contains all facts whose
ĥ-image is a fact of D′2 where ĥ is the map that extends h by send-
ing every element of adom(D′2) \ adom(D2) to itself. Clearly,
D1 ⊆ D′1. Furthermore, a 6∈ q(D′1) because ĥ : D′1 → D′2 is
a homomorphism and q is preserved by homomorphisms. To ob-
tain a contradiction against a ∈ qQ(D1), it therefore only remains
to show that (dom1,D

′
1) |= O. It is known that equality-free

first-order sentences are preserved by passing from a structure to
its quotient under an equivalence relation that is a congruence. By
construction, the kernel of the map ĥ is a congruence relation on the
structure (dom1,D

′
1) and its quotient is isomorphic to (dom2,D

′
2).
o

The following lemma reduces the problem of deciding FO-
rewritability from generalized CSP with constants to generalized
CSP without constants.

Lemma 10 Let F be a finite set of S∪ c-structures. The following
conditions are equivalent:

1. coCSP(F) is FO-definable;

2. coCSP(Fc) is FO-definable;

Proof. If coCSP(Fc) is defined by a first-order sentence ϕ, then
replacing every subformula of the form Pi(x) in ϕ by x = ci yields
a first-order sentence defining coCSP(F).

For the converse, we make use a characterization of FO-
definability of generalized coCSPs with constants using finite ob-
struction sets. Let F be a finite set of S ∪ c-structures. A set D of
S ∪ c-structures is an obstruction set for CSP(F) if for all S ∪ c-
structures D the following conditions are equivalent:

• there exists B ∈ F such that D→ B;

• there does not exist A ∈ D such that A→ D.

It is known that, for any finite set of structures F , coCSP(F) is
FO-definable if and only if F has a finite obstruction set. This was
shown in [2] for structures without constant symbols, and follows

easily from results in [43] even for the case of structures with con-
stants. Finally, it was shown in Proposition A.2 (1) in [1] that if
coCSP(F) has a finite obstruction set, then so does coCSP(Fc).

o

The following lemma reduces the problem of deciding FO-
definability from generalized CSP without constants to CSP with-
out constants.

Lemma 11 Let F be a finite set of S ∪ c-structures.

• If coCSP(B) is FO-definable for all B ∈ F , then coCSP(F) is
FO-definable.

• Conversely, if all B ∈ F are mutually homomorphically incom-
parable, and coCSP(F) is FO-definable, then each coCSP(B),
B ∈ F , is FO-definable.

Proof. For Point 1 choose for every B ∈ F a FO-sentence ϕB

such that (dom,D) |= ϕB iff D 6→ B for all S-instances D. Let ϕ
be the conjunction over all ϕB with B ∈ F . Then (dom,D) |= ϕ
iff D 6→ B for any B ∈ F holds for all S-instances D, as required.

To prove the other direction we require the notion of a critical ob-
struction: a S-structure A is called a critical obstruction for CSP(G)
iff A 6→ B for any B ∈ G but for any proper substructure A′ of
A there exists a B ∈ F such that A′ → B. It is readily checked
that coCSP(G) has a finite obstruction set iff there only exist finitely
many critical obstructions for CSP(G).

For Point 2 assume that all B ∈ F are mutually homomorphi-
cally incomparable and that coCSP(F) is FO-definable. Assume
for a proof by contradiction that coCSP(B0) is not FO-definable
for some B0 ∈ F . Then the set C of critical obstructions for
CSP(B0) is infinite. Let B′0 be a substructure of B′0 such that
no proper substructure of B0 can be homomorphically mapped to
any B ∈ F \ {B0}. It is readily checked that the set C′ of dis-
joint unions A ∪B′0, A ∈ C, are critical obstructions for CSP(F).
Thus coCSP(F) is not FO-definable and we have derived a contra-
diction. o

Next, we move on the datalog-definability.

Lemma 12 Let F be a finite set of S ∪ c-structures.

1. If coCSP(Bc) is datalog-definable for all B ∈ F , then
coCSP(F) is datalog-definable.

2. Conversely, if all B ∈ F are mutually homomorphically in-
comparable, and coCSP(F) is datalog-definable, then each
coCSP(Bc), B ∈ F , is datalog-definable.

Proof. (1) If each coCSP(Bc) is datalog-definable, then, since dat-
alog is closed under conjunction, we also have that coCSP(Fc)
is datalog-definable. Let Π be a datalog program that defines
coCSP(Fc). A datalog program Π′ defining coCSP(F) may be
obtained from Π by replacing every Pi(x) with x = ci.

For (2), we make use of a characterization of datalog-definability
in terms of obstruction sets of bounded treewidth. Recall from the
proof of Lemma 10 the notion of an obstruction set for a set of
structures. Suppose that coCSP(F) is definable by a datalog pro-
gram whose rules contain at most k variables. Then F has an ob-
struction set of treewidth k, namely, the set of all canonical struc-
tures of non-recursive datalog programs obtained by unfolding the
given datalog program finitely many times (a standard argument).

We claim that, in fact, each B ∈ F has an obstruction set of
treewidth k. We prove this claim by contraposition: if some B ∈ F
does not have an obstruction set of treewidth at most k, there is a
structure A such that A 6→ B, while, at the same time, B′ → A

implies B′ → B for all structures B′ of treewidth at most k. Now,
take A′ to be the disjoint union of A and B. Then we have that
A 6→ F (here, we are using also the fact that F consists of homo-
morphically incomparable structures). At the same time, B′ → A
implies B′ → B for all structures B′ of treewidth at most k.
Therefore, coCSP(F) has no obstruction set of bounded treewidth,
a contradiction.

So far, we have shown that, for each B ∈ F , coCSP(B) has
an obstruction set of bounded tree width. By Proposition A.2 (1)
in [1], we have that, for all structures A with constant symbols,
if coCSP(A) has an obstruction set of bounded treewidth, then
coCSP(Ac) has an obstruction set of bounded treewidth too (al-
though it is not explicitly stated, it can easily be verified that the rel-
evant construction used there preserves bounded treewidth). Thus,
we obtain that, for each B ∈ F , coCSP(Bc) has an obstruction
set of bounded width. It was shown in [24] that, for any structure
A without constant symbols, coCSP(A) is datalog-definable if and
only if A has an obstruction set of bounded tree-width. Therefore
we have that, for each B ∈ F , coCSP(Bc) is datalog-definable.

o

The above lemmas, together, establish Proposition 5.
We now proceed with the proof of Theorem 16.
We now give the lower bound proofs for Theorem 16.

Lemma 13 It is NEXPTIME-hard to decide FO-rewritability of
queries in (ALC,AQ) and of queries in (ALC,BAQ).

Proof. We prove the lower bound and employ for the reduction the
same tiling problem as in the lower bound proof of Theorem 14. We
also employ the ontologies constructed in the proof of Theorem 14.

For the reduction, let n > 0 and (T, H, V) be an instance of
the 2n × 2n-tiling problem with T = {T1, . . . , Tp}. We con-
struct a schema S, anALC-ontologyO and a queryA(x) such that
(T, H, V) has a solution if and only if qS,O,A(x) is FO-rewritable
if and only if qS,O,∃x.A(x) is FO-rewritable.

We consider the ontology G, its extension Gt, and the schema SG
from the proof of Theorem 14. To define O, we take a fresh role
name S and two concept names A and F and set

O = Gt ∪ {∃S.E v E,E u F v A}

and S = SG ∪ {S, F}.

Claim. The following conditions are equivalent:

• (T, H, V) admits no 2n × 2n-tiling;

• qS,O,A(x) is not FO-rewritable;

• qS,O,∃x.A(x) is not FO-rewritable.

Assume that (T, H, V) admits no 2n × 2n-tiling. qS,O,A(x) is
not FO-rewritable iff there does not exist a finite set D of S ∪ {c}-
structures (an obstruction set) such that the following conditions
are equivalent for every S-instance D and d ∈ adom(D):

1. d ∈ qS,O,A(x)(D).

2. there exists A ∈ D such that (A, a)→ (D, d).

We show that no finite obstruction set exists. To this end, we define
S-instances Dm as the union of DG and the facts

F (a0), S(a0, a1), . . . , S(am, (0, 0)).

It is readily checked that

• a0 ∈ qS,O,A(x)(Dm) for all m > 0;

• a0 6∈ qS,O,A(x)(D
′
m), where D′m results from Dm by removing

some fact (ak, ak+1) from Dm.

It follows immediately that no finite obstruction set exists. The
argument for qS,O,∃x.A(x) is similar.

Conversely, assume that (T, H, V) has a 2n × 2n-tiling given
by f : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → T. We have to
show that there exists an FO-formula ϕ(x) over S such that for
all S-instances D and d ∈ adom(D), (adom(D),D) |= ϕ[d] iff
d ∈ qS,O,A(x)(D).

Note that one can easily construct a first-order sentence ϕG over
SG such that, for all SG-instances D, the following are equivalent:

• D is not satisfiable w.r.t. G;

• (adom,D) |= ϕG .

We fix such a sentence ϕG and show that the following are equiva-
lent for every S-instance D:

• (adom(D),D) |= ϕG ;

• d ∈ qS,O,A(x)(D).

The direction from Point 1 to Point 2 is trivial. Conversely, assume
that (adom(D),D) 6|= ϕG . Then D is satisfiable w.r.t. G. We de-
fine a model (dom,D′) ofO with D′ ⊇ D as follows. The domain
of D′ coincides with adom(D). Symbols from S are defined in D′

in exactly the same way as in D. To define the facts involving tile
types Tk, associate with every d ∈ adom(D) such that Def applies
to d, the uniquely determined pair v(d) = (i, j) given to the val-
ues of the counters X and Y by Def. Then set Tk(d) ∈ D′ iff
f(v(d)) = Tk. Note that D′ contains no facts involving E or A.
It is readily checked that the resulting structure is a model of O, as
required. o

Lemma 14 It is NEXPTIME-hard to decide datalog-rewritability
of queries in (ALC,AQ) and of queries in (ALC,BAQ).

Proof. The proof is based on a modification of the proof of
Lemma 13. For the reduction, let n > 0 and (T, H, V) be an in-
stance of the 2n × 2n-tiling problem with T = {T1, . . . , Tp}. We
construct a schema S, anALC-ontologyO′ and a queryA(x) such
that (T, H, V) has a solution if and only if qS,O′,A(x) is datalog-
rewritable if and only if qS,O′,∃x.A(x) is datalog-rewritable.

We consider the ontology G, its extension Gt, and the schema
SG from the proof of Theorem 14. To define O′ we take fresh role
names S and H and fresh concept names P1, P2, P3 and encode
the 3-colorability problem as follows:

O′ = Gt ∪ {∃S.E v E,∃H.A v A} ∪
{E v P1 t P2 t P3} ∪
{Pi u Pj v A | 1 ≤ i < j ≤ 3} ∪
{Pi u ∃H.Pi v A | 1 ≤ i ≤ 3}

and S = SG ∪ {S,H}.

Claim. The following conditions are equivalent:

• (T, H, V) admits no 2n × 2n-tiling;

• qS,O′,A(x) is not datalog-rewritable;

• qS,O′,∃x.A(x) is not datalog-rewritable.

Assume that (T, H, V) admits no 2n × 2n-tiling. For any con-
nected undirected graphG, we identify some v inGwith (0, 0) and
define a S-instance D as the union of DG and the facts S(d, d′) for
all d, d′ in G and H(d, d′) for every edge {d, d′} in G. It is readily
checked that

• (0, 0) ∈ qS,O′,A(x)(D) iff G is not 3-colorable;

• qS,O′,∃x.A(x)(D) = 1 iff G is not 3-colorable.

It follows immediately that neither qS,O′,A(x) nor qS,O′,∃x.A(x) are
datalog-rewritable.

Conversely, if (T, H, V) admits a 2n × 2n-tiling then one can
show datalog-rewritability using exactly the same argument as in
the proof of Lemma 13. o

We now prove the undecidability results forALCF . In [10, 36],
alternative definitions of query containment and FO-rewritability
are employed which consider only instances that are satisfiable
w.r.t. the ontologies involved. We say that (S,O1, q1) is con-
tained in (S,O2, q2) w.r.t. consistent instances if q(S,O1,q1)(D) ⊆
q(S,O2,q2)(D) for all S-instance D such that D is satisfiable
w.r.t. O1. Similarly, a query (S,O, q) is FO-rewritable w.r.t con-
sistent instances if there exists an FO-query q′ such that q′(D) =
q(S,O,q)(D) for all S-instance D that are satisfiable w.r.t. O. Un-
decidability of query containment w.r.t. consistent instances and
of FO-rewritability w.r.t. consistent instances were proven respec-
tively in [10] and [36]. Here we show how the proofs can be mod-
ified to work for query containment, FO-rewritability, and datalog
rewritability as defined in this paper.

Theorem 21 Query containment, FO-rewritability, and datalog-
rewritability are all undecidable for queries in (ALCF ,AQ) and
queries in (ALCF ,BAQ).

Proof. The proof is by reduction of the following finite rectangle
tiling problem. An instance of the finite rectangle tiling problem is
given by a triple P = (T, H, V) with

• T = {T1, . . . , Tp} a non-empty, finite set of tile types including
an initial tile Tinit to be placed on the lower left corner, a final
tile Tfinal to be placed on the upper right corner, and sets U ⊆ T
and R ⊆ T of tile types to be placed on the upper and right
borders respectively, satisfying U ∩R = {Tfinal};
• H ⊆ T× T a horizontal matching relation; and

• V ⊆ T× T a vertical matching relation.

A tiling for (T, H, V) is a map f : {0, . . . , n}× {0, . . . ,m} → T
such that n,m ≥ 0,

• f(0, 0) = Tinit,

• f(n,m) = Tfinal,

• f(n, j) ∈ R for all 0 ≤ j ≤ m;

• f(j, i) 6∈ R for all j < n and 0 ≤ i ≤ m;

• f(i,m) ∈ U for all 0 ≤ i ≤ n;

• f(i, j) 6∈ U for all 0 ≤ i ≤ n and 1 ≤ j < m.

• (f(i, j), f(i+ 1, j)) ∈ H for all 0 ≤ i < n, and

• (f(i, j), f(i, j + 1)) ∈ v for all 0 ≤ i < m.

Thus, we can assume that H , V , U, and R are such that:

• if (Ti, Tj) ∈ H , then Ti ∈ U if and only if Tj ∈ U;

• if Ti ∈ U, then there exists no Tj with (Ti, Tj) ∈ V or
(Tj , Ti) ∈ V ;

• if (Ti, Tj) ∈ V , then Ti ∈ R if and only if Tj ∈ R;

• if Ti ∈ R, then there exists no Tj with (Ti, Tj) ∈ H or
(Tj , Ti) ∈ H .

It is undecidable whether an instance P of the finite rectangle tiling
problem has a tiling.

Fix a particular P = (T, H, V). For the data schema, we use
S = {T1, . . . , Tp, x, y, x

−, y−}, where T1, . . . , Tp are treated as

concept names, and x, y, x−, and y− are role names. We use
x and y to specify horizontal and vertical adjacency of points in
the rectangle, and the role names x− and y− to simulate the in-
verses of x and y (note that since x− and y− are regular role
names, they need not be interpreted as the inverses of x and y).
We construct an ALCF-ontology OP which asserts functionality
of x, y, x−, y− and contains inclusions using additional concept
names U,R, Y, Ix, Iy, C, Zc,1, Zc,2, Zx,1, Zx,2, Zy,1. The con-
cept names U and R are used to mark the upper and right border
of the rectangle, Y is used to mark points in the rectangle, and
the remaining concept names are used for technical purposes ex-
plained below. In the following, for e ∈ {c, x, y}, we let Be range
over all Boolean combinations of the concept names Ze,1 and Ze,2,
i.e., over all concepts L1 u L2 where Li is a literal over Ze,i, for
i ∈ {1, 2}. The ontology OP contains the following concept in-
clusions, where (Ti, Tj) ∈ H and (Ti, T`) ∈ V :

Tfinal v Y u U uR
∃x.(U u Y u Tj) u Ix u Ti v U u Y
∃y.(R u Y u T`) u Iy u Ti v R u Y

∃x.(Tj u Y u ∃y.Y)
u∃y.(T` u Y u ∃x.Y)

uIx u Iy u C u Ti v Y
∃x.∃y.Bc u ∃y.∃x.Bc v C
Bx u ∃x.∃x−.Bx v Ix
By u ∃y.∃y−.By v Iy

Ti v ∀y.⊥
Tj v ∀x.⊥
U v ∀x.U
R v ∀y.R

t
1≤s<t≤p

Ts u Tt v ⊥

where Ti ∈ U and Tj ∈ R.
The first four inclusions propagate the concept Y downwards and

leftwards starting from a point marked with the final tile Tfinal. Note
that these inclusions enforce the horizontal and vertical matching
conditions. The concept inclusion with right-hand side C serves
to enforce confluence, i.e., C is entailed at a constant a if there is
a constant b that is both an x-y-successor and a y-x-successor of
a. This is so because, intuitively, Bc is universally quantified: if
confluence fails, then we can interpret Zc,1 and Zc,2 so that neither
of the two conjuncts on the left-hand side of the inclusion for C is
satisfied. In a similar manner, the inclusion for Ix (resp. Iy) is used
to ensure that x− (resp. y−) act as the inverse of x (resp. y) at all
points in the rectangle.

The following property can be obtained by a minor modification
of Lemma 30 in [3]:

Lemma 15 P admits a tiling if and only if there is a S-
instance D which is consistent with OP and such that
qS,OP,Tinit(x)∧Y (x)(D) 6= ∅.

Let ϕP be the first-order translation of the conjunction of all
Ti v ∀y.⊥, Ti ∈ U, Tj v ∀x.⊥, Tj ∈ R, and of t

1≤s<t≤p
Ts u

Tt v ⊥. The following is readily checked:

Claim. For all S-instances D, (adom(D),D) |= ϕP iff D is satis-
fiable w.r.t. OP.

We now prove undecidability of query containment. Let E be a
fresh concept name and let

O2 = OP ∪ {E v E}, O1 = OP ∪ {Y u Tinit v E}

Now one can prove that the following conditions are equivalent:

• P admits a tiling;

• (S,O1, E(x)) is not contained in (S,O2, E(x));

• (S,O1, ∃x.E(x)) is not contained in (S,O2,∃x.E(x))

Assume first that P admits a tiling. Then by Lemma 15,
there is a S-instance D which is consistent with OP and such
that qS,OP,Tinit(x)∧Y (x)(D) 6= ∅. It follows immediately that
qS,O1,E(x)(D) 6= ∅ and qS,O1,∃x.E(x)(D) = 1. On the other hand,
since D is consistent with O2, and E appears only trivially in O2,
we have qS,O2,E(x)(D) = ∅ and qS,O2,∃x.E(x)(D) = 0.

Next suppose that P does not admit a tiling, and let D be
an S-instance which is consistent with O1. By Lemma 15,
qS,OP,Tinit(x)∧Y (x)(D) = ∅, and hence qS,O1,∃x.E(x)(D) = 0.
The desired containments trivially follow.

To prove undecidability of FO-rewritability, we expand O1 to a
new ontology O3. To define O3 we take a fresh role name S and
two concept names A and F and set

O3 = O1 ∪ {∃S.E v E,E u F v A}

and S3 = S ∪ {S, F}.

Claim. The following conditions are equivalent:

• P admits a tiling;

• qS3,O3,A(x) is not FO-rewritable;

• qS3,O3,∃x.A(x) is not FO-rewritable.

Assume first that P admits a tiling. By Lemma 15, we can
find an S-instance DP which is consistent with OP and b ∈
adom(DP) such that b ∈ qS,OP,Tinit(x)∧Y (x)(DP), and hence
b ∈ qS,O1,E(x)(DP). We can use essentially the same argument as
in Lemma 13 to show that qS,O1,E(x) and qS,O1,E(x) are not FO-
rewritable. Specifically, we construct S-instances Dm by taking
the union of DP and the facts

F (a0), S(a0, a1), . . . , S(am, b).

It is readily checked that

• a0 ∈ qS3,O3,A(x)(Dm) for all m > 0;

• a0 6∈ qS3,O3,A(x)(D
′
m), where D′m results from Dm by remov-

ing some fact (ak, ak+1) from Dm.

It follows that no finite obstruction set exists, and hence that
qS,O1,A(x) is not FO-rewritable. We can proceed similarly for
qS,O1,∃x.A(x).

Assume now that P does not admit a tiling. Then for ev-
ery S-instance D, D is satisfiable w.r.t. OP if and only if
qS,O3,∃x.A(x)(D) = 0. Thus, the query defined by ¬ϕP is equiva-
lent to qS,O3,∃x.A(x), and the query defined by (x = x) ∧ ¬ϕP is
equivalent to qS,O3,A(x).

To prove undecidability of datalog-rewritability, we expand O1

to a new ontology O4. To define O4, we take fresh role names
S and H and fresh concept names P1, P2, P3 and encode the 3-
colorability problem as follows:

O4 = G1 ∪ {∃S.E v E,∃H.A v A} ∪
{E v P1 t P2 t P3} ∪
{Pi u Pj v A | 1 ≤ i < j ≤ 3} ∪
{Pi u ∃H.Pi v A | 1 ≤ i ≤ 3}

We use the schema S4 = S ∪ {S,H}.

Claim. The following conditions are equivalent:

• P admits a tiling;

• qS4,O4,A(x) is not datalog-rewritable;

• qS4,O4,∃x.A(x) is not datalog-rewritable.

First suppose that P admits a tiling. We have seen previously
that this implies the existence of an S-instance DP which is con-
sistent with OP and contains b ∈ adom(DP) such that b ∈
qS,O1,E(x)(DP). We proceed similarly to Lemma 14. Given a
connected undirected graph G, we define an S-instance D as the
union of DP and the facts S(d, d′) for all d, d′ in G and H(d, d′)
for every edge {d, d′} in G. It is readily checked that

• b ∈ qS4,O4,A(x) iff G is not 3-colorable;

• qS4,O4,∃x.A(x)(D) = 1 iff G is not 3-colorable.

It follows directly that neither qS,O′,A(x) nor qS,O′,∃x.A(x) are
datalog-rewritable.

Next suppose that P does not admit a tiling. Then for every
S-instance D, we have that D is satisfiable w.r.t. OP if and only
if qS,O4,∃x.A(x)(D) = 0. We can then simply reuse the FO-
rewritings ¬ϕP and (x = x) ∧ ¬ϕP from above, since these can
be equivalently expressed as datalog queries. o

