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Abstract
We study uniform interpolation and forgetting in
the description logic ALC. Our main results are
model-theoretic characterizations of uniform inter-
polants and their existence in terms of bisimula-
tions, tight complexity bounds for deciding the
existence of uniform interpolants, an approach to
computing interpolants when they exist, and tight
bounds on their size. We use a mix of model-
theoretic and automata-theoretic methods that, as a
by-product, also provides characterizations of and
decision procedures for conservative extensions.

1 Introduction
In Description Logic (DL), a TBox or ontology is a logical
theory that describes the conceptual knowledge of an ap-
plication domain using a set of appropriate predicate sym-
bols. For example, in the domain of universities and students,
the predicate symbols could include the concept names Uni,
Undergrad, and Grad, and the role name has student. When
working with an ontology, it is often useful to eliminate some
of the used predicates while retaining the meaning of all re-
maining ones. For example, when re-using an existing on-
tology in a new application, then typically only a very small
fraction of the predicates is of interest. Instead of re-using
the whole ontology, one can thus use the potentially much
smaller ontology that results from an elimination of the non-
relevant predicates. Another reason for eliminating predicates
is predicate hiding, i.e., an ontology is to be published, but
some part of it should be concealed from the public because
it is confidential [Grau and Motik, 2010]. Finally, one can
view the result of predicate elimination as an approach to on-
tology summary: the resulting, smaller and more focussed
ontology summarizes what the original ontology says about
the remaining predicates.

The idea of eliminating predicates has been studied in AI
under the name of forgetting a signature (set of predicates) Σ,
i.e., rewriting a knowledge base K such that it does not use
predicates from Σ anymore and still has the same logical con-
sequences that do not refer to predicates from Σ [Reiter and
Lin, 1994]. In propositional logic, forgetting is also known
as variable elimination [Lang et al., 2003]. In mathematical
logic, forgetting has been investigated under the dual notion

of uniform interpolation w.r.t. a signature Σ, i.e., rewriting a
formula ϕ such that it uses only predicates from Σ and has the
same logical consequences formulated only in Σ. The result
of this rewriting is then the uniform interpolant of ϕ w.r.t. Σ.
This notion can be seen as a generalization of the more widely
known Craig interpolation.

Due to the various applications briefly discussed above,
forgetting und uniform interpolation receive increased inter-
est also in a DL context [Eiter et al., 2006; Wang et al., 2010;
2009b; 2008; Kontchakov et al., 2010; Konev et al., 2009].
Here, the knowledge base K resp. formula ϕ is replaced
with a TBox T . In fact, uniform interpolation is rather
well-understood in lightweight DLs such as DL-Lite and EL:
there, uniform interpolants of a TBox T can often be ex-
pressed in the DL in which T is formulated [Kontchakov et
al., 2010; Konev et al., 2009] and practical experiments have
confirmed the usefulness and feasibility of their computation
[Konev et al., 2009]. The situation is different for ‘expres-
sive’ DLs such as ALC and its various extensions, where
much less is known. There is a thorough understanding of
uniform interpolation on the level of concepts, i.e., comput-
ing uniform interpolants of concepts instead of TBoxes [ten
Cate et al., 2006; Wang et al., 2009b], which is also what
the literature on uniform interpolants in modal logic is about
[Visser, 1996; Herzig and Mengin, 2008]. On the TBox level,
a basic observation is that there are very simpleALC-TBoxes
and signatures Σ such that the uniform interpolant of T w.r.t.
Σ cannot be expressed in ALC (nor in first-order predicate
logic) [Ghilardi et al., 2006]. A scheme for approximating
(existing or non-existing) interpolants of ALC-TBoxes was
devised in [Wang et al., 2008]. In [Wang et al., 2010], an
attempt is made to improve this to an algorithm that com-
putes uniform interpolants of ALC-TBoxes in an exact way,
and also decides their existence (resp. expressibility inALC).
Unfortunately, that algorithm turns out to be incorrect.

The aim of this paper is to lay foundations for uniform
interpolation in ALC and other expressive DLs, with a fo-
cus on (i) model-theoretic characterizations of uniform inter-
polants and their existence; (ii) deciding the existence of uni-
form interpolants and computing them in case they exist; and
(iii) analyzing the size of uniform interpolants. Clearly, these
are fundamental steps on the way towards the computation
and usage of uniform interpolation in practical applications.
Regarding (i), we establish an intimate connection between



uniform interpolants and the well-known notion of a bisimu-
lation and characterize the existence of interpolants in terms
of the existence of models with certain properties based on
bisimulations. For (ii), our main result is that deciding the
existence of uniform interpolants is 2-EXPTIME-complete,
and that methods for computing uniform interpolants on the
level of concepts can be lifted to the TBox level. Finally, re-
garding (iii) we prove that the size of uniform interpolants
is at most triple exponential in the size of the original TBox
(upper bound), and that, in general, no shorter interpolants
can be found (lower bound). In particular, this shows that
the algorithm from [Wang et al., 2010] is flawed as it al-
ways yields uniform interpolants of at most double exponen-
tial size. Our methods, which are a mix of model-theory and
automata-theory, also provide model-theoretic characteriza-
tions of conservative extensions, which are closely related to
uniform interpolation [Ghilardi et al., 2006]. Moreover, we
use our approach to reprove the 2-EXPTIME upper bound for
deciding conservative extensions from [Ghilardi et al., 2006],
in an alternative and argueably more transparent way.

Most proofs in this paper are deferred to the appendix.

2 Getting Started
We introduce the description logic ALC and define uniform
interpolants and the dual notion of forgetting. Let NC and
NR be disjoint and countably infinite sets of concept and role
names. ALC concepts are formed using the syntax rule

C,D −→ > | A | ¬C | C uD | ∃r.C
where A ∈ NC and r ∈ NR. The concept constructors ⊥,
t, and ∀r.C are defined as abbreviations: ⊥ stands for ¬>,
C t D for ¬(¬C u ¬D) and ∀r.C abbreviates ¬∃r.¬C. A
TBox is a finite set of concept inclusions C v D, where C,D
are ALC-concepts. We use C ≡ D as abbreviation for the
two inclusions C v D and D v C.

The semantics of ALC-concepts is given in terms of in-
terpretations I = (∆I , ·I), where ∆I is a non-empty set
(the domain) and ·I is the interpretation function, assigning
to eachA ∈ NC a setAI ⊆ ∆I , and to each r ∈ NR a relation
rI ⊆ ∆I×∆I . The interpretation function is inductively ex-
tended to concepts as follows:

>I := ∆I (¬C)I := ∆I \ CI (C uD)I := CI ∩DI

(∃r.C)I := {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}

An interpretation I satisfies an inclusion C v D if CI ⊆
DI , and I is a model of a TBox T if it satisfies all inclusions
in T . A concept C is subsumed by a concept D relative to
a TBox T (written T |= C v D) if every model I of T
satisfies the inclusion C v D. We write T |= T ′ to indicate
that T |= C v D for all C v D ∈ T ′.

A set Σ ⊆ NC ∪ NR of concept and role names is called a
signature. The signature sig(C) of a concept C is the set of
concept and role names occurring in C, and likewise for the
signature sig(C v D) of an inclusion C v D and sig(T ) of a
TBox T . A Σ-TBox is a TBox with sig(T ) ⊆ Σ, and likewise
for Σ-inclusions and Σ-concepts.

We now introduce the main notions studied in this paper:
uniform interpolants and conservative extensions.

Definition 1. Let T , T ′ be TBoxes and Σ a signature. T and
T ′ are Σ-inseparable if for all Σ-inclusions C v D, we have
T |= C v D iff T ′ |= C v D. We call
• T ′ a conservative extension of T if T ′ ⊇ T and T and
T ′ are Σ-inseparable for Σ = sig(T ).
• T a uniform Σ-interpolant of T ′ if sig(T ) ⊆ Σ ⊆
sig(T ′) and T and T ′ are Σ-inseparable.

Note that uniform Σ-interpolants are unique up to logical
equivalence, if they exist.

The notion of forgetting as investigated in [Wang et al.,
2010] is dual to uniform interpolation: a TBox T ′ is the re-
sult of forgetting about a signature Σ in a TBox T if T ′ is a
uniform sig(T ) \ Σ-interpolant of T .
Example 2. Let T consist of the inclusions
(1) Uni v ∃has st.Undergrad u ∃has st.Grad
(2) Uni u Undergrad v ⊥ (3) Uni u Grad v ⊥
(4) Undergrad u Grad v ⊥.
Then the TBox that consists of (2) and

Uni v ∃has st.Undergrad u ∃has st.(¬Undergrad u ¬Uni)
is the result of forgetting {Grad}. Additionally forgetting
Undergrad yields the TBox {Uni v ∃has st.¬Uni}.

The following examples will be used to illustrate our char-
acterizations. Proofs are provided once we have developed
the appropriate tools.
Example 3. In the following, we always forget {B}.
(i) Let T1 = {A v ∃r.B u ∃r.¬B} and Σ1 = {A, r}. Then
T ′1 = {A v ∃r.>} is a uniform Σ1-interpolant of T1.
(ii) Let T2 = {A ≡ B u ∃r.B} and Σ2 = {A, r}. Then
T ′2 = {A v ∃r.(A t ¬∃r.A)} is a uniform Σ2-interpolant
of T2.
(iii) For T3 = {A v B,B v ∃r.B} and Σ3 = {A, r}, there
is no uniform Σ3-interpolant of T3.
(iv) For T4 = {A v ∃r.B, A0 v ∃r.(A1 u B), E ≡ A1 u
B u ∃r.(A2 u B)} and Σ4 = {A, r,A0, A1, E}, there is no
uniform Σ4-interpolant of T4. Note that T4 is of a very simple
form, namely an acyclic EL-TBox, see [Konev et al., 2009].

Bisimulations are a central tool for studying the expressive
power of ALC, and play a crucial role also in our approach
to uniform interpolants. We introduce them next. A pointed
interpretation is a pair (I, d) that consists of an interpretation
I and a d ∈ ∆I .
Definition 4. Let Σ be a finite signature and (I1, d1), (I2, d2)
pointed interpretations. A relation S ⊆ ∆I1 × ∆I2 is a Σ-
bisimulation between (I1, d1) and (I2, d2) if (d1, d2) ∈ S
and for all (d, d′) ∈ S the following conditions are satisfied:

1. d ∈ AI1 iff d′ ∈ AI2 , for all A ∈ Σ ∩ NC;
2. if (d, e) ∈ rI1 , then there exists e′ ∈ ∆I2 such that

(d′, e′) ∈ rI2 and (e, e′) ∈ S, for all r ∈ Σ ∩ NR;
3. if (d′, e′) ∈ rI2 , then there exists e ∈ ∆I1 such that

(d, e) ∈ rI1 and (e, e′) ∈ S, for all r ∈ Σ ∩ NC.
(I1, d1) and (I2, d2) are Σ-bisimilar, written (I1, d1) ∼Σ

(I2, d2), if there exists a Σ-bisimulation between them.



We now state the main connection between bisimulations
and ALC, well-known from modal logic [Goranko and Otto,
2007]. Say that (I1, d1) and (I2, d2) are ALCΣ-equivalent,
in symbols (I1, d1) ≡Σ (I2, d2), if for all Σ-concepts C,
d1 ∈ CI1 iff d2 ∈ CI2 . An interpretation I has finite outde-
gree if {d′ | (d, d′) ∈

⋃
r∈NR

rI} is finite, for all d ∈ ∆I .

Theorem 5. For all pointed interpretations (I1, d1) and
(I2, d2) and all finite signatures Σ, (I1, d1) ∼Σ (I2, d2) im-
plies (I1, d1) ≡Σ (I2, d2); the converse holds for all I1, I2

of finite outdegree.
Bisimulations enable a purely semantic characterization of
uniform interpolants. For a pointed interpretation (I, d), we
write (I, d) |= ∃∼

Σ
.T when (I, d) is Σ-bisimilar to some

pointed interpretation (J , d′) with J a model of T . The no-
tation reflects that what we express here can be understood as
a form of bisimulation quantifier, see [French, 2006].
Theorem 6. Let T be a TBox and Σ ⊆ sig(T ). A Σ-TBox TΣ

is a uniform Σ-interpolant of T iff for all interpretations I,

I |= TΣ ⇔ for all d ∈ ∆I , (I, d) |= ∃∼
Σ
.T . (∗)

For I of finite outdegree, one can prove this result by employ-
ing compactness arguments and Theorem 5. To prove it in its
full generality, we need the automata-theoretic machinery in-
troduced in Section 4. We illustrate Theorem 6 by sketching
a proof of Example 3(i). Correctness of 3(ii) is proved in the
appendix, while 3(iii) and 3(iv) are addressed in Section 3.
An interpretation I is called a tree interpretation if the undi-
rected graph (∆I ,

⋃
r∈NR

rI) is a (possibly infinite) tree and
rI ∩ sI = ∅ for all distinct r, s ∈ NR.
Example 7. Let T1 = {A v ∃r.B u ∃r.¬B}, Σ1 = {A, r},
and T ′1 = {A v ∃r.>} as in Example 3(i). We have I |= T ′1
iff ∀d ∈ ∆I : (I, d) ∼Σ1

(J , d) for a tree model J of T ′1
iff ∀d ∈ ∆I : (I, d) ∼Σ1 (J , d) for a tree interpretation J

such that e ∈ AJ implies |{d | (d, e) ∈ rJ }| ≥ 2

iff ∀d ∈ ∆I : (I, d) ∼Σ1
(J , d) for a tree interpretation J

such that e ∈ AJ implies e ∈ (∃r.B u ∃r.¬B)J

iff ∀d ∈ ∆I : (I, d) |= ∃∼
Σ1
.T1.

The first ‘iff’ relies on the fact that unraveling an interpreta-
tion into a tree interpretation preserves bisimularity, the sec-
ond one on the fact that bisimulations are oblivious to the du-
plication of successors, and the third one on a reinterpretation
of B /∈ Σ1 in J .
Theorem 6 also yields a characterization of conservative ex-
tensions in terms of bisimulations, which is as follows.
Theorem 8. Let T , T ′ be TBoxes. Then T ∪ T ′ is a conser-
vative extension of T iff for all interpretations I, I |= T ⇒
for all d ∈ ∆I , (I, d) |= ∃∼

Σ
.T ′ where Σ = sig(T ).

3 Characterizing Existence of Interpolants
If we admit TBoxes that are infinite, then uniform Σ-
interpolants always exist: for any TBox T and signature Σ,
the infinite TBox T ∞Σ that consists of all Σ-inclusionsC v D
with T |= C v D is a uniform Σ-interpolant of T . To refine
this simple observation, we define the role-depth rd(C) of a

concept C to be the nesting depth of existential restrictions
in C. For every finite signature Σ and m ≥ 0, one can fix a
finite set Cmf (Σ) of Σ-concepts D with rd(D) ≤ m such that
every Σ-concept C with rd(C) ≤ m is equivalent to some
D ∈ Cmf (Σ). Let

TΣ,m = {C v D | T |= C v D and C,D ∈ Cmf (Σ)}.
Clearly, T ∞Σ is equivalent to

⋃
m≥0 TΣ,m suggesting that if a

uniform interpolant exists, it is one of the TBoxes TΣ,m. In
fact, it is easy to see that the following are equivalent (this is
similar to the approximation of uniform interpolants in [Wang
et al., 2008]):
(a) there does not exist a uniform Σ-interpolant of T ;
(b) no TΣ,m is a uniform Σ-interpolant of T ;
(c) for all m ≥ 0 there is a k > m such that TΣ,m 6|= TΣ,k.

Our characterization of the (non)-existence of uniform inter-
polants is based on an analysis of the TBoxes TΣ,m. For an
interpretation I, d ∈ ∆I , and m ≥ 0, we use I≤m(d) to
denote the m-segment generated by d in I, i.e., the restric-
tion of I to those elements of ∆I that can be reached from
d in at most m steps in the graph (∆I ,

⋃
r∈NR

rI). Using
the definition of TΣ,m, Theorem 5, and the fact that every m-
segment can be described up to bisimulation using a concept
of role-depth m, it can be shown that an interpretation I is a
model of TΣ,m iff each of I’s m-segments is Σ-bisimilar to
an m-segment of a model of T . Thus, if TΣ,m is not a uni-
form interpolant, then this is due to a problem that cannot be
‘detected’ by m-segments, i.e., some Σ-part of a model of T
that is located before an m-segment can pose constraints on
Σ-parts of the model after that segment, where ‘before’ and
‘after’ refer to reachability in (∆I ,

⋃
r∈NR

rI).
The following result describes this in an exact way. To-

gether with the equivalence of (a) and (b) above, it yields a
first characterization of the existence of uniform interpolants.
ρI denotes the root of a tree interpretation I, I≤m abbrevi-
ates I≤m(ρI), and a Σ-tree interpretation is a tree interpreta-
tions that only interprets predicates from Σ.
Theorem 9. Let T be a TBox, Σ ⊆ sig(T ), andm ≥ 0. Then
TΣ,m is not a uniform Σ-interpolant of T iff
(∗m) there exist two Σ-tree interpretations, I1 and I2, of fi-
nite outdegree such that

1. I≤m1 = I≤m2 ;

2. (I1, ρ
I1) |= ∃∼

Σ
.T ;

3. (I2, ρ
I2) 6|= ∃∼

Σ
.T ;

4. For all successors d of ρI2 : (I2, d) |= ∃∼
Σ
.T .

Intuitively, Points 1 and 2 ensure that I≤m1 = I≤m2 is an
m-segment of a model of TΣ,m, Points 2 and 3 express that in
models of T , the Σ-part after the m-segment is constrained
in some way, and Point 4 says that this is due to ρI1 and ρI2 ,
i.e., the constraint is imposed ‘before’ the m-segment. The
following example demonstrates how Theorem 9 can be used
to prove non-existence of uniform interpolants.
Example 10. Let T3 = {A v B,B v ∃r.B} and Σ3 =
{A, r} as in Example 3(iii). We show that (∗m) holds for all



m and thus, there is no uniform Σ3-interpolant of T3. Exam-
ple 3(iv) is treated in the long version.

Let m ≥ 0. Set I1 = ({0, 1, . . .}, AI1 , rI1), where
AI1 = {0} and rI1 = {(n, n + 1) | n ≥ 0}, and let I2 be
the restriction of I1 to {0, . . . ,m}. Then (1) I≤m1 = I≤m2 ;
(2) (I1, 0) |= ∃∼

Σ3
T3 as the expansion of I1 by BI1 =

{0, 1, . . .} is a model of T3; (3) (I2, 0) 6|= ∃∼
Σ3
T3 as there

is no infinite r-sequence in I2 starting at 0; and (4) (I2, 1) |=
∃∼

Σ3
T3 as the restriction of I2 to {1, . . . ,m} is a model of T3.

The next example illustrates another use of Theorem 9 by
identifying a class of signatures for which uniform inter-
polants always exist. Details are given in the long version.
Example 11 (Forgetting stratified concept names). A concept
name A is stratified in T if all occurrences of A in concepts
from conc(T ) = {C,D | C v D ∈ T } are exactly in nesting
depth n of existential restrictions, for some n ≥ 0. Let T be
a TBox and Σ a signature such that sig(T ) \ Σ consists of
stratified concept names only, i.e., we want to forget a set of
stratified concept names. Then the existence of a uniform Σ-
interpolant of T is guaranteed; moreover, TΣ,m is such an
interpolant, where m = max{rd(C) | C ∈ conc(T )}.
To turn Theorem 9 into a decision procedure for the exis-
tence of uniform interpolants, we prove that rather than test-
ing (∗m) for all m, it suffices to consider a single number m.
This yields the final characterization of the existence of uni-
form interpolants. We use |T | to denote the length of a TBox
T , i.e., the number of symbols needed to write it.
Theorem 12. Let T be a TBox and Σ ⊆ sig(T ). Then there
does not exist a uniform Σ-interpolant of T iff (∗M2

T +1) from
Theorem 9 holds, where MT := 22|T |

.
It suffices to show that (∗M2

T +1) implies (∗m) for all m ≥
M2
T + 1. The proof idea is as follows. Denote by cl(T ) the

closure under single negation and subconcepts of conc(T ).
The type of some d ∈ ∆I in an interpretation I is

tpI(d) := {C ∈ cl(T ) | d ∈ CI}.

Many constructions for ALC (such as blocking in tableaux,
filtrations of interpretations, etc.) exploit the fact that the rel-
evant information about any element d in an interpretation is
given by its type. This can be exploited e.g. to prove EXP-
TIME upper bounds as there are ‘only’ exponentially many
distinct types. In the proof of Theorem 12, we make use
of a ‘pumping lemma’ that enables us to transform any pair
I1, I2 witnessing (∗M2

T +1) into a witness I ′1, I ′2 for (∗m)

when m ≥ M2
T + 1. The construction depends on the rele-

vant information about elements of ∆I1 and ∆I2 ; in contrast
to standard constructions, however, types are not sufficient
and must be replaced by extension sets ExtI(d), defined as

ExtI(d) = {tpI(d′) | ∃J : J |= T and (I, d) ∼Σ (J , d′)}

and capturing all ways in which the restiction of tpI(d) to
Σ-concepts can be extended to a full type in models of T . As
the number of such extension sets is double exponential in
|T | and we have to consider pairs (d1, d2) ∈ ∆I1 ×∆I2 , we
(roughly) obtain aM2

T bound. Details are in the long version.

We note that, by Theorem 12, the uniform Σ-interpolant of
a TBox T exists iff T ∪ TΣ,M2

T +1 is a conservative extension
of TΣ,M2

T +1. With the decidability of conservative extensions
proved in [Ghilardi et al., 2006], this yields decidablity of
the existence of uniform interpolants. However, the size of
TΣ,M2

T +1 is non-elementary, and so is the running time of the
resulting algorithm. We next show how to improve this.

4 Automata Constructions / Complexity
We develop a worst-case optimal algorithm for deciding the
existence of uniform interpolants in ALC, exploiting Theo-
rem 12 and making use of alternating automata. As a by-
product, we prove the fundamental characterization of uni-
form interpolants in terms of bisimulation stated as Theo-
rem 6 without the initial restriction to interpretations of finite
outdegree. We also obtain a representation of uniform inter-
polants as automata and a novel, more transparent proof of
the 2-EXPTIME upper bound for deciding conservative ex-
tensions originally established in [Ghilardi et al., 2006].

We use amorphous alternating parity tree automata in the
style of Wilke [Wilke, 2001], which run on unrestricted in-
terpretations rather than on trees, only. We call them tree
automata as they are in the tradition of more classical forms
of such automata. In particular, a run of an automaton is tree-
shaped, even if the input interpretation is not.

Definition 13 (APTA). An alternating parity tree automa-
ton (APTA) is a tuple A = (Q,ΣN ,ΣE , q0, δ,Ω), where Q
is a finite set of states, ΣN ⊆ NC is the finite node alpha-
bet, ΣE ⊆ NR is the finite edge alphabet, q0 ∈ Q is the
initial state, δ : Q→ mov(A), is the transition function with
mov(A) = {true, false, A,¬A, q, q ∧ q′, q ∨ q′, 〈r〉q, [r]q |
A ∈ ΣN , q, q

′ ∈ Q, r ∈ ΣE} the set of moves of the automa-
ton, and Ω : Q→ N is the priority function.

Intuitively, the move q means that the automaton sends a copy
of itself in state q to the element of the interpretation that it is
currently processing, 〈r〉q means that a copy in state q is sent
to an r-successor of the current element, and [r]q means that
a copy in state q is sent to every r-successor.

It will be convenient to use arbitrary modal formulas in
negation normal form when specifying the transition func-
tion of APTAs. The more restricted form required by Def-
inition 13 can then be attained by introducing intermediate
states. In subsequent constructions that involve APTAs, we
will not describe those additional states explicitly. However,
we will (silently) take them into account when stating size
bounds for automata.

In what follows, a Σ-labelled tree is a pair (T, `) with T a
tree and ` : T → Σ a node labelling function. A path π in a
tree T is a subset of T such that ε ∈ π and for each x ∈ π
that is not a leaf in T , π contains one son of x.

Definition 14 (Run). Let (I, d0) be a pointed ΣN ∪ ΣE-
interpretation and A = (Q,ΣN ,ΣE , q0, δ,Ω) an APTA. A
run ofA on (I, d0) is a Q×∆I-labelled tree (T, `) such that
`(ε) = (q0, d0) and for every x ∈ T with `(x) = (q, d):

• δ(q) 6= false;

• if δ(q) = A (δ(q) = ¬A), then d ∈ AI (d /∈ AI);



• if δ(q) = q′ ∧ q′′, then there are sons y, y′ of x with
`(y) = (q′, d) and `(y′) = (q′′, d);
• if δ(q) = q′ ∨ q′′, then there is a son y of x with `(y) =

(q′, d) or `(y′) = (q′′, d);
• if δ(q) = 〈r〉q′, then there is a (d, d′) ∈ rI and a son y

of x with `(y) = (q′, d′);
• if δ(q) = [r]q′ and (d, d′) ∈ rI , then there is a son y of
x with `(y) = (q′, d′).

A run (T, `) is accepting if for every path π of T , the maximal
i ∈ N with {x ∈ π | `(x) = (q, d) with Ω(q) = i} infinite
is even. We use L(A) to denote the language accepted by A,
i.e., the set of pointed ΣN ∪ ΣE-interpretations (I, d) such
that there is an accepting run of A on (I, d).
Using the fact that runs are always tree-shaped, it is easy to
prove that the languages accepted by APTAs are closed un-
der ΣN ∪ ΣE-bisimulations. It is this property that makes
this automaton model particularly useful for our purposes.
APTAs can be complemented in polytime in the same way
as other alternating tree automata, and for all APTAs A1

and A2, one can construct in polytime an APTA that accepts
L(A1)∩L(A2). Wilke shows that the emptiness problem for
APTAs is EXPTIME-complete [Wilke, 2001].

We now show that uniform Σ-interpolants ofALC-TBoxes
can be represented as APTAs, in the sense of the following
theorem and of Theorem 6.
Theorem 15. Let T be a TBox and Σ ⊆ sig(T ) a signa-
ture. Then there exists an APTA AT ,Σ = (Q,Σ ∩ NC,Σ ∩
NR, q0, δ,Ω) with |Q| ∈ 2O(|T |) such that L(AT ,Σ) consists
of all pointed Σ-interpretations (I, d) with (I, d) |= ∃∼

Σ
.T .

AT ,Σ can be constructed in time 2p(|T |), p a polynomial.
The construction of the automaton AT ,Σ from Theorem 15
resembles the construction of uniform interpolants in the
µ-calculus using non-deterministic automata described in
[D’Agostino and Hollenberg, 1998], but is transferred to
TBoxes and alternating automata.

Fix a TBox T and a signature Σ and assume w.l.o.g. that
T has the form {> v CT }, with CT in negation normal
form [Baader et al., 2003]. Recall the notion of a type intro-
duced in Section 3. We use TP(T ) to denote the set of all
types realized in some model of T , i.e., TP(T ) = {tpI(d) |
I model of T , d ∈ ∆I}. Note that TP(T ) can be computed
in time exponential in the size of T since concept satisfiabil-
ity w.r.t. TBoxes is EXPTIME-complete in ALC [Baader et
al., 2003]. Given t, t′ ∈ TP(T ) and r ∈ Σ, we write t r t

′

if C ∈ t′ implies ∃r.C ∈ t for all ∃r.C ∈ cl(T ). Now define
the automaton AT ,Σ := (Q,ΣN ,ΣE , q0, δ,Ω), where

Q = TP(T ) ] {q0} ΣN = Σ ∩ NC ΣE = Σ ∩ NR

δ(q0) =
∨

TP(T )

δ(t) =
∧

A∈t∩NC∩Σ

A ∧
∧

A∈(NC∩Σ)\t

¬A

∧
∧

r∈Σ∩NR

[r]
∨
{t′ ∈ TP(T ) | t r t

′}

∧
∧

∃r.C∈t,r∈Σ

〈r〉
∨
{t′ ∈ TP(T ) | C ∈ t ∧ t r t

′}

Ω(q) = 0 for all q ∈ Q

Here, the empty conjunction represents true and the empty
disjunction represents false. The acceptance condition of the
automaton is trivial, which (potentially) changes when we
complement it subsequently. We prove in the appendix that
this automaton satisfies the conditions in Theorem 15.

We now develop a decision procedure for the existence of
uniform interpolants by showing that the characterization of
the existence of uniform interpolants provided by Theorem 12
can be captured by APTAs, in the following sense.
Theorem 16. Let T be a TBox, Σ ⊆ sig(T ) a signa-
ture, and m ≥ 0. Then there is an APTA AT ,Σ,m =
(Q,ΣN ,ΣE , q0, δ,Ω) such that L(A) 6= ∅ iff Condition (∗m)
from Theorem 9 is satisfied. Moreover, |Q| ∈ O(2O(n) +
log2m) and |ΣN |, |ΣE | ∈ O(n+ logm), where n = |T |.
The size of AT ,Σ,m is exponential in |T | and logarithmic
in m. By Theorem 12, we can set m = 22|T |

, and thus the
size of AT ,Σ,m is exponential in |T |. Together with the EX-
PTIME emptiness test for APTAs, we obtain a 2-EXPTIME
decision procedure for the existence of uniform interpolants.
We construct AT ,Σ,m as an intersection of four APTAs, each
ensuring one of the conditions of (∗m); building the automa-
ton for Condition 2 involves complementation. The automa-
tonAT ,Σ,m runs over an extended alphabet that allows to en-
code both of the interpretations I1 and I2 mentioned in (∗m),
plus a ‘depth counter’ for enforcing Condition 1 of (∗m).

A similar, but simpler construction can be used to reprove
the 2-EXPTIME upper bound for deciding conservative exten-
sions established in [Ghilardi et al., 2006]. The construction
only depends on Theorem 8, but not on the material in Sec-
tion 3 and is arguably more transparent than the original one.
Theorem 17. Given TBoxes T and T ′, it can be decided in
time 2p(|T |·2

|T ′|) whether T ∪ T ′ is a conservative extension
of T , for some polynomial p().
A 2-EXPTIME lower bound was also established in [Ghilardi
et al., 2006], thus the upper bound stated in Theorem 17 is
tight. This lower bound transfers to the existence of uniform
interpolants: one can show that T ′ = T ∪ {> v C} is a
conservative extension of T iff there is a uniform sig(T ) ∪
{r}-interpolant of

T0 = T ∪{¬C v A,A v ∃r.A}∪{∃s.A v A | s ∈ sig(T ′)},
with r,A are fresh. This yields the main result of this section.
Theorem 18. It is 2-EXPTIME-complete to decide, given a
TBox T and a signature Σ ⊆ sig(T ), whether there exists a
uniform Σ-interpolant of T .

5 Computing Interpolants / Interpolant Size
We show how to compute smaller uniform interpolants than
the non-elementary TΣ,M2

T +1 and establish a matching upper
bound on their size. Let C be a concept and Σ ⊆ sig(C)
a signature. A concept C ′ is called a concept uniform Σ-
interpolant of C if sig(C) ⊆ Σ, ∅ |= C v C ′, and ∅ |=
C ′ v D for every concept D such that sig(D) ⊆ Σ and
∅ |= C v D. The following result is proved in [ten Cate et
al., 2006].



Theorem 19. For every conceptC and signature Σ ⊆ sig(C)
one can effectively compute a concept uniform Σ-interpolant
C ′ of C of at most exponential size in C.
This result can be lifted to (TBox) uniform interpolants by
‘internalization’ of the TBox. This is very similar to what is
attempted in [Wang et al., 2010], but we use different bounds
on the role depth of the internalization concepts. More specif-
ically, let T = {> v CT } have a uniform Σ-interpolant and
R denote the set of role names in T . For a concept C, define
inductively

∀R≤0.C = C, ∀R≤n+1.C = C uu
r∈R
∀r.∀R≤n.C

It can be shown using Theorem 12 that for m = 22|CT |+1

+
2|CT | + 2 and C a concept uniform Σ-interpolant of
∀R≤m.CT , the TBox T ′ = {> v C} is a uniform Σ-
interpolant of T . A close inspection of the construction un-
derlying the proof of Theorem 19 applied to ∀R≤m.CT re-
veals that rd(C) ≤ rd(∀R≤m.CT ) and that the size of C is
at most triple exponential in |T |. This yields the following
upper bound.
Theorem 20. Let T be an ALC-TBox and Σ ⊆ sig(T ). If
there is a uniform Σ-interpolant of T , then there is one of size

at most 222p(|T |)

, p a polynomial.
A matching lower bound on the size of uniform interpolants
can be obtained by transferring a lower bound on the size of
so-called witness concepts for (non-)conservative extensions
established in [Ghilardi et al., 2006]:
Theorem 21. There exists a signature Σ of cardinality 4 and
a family of TBoxes (Tn)n>0 such that, for all n > 0,

(i) |Tn| ∈ O(n2) and
(ii) every uniform Σ-interpolant {> v CT } for Tn is of size

at least 2(2n·22n )−2.

6 Conclusions
We view the characterizations, tools, and results obtained in
this paper as a general foundation for working with uniform
interpolants in expressive DLs. In fact, we believe that the es-
tablished framework can be extended to other expressive DLs
such as ALC extended with number restrictions and/or in-
verse roles without too many hassles: the main modifications
required should be a suitable modification of the notion of
bisimulation and (at least in the case of number restrictions)
a corresponding extension of the automata model. Other ex-
tensions, such as with nominals, require more efforts.

In concrete applications, what to do when the desired uni-
form Σ-interpolant does not exist? In applications such as
ontology re-use and ontology summary, one option is to ex-
tend the signature Σ, preferably in a minimal way, and then to
use the interpolant for the extended signature. We believe that
Theorem 9 can be helpful to investigate this further, loosely
in the spirit of Example 11. In applications such as predi-
cate hiding, an extension of Σ might not be acceptable. It
is then possible to resort to a more expressive DL in which
uniform interpolants always exist. In fact, Theorem 15 and
the fact that APTAs have the same expressive power as the µ-

calculus [Wilke, 2001] point the way towards the extension
of ALC with fixpoint operators.
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A Proofs for Section 2
Proof sketch for Example 3 (ii) Recall that T2 = {A ≡
B u ∃r.B} and Σ2 = {A, r}. We show that T ′2 = {A v
∃r.(A t ¬∃r.A)} is a uniform Σ2-interpolant of T2. To this
end, we prove the criterion of Theorem 6.

Let I be a model of A v ∃r.(A t ¬∃r.A). Then every
(I, d), d ∈ ∆I , is bisimilar to a tree-interpretation (J , ρJ )
that is a model of A v ∃r.(A t ¬∃r.A). We define a new
interpretation J ′ that coincides with J except that B is in-
terpreted as follows: for every e ∈ ∆J with e ∈ AJ let
e ∈ BJ

′
and, if there does not exist an r-successor of e in

AJ , then take an r-successor e′ of e with e′ 6∈ (∃r.A)J and
let e′ ∈ BJ ′

as well. Such an e′ exists since J is a model of
A v ∃r.(At¬∃r.A). It is readily checked that J ′ is a model
of T2. Thus, for all d ∈ ∆I , (I, d) |= ∃∼

Σ2
.T2.

Conversely, let (I, d) |= ∃∼
Σ2
.T2, for all d ∈ ∆I . Let d ∈

AI and assume d 6∈ ∃r.(A t ¬∃r.A). Then, no r-successor
of d is in AI and all r-successors of d have an r-successor
in AI . Let (I, d) ∼Σ2 (J , d′) with J a model of T2. Then
d′ ∈ AJ , no r-successor of d′ is in AJ , and all r-successors
of d′ have an r-successor in AJ . We have d′ ∈ (B u∃r.B)J

and so d′ ∈ BJ and there exists an r-successor d′′ of d′ such
that d′′ ∈ BJ . Since d′′ 6∈ AJ , there does not exist an r-
successor of d′′ that is in BJ . But then no r-successor of d′′
is in AJ and we have derived a contradiction.

To prove Theorem 6 in its full generality, we will rely
on the automata-theoretic machinery introduced in Section 4.
For now, we only establish a modified version where “for all
interpretation I” is replaced with “for all interpretations I of
finite outdegree”.
Theorem 6 (Modified Version) Let T be a TBox and Σ ⊆
sig(T ). A Σ-TBox TΣ is a uniform Σ-interpolant of T iff for
all interpretations I of finite outdegree,

I |= TΣ ⇔ for all d ∈ ∆I , (I, d) |= ∃∼
Σ
.T . (∗)

Proof. “if”. Assume that (∗) is satisfied for all interpreta-
tions I of finite outdegree. We have to show that for all Σ-
inclusions C v D,

TΣ |= C v D iff T |= C v D.
Let sig(C v D) ⊆ Σ and assume TΣ 6|= C v D. Then
C u ¬D is satisfiable w.r.t. TΣ, i.e., there is a pointed model
(I, d) of TΣ with finite outdegree and d ∈ (C u ¬D)I . By
(∗), there is thus a pointed model (J , e) of T with (I, d) ∼Σ

(J , e). Together with d ∈ (C u ¬D)I , the latter implies
e ∈ (Cu¬D)J . Thus,Cu¬D is satisfiable w.r.t. T , implying
T 6|= C v D. Conversely, let T 6|= C v D. Then there is
a pointed model (I, d) of T with finite outdegree and d ∈
(C u ¬D)I . Trivially, I satisfies the right-hand side of (∗),
whence I |= TΣ and we are done.

For the “only if ” direction, we first need a preliminary. An
interpretation I is modally saturated iff it satisfies the fol-
lowing condition, for all r ∈ NR: if d ∈ ∆I and Γ is a
(potentially infinite) set of concepts such that, for all finite
Ψ ⊆ Γ, there is a d′ with (d, d′) ∈ rI and d′ ∈ ΨI , then
there is an e with (d, e) ∈ rI and e ∈ ΓI . The most im-
portant facts about modally saturated interpretations we need

here are (i) every (finite) or infinite set of concepts that is sat-
isfiable w.r.t. a TBox T is satisfiable in a modally saturated
model of T ; (ii) every inte rpretation with finite outdegree is
modally saturated; and (iii) Point 2 of Theorem 5 can be gen-
eralized from interpretations of finite outdegree to modally
saturated interpretations [Goranko and Otto, 2007].

“only if”. Assume that TΣ is a uniform Σ-interpolant of
T . First assume that I is an interpretation that satisfies the
right-hand side of (∗). By Point 1 of Theorem 5, I |= T and
since T |= TΣ, also I |= TΣ. Now assume that I is a model
of TΣ of finite outdegree and let d ∈ ∆I . Define Γ to be the
set of all Σ-concepts C with d ∈ CI . Clearly, every finite
subset Γ′ ⊆ Γ is satisfiable w.r.t. TΣ. Since TΣ is a uniform
Σ-interpolant of T , every such Γ′ is also satisfiable w.r.t. T
(since TΣ 6|= > v ¬uΓ′ implies T 6|= > v ¬uΓ′). By
compactness of ALC, Γ is satisfiable w.r.t. T . By (i), there
thus exists a modally saturated pointed model (J , e) of T
such that e ∈ ΓJ . Since d ∈ ΓI and e ∈ ΓJ (and since,
by definition, Γ contains each Σ-concept or its negation), we
have d ∈ CI iff e ∈ CJ for all ALC-concepts C over Σ. By
(ii) and (iii), this yields I ∼Σ J and we are done. o

B Proofs for Section 3
For a tree interpretation I and d ∈ ∆I we denote by I(d) the
tree interpretation induced by the subtree generated by d in I.

Besides ofALCΣ-equivalence, we now also require a char-
acterization ofALCΣ-equivalence for concepts of roles depth
bounded by some m.

Two pointed interpretations are ALCΣ-m-equivalent, in
symbols (I1, d1) ≡mΣ (I2, d2), if, and only if, for all Σ-
concepts C with rd(C) ≤ m, d1 ∈ CI1 iff d2 ∈ CI2 .

The corresponding model-theoretic notion is that of m-
bisimilarity, which is defined inductively as follows: (I1, d1)
and (I2, d2) are
• (Σ, 0)-bisimilar, in symbols (I1, d1) ∼0

Σ (I2, d2), if
d1 ∈ AI1 iff d2 ∈ AI2 for all A ∈ Σ ∩ NC.
• (Σ, n+1)-bisimilar, in symbols (I1, d1) ∼n+1

Σ (I2, d2),
if (I1, d1) ∼0

Σ (I2, d2) and

– for all (d1, e1) ∈ rI1 there exists e2 ∈ ∆I2 such
that (d2, e2) ∈ rI2 and (I1, e1) ∼nΣ (I2, e2), for all
r ∈ Σ;

– for all (d2, e2) ∈ rI2 there exists e1 ∈ ∆I1 such
that (d1, e1) ∈ rI1 and (I1, e1) ∼nΣ (I2, e2), for all
r ∈ Σ.

The following characterization is straightforward to prove
and can be found in [Goranko and Otto, 2007].
Lemma 22. For all pointed interpretations (I1, d1) and
(I2, d2), all finite signatures Σ, and all m ≥ 0: (I1, d1) ≡mΣ
(I2, d2) if, and only if, (I1, d1) ∼mΣ (I2, d2).

Lemma 23. Let (I1, d1) and (I2, d2) be pointed Σ-
interpretations such that (I1, d1) ∼mΣ (I2, d2). Then there
exist Σ-tree interpretations J1 and J2 such that
• (J1, ρ

J1) ∼Σ (I1, d1);
• (J2, ρ

J2) ∼Σ (I2, d2);



• J≤m1 = J≤m2 .

Moreover, if I1 and I2 have finite outdegree, then one can
find such J1 and J2 that have finite outdegree.

Proof. Assume (I1, d1) and (I2, d2) are given. For j = 1, 2,
we define Jj as follows. The domain ∆Jj consists of all
words

v0r0v1r1 · · · vn
such that

• v0 = (d1, d2);

• for all i ≤ m there are ei, fi such that vi = (ei, fi) and
(I1, ei) ∼m−iΣ (I2, fi);

• for all i < m: if vi = (ei, fi) and vi+1 = (ei+1, fi+1),
then (ei, ei+1) ∈ rI1

i and (fi, fi+1) ∈ rI2
i ;

• for all i > m: vi ∈ ∆Jj ;

• for all vm = (em, fm): if j = 1 then (em, vm+1) ∈ rI1
m ;

and if j = 2 then (fm, vm+1) ∈ rI2
m ;

• for all i > m: (vi, vi+1) ∈ rJj

i .

For all concept names A, we set

AJj = {v0 · · · vn ∈ ∆J1 | n > m, vn ∈ AIj} ∪
{(e0, f0) · · · (en, fn) ∈ ∆J1 | n ≤ m, en ∈ AI1},

and for all role names r, we define

rJj = {(w,wrv) | w,wrv ∈ ∆Jj , v ∈ (∆Ij ∪∆I1 ×∆I2)}

It is straightforward to prove that

S1 = {(e, w(e, f) | e ∈ ∆I1 , w(e, f) ∈ ∆J1} ∪
{(e, we) | e ∈ ∆I1 , we ∈ ∆J1}

is a Σ-bisimulation between (I1, ρ
I1) and (J1, ρ

J1). A Σ-
bisimulation S2 between (I2, ρ

I2) and (J2, ρ
J2) can be con-

structed in the same way. Clearly, J≤m1 = J≤m2 . o

Theorem 9. Let T be a TBox, Σ ⊆ sig(T ) a signature, and
m ≥ 0. Then TΣ,m is not a uniform Σ-interpolant of T iff

(∗m) there exist two Σ-tree interpretations, I1 and I2, of finite
outdegree such that

1. I≤m1 = I≤m2 ;

2. (I1, ρ
I1) |= ∃∼

Σ
.T ;

3. (I2, ρ
I2) 6|= ∃∼

Σ
.T ;

4. For all sons d of ρI2 : (I2, d) |= ∃∼Σ .T .

Proof. Assume first that TΣ,m is not a uniform Σ-
interpolant of T . We show (∗m). There exists m′ ≥ m such
that TΣ,m′ 6|= TΣ,m′+1. There exists a Σ-tree interpretation
I of finite outdegree such that I |= TΣ,m′ and ρI 6∈ CI for
some C with > v C ∈ TΣ,m′+1.

As I |= TΣ,m′ , the concept

D = u
E∈Cm′

f (Σ),ρI∈EI
E

is satisfiable w.r.t. T . There exists a Σ-tree interpreta-
tion J of finite outdegree that is a model of T such that
(I, ρI) ≡m′

Σ (J , ρJ ). By Lemma 22, we have (I, ρI) ∼m′

Σ

(J , ρJ ). By Lemma 23, and closure under composition of
(m)-bisimulations, we can assume that J is a Σ-tree interpre-
tation of finite outdegree with

• I≤m′
= J≤m′

.
• (J , ρJ ) |= ∃∼Σ .T .
• I |= TΣ,m′ .

• ρI 6∈ CI for some (> v C) ∈ TΣ,m′+1.

For every son d of ρI , as I(d) is a model of TΣ,m′ we can
argue as above and find a Σ-tree interpretation Kd of finite
outdegree such that

(I(d), d) ∼m
′

Σ (Kd, ρKd) |= ∃∼Σ .T .

We have
(J (d), d) ∼Σ

m′−1 (Kd, ρKd).

Thus, by Lemma 23, we find Σ-tree interpretations Jd and
Md of finite outdegree such that
• (Jd, ρJd) ∼Σ (J (d), d);
• (Kd, ρKd) ∼Σ (Md, ρ

Md);

• J≤m
′−1

d = M≤m
′−1

d .

Now define I1 by replacing, for every son d of ρJ , J (d)
by Jd in J . Define I2 by replacing, for every son d of ρI ,
I(d) byMd in I. It is readily checked that I1 and I2 are as
required:

• I≤m1 = I≤m2 : since m′ ≥ m it is sufficient to show
I≤m

′

1 = I≤m
′

2 . But since I≤1 = J≤1 this follows
from J≤m

′−1
d = M≤m

′−1
d for every son d of ρI .

• (I1, ρ
I1) |= ∃∼Σ .T follows from (J , ρJ ) |= ∃∼

Σ
.T and

(I1, ρ
I1) ∼Σ (J , ρJ ).

• (I2, ρ
I2) 6|= ∃∼

Σ
.T follows if ρI2 6∈ CI2 for some Σ-

concept C such that T |= > v C. By construction,
there exists C ∈ Cm

′+1
f (Σ) such that ρI 6∈ CI and

(> v C) ∈ TΣ,m′+1. Thus, by Lemma 22, it is suf-
ficient to show (I2, ρ

I2) ∼m
′+1

Σ (I, ρI). This follows if
(I(d), d) ∼m′

Σ (Md, ρ
Md), for every son d of ρI . But

this follows from

(I(d), d) ∼m
′

Σ (Kd, ρKd) ∼Σ (Md, ρ
Md).

• For all sons d of ρI2 : (I2, d) |= ∃∼Σ .T . This follows
from

(I2(d), d) = (Md, ρ
Md) ∼Σ (Kd, ρKd) |= ∃∼Σ .T .

Now assume that I1 and I2 satisfy (∗m). Then I2 is a model
of TΣ,m. For assume this is not the case. Then d 6∈ CI2 for
some C with > v C ∈ TΣ,m. If d = ρI2 , then d 6∈ CI1

because of Point 1. This contradicts I1 |= ∃∼Σ .T . If d 6= ρI2 ,
then d ∈ I(d′) for some son d′ of ρI2 . Hence d 6∈ CI(d′),
which contradicts Point 4.



Now assume that TΣ,m is a uniform Σ-interpolant of T .
As I2 is a model of TΣ,m and has finite outdegree, we obtain
from the modified version of Theorem 6 proved above that
(I2, ρ

I2) |= ∃∼
Σ
.T , which contradicts Point 3. o

We show Example 3 (iv): for T4 consisting of

1. A v ∃r.B;

2. A0 v ∃r.(A1 uB);

3. E ≡ A1 uB u ∃r.(A2 uB)};
and Σ4 = {A, r,A0, A1, E}, there is no uniform Σ4-
interpolant of T4.

Proof. It is sufficient to show (∗m) for all m > 0. Let
I1 = ({0, . . . ,m+ 1, (a, 2), . . . , (a,m+ 1)}, ·I1), where

AI1 = {1, . . . ,m}
EI1 = ∅
rI1 = {(i, i+ 1) | 0 ≤ i ≤ m} ∪

{(i, (a, i+ 1)) | 1 ≤ i ≤ m}
AI1

1 = {1, . . . ,m+ 1}
AI1

2 = {(a, 2), . . . , (a,m+ 1)}
AI1

0 = {0}

Then (I1, 0) |= ∃∼
Σ4
.T4 because the expansion of I1 by

BI1 = {1, . . . ,m+ 1} is a model of T4.
Define I2 as the restriction of I1 to ∆I1 \ {m + 1}. By

definition, I≤m1 = I≤m2 ,

Claim 1. (I2, 0) 6|= ∃∼
Σ4
.T4.

Assume (I2, 0) |= ∃∼
Σ4
T4. Take (I2, 0) ∼Σ (J , 0′) with J

a model of T4. Let S be the Σ-bisimulation with (0, 0′) ∈ S.
By inclusion (2.) there exists 1′ with (1, 1′) ∈ S such that
1′ ∈ (¬E u A u A1 u B)J . By inclusion (1.) there exists
an r-successor 2′ of 1′ that is in BJ . We have (2, 2′) ∈ S or
((a, 2), 2′) ∈ S. But ((a, 2), 2′) 6∈ S because otherwise 2′ ∈
(A2 u B)J which, since 1′ ∈ (A1 u B)J , would imply, by
inclusion (3.), that 1′ ∈ EJ , a contradiction. Thus, (2, 2′) ∈
S and so 2′ ∈ (¬E u A u A1 u B)J . One can now show in
same way by induction that there is a m′ with (m,m′) ∈ S
such that m′ ∈ (¬E u A u A1 u B)J . All r-successors
of m′ are in AJ2 since all r-successors of m are in AJ2 . By
inclusions (2.) and (3.) and since m′ 6∈ EJ this leads to a
contradiction.

As 1 is the only r-successor of 0 in I2, it remains to
show that (I2, 1) |= ∃∼

Σ4
.T4. Let I ′2 be the restriction of

I2 to ∆I2 \ {0}. Then (I2, 1) |= ∃∼
Σ4
.T4 follows from

the observation that the expansion of I ′2 by setting BI
′
2 =

{(a, 2), . . . , (a,m+ 1)} is a model of T4. o

In a tree interpretation I, we set dist(ρI , d) = k and say that
the depth of d in I is k iff d can be reached from ρI in exactly
k steps.

Example 11 Let T be a TBox and Σ a signature such that
sig(T ) \ Σ consists of stratified concept names only, i.e., we

want to forget a set of stratified concept names. Then the ex-
istence of a uniform Σ-interpolant of T is guaranteed; more-
over, TΣ,m is such an interpolant, where m = max{rd(C) |
C ∈ conc(T )}.

Proof. Assume I1, I2 satisfy (∗m). There exists a tree-
interpretation J1 that is a model of T such that (I1, ρ

I1) ∼Σ

(J1, ρ
J1), and for every r-successor dr of ρI2 there exists a

tree-interpretation Jdr that is a model of T with (I2, dr) ∼Σ

(Jdr , ρdr ). We may assume that I1 is the Σ-reduct of J1

and that every I2(dr) coincides with the Σ-reduct of Jdr .
Now expand I2 to an interpretation J2 as follows: for every
B ∈ sig(T ) \ Σ of level k ≤ m set

BJ2 = {d | d ∈ BJ1 ∧ dist(ρI2 , d) = k} ∪
{d | d ∈ BJdr ∧ dist(ρI2 , d) 6= k}.

We show that J2 is a model of T ; and have derived a con-
tradiction as I2 6|= ∃∼Σ .T . Let C v D ∈ T and assume that
d ∈ CJ2 \DJ2 . Let dist(ρJ2 , d) = l. If l = 0, then d ∈ XJ2

iff d ∈ XI1 for all concepts X in T , by the definition of the
expansion. Thus, d ∈ CI1 \ DI1 which contradicts that I1

is a model of T . If l > 0, then d is in the domain of some
I2(dr). Then d ∈ XJ2 iff d ∈ XJdr for all conceptsX in T ,
by the definition of the expansion. Thus, d ∈ CJdr \ DJdr

which contradicts that Jdr is a model of T . o

Fix a TBox T and Σ ⊆ sig(T ). Set (I1, d1) ∼e (I2, d2)

iff ExtI1(d1) = ExtI2(d2). Note that the number of ∼e-
equivalence classes is bounded by MT .
Lemma 24. Let I be a tree interpretation and d ∈ ∆I . As-
sume (I(d), d) ∼e (J , ρJ ) for a tree interpretation J . Re-
place I(d) by J in I and denote the resulting tree interpre-
tation by K. Then I |= ∃∼Σ .T if, and only if, K |= ∃∼Σ .T .
Proof. Let I, d, J , and K be as in the formulation of
Lemma 24. Assume I |= ∃∼Σ .T . There exists a tree-
interpretation I ′ that is a model of T such that (I, ρI) ∼Σ

(I ′, ρI′). We may assume that there is a Σ-bisimulation
S between (I, ρI) and (I ′, ρI′) such that S− is an injec-
tive relation and such that (e, e′) ∈ S implies that e is
reached from ρI along the same path as e′ from ρI

′
. Let

S(d) = {d′ | (d, d′) ∈ S}. Consider, for every d′ ∈ S(d), a
tree-interpretation Kd′ satisfying T such that
• tpI

′,T (d′) = tpKd′ ,T (ρKd′ );
• (J , ρJ ) ∼Σ (Kd′ , ρKd′ ).

Such interpretations Kd′ exist by the definition of the equiva-
lence relation ∼e. Now replace, in I ′ and for all d′ ∈ S(d),
the tree interpretation I ′(d′) by Kd′ , and denote the resulting
interpretation by K′. K′ is a model of T since tpI

′,T (d′) =
tpKd′ ,T (ρKd), I ′ is a model of T and all Kd′ are models of
T . It remains to show that (K, ρK) ∼Σ (K′, ρK′

). Take for
every d′ ∈ S(d) a Σ-bisimulation Sd′ between (J , ρJ ) and
(Kd′ , ρKd′ ). Let S′ be the restriction of S to

(∆I \∆I(d))× (∆I
′
\ (

⋃
d′∈S(d)

∆I
′(d′)))

It is not difficult to show that S′∪
⋃
d′∈S(d) Sd′ is the required

Σ-bisimulation between (K, ρJ ) and (K′, ρK). o



Theorem 12. Let T be a TBox and Σ ⊆ sig(T ). Then there
does not exist a uniform Σ-interpolant of T iff (∗M2

T +1) from

Theorem 9 holds, where MT := 22|T |
.

Proof. By Theorem 9, it is sufficient to prove that (∗M2
T +1)

implies (∗m) for all m ≥ M2
T + 1. Take Σ-tree interpre-

tations I1 and I2 satisfying (∗m) of Theorem 9 for some
m ≥M2

T +1. We show that there exist Σ-tree interpretations
J1 and J2 satisfying (∗m+1) of Theorem 9. The implication
then follows by induction.

Let D be the set of d ∈ ∆I1 with dist(ρI1 , d) = m such
that I1(d)≤1 6= I2(d)≤1 (i.e., the restrictions of I1 to {d′ |
d′ son of d in I1} and I2 to {d′ | d′ son of d in I2} do not
coincide). If D = ∅, then I≤m+1

1 = I≤m+1
2 and the claim

is proved. Otherwise choose f ∈ D and consider the path

ρI1 = d0r0d1 · · · rm−1dm = f

with (di, di+1) ∈ rI1
i for all i < m. As m ≥ M2

T + 1, there
exists 0 < i < j ≤ m such that both,

(I1, di) ∼e (I1, dj), (I2, di) ∼e (I2, dj).

Replace I1(dj) by I1(di) in I1 and denote the resulting in-
terpretation by K1. Similarly, replace I2(dj) by I2(di) in I2

and denote the resulting interpretationK2. By Lemma 24,K1

and K2 still have Properties (1)-(4). Moreover, the set D′ of
all d ∈ ∆I

′
1 with dist(ρI

′
1 , d) = m such that K1(d)≤1 6=

K2(d)≤1 is a subset of D not containing f . Thus, we can
proceed with D′ in the same way as above until the set is
empty. Denote the resulting interpretations by J1 and J2,
respectively. They still have Properties (1)–(4), but now for
some m′ > m. o

C Proofs for Section 4
We start with establishing some basic results about APTAs.
To formulate and prove these, we make some technicalities
more formal than in the main paper. Recall than a run is a
pair (T, `) with T a tree. Let us make precise what exactly we
mean by ‘tree’ here. A tree is a non-empty (finite or infinite)
prefix-closed subset T ⊆ S∗, for some set S. If d ∈ T and
d · c ∈ T with d ∈ S∗ and c ∈ S, then the node d · c is a son
of the node d in T . A node d ∈ T that has no sons is a leaf.
We measure the size of an APTA primarily in the number of
states. To define a more fine-grained measure, we use ||A||
to denote the size of A, i.e., |Q| + |ΣN | + |ΣE |. Note that
the size of (the representation of) all other components of the
automaton is bounded polynomially in ||A||. In particular, we
can w.l.o.g. assume that the values in Ω are bounded by 2|Q|.
Lemma 25. Let Ai = (Qi,ΣN ,ΣE , q0,i, δi,Ωi) be APTAs,
i ∈ {1, 2} with Q1 ∩Q2 = ∅. Then there is an APTA

1. A′ = (Q1,ΣN ,ΣE , q0,1, δ
′,Ω′) such that L(A′) =

L(A1);
2. A′′ = (Q1 ] Q2 ] {q0},ΣN ,ΣE , q0, δ

′′,Ω′′) such that
L(A′′) = L(A1) ∩ L(A2).

Moreover, A′ and A′′ can be constructed in time p(||A||), p
a polynomial.

Proof. (sketch) The construction of A′ is based on the stan-
dard dualization construction first given in [?], i.e., δ′ is ob-
tained from δ by swapping true and false, A and ¬A, ∧ and
∨, and diamonds and boxes, and setting Ω′(q) = Ω(q)+1 for
all q ∈ Q. The construction of A′′ is standard as well: add a
fresh initial state q0 with δ(q0) = q0,1 ∧ q0,1, and define δ′′
and Ω′′ as the fusion of the respective components of A1 and
A2 (e.g., δ′′(q) = δ1(q) for all q ∈ Q1 and δ′′(q) = δ2(q) for
all q ∈ Q2). o

The following lemma shows that a language accepted by an
APTA is closed under bisimulation. It implies that whenever
for an APTA A we have L(A) 6= ∅, then there is a pointed
tree interpretation (I, d) with (I, d) ∈ L(A). As a notational
convention, whenever x is a node in a Q × ∆I-labelled tree
and `(x) = (q, d), then we use `1(x) to denote q and `2(x) to
denote d.

Lemma 26. Let A = (Q,ΣN ,ΣE , q0, δ,Ω) be an APTA,
(I, d) ∈ L(A), and (I, d) ∼ΣN∪ΣE

(J , e). Then (J , e) ∈
L(A).

Proof. Let (I, d) ∈ L(A), and (I, d) ∼ΣN∪ΣE
(J , e).

Moreover, let (T, `) be an accepting run of A on (I, d).
We inductively construct a Q × ∆J -labelled tree (T ′, `′),
along with a map µ : T ′ → T such that µ(y) = x implies
`1(x) = `′1(y) and (I, `2(x)) ∼ΣN∪ΣE

(J , `′2(y)):

• start with T ′ = {ε}, `′(ε) = (q, e), and µ(ε) = ε;

• if y ∈ T ′ is a leaf, `′1(y) = q′ ∧ q′′, and µ(y) = x, then
there are sons x′, x′′ of x with `(x′) = (q′, `2(x)) and
`(x′′) = (q′′, `2(x)); add fresh y · c′ and y · c′′ to T ′
and put `′(y · c′) = (q′, `′2(y)), `′(y · c′′) = (q′′, `′2(y)),
µ(y · c′) = x′, and µ(y · c′′) = x′′;

• if y ∈ T ′ is a leaf, `′1(y) = q′ ∨ q′′, and µ(y) = x,
then there is a son x′ of x with `1(x′) ∈ {q′, q′′} and
`2(x′) = `2(x); add a fresh y ·c′ to T ′ and put `′(y ·c′) =
(`1(x′), `′2(y)) and µ(y · c′) = x′;

• if y ∈ T ′ is a leaf, `′1(y) = 〈r〉q′, and µ(y) = x, then
there is an (`2(x), d) ∈ rI and a son x′ of xwith `(x′) =
(q′, d); since (I, `2(x)) ∼ΣN∪ΣE

(J , `′2(y)), there is
an (`′2(y), d′) ∈ rJ with (I, d) ∼ΣN∪ΣE

(J , d′); add a
fresh y·c′ to T ′ and put `′(y·c′) = (q′, d′) and µ(y·c′) =
x′;

• if y ∈ T ′ is a leaf, `′1(y) = [r]q′, and µ(y) = x,
then do the following for every (`′2(y), d′) ∈ rJ : since
(I, `2(x)) ∼ΣN∪ΣE

(J , `′2(y)), there is an (`2(x), d) ∈
rI with (I, d) ∼ΣN∪ΣE

(J , d′), and thus also a son x′
of x with `(x′) = (q′, d); add a fresh y · c′ to T ′ and put
`′(y · c′) = (q′, d′) and µ(y · c′) = x′.

It can be verified that (T ′, `′) is an accepting run of A on
(J , e). o

Finally, we fix the complexity of the emptiness problem of
APTAs. The following is proved in [Wilke, 2001] using a
reduction to parity games.

Theorem 27 (Wilke). Let A = (Q,ΣN ,ΣE , q0, δ,Ω) be an
APTA. Then the emptiness of L(A) can be decided in time
2p(||A||), p a polynomial.



The following lemma establishes the correctness of the con-
struction of the automata ATΣ for Theorem 15.
Lemma 28. (I, d0) ∈ L(AT ,Σ) iff (I, d0) |= ∃∼

Σ
.T , for all

pointed Σ-interpretations (I, d0).
Proof. Let (I, d0) be a pointed Σ-interpretation. By defini-
tion of AT ,Σ, we have (I, d0) ∈ L(AT ,Σ) iff there exists a
Q×∆I-labelled tree (T, `) such that

1. `(ε) = (q0, d0);
2. there exists a son x of ε and t ∈ TP(T ) such that `(x) =

(t, d0);
3. if `(x) = (t, d), then

(a) d ∈ AI for all A ∈ t ∩ NC ∩ Σ;
(b) d 6∈ AI for all A ∈ (NC ∩ Σ) \ t;
(c) for all r ∈ Σ and (d, d′) ∈ rI , there exist t′ ∈

TP(T ) such that t r t
′ and a son y of x such that

`(y) = (t′, d′);
(d) for all ∃r.C ∈ t with r ∈ Σ, there exists (d, d′) ∈

rI and t′ ∈ TP(T ) such that C ∈ t′ and t  r t
′,

and `(y) = (t′, d′) for some son y of x.

Assume that (I, d0) |= ∃∼
Σ
.T and let (J , e0) be a pointed

model of T such that (I, d0) ∼Σ (J , e0). A path is a se-
quence (d1, e1) · · · (dn, en), n ≥ 0, with d1, . . . , dn ∈ ∆I

and e1, . . . , en ∈ ∆J such that
(i) d1 = d0;

(ii) (di, di+1) ∈ rI for some r ∈ Σ ∩ NR, for 1 ≤ i < n;
(iii) (I, di) ∼Σ (J , ei) for 1 ≤ i ≤ n.
Define a Q×∆I-labelled tree (T, `) by setting
• T to the set of all paths;
• `(ε) = (q0, d0);
• `((d1, e1) · · · (dn, en)) = (tpJ (en), dn) for all paths

(d1, e1) · · · (dn, en) 6= ε.
One can now verify that (T, `) satisfies Conditions 1 to 3,
thus (I, d0) ∈ L(AT ,Σ). In fact, Conditions 1 and 2
are immediate and Conditions 3a and 3b are a consequence
of the definition of ` and (iii). As for Condition 3c, let
`(x) = (t, d), (d, d′) ∈ rI , and r ∈ Σ, and assume
x = (d1, e1) · · · (dn, en). Then d = dn, and dn ∼Σ en
and (d, d′) ∈ rI yield an (en, e

′) ∈ rJ with d′ ∼Σ e′.
Thus y := (d1, e1) · · · (dn, en)(d′, e′) is a son of x and
t′ := tpJ (e′) is as desired, i.e., t  r t

′ and `(y) = (t′, d′).
Condition 3d can be established similarly.

Conversely, assume that there is a Q × ∆I-labelled tree
(T, `) that satisfies Conditions 1 to 3. Define an interpretation
J0 by setting
• ∆J0 = T \ {x ∈ T | `1(x) = q0};
• AJ0 = {x ∈ ∆J0 | A ∈ `1(x)};
• (x, y) ∈ rJ0 iff y is a son of x, `(x) = (t, d), `(y) =

(t′, d′), t r t
′, and (d, d′) ∈ rI .

The next step is to extend J0 to also satisfy existential restric-
tions ∃r.C with r /∈ Σ. For each x ∈ ∆J0 and ∃r.C ∈ `1(x)
with r /∈ Σ, fix a model Ix,∃r.C of T that satisfies C and

every D with ∀r.D ∈ `1(x) at the root. Such models exist
since `1(x) ∈ TP(T ), thus it is realized in some model of
T . Let Ix1,∃r1.C1

, . . . , Ixk,∃rk.Ck
be the chosen models and

assume w.l.o.g. that their domains are pairwise disjoint, and
also disjoint from ∆J0 . Now define a new interpretation J
as follows:

• ∆J = ∆J0 ∪
⋃

1≤i≤k

∆Ixi,∃ri.Ci ;

• AJ = AJ0 ∪
⋃

1≤i≤k

AIxi,∃ri.Ci ;

• rJ = rJ0 ∪
⋃

1≤i≤k

rIxi,∃ri.Ci ∪
⋃

1≤i≤k

(xi, ρ
Ixi,∃ri.Ci ).

By Condition 2, there is a son x0 of ε in T such that `(x0) =
(t, d0). Using Condition 3, it can be verified that {(d, x) ∈
∆I ×∆J0 | `2(x) = d} is a Σ-bisimulation between (I, d0)
and (J , x0). It thus remains to show that J is a model of T ,
which is an immediate consequence of the following claim
and the definition of types for T .

Claim. For all C ∈ cl(T ):

(i) for all x ∈ ∆J0 with `(x) = (t, d), C ∈ t implies
x ∈ CJ ;

(ii) for 1 ≤ i ≤ k and all x ∈ ∆Ixi,∃ri.Ci
, x ∈ CIxi,∃ri.Ci

implies x ∈ CJ .

The proof is by induction on the structure of C. We only do
the case C = ∃r.D explicitly. For Point (i), let x ∈ ∆J0

with `(x) = (t, d), and ∃r.D ∈ t. First assume r ∈ Σ. Then
Condition 3d yields a (d, d′) ∈ rI and t′ ∈ TP(T ) such that
D ∈ t′ and t r t

′, and a son y of x with `(y) = (t′, d′). By
definition of J0, (x, y) ∈ rJ . By IH, D ∈ t′ yields y ∈ DJ ,
thus x ∈ (∃r.D)J . Now assume r /∈ Σ. Then (x, ρIx,∃r.D ) ∈
rJ . By IH and choice of ρIx,∃r.D , ρIx,∃r.D ∈ DJ and we are
done. For Point (ii), it suffices to apply IH and the semantics.

o

Proof of Theorem 6. We have already proved the modified
version of the theorem, where “for all interpretations I” is re-
placed with “for all interpretations I with finite outdegree”.
The “if” direction of the modified version immediately im-
plies the one of the original version. For the “only if” direc-
tion of the original version, assume that TΣ is a uniform Σ-
interpolant of T . The direction “⇐” of (∗) is proved exactly
as in the modified version. For “⇒”, take an interpretation
I with I |= TΣ and assume to the contrary that there is a
d ∈ ∆I such that (I, d) is not Σ-bisimilar to any pointed
model of T . Let A be the complement of the automaton
AT ,Σ of Theorem 15. By Lemma 28, (I, d) ∈ L(A). We
can w.l.o.g. assume that I is a tree interpretation with root
d (if it is not, apply unravelling). By considering an accept-
ing run (T, `) of A on I and removing unnecessary subtrees
synchronously from both I and (T, `), it is easy to show that
there is a (J , d) ∈ L(A) that is still a model of TΣ, but of
finite outdegree. Since J ∈ L(A), J is not Σ-bisimilar to
any model of T . The existence of such a J contradicts the
modified Theorem 6, which we already proved to hold.



Our next aim is to prove Theorem 16, which or convenience
we state in expanded form here. Theorem 16. Let T be a
TBox, Σ ⊆ sig(T ) a signature, and m ≥ 0. Then there is an
APTA AT ,Σ,m = (Q,ΣN ,ΣE , q0, δ,Ω) such that L(A) 6= ∅
iff there are Σ-tree interpretations (I1, d1) and (I2, d2) such
that

1. I≤m1 = I≤m2 ;

2. (I1, ρ
I1) |= ∃∼

Σ
.T ;

3. (I2, ρ
I2) 6|= ∃∼

Σ
.T ;

4. for all successors d of ρI2 , we have (I2, d) |= ∃∼
Σ
.T .

Moreover, |Q| ∈ O(2O(n) + log2m) and |ΣN |, |ΣE | ∈
O(n+ logm), where n = |T |.
Proof. Let T be a TBox, Σ ⊆ sig(T ) a signature, and k ≥
0. We show how to constuct the APTA AT ,Σ,k stipulated in
Theorem 16 as an intersection of four automata A1, . . . ,A4.
Let k = dlog(m + 2)e. All of the automata Ai will use the
alphabets

ΣN = ((Σ ∩ NC)× {1, 2}) ∪ {c1, . . . , ck}
ΣE = (Σ ∩ NR)× {1, 2, 12}

We assume w.l.o.g. that ΣN ⊆ NC and ΣE ⊆ NR. Intuitively,
a ΣN ∪ ΣE-interpretation I represents two Σ-interpretations
I1 and I2 where for i ∈ {1, 2}, we set ∆Ii = ∆I , AIi =
d ∈ (A, i)I and rIi = (r, i)I ∪(r, 12)I . Thus, edges indexed
by “12” represent edges that are shared between the two inter-
pretations. The additional concept names c1, . . . , ck are used
to implement a counter that counts the depth of elements in
I up to m + 1, and then stays at m + 1. As a by-product,
the counter ensures that every element has a uniquely defined
depth. Formally, a pointed ΣN ∪ ΣE-interpretation (I, d)
is called m-well-counting if for all d0, . . . , dn ∈ ∆I with
d0 = d and (di, di+1) ∈

⋃
r∈ΣE

rI for 0 ≤ i < n, the
value encoded in binary by the truth of the concept names
c1, . . . , ck at dn is min{n,m+ 1}.

Automaton A1 ensures Condition 2 of Theorem 16. We
construct it by starting with the APTA AT ,Σ from Theo-
rem 15, and then modifying it as follows to run on track 1
of the combined interpretations:
• replace the node alphabet Σ∩NR with ΣN , and the edge

alphabet Σ ∩ NC with ΣE

• for all states q, δ(q) is obtained from δ(q) by replacing
A with (A, 1), ¬A with ¬(A, 1), 〈r〉q with 〈(r, 1)〉q ∨
〈(r, 12)〉q and every [r]q with [(r, 1)]q ∧ [(r, 12)]q

Automaton A2 takes care of Condition 3 of Theorem 16.
We again start with AT ,Σ, first complement it according to
Lemma 25 and then modify it as A1, but using track/index
2 instead of track/index 1. Automaton A3 addresses Condi-
tion 4 of Theorem 16. We start once more with AT ,Σ, mod-
ify it to run on track 2, add a new initial state q′0, and put
δ(q′0) =

∧
r∈(Σ∩NR)×{2,12}[r]q0, with q0 the original initial

state, to start the run of the obtained automaton at every suc-
cessor of the selected point instead of at the selected point
itself. The following lemma states the central property of the
APTAs constructed so far.

Claim 1 Let (I, d) be a pointed ΣN∪ΣE-interpretation. Then

1. (I, d) ∈ L(A1) iff (I1, d) ∈ L(AT ,Σ) iff (I1, d) |=
∃∼

Σ
.T

2. (I, d) ∈ L(A2) iff (I2, d) /∈ L(AT ,Σ) iff (I2, d) 6|=
∃∼

Σ
.T

3. (I, d) ∈ L(A3) iff (I2(d′), d′) ∈ L(AT ,Σ) for all suc-
cessors d′ of d iff (I2(d′), d′) |= ∃∼

Σ
.T for all successors

d′ of d.

The purpose of the final automaton A4 is to address Condi-
tion 1 of Theorem 16. To achieve this, A4 also enforces that
accepted interpretations are m-well-counting.

Q = {q0, q1, q2}
δ(q0) = ¬c1 ∧ · · · ∧ ¬ck ∧ q1 ∧ q2

δ(q1) = ((c = k + 1) ∨ [r](c++))∧
((c < k + 1) ∨ [r](c==)) ∧

∧
r∈ΣE

[r]q1

δ(q2) =
∧

A∈Σ∩NC

((A, 1) ∧ (A, 2)) ∨ (¬(A, 1) ∧ ¬(A, 2))∧∧
r∈Σ∩NR

[(r, 1)]false ∧ [(r, 2)]false

∧ ((c = k + 1) ∨
∧

r∈Σ∩NR

[(r, 12)]q2)

where (c < k + 1) and (c = k + 1) are the obvious
Boolean NNF formulas expressing that the counter c1, . . . , ck
is smaller and equal to k + 1, respectively, [r](c==) is a for-
mula expressing that the counter value does not change when
travelling to r-successors, and [r](c++) expresses that the
counter is incremented when travelling to r-successors. It is
standard to work out the details of these formulas.

Claim 2. Let (I, d) be a pointed ΣN ∪ ΣE-interpretation.
Then (I, d) ∈ L(A4) iff (I, d) is k-well-counting and
(I1, d)≤k = (I2, d)≤k.1

By Claims 1 and 2 and Lemma 26, the intersection of
A1, . . . ,A4 satisfies Conditions 1-4 of Theorem 16. The size
bounds stated in Theorem 16 are also satisfied (note the addi-
tional states implicit in A4). o

Theorem 17. Given TBoxes T and T ′, it can be decided in
time 2p(|T |·2

|T ′|) whether T ∪ T ′ is a conservative extension
of T , for some polynomial p().

Proof.(sketch) Let T and T ′ be TBoxes and Σ = sig(T ). We
construct an APTAA such that L(A) = ∅ iff there are Σ-tree
interpretations I and I ′ such that I |= T and I 6|= ∃∼

Σ
.T ′.

By Theorem 8 and a straightforward unravelling argument,
it follows that T ∪ T ′ is a conservative extension of T iff
L(A) = ∅. We start with taking automata AT ,Σ and AT ′,Σ,
where the latter is constructed according to Theorem 15 and
the former is defined as (Q,ΣN ,ΣE , q0, δ,Ω), whereQ is the

1The definition of (I, d)≤k generalizes from tree interpretations
to k-well-counting interpretations in the obvious way.



set of all subformulas of CT ,
ΣN = Σ ∩ NC ΣE = Σ ∩ NR

δ(q0) = CT ∧
∧

r∈Σ∩NR

[r]q0

δ(A) = A δ(¬A) = ¬A
δ(C uD) = C ∧D δ(C tD) = C ∨D
δ(∃r.C) = 〈r〉C δ(∀r.C) = [r]C

Set Ω(q) = 0 for all q ∈ Q. We can then use the construc-
tions from Lemma 25 to obtain a final automatonA such that
L(A) = L(AT ,Σ)∩L(AT ′,Σ). It can be verified that the au-
tomaton is as required, and that Theorem 27 yields the bounds
stated in Theorem 17. o

Theorem 18. It is 2-EXPTIME-complete to decide for a given
a TBox T and signature Σ ⊆ sig(T ), whether there exists a
uniform Σ-interpolant of T .

Proof. It remains to prove the lower bound. To this end,
we reduce deciding conservative extensions to deciding the
existence of uniform interpolants. Assume T ⊆ T ′ are given.
We may assume that T ′ = T ∪ {> v C} and that T ′ is
satisfiable and T 6|= T ′. Consider the TBox
T0 = T ∪{¬C v A,A v ∃r.A}∪{∃s.A v A | s ∈ sig(T ′)}
where A is a fresh concept name and r a fresh role name.

Claim. T ′ is a conservative extension of T iff there exists a
uniform Σ-interpolant of T0 for Σ = sig(T ) ∪ {r}.

Assume first that T ′ is a conservative extension of T . We
show that T is a uniform Σ-interpolant of T0. By Theorem 6,
it is sufficient to show the following for all I: I |= T iff for
all d ∈ ∆I : (I, d) |= ∃∼Σ .T0. The direction from right to left
is trivial. Assume now that I |= T and fix a d ∈ ∆I . By
Theorem 8, (I, d) |= ∃∼sig(T ).T

′ and thus there is a pointed
model (J , e) of T ′ such that (I, d) ∼sig(T ) (Id, d). As > v
C ∈ T ′, we have CJ = ∆J . Moreover, since A and r do
not occur in T and T ′, we may assume that AJ = ∅. But
from CJ = ∆J and AJ = ∅ we obtain J |= T0 and so
(I, d) |= ∃∼Σ .T0 as required.

Conversely, assume that T ′ is not a conservative extension
of T . Let C0 be a sig(T )-concept that is satisfiable w.r.t. T
but not w.r.t. T ′. Then T0 |= C0 v A. To show this, let I be
a tree interpretation satisfying T0 with ρI ∈ CI0 . Let I0 be
the restriction of I to all d ∈ ∆I that are reachable from ρI

with paths using roles from sig(T ′) only. Then I0 is a model
of T and not a model of T ′ and so CI0 6= ∆I0 . From ¬C v
A ∈ T0 we obtain AI0 6= ∅. Thus, from ∃s.A v A ∈ T0 for
all s ∈ sig(T ′), we obtain ρI ∈ AI0 ⊆ AI , as required.

From A v ∃r.A ∈ T0, we obtain T0 |= C0 v ∃r. · · · ∃r.>
for arbitrary long sequences ∃r. · · · ∃r. Intuitively, this cannot
be axiomatized with a uniform interpolant not using A. To
prove this in a formal way, we apply Theorem 9 and prove
that (∗m) holds for all m > 0.

Assume m > 0 is given. Let J0 be a tree model satisfying
T with CJ0

0 ∈ ρJ0 and in which each d ∈ ∆I with the
exception of ρJ0 has an r-successor. Let Ji be tree models
satisfying T ′ with rJi = ∅, i > 0. We may assume that the
∆Ji are mutually disjoint. Define I1 = (∆I1 , ·I1) by setting

• ∆I1 =
⋃
i≥0 ∆Ji ,

• sI1 =
⋃
i≥0 s

Ji and BI1 =
⋃
i≥0B

Ji for all s,B ∈
sig(T ′);

• rI1 = rJ0 ∪ {(ρJi , ρJi+1) | i ≥ 0}.
Note that ρI1 = ρJ0 . Then (I1, ρ

I1) |= ∃∼Σ .T0 because the
extension of I1 defined by settingAI1 = ∆J0∪{ρJi | i > 0}
is a model of T0.

Let I2 be the restriction of I1 to
⋃

0≤i≤m ∆Ji . Then
(I2, ρ

I2) 6|= ∃∼Σ .T0: for any interpretation I ′2 with
(I2, ρ

I2) ∼Σ (I ′2, ρI
′
2) we have ρI

′
2 ∈ CI

′
2

0 . If I ′2 is a model
of T0, then ρI

′
2 ∈ AI′2 and so there exist d0, d1, . . . such that

d0 = ρI
′
2 and (di, di+1) ∈ rI′2 for i ≥ 0. But then there ex-

ists such a sequence in I2 starting at ρI2 . As such a sequence
does not exist, we have derived a contradiction.

On the other hand, for all sons d of ρI2 , we have (I2, d) |=
∃∼Σ .T0: for d = ρJ1 this is witnessed by the interpretation
obtained from I2 by interpreting A as the empty set. For all
d ∈ ∆J0 this is witnessed by the interpretation obtained from
I2 by interpreting A as the whole domain.

It follows that I1 and I2 satisfy the condition (∗m) from
Theorem 9. o

D Proofs for Section 5
Theorem 20. Let T = {> v CT } and assume that T has
a uniform Σ-interpolant Let R denote the set of role names
in T , m = 22|CT |+1

+ 2|CT | + 2 and let C be a Σ-concept
uniform interpolant of ∀R≤m.CT w.r.t. Σ. Then T ′ = {> v
C} is a uniform Σ-interpolant of T .

Proof. Recall that MT = 22|CT |
. By Theorem 12, TΣ,M2

T +1

is a uniform Σ-interpolant of T . We may assume that
TΣ,M2

T +1 = {> v F} for a Σ-concept F with rd(F ) ≤
M2
T + 1. We show

∅ |= ∀R≤m.CT v F

We provide a sketch only since the argument is similar to the
standard reduction of “global consequence” to “local conse-
quence” in modal logic. Suppose this is not the case. Let I be
a tree interpretation with ρI ∈ (∀R≤m.CT )I and ρI 6∈ F I .
Let W be the set of d ∈ ∆I that are of depth 22|CT |+1

. For
any path of length 2|CT | + 1 starting at some d ∈ W , there
exist at least two points on that path, say d1 and d2, such that

{E ∈ sub(CT ) | d1 ∈ EI} = {E ∈ sub(CT ) | d2 ∈ EI}.

We remove the subtree I(d2) from I and add the pair (d′, d1)
to rI for the unique predecessor d′ of d2 with (d′, d2) ∈ rI
for some role r. This modification is repeated until a (non-
tree!) interpretation I ′ is reached in which all points are
reachable from ρI by a path of length bounded by m =

22|CT |+1

+ 2|CT | + 2. Since rd(F ) ≤ M2
T + 1 and I has

not changed for points of depth not exceeding M2
T + 1, we

still have ρI 6∈ F I
′
. By construction, I ′ is a model of

T = {> v CT }. Thus, we have obtained a contradiction



to the assumption that {> v F} is a uniform Σ-interpolant
of T .

From ∅ |= ∀R≤m.CT v F we obtain ∅ |= C v F for the
Σ-concept uniform interpolant C. Thus {> v C} |= > v F
and so {> v C} is a uniform Σ-interpolant of T . o

Theorem 21. There exists a signature Σ and a family of
TBoxes (Tn)n>0 such that, for all n > 0,

(i) |Tn| ∈ O(n2) and
(ii) every uniform Σ-interpolant {> v CT } for Tn is of size

at least 2(2n·22n )−2.
To prove Theorem 21 in an economic way, we reuse some
techniques and result from [Ghilardi et al., 2006]. We first
need a bit of terminology. If T and T ′ are TBoxes and T ′ is
not a conservative extension of T , then there is a Σ-concept
C such that C is satisfiable relative T , but not relative to T ′;
such a concept C is a witness concept for non-conservativity
of the extension of T with T ′. One main result of [Ghilardi
et al., 2006] is as follows.
Theorem 29 ([Ghilardi et al., 2006]). There are families of
TBoxes (Tn)n>0 and (T ′n)n>0 such that, for all n > 0,

(i) Tn ∪ T ′n is not a conservative extension of Tn,
(i) |Tn| ∈ O(n2), |T ′n| ∈ O(n2), and

(ii) every witness concept for non-conservativity of the ex-
tension of Tn with T ′n is of size at least 2(2n·22n )−1.

To transfer Theorem 29 from witness concepts to uniform
interpolants, we need to introduce some technicalities from
its proof. For the reminder of this section, fix a signature
Σ = {A,B, r, s}. Let I be an intepretation and d ∈ ∆I .
A path starting at d is a sequence d1, . . . , dk with d1 = d
and (d1, d1+1) ∈ rI ∪ sI , for 1 ≤ i ≤ k. In [Ghilardi et
al., 2006], I is called strongly n-violating iff there exists an
x ∈ AI such that the following two properties are satisfied,
where m = (2n · 22n

):
(P1) for all paths x1, . . . , xk in I with k ≤ m starting at x,

the X values of x1, . . . , xk describe the first k bits of a
2n-bit counter counting from 0 to 22n − 1.

(P2) there exist elements xw ∈ ∆I , for all w ∈ {r, s}∗ of
length at most m− 1, such that the following are true:
(a) xε = x;
(b) (xw, xw′) ∈ rI if w′ = w · r, and (xw, xw′) ∈ sI

if w′ = w · s;
(c) xw /∈ BI if w is of length m− 1.

Define a Σ-TBox

T −n = {> v ∀r.¬A u ∀s.¬A

A v ¬X uu
i<2n
∀(r ∪ s)i.¬X}

The following result of [Ghilardi et al., 2006] underlies the
proof of Theorem 29.
Lemma 30 ([Ghilardi et al., 2006]). There exist families of
TBoxes (Tn)n>0 and (T ′n)n>0 such that, for all n > 0,

(i) |Tn| ∈ O(n2), |T ′n| ∈ O(n2);

K1 = u
i<m,biti(22n )=1

∀{r, s}i.X u (1)

u
i<m,biti(22n )=0

∀{r, s}i.¬X (2)

K
(0)
2 = ¬B (3)

K
(i+1)
2 = ∃r.K(i)

2 u ∃s.K
(i)
2 (4)

Figure 1: Definition of the concepts K1 and K(m)
2 .

(ii) a model of Tn that is strongly n-violating cannot be ex-
tended to a model of T ′n;

(iii) a tree model of Tn that is not strongly n-violating can be
extended to a model of T ′n;

(iv) every model of T −n can be extended to a model of Tn.

The TBoxes Tn and T ′n from Lemma 29 are formulated in
extensions of the signature Σ, more precisely we have Σ =
sig(Tn) ∩ sig(T ′n). Thus, the phrase ‘extended to a model of’
refers to interpreting those symbols that do not occur in the
original TBox.

To estabish Theorem 21, we consider the uniform Σ-
interpolants of the TBoxes Tn ∪ T ′n. Let

TΣ,n = T −n ∪ {A v ¬K1 t ¬K(m)
2 }

where the concepts K1 and K
(m)
2 are shown in Figure 1

and m = 2n · 22n

. In the figure, we use biti(m) to denote
the i-th bit of the string obtained by concatenating all val-
ues of a binary counter that counts up to m (lowest bit first,
and with every counter value padded to log(m) bits using
trailing zeros). Note that ∀{r ∪ s}i.C is an abbreviation for

u
r1···ri∈{r,s}i

∀r1. · · · .∀ri.C. We show that TΣ,n is a uniform

Σ-interpolant of Tn ∪ T ′n, and that it is essentially of minimal
size. It is not hard to see that the models of TΣn are precisely
those interpretations that are not strongly n-violating.

Lemma 31. For all n ≥ 0,

1. TΣ,n is a uniform Σ-interpolant of Tn ∪ T ′n;

2. every uniform Σ-interpolant {> v CT } for Tn ∪ T ′n is
of size at least 2(2n·22n )−1.

Proof. For Point 1, let C v D be a Σ-inclusion and assume
first that TΣ,n 6|= C v D, i.e., there is a model I of TΣ,n and
a d ∈ (C u ¬D)I . Since T −n ⊆ TΣ,n and by Point (iv) of
Lemma 30, I can be extended to a model I ′ of Tn. Let J be
the unravelling of I ′ into a tree with root d. Obviously, J is
still a model of Tn and d ∈ (Cu¬D)J . Since I |= TΣ,n, I is
not strongly n-violating, and thus the same holds for J . By
Point (iii) of Lemma 30, J can be extended to a model J ′ of
Tn, and we have d ∈ (C u ¬D)J

′
, thus Tn ∪ T ′n 6|= C v D.

Conversely, let Tn ∪ T ′n 6|= C v D. Then there is a model
I of Tn ∪ T ′n and a d ∈ (C u¬D)I . By (ii), I is not strongly
n-violating, thus it is a model of TΣ,n and we get TΣ,n 6|=
C v D.



For Point 2, assume that there is a uniform Σ-interpolant
{> v CT } for Tn ∪ T ′n that is of size strictly smaller than
2(2n·22n )−2. Then the size of ¬CT is strictly smaller than
2(2n·22n )−1. By Theorem 29, to obtain a contradiction it
thus suffices to show that ¬CT is a witness concept for non-
conservativity of the extension of Tn with T ′n. First, since
Tn∪T ′n |= > v CT , ¬CT is unsatisfiable relative to Tn∪T ′n.
And second, there clearly is a model I of T −n that is not a
model of TΣ,n. Since {> v CT } and TΣ,n are both uniform
Σ-interpolants of Tn ∪ T ′n, they are equivalent and thus there
is a d ∈ ¬CIT . By Point (iv) of Lemma 30, ¬CT is satisfiable
relative to Tn. o


