
An Update on Query Answering with Restricted Forms
of Negation

Vı́ctor Gutiérrez-Basulto1, Yazmı́n Ibañez-Garcı́a2, and Roman Kontchakov3

1 Fachbereich Mathematik und Informatik, Universität Bremen, Germany
victor@informatik.uni-bremen.de

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
ibanezgarcia@inf.unibz.it

3 Department of CS and Information Systems, Birkbeck College, London, UK
roman@dcs.bbk.ac.uk

Abstract. One of the most prominent applications of description logic ontolo-
gies is their use for accessing data. In this setting, ontologies provide an abstract
conceptual layer of the data schema, and queries over the ontology are then used
to access the data. In this paper we focus on extensions of conjunctive queries
(CQs) and unions of conjunctive queries (UCQs) with restricted forms of nega-
tions such as inequality and safe negation. In particular, we consider ontologies
based on members of the DL-Lite family. We show that by extending UCQs with
any form of negated atoms, the problem of query answering becomes undecidable
even when considering ontologies expressed in the core fragment of DL-Lite . On
the other hand, we show that answering CQs with inequalities is decidable for
ontologies expressed in DL-LiteH

core

. To this end, we provide an algorithm match-
ing the known CONP lower bound on data complexity. Furthermore, we identify
a setting in which conjunctive query answering with inequalities is tractable. We
regain tractability by means of syntactic restrictions on the queries, but keeping
the expressiveness of the ontology.

1 Introduction

In recent years, the use of ontologies for accessing data has been recognized as one
of the most prominent applications of description logics (DLs) in the Semantic Web
(SW) and relational databases. The characteristic feature of ontology-based data access

(OBDA) is the use of ontologies to enrich instance data with background knowledge,
thus providing users with an interface for querying potentially incomplete data. The
importance of OBDA as a key technology for the SW has been acknowledged by intro-
duction of the Web Ontology Language (OWL) and its profiles based on tractable DLs.
In the OBDA paradigm the study of query answering has mainly been focused on an-
swering (unions of) conjunctive queries (CQs). In particular, a fairly clear landscape of
the computational complexity of CQ answering has emerged, and specific algorithmic
approaches have already been developed. Recently, some investigations on query an-
swering using query languages beyond CQs have been initiated [19,6]. In particular, a
desirable way to extend CQs, which belong to the positive existential fragment of first-
order logic, is with some form of negation. Following the large body of literature on re-
lational databases, we consider two ways of adding restricted forms of negation to CQs:

inequalities as atomic formulas (CQ 6=) and safe negation (CQ¬s). In the OBDA setting,
besides the class of queries, the DL for representing the ontology needs to be specified.
Of special interest are those DLs allowing OBDA to scale to large amounts of data by
answering queries in relational database management systems (RDBMSs). This is the
case for the members of the DL-Lite family of DLs: DL-Lite

core

and DL-LiteH
core

[4].
Remarkably, CQ answering in these logics is in AC0 in data complexity, which is an
important measure of complexity when large amounts of data are considered.

The aim of this paper is to continue the study initiated by Rosati [19] on answer-
ing (U)CQs 6= and (U)CQs¬s in DLs of the DL-Lite family. In particular, we provide
undecidability and complexity results for answering (U)CQs6=, along with algorithmic
approaches. Moreover, inspired by recent works we introduce syntactical restrictions to
obtain tractable CQ6= answering.

Related Work

In recent years, extensions of CQs with some form of negation have been studied in
different areas of computer science related to management of incomplete information.
The main research done in this respect focuses on establishing decidability boundaries,
complexity results and algorithms for query answering. We outline relevant results in
some of these areas below.

CQs with Inequalities and Negation in Description Logics Calvanese et al. [9]
showed that in contrast to CQs, answering CQs 6= in highly expressive DL DLR is
undecidable. Later on, Rosati [18,19] presented a deeper study of query answering with
restricted forms of negation in several DLs by considering not only inequalities but also
safe negation. Rosati shows undecidability of answering CQs with any form of nega-
tion in the DL AL. Furthermore, Rosati shows that answering UCQs with any form of
negation in fairly inexpressive DLs EL and DL-LiteH

core

(called DL-LiteR in the paper)
is undecidable. For the case of answering CQs6= and CQs¬s in DL-LiteH

core

Rosati pro-
vides a CONP-hardness result in data complexity, leaving the exact complexity of the
problem (and even decidability) open.

CQs with Inequalities in Data Exchange (DE) In their seminal work, Fagin et al. [12]
showed that in the DE setting answering UCQs6= with target constraints given by
weakly acyclic TGDs is CONP-complete. To provide the upper complexity bound
they presented a procedure based on a variant of the disjunctive chase introduced by
Deutsch et al. [11]. A remarkable contribution of this work is a PTIME algorithm for
computing certain answers of UCQs with at most one inequality per disjunct. The lower
bound for an arbitrary number of inequalities follows from a result previously estab-
lished by Abiteboul et al. [1].

CQs6= with Bounded Number of Inequalities It is known that the complexity of an-
swering UCQs 6= can be affected by the number of inequalities allowed per query [15].
In settings dealing with incomplete information, Abiteboul et al. [1,2] showed in their
work on answering queries via views that answering UCQs6= is CONP-complete. In
particular, their CONP-hardness proof (also utilized as a lower bound in the DE setting)
requires six inequalities. However, later on Madry [17] closed the gap in the DE setting
by showing that even the case of two inequalities is intractable.

CQs6= with Other Syntactic Restrictions An orthogonal restriction to that on the num-
ber of inequalities has recently been proposed and investigated in the DE setting by
Arenas et al. [3] on extensions of Datalog with negated atoms. Their approach is to
define syntactic restrictions over the variables that can occur in inequalities. In particu-
lar, under such conditions one can have more than one inequality per disjunct without
losing tractability.

Our paper is organized as follows. In Section 2, we provide Description Logic defi-
nitions. Section 3 is dedicated to the presentation of lower complexity bounds. Section 4
investigates the establishment of matching upper bounds. Section 5 studies syntactic re-
strictions over conjunctive queries with inequalities. Finally, in Section 6 we conclude
with an outlook of the contribution and future research lines.

2 Preliminaries

In this section we recall some basics on description logics (DLs) and extensions of
conjunctive queries (CQs) with negated atoms.

The Description Logic DL-LiteH
core

: Syntax and Semantics

The language of DL-LiteH
core

[4] contains individual names a0, a1, . . ., concept names

A0, A1, . . ., and role names P0, P1, We define complex roles R and basic concepts

B using the following grammar:

R ::= Pi | P�
i ,

B ::= ? | Ai | 9R.

A DL-LiteH
core

TBox T is a finite set of concept and role inclusion axioms of the form:

B1 v B2, B1 v ¬B2, R1 v R2, R1 v ¬R2.

Whenever we find it convenient we might use B1 u B2 v ? instead of the equivalent
B1 v ¬B2. An ABox A is a finite set of assertions of the form:

Ak(ai), Pk(ai, aj).

A DL-LiteH
core

knowledge base (KB) K is a pair (T ,A) with T a TBox and A an ABox.
In the following, we denote by ind(A) the set of individual names occurring in A, and
by role

±(K) the set of roles that consists of Pk and P�
k , for each role name Pk in K.

DL-Lite
core

is the fragment of DL-LiteH
core

without role inclusion axioms in the TBox.
An interpretation I = (�I , ·I) consists of a nonempty domain �I and an inter-

pretation function ·I that assigns an element aIi 2 �I to each object name ai, a subset
AI

k ✓ �I to each concept name Ak, and a binary relation P I
k ✓ �I ⇥ �I to each

role name Pk. As usual for DL-Lite , we adopt the unique name assumption (UNA):
aIi 6= aIj , for all distinct individuals ai, aj .

The interpretation function ·I is then extended to basic concepts and complex roles:

(P�
k)I = {(y, x) 2 �I ⇥�I | (x, y) 2 P I

k }, (inverse role)

?I = ;, (empty set)

(9R)I =
�
x 2 �I | there is y 2 �I with (x, y) 2 RI . (domain/range constraints)

We define the satisfaction relation |= in a standard way:

I |= B1 v B2 iff BI
1 ✓ BI

2 , I |= R1 v R2 iff RI
1 ✓ RI

2 ,

I |= B1 v ¬B2 iff BI
1 \BI

2 = ;, I |= R1 v ¬R2 iff RI
1 \RI

2 = ;,
I |= Ak(ai) iff aIi 2 AI

k , I |= Pk(ai, aj) iff (aIi , a
I
j) 2 P I

k .

A KB K = (T ,A) is satisfiable if there is an interpretation I satisfying all members of
T and A. In this case we write I |= K (as well as I |= T and I |= A) and say that I is
a model of K (and of T and A).

Conjunctive Queries with Restricted Forms of Negation

A conjunctive query (CQ) is an expression of the form

q(x) = 9y '(x,y), (1)

where x and y denote sequences of variables from a set of variables, and ' is conjunc-
tion of concept atoms A(t) and role atoms P (t, t0) with t, t0 terms, i.e., individual names
or variables from x,y. We call variables in x answer variables and those in y (exis-
tentially) quantified variables. We denote by var(q) the set of variables, by avar(q) the
set of answer variables x, by qvar(q) the set of quantified variables y and by term(q)
the set of terms in q. A conjunctive query with inequalities (CQ 6=) is an expression of
the form (1) with each conjunct of '(x,y) being either a concept or role atom, or an
expression of the form t 6= t0, where t and t0 are terms. A conjunctive query with safe

negation (CQ¬s) is an expression of the form (1) where '(x,y) is formed by literals,
i.e., atoms or negated atoms, and such that each variable of each literal occurs in at least
one positive atom. A union of conjunctive queries (UCQ) is a disjunction of conjunctive
queries. UCQ6= and UCQ¬s are defined accordingly.

Query Answering over DL-Lite KBs Let I be an interpretation and q(x) a query with
x = x1, . . . , xk. A map ⇡ : term(q) ! �I with ⇡(a) = aI , for a an individual name
in term(q), is called a match for q in I if I satisfies q under the variable assignment
that maps each answer variable xi to ⇡(xi). For a k-tuple of individual names a =
a1, . . . , ak, a match ⇡ for q in I is called an a-match if ⇡(xi) = aIi . We say that a is
an answer to q in an interpretation I if there is an a-match for q in I. We denote by
ans(q, I) the set of all answers to q in I. We say that a ✓ ind(A) is a certain answer

to q over a KB K = (T ,A) if a 2 ans(q, I), for all models I of K. The set of all
certain answers to q over K is denoted by cert(q,K). We consider the following query
answering problem:

INPUT: A query q, a DL-LiteH
core

KB K and a tuple of individuals a.
QUESTION: Is a in cert(q,K)?

3 Lower Complexity Bounds

First, we analyse the case of unions of conjunctive queries and show that query
answering with inequalities is undecidable even in the simplest of DL-Lite languages.
In fact, the following proof will demonstrate that even though the ontology language
is quite inexpressive, undecidable problems can still be encoded by means of (mostly)
UCQs. In a nutshell, the proof uses the existential quantifiers of the TBox concept inclu-
sion axioms to create an unbounded supply of elements, whereas the UCQ6= allows one
to express universal constraints in the following sense: the query has a positive answer
iff there is no model of the KB satisfying the negated UCQ 6=, which is a conjunction
of universal sentences. We remark here that the result is claimed in Theorem 8 [19],
however no proof is given.

Theorem 1. Answering UCQs

6=
is undecidable over DL-Lite

core

KBs.

Proof. The proof is by reduction of (the complement of) the N ⇥ N-tiling problem,
which is known to be undecidable [14]. The N ⇥ N tiling problem is formulated as
follows: given a set T of square tile types with the four sides of each tile type t in
T coloured by top(t), right(t), bottom(t), left(t), respectively, and a tile type t0 2 T,
decide whether N⇥N can be tiled by T with t0 placed at the origin, i.e., whether there is
a function ⌧ : N⇥N ! T such that ⌧(0, 0) = t0 and top(⌧(i, j)) = bottom(⌧(i, j+1))
and left(⌧(i, j)) = right(⌧(i+ 1, j)), for all (i, j) 2 N⇥ N.

Given an instance of the N ⇥ N-tiling problem, we construct a DL-Lite
core

KB
(T ,A) that encodes the tiling problem by placing tiles over objects in its model. The
top and right neighbours of a tile are referred to by roles H and V , respectively (from
the horizontal and vertical successor). To represent the type of a tile we take ABox
individuals ti, for ti 2 T, and a role T that connects a tile to its type. So, the TBox T
contains the following concept inclusions:

9T v 9H, 9H� v 9T, 9T v 9V, 9V � v 9T.

We also require two roles, NH and HV , that define impossible horizontal and vertical
tile neighbours: let AT contain

NH(ti, tj), for each ti, tj 2 T with right(ti) 6= left(tj),

NV (ti, tj), for each ti, tj 2 T with top(ti) 6= bottom(tj).

Consider now the UCQ6= q (without answer variables) which consists of the negations
of the following sentences:

8x, y
�
T (x, y) !

W
i(y = ti)

�
,

8x, y, z, v, u
�
H(x, y) ^ V (y, v) ^ V (x, z) ^H(z, u) ! (u = v)

�
,

8x, y, x0, y0
�
H(x, y) ^ T (x, x0) ^ T (y, y0) ^NH(x0, y0) ! ?

�
,

8x, y, x0, y0
�
V (x, y) ^ T (x, x0) ^ T (y, y0) ^NV (x

0, y0) ! ?
�
.

It can be shown that q has a negative answer over (T ,AT[{T (a, t0)}) iff T tiles N⇥N
with t0 placed at the origin. Indeed, if q has a negative answer then the above formulas
guarantee that each tile object is related to one of the ti, that the H- and V -successors
from a proper N⇥ N-grid and, finally, that the adjacent colours match.

We remark in passing that answering UCQs with safe negation is undecidable even
over extremely simple ontology languages [19], including DL-Lite

core

. Although the
proof of Theorem 15 [19] does not directly apply to DL-Lite

core

, it can easily be adapted
for our language:

Theorem 2 ([19]). Answering UCQs

¬s
is undecidable over DL-Lite

core

KBs.

We show that even in the case of conjunctive queries adding inequalities makes
the query answering problem in DL-Lite

core

harder. In particular, we show that an-
swering CQs 6= is CONP-hard in data complexity in contrast to answering CQs, which
is in AC0. Our result strengthens Theorem 15 [19], which claims CONP-hardness for
DL-LiteH

core

and refers to Abiteboul and Duschka [2] for the proof. That proof, however,
is for a different first-order setting and, if translated to the language of DL, would re-
quire role inclusions and a sort of a counting quantifier in the CQ, which of course, can
be expressed using inequality. We mention in passing that this proof would also imply
CONP-hardness (in data complexity) of the satisfiability problem for the extension of
DL-Lite

core

with arbitrary number restriction (cf. Theorem 8.4 [4]). Although the proof
we present below is inspired by Theorem 3.4 [2], it does not use role inclusions and
requires a more sophisticated query instead.

Theorem 3. Answering CQs

6=
over DL-Lite

core

KBs is CONP-hard in data complexity.

Proof. The proof is by reduction of the complement of 3CNF. Suppose we are given
a 3CNF ' with n clauses and m variables. We construct a KB (T ,A') and a query q
such that both T and q are fixed (i.e., do not depend on ') and ' is satisfiable iff q has
a negative answer over (T ,A'). We present the construction in two steps. To aid our
explanations, we consider a model of (T ,A') in which q is false.

First, we take a concept name V to stand for the set of variables of ' and three indi-
viduals v0j , v1j , xj , for each of the m variables xj of ': one may think that v0j represents
the literal ¬xj and v1j represents the literal xj . The ABox A' contains, for each xj , the
following assertions:

V (xj), P0(xj , v
0
j), P1(xj , v

1
j), P2(xj , xj) and R1(xj , t),

where t is a fresh individual (t stands for true) and P0, P1, P2 and R1 are role names.
So, every xj has a Pi-successor, for each 0 i 2, and an R1-successor; moreover,
by the UNA, the R1-successor is distinct from the Pi-successors. Then, the TBox T
contains the following two concept inclusions

V v 9R0 and V u 9R�
0 v ?,

where R0 is a fresh role name, to ensure that every xj also has an R0-successor and
that R0-successor is not xj itself; see Fig. 1 (a).

xj

V

v

0
j

P0

v

1
j

P1

t

R1

R0

P2

a)

ci

C

`i0
P0

`i2
P2

`i1

P1
f

R0

R1

b)

Fig. 1. Constellations of points in the proof of Theorem 3.

Consider now a CQ6= q (without answer variables) which is equivalent to the fol-
lowing sentence:

8x, y1, y2, y3, z0, z1
⇣ 2̂

i=0

Pi(x, yi) ^
^

k=0,1

Rk(x, zk) !
2_

i=0

_

k=0,1

(yi = zk)
⌘
.

If q has a negative answer then, for any point with Pi- and Rk-successors, either its
R0- or its R1-successor coincides with one of the Pi-successors. In particular, when
applied to individuals xj , this means that the R0-successor must coincide either with
v0j or v1j —in the latter case the literal ¬xj (represented by v0j) is chosen false by R0

(and so, we say the variable xj takes value true) and in the former case the literal xj

(represented by v1j) is chosen false by R0 (and we say xj takes value value false).
Second, we encode clauses in a similar way: we take a concept name C to stand for

the set of clauses of ' and an individual ci, for each of the n clauses of '. Then the
ABox A' contains the following assertions, for each clause ci = Li0 _ Li1 _ Li2:

C(ci), P0(ci, `i0), P1(ci, `i1), P2(ci, `i2) and R0(ci, f),

where `ik = v0j if Lik = ¬xj and `ik = v1j if Lik = xj , for each 0 k 2, and f
is a fresh individual (f stands for false). Similarly to the case of variables, we need the
following concept inclusion in TBox T :

C v 9R1,

which, together with the ABox, ensures that every ci has Pi-successors, for 0 i 2,
an R0-successor (distinct from the Pi-successors) and an R1-successor; see Fig. 1 (b).
But then, if q has a negative answer, the R1-successor must coincide with one of the
Pi-successors. This choice of the Pi determines the literal of the clause that is required
to be true—if the R1-successor of ci is v0j then the variable xj needs to be false and if
it is v1j then xj needs to be true.

To sum up, the R1-successors of the ci identify the literals v0j /v1j required to be true,
while the R0-successors of the xj choose the literals v0j /v1j required to be false. So, the
last concept inclusion of T ensures the choices are consistent:

9R�
0 u 9R�

1 v ?.

It should be clear that q has a negative answer over (T ,A') iff the 3CNF ' is satisfiable.

4 Answering CQs6= in DL-LiteH
core

: Upper Complexity Bound

In this section, a CONP in data complexity algorithm to decide CQ 6= answering in
DL-LiteH

core

is provided. We begin by recalling some important notions and properties
of canonical models.

Canonical Model

The notion of the canonical model in DLs [8,4,16] is related to those of the chase,
universal model and universal solution present in data exchange and data integration
settings [11]. A key characteristic of DL-LiteH

core

ontologies is that they can be regarded
as sets of Horn clauses, and so, for every satisfiable DL-LiteH

core

KB K, there is a uni-

versal model U that can be homomorphically embedded into every other model J of
K. Since positive existential formulas (e.g., CQs) are preserved under homomorphisms,
universal models clearly become handy in tackling the query answering problem in
Horn DLs such as DL-LiteH

core

[8,16]. Next, we recall the definition of universal and
canonical models, as well as some properties to be used in the rest of the paper.

Definition 1. Given two interpretations I = (�I , ·I) and J = (�J , ·J), a homo-
morphism from I to J is a mapping h : �I ! �J

satisfying the following conditions:
1. h(aI) = aJ , for each individual name a,

2. h(d) 2 AJ
, for every d 2 AI

and each concept name A,

3. (h(d), h(e)) 2 PJ
, for every (d, e) 2 P I

and each role name P .

An interpretation U is said to be a universal model of a KB K if, for every interpretation
J with J |= K there exist a homomorphism from U to J .

Since CQs, and more generally UCQs, are positive existential formulas, they are
preserved under homomorphisms and so, a standard way of computing certain answers
to a given UCQ q over a KB K is evaluating q in a universal model U of K:

Lemma 1. Let K be a satisfiable DL-Lite KB and let U be a universal model of K.

Then cert(q,K) = ans(q,U), for each UCQ q.

Kontchakov et al. [16] present a way of constructing a universal model of a given
a KB K = (T ,A). The constructed model is called the canonical model of K and is
denoted UK.
(i) First, the ABox A is saturated by applying the concept and role inclusions of T

in a bottom-up fashion: e.g., if A(a) 2 A and T |= A v A0 then the ABox is
extended by A0(a). Note that at this stage existential quantifiers do not create any
new individuals. We denote the resulting ABox by A+.

(ii) On the second stage, new individuals dR for roles R are created to witness all
existential quantifiers that are not witnessed in the ABox A+: e.g., if A(a) is in the
ABox and T |= A v 9R but the ABox does not contain R(a, b), for any b, then it is
extended by all S(a, dR)4 for all T |= R v S and all A(dR) with T |= 9R� v A;
the generating relation ; is extended by (a, dR); note that a here is not necessarily
an individual from the ABox A and can also be another dS .

4 We write R(a, b) 2 A for P (a, b) 2 A if R = P and P (b, a) 2 A if R = P

�.

The ABox resulting from applying (i) and (ii) is clearly finite; the interpretation de-
termined by this ABox is called the generating interpretation and is denoted by IK.
However, IK is not necessarily a universal model. A standard way to construct a uni-
versal model from IK is to unravel it into a forest-shaped interpretation. A path in IK is
a finite sequence adR1 · · · dRk k � 0, where a 2 ind(A), a ; dR1 and dRi ; dRi+1 .
We use paths(IK) to denote the set of all paths in IK and tail(�) to denote the last
element of a path � 2 paths(IK). The canonical model UK of K is then defined as
follows:

�UK = paths(IK),
aUK = a, for all a 2 ind(A),

AUK = {� 2 �UK | tail(�) 2 AUK},
PUK = {(a, b) 2 ind(A)⇥ ind(A) | P (a, b) 2 A} [

{(�,� · dR) 2 �UK ⇥�UK | T |= R v P} [
{(� · dR,�) 2 �UK ⇥�UK | T |= R v P�}.

The canonical model UK of K enjoys the following structural properties:

(abox) (ai, aj) 2 RUK iff R(ai, aj) 2 A+, for all individuals ai, aj and roles R;
(forest) the graph G = (�UK , E) with E = {(�,� · dR) | � · dR 2 �UK} is a forest;

moreover, each ABox individual a induces a partitioning of the graph into disjoint
labelled trees Ta = (Ta, Ea, `a) with nodes Ta = {� 2 �UK | � = a · �0}, edges
Ea = E \ (Ta ⇥ Ta) and labelling function `a : Ea ! role

±(K) such that, for
every �,�0 2 Ta, we have (�,�0) 2 PUK iff

either `a(�,�0) = R and T |= R v P or `a(�
0,�) = R and T |= R v P�;

(iso) for each role R, all labelled subtrees generated by � · dR 2 �UK are isomorphic.

The following lemma is a consequence of the results by Kontchakov et al. [16]:

Lemma 2. A DL-LiteH
core

KB K is satisfiable iff UK |= K.

In contrast to the classical CQ answering problem, certain answers to CQ6=s over a
KB K cannot be obtained by evaluating queries in the canonical model UK. The main
reason for this is that CQ 6=s are not preserved under homomorphisms. Hence, the fact
that a 2 ans(q,UK) does not necessarily imply that a 2 ans(q, I), for every model I
of K. We illustrate this situation by the following example, which is adapted from [11].

Example 1. Let K = (T ,A) be a KB and q a CQ6= with

T = {9R1 v 9R2, 9R�
1 v 9R�

3 , 9R�
2 v 9R3},

A = {R1(a1, b1)},
q(x, z) = 9y, y0

�
R1(x, z) ^R2(x, y) ^R3(y0, z) ^ (y 6= y0)

�
.

The canonical model UK is depicted in Fig. 2 on the left; it can be seen that
ans(q,UK) = {(a1, b1)}. However, there is a model J of K, depicted in Fig. 2 on
the right, where ans(q,J) = ;. Therefore, cert(q,K) = ;.

a1
b1

R1

dR2

R2

dR�
3

dR3

R3

R3

UK

a1
b1

R1

d

R2 R3 J

Fig. 2. The canonical model UK of K and another model J of K.

The Decision Procedure

We proceed to show that the CONP lower complexity bound from Theorem 3 is in fact
tight for answering CQs6= over DL-LiteH

core

KBs and provide an algorithm for deciding
CQ6= answering: this non-deterministic algorithm will require time polynomial in the
size of the given ABox. We observe that the problem of deciding, given a CQ6= q and
a KB K, whether a 2 cert(q,K) can be reduced to the problem of deciding whether
cert(q(a),K) 6= ;, where q(a) is the query obtained by substituting x in q by a; thus,
q(a) has no answer variables and is usually called a Boolean query. Furthermore, by the
certain answer semantics, we can consider the problem of answering Boolean queries
as a logical entailment problem, i.e., cert(q,K) 6= ; iff K |= q, i.e., I |= q in every
model I of K. So, cert(q,K) = ; iff

K [¬q is satisfiable, i.e., there is a model I of K such that I |= ¬q. (2)

It is not hard to see that there is a correspondence between negated CQs 6= and so-called
disjunctive EGDs.

We remind the reader that an equality-generating dependency (EGD) [5] is a for-
mula of the form 8x

�
�(x) ! (x1 = x2)

�
, where x1, x2 are among the variables in x.

A disjunctive EGD [12] is a formula of the form

8x
�
�(x) !

n_

i=1

(x1
i = x2

i)
�
. (3)

Note that an EGD is a disjunctive EGD whose right-hand side has only one equality.
Given a Boolean CQ 6= q = 9x (�(x) ^

V
i(x

1
i 6= x2

i)), where �(x) is a conjunc-
tion of concept and role atoms, it should be clear that ¬q is logically equivalent to a
disjunctive EGD of the form (3). Disjucntive EGDs are clearly able to express con-
cept inclusion axioms with arbitrary number restrictions (in particular, functionality of
roles), which is known to increase the complexity of reasoning in DL-Lite [7].

The previous discussion suggests the following algorithm for checking condi-
tion (2): non-deterministically guess a model J of K and then check in polynomial
time whether J satisfies ¬q. In order to obtain the CONP result, J needs not only to be
finite but also small enough—at most polynomial in the size of the ABox of K. Unfortu-
nately, this straightforward approach is too naive. Indeed, since disjunctive EGDs allow
to express global functionality of roles, and the extension of DL-LiteH

core

with functional

roles does not enjoy the finite model property then we cannot guess a finite model J
and check whether J |= ¬q, as shown by the following example.

Example 2. Let K = (T ,A) with T = {9P� v 9P, A v ¬9P�, A v 9P},
A = {A(a)} and q = 9x, y1, y2

�
P (y1, x) ^ P (y2, x) ^ (y1 6= y2)

�
, which ‘says’ that

P� is functional. The canonical model UK is an infinite P -chain starting at a, whence
UK |= ¬q. However, there is no finite model of K satisfying ¬q. In fact, for every model
J of K with J |= ¬q there is an injective homomorphism from UK to J .

In order to have an effective algorithm we need then to find a way to simulate the
possibly infinite model of a KB K in a small finite initial fragment of the canonical
model UK of K. We start by recalling that for answering CQs only a linear number (in
the size of the TBox of K) of existential witnesses are need to be considered [4,16].
Next, we show that for answering CQs6= in DL-LiteH

core

it is also enough to consider
only a linear number of existential witnesses for falsifying the inequalities in q. The
main difference is that for answering CQs6= we need to try all possible configurations
of identifying objects in the initial fragment of the model, and hence the increase in
complexity.

Let us fix a DL-LiteH
core

KB K = (T ,A) and a CQ6= q for the rest of this section. An
expansion A0

of A is a (possibly infinite) set of assertions (in the signature of T) that
contains A and whose individuals are taken from the domain of the canonical model
UK of K. In other words, an expansion is a description of a part of the canonical model
UK. Consider now a disjunctive EGD of the form (3) which is equivalent to ¬q. We
associate with it the following set E of individual EGDs:

E =
�
8x

�
�(x) ! (x1

1 = x2
1)
�

| {z }
e1

, . . . , 8x
�
�(x) ! (x1

n = x2
n)
�

| {z }
en

.

Definition 2. Let A0
be an ABox expansion of A and h a homomorphism from �(x) to

A0
. We say that ei is applicable to A0 with h if h(x1

i) 6= h(x2
i) and the result of applying

ei to A0
with h is one of the following:

(fail) a failure, in which case we write A0 h,ei�! ?, if either

1. h(x1
i), h(x

2
i) 2 ind(A), or

2. B1(h(x1
i)), B2(h(x2

i)) 2 A0
, for some T |= B1 uB2 v ?, or

3. R1(a, h(x1
i)), R2(a, h(x2

i)) 2 A0
, for a 2 ind(A0) and T |= R1 v ¬R2;

(id) an ABox expansion A00 (written A0 h,ei�! A00) obtained by identifying h(x1
i) and

h(x2
i): every occurrence of h(x1

i) and h(x2
i) is replaced by h(xk

i), if h(xk
i) 2

ind(A) for k = 1 or 2, and by h(x1
i), otherwise (the choice of x1

i here is arbitrary

as neither of them is in the ABox).

We say that E is applicable to A0
with h if ei is applicable to A0 with h for every 1

i n. The result of applying E to A0 with h is the set {A0
1, . . . ,A0

n}, where each A0
i is

the result of applying ei to A0 with h (A0
i may be ?); we write A0 h,E�! {A0

1, . . .A0
n} in

this case. If every A0
i = ? we say that the application of E to A with h fails, and write

A0 h,E�! ?; otherwise we say it is non-failing.

We first show some technical results on disjunctive EGD applications. The follow-
ing is an easy consequence of the definition of (non-failing) application of E to an ABox
expansion A0:

Proposition 1. Let A0
be a finite ABox expansion of A and A0 h,E�! {A0

1, . . .A0
n} a

non-failing application of E to A0
. Then dom(A0) ◆ dom(A0

i), for all 1 i n with

A0
i 6= ?.

In fact, given any model J of K, every homomorphism from an ABox expansion to
J can be extended to a homomorphism from a non-failng application of E:

Lemma 3. Let A0
be a finite ABox expansion of A and A0 h,E�! {A0

1, . . .A0
n} a non-

failing application of E to A0
with h and J a model of K such that J |= ¬q and there

is a homomorphism g from A0
into J . Then there exists a homomorphism gj from A0

j

into J for some 1 j n.

Now we consider non-failing sequence of application of E, which are sequence of

the form A0 h1,ei1�! A0
1

h2,ei2�! . . .
hk,eik�! A0

k with 1 ij n and A0
j 6= ?, for every

1 i k. It turns out that after applying a non-failing application of EGD in some
part of the ABox expansion the successive applications of the disjunctive EGD do not
“use the same match”, and therefore, the process will eventually either succeed on the
application or fail:

Proposition 2. For every non-failing sequence A0 h1,ei1�! A1
h2,ei2�! . . .

hk,eik�! Ak of

applications of E, we have hj(x) 6= hj0(x), for all 1 j < j0 k and some x 2 x.

Next, we show that for checking whether there is a model I of K with I |= ¬q it
suffices to apply E to an ABox expansion bA that corresponds to the canonical model
‘truncated’ to points of depth up to N = |role±(K)| + |q|. More formally, given a
natural number N , the truncation UN

K of the canonical model UK to depth N is the
restriction of UK to the following domain:

�UN
K = {� 2 �UK | k�k N},

where k�k is the length of a path �. By Proposition 2, there is a bound on the num-
ber of possible applications of E to bA. More precisely, the length of every application
sequence of E to bA is bounded by a polynomial in the size of A.

Finally, we show the following:

Lemma 4. Let

bA the ABox expansion of A induced the truncation UN
K of the canonical

model UK of K to depth N = |role±(K)|+|q|. The following statements are equivalent:
1. there exists a model J of K such that J |= ¬q;
2. there is a sequence e1, . . . , ek of elements of E such that

bA h1,e1�! A1
h2,e2�! . . .

hk,ek�!
Ak is non-failing and Ak satisfies ¬q.

Now, given a DL-LiteH
core

KB K = (T ,A) and a CQ6= q, our algorithm for checking
condition (2) works as follows:
1. It constructs the ABox expansion bA of A induced by UN

K , for N = |role±(K)|+|q|.

2. Guesses a sequence ⌃ of elements of E.
3. Checks whether E is satisfied after the application of ⌃ to bA.

It is not hard to see that this non-deterministic algorithm runs in polynomial time in
the size of the ABox. So, by (2) and Lemma 4, we obtain a matching upper bound for
Theorem 3, which results in the following:

Theorem 4. Answering CQs

6=
over DL-LiteH

core

KBs is CONP-complete in data com-

plexity.

5 Tractable Cases

In this section, we define syntactic restrictions on the class of CQs6= in order to achieve
tractability of CQ 6= answering in DL-LiteH

core

. In the data exchange setting (DE) it has
been shown that answering CQs6= with at most two inequalities in the presence of tar-
get constraints expressed by weakly acyclic TGDs is CONP-complete in data complex-
ity [17]. In the case of DLs, we note that even very simple DL-LiteH

core

TBoxes are not
weakly acyclic. On the other hand, the reductions used for proving CONP-hardness of
the CQ 6= answering problem in the DE setting make use of ternary relations, which is
outside the expressive power of DL-LiteH

core

. Up to this point, we can only conjecture
that answering CQs 6= in DL-LiteH

core

that contain at least two inequalities is CONP-hard.
Therefore, we based our syntactic restrictions on the latter assumption.

We shall consider CQs with at most two inequalities. Roughly, in order to have a
polynomial algorithm in data complexity for checking that K |= q or alternatively that
K [¬q is unsatisfiable, we need to be able 1) to simulate the infinite chase in a finite
search space and 2) perform the evaluation using a small amount of space (e.g., constant
in the size of the ABox). In order to have a correct and complete algorithm fulfilling
these conditions, we impose syntactic restrictions enforcing that, for every possible
match ⇡ for a query q in a given interpretation I and for every inequality x1

i 6= x2
i in q,

either ⇡(x1
i) = a or ⇡(x2

i) = a, for some individual name a. This condition is enough
to ensure polynomial-time query evaluation because, although this kind of inequalities
are not preserved under homomorphisms, they induce only few possible models.

We adopt and adapt the notions of constant joins and almost constant inequalities

introduced by Arenas et al. [3]. For defining these notions in the DL setting, it is conve-
nient to identify the concepts that may need to be ‘realised outside’ the ABox in every
model of a KB.

Definition 3. Let T be a DL-LiteH
core

TBox. A concept 9R is called affected in T if

either

1. T |= A v 9R�
, for some concept name A, or

2. T |= 9S v 9R�
, for some role S with T 6|= S v R�

.

We say an inequality (x1 6= x2) in q is almost constant for T if q contains either
some R(t, x1) or some R(t, x2) such that 9R� is not affected in T . Intuitively, queries
with almost constant inequalities ensure that at least one variable in each inequality is
forced to be an ABox individual. A query q is said to have constant joins for T if either
9R�

1 or 9R�
2 is not affected in T , for every join R1(t1, t), R2(t2, t) in q. This means

that t has to be mapped to an ABox individual by every possible match for q in any
model of the KB.

Definition 4. A CQ

6= q is said to be safe if one the following conditions holds:
1. q has no inequalities,

2. q has exactly one inequality, which is almost constant,

3. q has exactly two inequalities, which are almost constant, and constant joins.

Intuitively, to falsify the inequalities in a safe CQ6= it suffices to consider only in-
equalities of the form a1 6= d and a1 6= a2, where a1, a2 2 ind(A) and d is an
anonymous individual in the canonical model, i.e., a path in �UK of the form � · dR.
This means, that q can actually be evaluated in the ABox expansion corresponding to
the generating interpretation IK.

Given a safe CQ6=, we need to provide an algorithm for deciding whether K |= q.
The algorithm presented in Section 4 considers a truncation of the canonical model UK
of K for evaluating ¬q. However, in this case—as we argued above—by the syntactic
restrictions on q, the evaluation requires only to consider the generating interpretation
IK as in the case for queries without inequalities and suggests that we can adapt the
combined approach for query answering [16] by making minor changes to the rewriting
of q. Thus, we obtain the following result:

Theorem 5. Answering safe CQ

6=
over DL-LiteH

core

KBs is in AC0
in data complexity.

6 Conclusions

The known and obtained complexity results on answering CQs and UCQs with safe
negation and inequalities are presented in the table below:

CQ6= UCQ6= CQ¬s UCQ¬s

DL-Lite
core

CONP
Thms. 3, 4

undec.
Thm. 1

CONP-hard
[19, Thm. 13]

undec.
Thm. 2

DL-LiteH
core

CONP
[19, Thm. 6]

Thm. 4
undec.

[19, Thm. 8]
CONP-hard
[19, Thm. 13]

undec.
[19, Thm. 15]

We have presented some further steps towards a systematic study of query answer-
ing in DLs when extensions of CQs with negated atoms are considered. In particular,
we build on previous work by Rosati [19], and extend this investigation by adapting
techniques from such areas as data exchange to identify tractable cases of CQ6= answer-
ing in logics from the DL-Lite family. Clearly, more investigations needs to be done
to construct a complete picture of the computational complexity and to develop algo-
rithmic approaches. We outline below some research questions we will address in the
future:
1. Investigating query answering with inequalities in other logics of DL-Lite family

and EL family.
2. Closing the gap on the number of inequalities needed to make CQ 6= answering

intractable in DLs of the DL-Lite family.

3. An interesting and challenging problem is the development of a decision proce-
dures for answering CQs¬s. We also plan to consider other types of negation such
as Boolean combinations of CQs (BCCQs) advocated in areas related to the man-
agement of incomplete information [10,13].

References

1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views.
In: Proc. of PODS. pp. 254–263. ACM Press (1998)

2. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views.
Tech. Rep. Gemo Report 383, INRIA Saclay (1999)

3. Arenas, M., Barceló, P., Reutter, J.L.: Query languages for data exchange: Beyond unions of
conjunctive queries. Theory Comput. Syst. 49(2), 489–564 (2011)

4. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and re-
lations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

5. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. J. ACM 31(4), 718–741
(1984)

6. Bienvenu, M., Ortiz, M., Simkus, M.: Answering expressive path queries over lightweight
DL knowledge bases. In: Proc. of DL. CEUR Workshop Proceedings, vol. 846 (2012)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.)
Proc. of KR. pp. 260–270. AAAI Press (2006)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning
39(3), 385–429 (2007)

9. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment
under constraints. In: Mendelzon, A.O., Paredaens, J. (eds.) Proc. of PODS. pp. 149–158.
ACM Press (1998)

10. ten Cate, B., Chiticariu, L., Kolaitis, P.G., Tan, W.C.: Laconic schema mappings: Computing
the core with SQL queries. PVLDB 2(1), 1006–1017 (2009)

11. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D.
(eds.) Proc. of PODS. pp. 149–158. ACM Press (2008)

12. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-
ing. Theor. Comput. Sci. 336(1), 89–124 (2005)

13. Gheerbrant, A., Libkin, L., Tan, T.: On the complexity of query answering over incomplete
XML documents. In: Deutsch, A. (ed.) Proc. of ICDT. pp. 169–181. ACM (2012)

14. Harel, D.: Effective transformations on infinite trees, with applications to high undecidability,
dominoes, and fairness. J. ACM 33(1), 224–248 (1986)

15. Klug, A.: On conjunctive queries containing inequalities. J. ACM 35(1), 146–160 (1988)
16. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach

to query answering in DL-Lite. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proc. of KR.
AAAI Press (2010)

17. Madry, A.: Data exchange: On the complexity of answering queries with inequalities. Inf.
Process. Lett. 94(6), 253–257 (2005)

18. Rosati, R.: On the decidability and finite controllability of query processing in databases
with incomplete information. In: Vansummeren, S. (ed.) Proc. of PODS. pp. 356–365. ACM
(2006)

19. Rosati, R.: The limits of querying ontologies. In: Schwentick, T., Suciu, D. (eds.) Proc. of
ICDT. LNCS, vol. 4353, pp. 164–178. Springer (2007)

	An Update on Query Answering with Restricted Forms of Negation

