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ABSTRACT. We prove that the complexity of the uniform first-order theory of ground tree rewrite
graphs is in ATIME(22poly(n)

, O(n)). Providing a matching lower bound, we show that there is a fixed
ground tree rewrite graph whose first-order theory is hard for ATIME(22poly(n)

, poly(n)) with respect
to logspace reductions. Finally, we prove that there is a fixed ground tree rewrite graph together
with a single unary predicate in form of a regular tree language such that the resulting structure has
a non-elementary first-order theory. For a long version of this paper with complete proofs see [11].

1 Introduction
Pushdown systems (PDS) are natural abstractions of sequential recursive programs. More-
over, the positive algorithmic properties of their transition graphs (pushdown graphs) make
them attractive for the verification of sequential recursive programs. In particular, the
model-checking problem for MSO (monadic second-order logic) and hence for most tem-
poral logics (e.g. LTL, CTL) is decidable over pushdown graphs and precise complexity
results are known (cf. [3, 14, 19, 20]). Ground tree rewrite systems [4, 8, 13] (GTRS), which
are also known as ground term rewrite systems, generalize PDS from strings to trees. While
the rules of a PDS rewrite a prefix of a given word, the rules of a GTRS rewrite a subtree of
a given tree. GTRS can model (on an abstract level) concurrent programs with the ability to
spawn new subthreads that are hierarchically structured, which in turn may terminate and
return some values to their parents.

The transition graphs of GTRS (ground tree rewrite graphs) do not share all the nice
algorithmic properties of pushdown graphs. For instance, the infinite grid is easily seen to
be a ground tree rewrite graph, which implies that MSO is undecidable over GTRS. This
holds even for most linear-time and branching-time temporal logics such as LTL and CTL
(cf. [13, 17]). On the positive side, reachability, recurrent reachability, fair termination and
certain fragments of LTL are decidable (cf. [4, 7, 13, 16, 17]). Moreover, first-order logic (FO)
and first-order logic with reachability predicates are decidable [8]. This implies that model-
checking of the CTL-fragment EF is decidable for GTRS; the precise complexity was recently
clarified in [10].

While model-checking FO with reachability predicates is clearly non-elementary over
GTRS (this holds already for the infinite binary tree, which is a pushdown graph [15]),
the precise complexity of model-checking FO over GTRS is open, although the problem
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2 THE FIRST-ORDER THEORY OF GROUND TREE REWRITE GRAPHS

is known to be decidable since more than 20 years [8]. The algorithm provided in [8] has
non-elementary complexity due to an exponential blowup when dealing with negation.

The main contribution of this paper solves this problem. We prove that (i) the first-
order theory of every ground tree rewrite graph belongs to ATIME(22poly(n)

, O(n)) (doubly
exponential alternating time, where the number of alternations is bounded linearly) and (ii)
that there exists a fixed ground tree rewrite graph with an ATIME(22poly(n)

, poly(n))-complete
first-order theory. The upper bound of ATIME(22poly(n)

, O(n)) even holds uniformly, which
means that the GTRS may be part of the input. The complexity class ATIME(22poly(n)

, poly(n))
appears also in other contexts. For instance, Presburger Arithmetic (the first-order theory of
(N, +)) is known to be complete for ATIME(22poly(n)

, poly(n)) [1].

The upper bound of ATIME(22poly(n)
, poly(n)) is shown by the method of Ferrante and

Rackoff [9]. Basically, the idea is to show the existence of a winning strategy of the dupli-
cator in an Ehrenfeucht-Fraı̈ssé game, where the duplicator chooses “small” elements. This
method is one of the main tools for proving upper bounds for FO-theories. We divide the
upper bound proof into two steps. In a first step, we reduce the FO-theory for a ground tree
rewrite graph to the FO-theory for a very simple word rewrite graph, where all word rewrite
rules replace one symbol by another symbol. The alphabet consists of all trees, whose size is
bounded by a singly exponential function in the input size (hence, the alphabet size is dou-
bly exponential in the input size; this is the reason for the doubly exponential time bound).
Basically, we obtain a word over this alphabet from a tree t by cutting off some prefix-closed
set C in the tree and taking the resulting sequence of trees. Intuitively, the set C consists of
all nodes u of t such that the subtree rooted in u is “large”. Here, “large” has to be replaced
by a concrete value m ∈N such that a sequence of n rewrite steps applied to a tree t cannot
touch a node from the upward-closed set C. Clearly, m depends on n. In our context, n will
be exponential in the input size and so will m. In a second step (see the long version [11]),
we provide an upper bound for the FO-theory of a word rewrite graph of the above form.

For the lower bound, we show in this extended abstract only hardness for 2NEXP (dou-
bly exponential nondeterministic time) using a (22n × 22n) tiling problem (completeness for
ATIME(22poly(n)

, poly(n)) is shown in the long version [10] using an alternating version of this
tiling problem). In this problem, we are given a word w of length n over some fixed set
of tiles, and it is asked, whether this word can be completed to a tiling of an array of size
(22n × 22n), where the word w is an initial part of the first row. There exists a fixed set of tiles,
for which this problem is 2NEXP-complete. From this fixed set of tiles, we construct a fixed
GTRS such that the following holds: From a given word w of length n over the tiles, one
can construct (in logspace) a first-order formula that evaluates to true in our fixed ground
tree rewrite graph if and only if the word w is a positive instance of the (22n × 22n) tiling
problem. Our construction is inspired by [10], where it is shown that the model-checking
problem for a fragment of the logic EF (consisting of those EF-formulas, where on every
path of the syntax tree at most one EF-operator occurs) over GTRS is PNEXP-complete.

We finally state that there exists a fixed ground tree rewrite graph together with a single
unary predicate in form of a regular tree language such that the resulting structure has
a non-elementary first-order theory. This result is shown by a reduction from first-order
satisfiability of finite binary words, which is non-elementary [15]. It should be noted that
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the first-order theory of a pushdown graph extended by regular unary predicates still has
an elementary first-order theory: it is an automatic structure of bounded degree, hence its
first-order theory belongs to 2EXPSPACE [12]. However, we remark that ground tree rewrite
graphs are not of bounded degree, hence the result from [12] for tree-automatic structures
of bounded degree (stating that their first-order theories belong to 3EXPTIME) cannot be
applied to obtain an elementary upper bound in our setting.

2 Preliminaries

Let N = {0, 1, . . .} be the set of non-negative integers. For i, j ∈ N we define the interval
[i, j] = {i, i + 1, . . . , j} and [j] = [0, j]. For an alphabet A (possibly infinite), we denote with
A+ = A∗ \ {ε} the set of all non-empty words over A. The length of the word w ∈ A∗ is
denoted by |w|. For B ⊆ A, we denote with |w|B the number of occurrences of symbols
from B in the word w. Let f : A → B be a mapping. For A′ ⊆ A, we denote with f �A′ :
A′ → B the restriction of f to A′. For sets A, B, C (where A and B may have a non-empty
intersection) and two mappings f : A → C and g : B → C, we say that f and g are
compatible if f �(A ∩ B) = g�(A ∩ B). Finally, for mappings f : A → C and g : B → C with
A ∩ B = ∅, we define f ] g : A ∪ B → C as the mapping with ( f ] g)(a) = f (a) for a ∈ A
and ( f ] g)(b) = g(b) for b ∈ B.

We will deal with alternating complexity classes, see [5] for more details. For func-
tions t(n) and a(n) with a(n) ≤ t(n) for all n ≥ 0 let ATIME(t(n), a(n)) denote the class
of all problems solvable on an alternating Turing-machine in time t(n) with at most a(n)
alternations. We note that ATIME(t(n), t(n)) is contained in DSPACE(t(n)) if t(n) ≥ n [5].

2.1 Labelled graphs and first-order logic

A (directed) graph is a pair (V,→), where V is a set of nodes and → ⊆ V × V is a binary
relation. A labelled graph is a tuple G = (V, Σ, { a−→| a ∈ Σ}), where V is a set of nodes, Σ is
a finite set of actions, and a−→ is a binary relation on V for all a ∈ Σ. We note that (labelled)
graphs may have infinitely many nodes. We also write v ∈ G for v ∈ V. For u, v ∈ V,
we define dG(u, v) as the length of a shortest undirected path between u and v in the graph
(V,

⋃
a∈Σ

a−→). For n ∈ N and u ∈ V let Sn(G, u) = {v ∈ V | dG(u, v) ≤ n} be the sphere
of radius n around u. Moreover, for u1, . . . , uk ∈ V let Sn(G, u1, . . . , uk) =

⋃
1≤i≤k Sn(G, ui).

We identify Sn(G, u1, . . . , uk) with the subgraph of G induced by the set Sn(G, u1, . . . , uk),
where in addition every ui (1 ≤ i ≤ k) is added as a constant. For two labelled graphs
G1 and G2 and nodes u1, . . . , uk ∈ G1, v1, . . . , vk ∈ G2, we will consider isomorphisms f :
Sn(G1, u1, . . . , uk) → Sn(G2, v1, . . . , vk). Such an isomorphism has to map ui to vi. We write
Sn(G1, u1, . . . , uk) ∼= Sn(G2, v1, . . . , vk) if there is an isomorphism f : Sn(G1, u1, . . . , uk) →
Sn(G2, v1, . . . , vk). The following lemma is straightforward.

LEMMA 1. Let G1, G2 be labelled graphs with the same set of actions. Let u ∈ Gk
1, v ∈

Gk
2, u ∈ G1, and v ∈ G2 such that u 6∈ S2n+1(G1, u) and v 6∈ S2n+1(G1, v). Finally, let

f : Sn(G1, u) → Sn(G2, v) and f ′ : Sn(G1, u) → Sn(G2, v) be isomorphisms. Then f ] f ′ :
Sn(G1, u, u)→ Sn(G2, v, v) is an isomorphism as well.
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Later, we have to lift a relation→ from a set A to a larger set. We will denote this new
relation again by→. Two constructions will be needed. Assume that→ is a binary relation
on a set A and let A ⊆ B. We lift → to the set B+ of non-empty words over B as follows:
For all u, v ∈ B+, we have u → v if and only if there are x, y ∈ B∗ and a, b ∈ A such that
a → b and u = xay, v = xby. Note that this implies |u| = |v|. The second construction lifts
→ ⊆ A× A from A to N× A as follows: For a, b ∈ A and m, n ∈ N let (m, a) → (n, b) if
and only if m = n and a → b. Note that (N× A,→) consists of ℵ0 many disjoint copies of
(A,→). Finally, for a labelled graph G = (V, Σ, { a−→| a ∈ Σ}), we define the labelled graph
G+ = (V+, Σ, { a−→| a ∈ Σ}). By the above definition, a−→ is lifted to a relation on V+.

We will consider first-order logic (FO) with equality over labelled graphs. Thus, for a
set Σ of actions, we have for each a ∈ Σ a binary relation symbol a(x, y) in our language.
The meaning of a(x, y) is of course x a−→ y. If ϕ(x1, . . . , xn) is a first-order formula with free
variables x1, . . . , xn, G = (V, Σ, { a−→| a ∈ Σ}) is a labelled graph, and v1, . . . , vn ∈ V, then
we write G |= ϕ(v1, . . . , vn) if ϕ evaluates to true in G, when variable xi is instantiated by vi
(1 ≤ i ≤ n). The first-order theory of a labelled transition graph G is the set of all first-order
sentences (i.e., first-order formulas without free variables) ϕ with G |= ϕ. The quantifier rank
of a first-order formula is the maximal number of nested quantifiers in ϕ.

2.2 Trees and ground tree rewrite systems

Let � denote the prefix order on N∗, i.e., x � y for x, y ∈ N∗ if there exists z ∈ N∗ with
y = xz. A set D ⊆ N∗ is called prefix-closed if for all x, y ∈ N∗, x � y ∈ D implies x ∈ D. A
ranked alphabet is a collection of finite and pairwise disjoint alphabets A = (Ai)i∈[k] for some
k ≥ 0 such that A0 6= ∅. For simplicity we identify A with

⋃
i∈[k] Ai. A ranked tree over the

ranked alphabet A is a mapping t : Dt → A, where (i) Dt is non-empty, finite, and prefix-
closed, and (ii) for each x ∈ Dt with t(x) ∈ Ai we have x1, . . . , xi ∈ Dt and xj 6∈ Dt for each
j > i. By TrA we denote the set of all ranked trees over the ranked alphabet A. Let t ∈ TrA.
Elements of Dt are called nodes. A leaf of t is a node x with t(x) ∈ A0. An internal node of t is
a node, which is not a leaf. We also refer to ε ∈ Dt as the root of t. Let size(t) = |Dt| be the
size of the tree t. It is easy to show that |{t ∈ TrA | size(t) ≤ n}| ≤ |A|n. For x ∈ [1, k]∗ we
define xDt = {xy ∈ [1, k]∗ | y ∈ Dt} and x−1Dt = {y ∈ [1, k]∗ | xy ∈ Dt}. By t↓x we denote
the subtree of t with root x; it is defined by Dt↓x = x−1Dt and t↓x(y) = t(xy). For a second
tree s ∈ TrA and x ∈ Dt we denote by t[x/s] the tree that is obtained by replacing t↓x in t
by s. More formally, Dt[x/s] = (Dt \ xDt↓x) ∪ xDs, t[x/s](y) = t(y) for y ∈ Dt \ xDt↓x , and
t[x/s](xz) = s(z) for z ∈ Ds.

Let C be a prefix-closed subset of Dt. We define the string of subtrees t \ C as follows:
If C = ∅, then t \ C = t. If C 6= ∅, then t \ C = t↓v1 · · · t↓vm , where v1, . . . , vm is a list of all
nodes from ((C ·N) ∩ Dt) \ C in lexicographic order. Intuitively, we remove from the tree t
the prefix-closed subset C and list all remaining maximal subtrees. For n ∈ N and a tree t
we define the prefix-closed subset up(t, n) ⊆ Dt as up(t, n) = {v ∈ Dt | size(t↓v) > n}. Note
that t \ up(t, n) is a list of all maximal subtrees of size at most n in t.

A ground tree rewrite system (GTRS) is tupleR = (A, Σ, R), where A is a ranked alphabet,
Σ is finite set of actions, and R ⊆ TrA × Σ × TrA is a finite set of rewrite rules. A rule
(s, a, t) is also written as s a7−→ t. The corresponding ground tree rewrite graph is G(R) =
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(TrA, Σ, { a−→| a ∈ Σ}), where for each a ∈ Σ, we have t a−→ t′ if and only if there exists a
rule (s a7−→ s′) ∈ R and x ∈ Dt such that t↓x = s and t′ = t[x/s′]. The following two lemmas
are not very hard to prove.

LEMMA 2. LetR = (A, Σ, R) be a GTRS and let r be the maximal size of a tree that appears
in R. Let s and t be ranked trees such that dG(R)(s, t) ≤ n. Then size(t) ≤ size(s) + r · n.

LEMMA 3. LetR = (A, Σ, R) be a GTRS and let r be the maximal size of a tree that appears
in R. Let t be a ranked tree, k ∈ N, and let C ⊆ up(t, r · k) be prefix-closed. Then we have
Sk(G(R), t) ∼= Sk(G(R)+, t \ C) (where G(R)+ is defined in Section 2.1).

3 An ATIME(22poly(n)
, O(n)) upper bound

In this section we will prove the following result:

THEOREM 4. The problem of checking G(R) |= ϕ for a given GTRS R = (A, Σ, R) and an
FO-sentence ϕ over the signature of G(R) belongs to the class ATIME(22poly(n)

, O(n)).

It suffices to prove Thm. 4 for the case that the ranked alphabet A contains a symbol of
rank at least two. A ground tree rewrite graph, where all symbols have rank at most 1 is in
fact a suffix rewrite graph, i.e., pushdown graph. But every pushdown graph is first-order
interpretable in a full |Γ|-ary tree Γ∗ (with Γ finite), where the defining first-order formulas
can be easily computed from the pushdown automaton. Finally, the first-order theory of a
full tree Γ∗ (with |Γ| ≥ 2) is complete for the class ATIME(2O(n), O(n)) [6, 18].

The proof of Thm. 4 will be divided into two steps. In a first step, we reduce the FO-
theory for a given ground tree rewrite graph to the FO-theory for a very simple word rewrite
graph of the form G+, where G is a finite labelled graph. Note that if V is the set of nodes of
G, then V+ is the set of nodes of G+. Moreover, every edge in G+ replaces a single symbol
in a word by another symbol. In our reduction, the size of the set V is doubly exponential in
the input size (which is the size of the input formula plus the size of the input GTRS). In a
second step, we solve the FO-theory of a simple word structure G+ on an alternating Turing
machine. More precisely, in the long version [11] of this paper, we prove:

THEOREM 5. There exists an alternating Turing-machine M, which accepts all pairs (G, ϕ),
where G is a finite labelled graph and ϕ is an FO-sentence over the signature of G with
G+ |= ϕ. Moreover, M runs in time O(n` · |ϕ|), where n is the number of nodes of G and `
is the quantifier rank of ϕ. Moreover, the number of alternations is bounded by O(`).

The proof of Thm. 5 uses an application of the method of Ferrante and Rackoff [9],
which is one of most successful techniques for proving upper bounds for the complexity of
first-order theories. In the rest of this section, we will derive Thm. 4 from Thm. 5.

Fix a GTRS R = (A, Σ, R). We restrict to the case A1 6= ∅ 6= A2; the general case (see
[11]) is technically more complicated, but the main idea is the same. Let G = G(R) and let

ϕ = Q`x` · · ·Q1x1 Q0x0 : ψ

be a FO-sentence of quantifier rank ` + 1, where Q0, . . . , Q` ∈ {∀, ∃} and ψ is quantifier-free.
We want to check, whether G |= ϕ. Let r be the maximal size of a tree that appears in R, and
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let p ≥ 2 the maximal rank of a symbol from A. Let us define the following subsets of TrA
(where 0 ≤ i ≤ `):

U = {t ∈ TrA | size(t) ≤ r · (p + 1) · 4` + 1},
Vi = {t ∈ TrA | size(t) ≤ r · 4i} ⊆ U and

Wi = {α(u1, . . . , uq) | q ≥ 1, α ∈ Aq, u1, . . . , uq ∈ Vi} \Vi ⊆ U.

Intuitions on these sets will be given below. Note that size(t) ≤ r · p · 4i + 1 for all t ∈ Wi.
We consider the set U as a finite alphabet and the sets Vi and Wi as subalphabets. Note
that |U| ≤ |A|r·(p+1)·4`+1. On the set (N× U+) ∪ U we define a labelled graph with the
set of actions Σ. Take an action σ ∈ Σ. By our lifting constructions from Section 2.1, the
binary relation σ−→ on TrA is implicitly lifted to a binary relation on Tr+A and N× Tr+A . Since
(N×U+) ∩U = ∅, σ−→ can be viewed as a binary relation on (N×U+) ∪U; simply take
the disjoint union of the relations on (N×U+) and U. We define the labelled graph

S1 = ((N×U+) ∪U, Σ, { σ−→| σ ∈ Σ}).

For 0 ≤ i ≤ ` and nodes si+1, . . . , s` ∈ (N×U+) ∪U define the following nodes sets in S1:

Li = (N×V∗i WiV∗i ) ∪Vi, Li(si+1, . . . , s`) = Li ∪ S3·4i(S1, si+1, . . . , s`).

Finally, define the FO-sentence (with relativized quantifiers)

ϕ1 = Q`x` ∈ L` Q`−1x`−1 ∈ L`−1(x`) · · · Q0x0 ∈ L0(x1, . . . , x`) : ψ (1)

over the signature of S1 Note that in ϕ1 the constraint set for a variable xi depends on the
values for the already quantified variables xi+1, . . . , x`. Based on the following lemma, we
show that G |= ϕ if and only if S1 |= ϕ1.

LEMMA 6. Assume that 0 ≤ i ≤ `,
• s = (si+1, . . . , s`) ∈ ((N × U+) ∪ U)`−i with sj ∈ Lj ∪ S3·4j(S1, sj+1, . . . , s`) for all

j ∈ [i + 1, `],
• t = (ti+1, . . . , t`) ∈ Tr`−i

A , and
• f : S4i+1(S1, s)→ S4i+1(G, t) is an isomorphism such that f �S4i+1(S1, sj) is the identity

for all j ∈ [i + 1, `] with tj ∈ Vi+1 or sj ∈ Vi+1.†

Then, the following holds:
(a) For all ti ∈ TrA there exists si ∈ Li ∪ S3·4i(S1, s) and an isomorphism g : S4i(S1, si, s)→

S4i(G, ti, t) such that f and g are compatible and g�S4i(S1, sj) is the identity for all
j ∈ [i, `] with tj ∈ Vi or sj ∈ Vi.

(b) For all si ∈ Li ∪ S3·4i(S1, s) there exists ti ∈ TrA and an isomorphism g : S4i(S1, si, s)→
S4i(G, ti, t) such that f and g are compatible and g�S4i(S1, sj) is the identity for all
j ∈ [i, `] with tj ∈ Vi or sj ∈ Vi.

Before we prove the lemma, let us provide some intuition. For case (a) we will basically
distinguish two cases: In case ti is “close” to some tree in the tuple t, then the simulating

†For i = `, f is the isomorphism between empty sets.
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si can safely be chosen as ti itself. In case ti is “far” to all trees in t, we distinguish two
cases: Either the size of ti exceeds r · 4i or not. If it does, then si will be chosen as a pair
from {n} × V∗i WiV∗i for some fresh number n that does not appear as a first component of
any element in t, and where the second component of si consists basically of ti \ C for some
prefix-closed subset C of ti’s nodes. Intuitively, this means that si does not have to be “too
big” in order to simulate ti: only “small” subtrees of ti have to be accounted for. Lemma 3
will be crucial. In case |ti| ≤ r · 4i, we can prove that we can set si = ti ∈ Vi. For case (b) we
can proceed similarly, but the main crux is that for each element si ∈ N× V∗i WiV∗i we can
build a tree ti ∈ TrA such that the spheres of radius 4i around si and ti are isomorphic.

PROOF (of Lemma 6). Let f : S4i+1(S1, s) → S4i+1(G, t) be an isomorphism such that
f �S4i+1(S1, sj) is the identity for all i + 1 ≤ j ≤ ` with tj ∈ Vi+1 or sj ∈ Vi+1. Let us
first prove statement (a). Let ti ∈ TrA. We distinguish two cases:

Case 1. ti ∈ S3·4i(G, t). Thus, ti belongs to the range of the isomorphism f . Moreover,
S4i(G, ti, t) ⊆ S4i+1(G, t). Then, we set si = f−1(ti) ∈ S3·4i(S1, s). We define g as the restric-
tion of f to the set S4i(S1, si, s) ⊆ S4i+1(S1, s). Now, assume that ti ∈ Vi, i.e., size(ti) ≤ r · 4i.
We have to show that g�S4i(S1, si) is the identity. Let tj (j > i) be such that dG(ti, tj) ≤ 3 · 4i.
Lemma 2 implies size(tj) ≤ size(ti) + r · 3 · 4i ≤ r · 4i + r · 3 · 4i = r · 4i+1. Hence, tj ∈ Vi+1
and f �S4i+1(S1, sj) is the identity by assumption. Since S4i(S1, si) ⊆ S4i+1(S1, sj), it follows
that g�S4i(S1, si) is the identity too. If si ∈ Vi, then we can argue analogously.

Case 2. ti 6∈ S3·4i(G, t). Thus, ti 6∈ S2·4i+1(G, t). We will find si ∈ Li and an isomorphism
f ′ : S4i(S1, si) → S4i(G, ti) such that si 6∈ S3·4i(S1, s). Then, Lemma 1 implies that g =
( f �S4i(S1, s)) ] f ′ is an isomorphism from S4i(S1, si, s) to S4i(G, ti, t), which is compatible
with f . Moreover, we will show that if ti ∈ Vi or si ∈ Vi, then f ′ is the identity. In order to
define si, let ti \ up(ti, r · 4i) = u1 · · · um. Thus u1, . . . , um ∈ Vi. Choose a number n ∈N such
that n does not appear as a first component of a pair from {si+1, . . . , s`} ∩ (N×U+).

Case 2.1. size(ti) > r · 4i. Then there exists a symbol α ∈ A of rank q ≥ 1, an index 1 ≤
j ≤ m− q + 1, and a prefix-closed subset C ⊆ up(ti, r · 4i) such that α(uj, . . . , uj+q−1) ∈ Wi
and ti \ C = u1u2 · · · uj−1α(uj, . . . , uj+q−1)uj+q · · · um. We have ti \ C ∈ V∗i WiV∗i . Let si =
(n, ti \ C) ∈ Li. Due to the choice of n, we have si 6∈ Sρ(S1, s) for all ρ. Moreover, Lemma 2
and the definition of the set U implies that the sphere of radius 4i around every tree from
u1, u2, . . . , uj−1, α(uj, . . . , uj+q−1), uj+q, . . . , um is completely contained in U. With Lemma 3
(setting k = 4i), we get S4i(S1, si) ∼= S4i(G, ti) via an isomorphism f ′. Finally, size(ti) > r · 4i

and si 6∈ U. Hence, neither si ∈ Vi nor ti ∈ Vi.

Case 2.2. size(ti) ≤ r · 4i. Hence, m = 1 and ti = u1. We set si = ti = u1 ∈ Vi ⊆ Li. Thus
size(si) = size(ti) ≤ r · 4i. We have S4i(G, ti) ⊆ U, which implies S4i(S1, si) = S4i(G, ti). As-
sume that si ∈ S3·4i(S1, s). We will deduce a contradiction. Let j > i such that dS1(si, sj) ≤
3 · 4i. Since si ∈ U, we must have sj ∈ U as well (there is no path in S1 between the sets
U and N× U+). Moreover, Lemma 2 implies size(sj) ≤ size(si) + r · 3 · 4i ≤ r · 4i+1, i.e.,
sj ∈ Vi+1. Hence, f �S4i+1(S1, sj) is the identity and ti ∈ S3·4i(G, tj), a contradiction. We can
finally choose for f ′ the identity isomorphism on S4i(S1, si) = S4i(G, ti). This proves (a).

Let us now prove (b). Let si ∈ Li ∪ S3·4i(S1, s). Again, we distinguish two cases.
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Case 1. si ∈ S3·4i(S1, s). This implies S4i(S1, si, s) ⊆ S4i+1(S1, s). We set ti = f (si) ∈
S3·4i(G, t). We can conclude as in Case 1 for point (a) above.

Case 2. si 6∈ S3·4i(S1, s). Hence, si ∈ Li. We will find ti ∈ TrA and an isomorphism
f ′ : S4i(S1, si) → S4i(G, ti) such that ti 6∈ S3·4i(G, t). Then, Lemma 1 implies that the map-
ping g = ( f �S4i(S1, s)) ] f ′ is an isomorphism from S4i(S1, si, s) to S4i(G, ti, t), which is
compatible with f . Moreover, we will show that if ti ∈ Vi or si ∈ Vi, then f ′ is the identity.

Case 2.1. si ∈ Vi ⊆ TrA. We set ti = si. Hence, size(ti) ≤ r · 4i and one can argue analogously
to Case 2.2 in the proof for statement (a).

Case 2.2. si ∈ N× V∗i WiV∗i . Let si = (n, w) where w ∈ V∗i WiV∗i . Hence, w = u1 · · · um
with u1, . . . , um ∈ Vi ∪Wi. Moreover, there is a unique index j such that uj ∈ Wi. Assume
that uj = α(u′1, . . . , u′q) with α ∈ A and q ≥ 1. By the definition of the set Wi we have
u′1, . . . , u′q ∈ Vi. Since we assume that A1 6= ∅ 6= A2, we can choose for ti a tree with the
following properties:
• ti \ up(ti, r · 4i) = u1 · · · uj−1u′1 · · · u′quj+1 · · · um. For this, we connect all trees u1, . . . , um

to one tree using a chain of binary symbols, starting from uj ∈Wi.
• ti 6∈ S3·4i(G, t). This can be enforced by adding a long enough chain of unary symbols

to the root.
With Lemma 3, the first point implies S4i(S1, si) ∼= S4i(G, ti). Moreover, since ti contains a
subtree from Wi, we have ti 6∈ Vi.

Using the classical back-and-forth argument from the proof of the Ehrenfeucht-Fraı̈ssé-
Theorem, we can deduce the following lemma from Lemma 6.

LEMMA 7. Assume that −1 ≤ i ≤ `,
• s = (si+1, . . . , s`) ∈ ((N×U+)∪U)`−i with sj ∈ Lj ∪ S3·4j(sj+1, . . . , s`) for j ∈ [i + 1, `],
• t = (ti+1, . . . , t`) ∈ Tr`−i

A , and
• f : S4i+1(S1, s)→ S4i+1(G, t) is an isomorphism such that f �S4i+1(S1, sj) is the identity

for all j ∈ [i + 1, `] with tj ∈ Vi+1 or sj ∈ Vi+1.
Then, for every quantifier-free FO-formula ψ over the signature of G and all Q0, . . . , Qi ∈
{∀, ∃} we have: S1 |= Qixi ∈ Li(s) · · ·Q0x0 ∈ L0(x1, . . . , xi, s) : ψ(x0, . . . , xi, s) if and only if
G |= Qixi · · ·Q0x0 : ψ(x0, . . . , xi, t).

Setting i = ` in Lemma 7, it follows G |= ϕ if and only if S1 |= ϕ1, where ϕ1 is from
(1). It now requires rather easy but technical arguments to compute a finite labelled graph
G′ with doubly exponentially (in our input size) many nodes and a first-order sentence ϕ′

(of polynomial size and quantifier rank O(`)) such that S1 |= ϕ1 if and only if (G′)+ |= ϕ′.
To get rid of the direct product with N in the node set of S1, we use the simple fact that
for an arbitrary graph (V,→), ((V ∪ {$})+ \ {$}+,→) (where $ 6∈ V is a new symbol) is
isomorphic to (N× V+,→); here we use the lifting constructions from Section 2.1. Then,
Thm. 4 can be easily derived from Thm. 5. We refer to [11] for details.

4 A lower bound
In the long version of this paper [11], we prove the following lower bound:
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THEOREM 8. There is a fixed GTRS R such that the first-order theory of G(R) is hard for
ATIME(22poly(n)

, poly(n)) under logspace reductions.

In this section, we will sketch a proof for the slightly weaker lower bound of 2NEXP.
This will be achieved using a tiling problem. Tiling problems turned out to be an important
tool for proving lower bounds in logic, see e.g. [2]. So, let us start with a few definitions
concerning tiling systems. A tiling system is a tuple S = (Θ, H, V), where Θ is a finite set of
tile types, H ⊆ Θ×Θ is a horizontal matching relation, and V ⊆ Θ×Θ is a vertical matching
relation. A mapping σ : [0, k − 1]× [0, k − 1] → Θ (where k ≥ 0) is a k-solution for S if for
all x, y ∈ [0, k − 1] the following holds: (i) if x < k − 1, σ(x, y) = θ, and σ(x + 1, y) = θ′,
then (θ, θ′) ∈ H, and (ii) if y < k − 1, σ(x, y) = θ, and σ(x, y + 1) = θ′, then (θ, θ′) ∈ V.
Let Solk(S) denote the set of all k-solutions for S. Let w = θ0 · · · θn−1 ∈ Θn be a word and
let k ≥ n. With Solk(S, w) we denote the set of all σ ∈ Solk(S) such that σ(x, 0) = θx for all
x ∈ [0, n− 1]. For a fixed tiling system S, its (22n × 22n) tiling problem asks for a given word
w ∈ Θn, whether Sol22n (S, w) 6= ∅ holds. Using the standard encoding of Turing machine
computations by tilings, it follows easily that there exists a fixed tiling system S0 whose
(22n × 22n) tiling problem is 2NEXP-hard under logspace reductions; see also [2]. Let us fix
such a tiling system S0 = (Θ0, H0, V0) for the rest of the section.

We now define a fixed GTRS R0 = (A, Σ, R) and prove that the first-order theory of
G(R0) is 2NEXP-hard under logspace reductions. We define A0 = {♥, 1, 1†, 1‡, O, O†, O‡},
A1 = Θ0, A2 = {•}, and Σ = {`, r, h, u, m†, m‡, } ∪ Θ0 ∪ A0. The set of rewrite rules R is
given as follows:

X X7−→ X for all X ∈ A0 θ(X‡)
θ7−→ θ(X‡) for all θ ∈ Θ0, X ∈ {1, O}

X
m†7−→ X† for all X ∈ {1, O} •(♥,♥) u7−→ ♥

X†
m‡7−→ X‡ for all X ∈ {1, O} •(♥, X‡)

r7−→ X‡ for all X ∈ {1, O}

X†
h7−→ ♥ for all X ∈ {1, O} •(X‡,♥) `7−→ X‡ for all X ∈ {1, O}

For the rest of this section we fix G0 = G(R0) and an input w = θ0 · · · θn−1 ∈ Θn
0 of the

(22n × 22n) tiling problem for S0. Our goal is to compute in logspace from w a first-order
sentence ϕ over Σ such that Sol22n (S0, w) 6= ∅ if and only if G0 |= ϕ. We will need the
following lemma, which goes back to the work of Fischer and Rabin.

LEMMA 9. Given a subset of actions Γ ⊆ Σ and the binary representation of j ∈ [0, 2n+1], one
can compute in logspace a first-order formula Γj(x, y) such that for all t, t′ ∈ TrA we have
G0 |= Γj(t, t′) if and only if there is a path of length j from t to t′ in the graph (TrA,

⋃
γ∈Γ

γ−→).

If Γ = {γ}, we write γj(x, y) for the formula Γj(x, y). For Γ1, . . . , Γk ⊆ Σ and j1, . . . , jk ∈
N, we write [Γj1

1 · · · Γ
jk
k ](x, y) for ∃x0, . . . , xk :

(
x0 = x ∧ xk = y ∧∧k

i=1 Γji
i (xi−1, xi)

)
.

A tree t ∈ TrA is a tile tree if t = θ(t′) for some θ ∈ Θ0 and t′ ∈ Tr{O,1,•} such that
{1, 2}n+1 is the set of leaves of t′. Fix a tile tree t = θ(t′). Then t has precisely 2n+1 = 2 · 2n

leaves. For a leaf λ of t let lex(λ) ∈ [0, 2n+1 − 1] be the position of λ among all leaves w.r.t.
the lexicographic order (starting with 0). The intention is that t represents the θ-labeled grid
element (M, N) ∈ [0, 22n − 1]2, where each leaf λ that is a left (resp. right) child represents
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the b lex(λ)
2 cth least significant bit of the 2n-bit binary presentation of M (resp. N): In case λ

is a left child, then t(λ) = O (resp. t(λ) = 1) if and only if the b lex(λ)
2 cth least significant bit

of M equals 0 (resp. 1) and analogously if λ is a right child this corresponds to N. We say a
leaf λ of a tree t is marked (resp. selected) if t(λ) = X† (resp. t(λ) = X‡) for some X ∈ {O, 1}.
A marked tile tree is a tree that can be obtained from a tile tree t by marking every leaf of t.
For the rest of this section, let D = 2n+1 − (n + 2).

LEMMA 10. One can compute in logspace a first-order formula marked(x) such that for
every tree t ∈ TrA\{O‡,1‡,♥} with precisely 2n+1 marked leaves we have: G0 |= marked(t) if
and only if the marked leaves of t are the leaves of some (unique) marked tile subtree of t.

PROOF. The formula marked(x) states that once we select any of the 2n+1 marked leaves,
we can execute from the resulting tree some sequence in the language h2n+1−1uD{`, r}n+1Θ0.
Formally, we define marked(x) = ∀y(m‡(x, y) → ∃z : [h2n+1−1uD{`, r}n+1Θ0](y, z)). Let us
explain the intuition behind this. Assume that we select exactly one of the 2n+1 marked
leaves of t, and let t′ be the resulting tree. First, note that by executing the sequence h2n+1−1

from t′, we replace each of the marked leaves of t′ with the symbol ♥, reaching a tree t′′.
Second, by executing uD from t′′ we reach (in case t contains a marked tile subtree) a tree
t′′′, which has the form of a chain where the lowest leaf is labeled with O‡ or 1‡ and all other
leaves are labeled with♥. Next, we can “shrink” the chain t′′′ to the tree θ(X‡) by executing
some sequence from {`, r}n+1. To θ(X‡) we can finally apply the action θ ∈ Θ0 ⊆ Σ.

A grid tree is a tree t for which every leaf is inside a subtree of t that is a tile tree. The
following lemma can be proven similarly as Lemma 10.

LEMMA 11. One can compute in logspace a first-order formula grid(x) such that for all
t ∈ TrA we have G0 |= grid(t) if and only if t is a grid tree.

A marked grid tree is a tree that can be obtained from a grid tree t by replacing exactly
one tile subtree of t by some marked tile tree. A selected grid tree is a tree that can be obtained
from a marked grid tree t by selecting precisely one marked leaf of t. For each i ∈ [1, n + 1]
we define the logspace computable FO-formula

biti(x) = ∃y : [h2n+1−1uD{`, r}i−1r](x, y).

It is not hard to see that for every selected grid tree t with selected leaf λ we have that
the ith least significant bit of lex(λ) is 1 if and only if G0 |= biti(t). Next, compute for
each ◦ ∈ {<, =} in logspace a first-order formula ϕ◦(x, y) such that for every two selected
grid trees t1 and t2 with selected leaves λ1 and λ2 we have G0 |= ϕ◦(t1, t2) if and only if
lex(λ1) ◦ lex(λ2). We define

ϕ<(x, y) =
∨

j∈[1,n+1]

(
(¬bitj(x) ∧ bitj(y)) ∧

∧
1≤i<j

(biti(x)↔ biti(y))
)

and ϕ=(x, y) = ¬ϕ<(x, y) ∧ ¬ϕ<(y, x). Recall that the marked tile subtree of a marked grid
tree t represents a θ-labeled grid element (M, N) ∈ [0, 22n − 1]2 for some θ ∈ Θ0. Let us
define M(t) = M, N(t) = N, and Θ0(t) = θ.
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LEMMA 12. One can compute in logspace first-order formulas ϕθ(x), ϕi
M(x, x′), ϕi

N(x, x′),
where θ ∈ Θ0 and i ∈ {0, 1} such that for all marked grid trees t and t′ the following holds:

(1) G0 |= ϕθ(t) if and only if Θ0(t) = θ and
(2) G0 |= ϕi

Y(t, t′) (where Y ∈ {M, N}) if and only if Y(t) + i = Y(t′)

PROOF. For point (1), let ϕθ(x) = ∃y : [m‡h2n+1−1uD{`, r}n+1θ](x, y). For point (2),
we only construct the formula ϕ1

M(x, x′). For a selected grid tree z, the formula l(z) =
∃u, v(h(z, u) ∧ `(u, v)) expresses that the selected leaf is a left child. Then define

ϕ1
M(x, y) = ∃x′, y′(m‡(x, x′)∧m‡(y, y′)∧ ϕ=(x′, y′)∧O‡(x′, x′)∧ 1‡(y′, y′)∧ l(x′)∧ψ1 ∧ψ2).

Thus, we select a position p ∈ [0, 2n − 1] that is set to 0 (resp. 1) in the binary representation
of M(t) (resp. M(t′)). The formula ψ1(x, y, x′, y′) is the conjunction

∀z((m‡(x, z)∧ ϕ<(z, x′)∧ l(z))→ 1‡(z, z)) ∧ ∀z((m‡(y, z)∧ ϕ<(z, y′)∧ l(z))→ O‡(z, z)).

It expresses that each bit at some position that is smaller than p is set to 1 (resp. 0) in M(t)
(resp. M(t′)). Finally, the formula ψ2(x, y, x′, y′) is

∀u, v ((m‡(x, u) ∧m‡(y, v) ∧ ϕ=(u, v) ∧ ϕ<(x′, u) ∧ l(u))→ (1‡(u, u)↔ 1‡(v, v))).

It expresses that the binary representations of M(t) and M(t′) agree on each position > p.

Recall that w = θ0 · · · θn−1. We define the formula sol(x) as the conjunction of grid(x)
and the following formulas, where mark(z1, z2) abbreviates m2n+1

† (z1, z2) ∧marked(z2):
• Grid element (j, 0) is labeled by θj for all j ∈ [0, n− 1]:

∃y0, . . . , yn−1(
∧

j∈[0,n−1]

(mark(x, yj) ∧ ϕθj(yj)) ∧ ∀z(m‡(y0, z)→ O‡(z, z)) ∧

∧
j∈[1,n−1]

(ϕ1
M(yj−1, yj) ∧ ϕ0

N(yj−1, yj)))

• If we mark a tile subtree of x that corresponds to the grid element (M, N) and M <
22n − 1, a tile subtree of x that corresponds to (M + 1, N) satisfies the horizontal match-
ing relation:

∀y((mark(x, y) ∧ ∃z(m‡(y, z) ∧O‡(z, z) ∧ l(z)))→
∃y′(mark(x, y′) ∧ ϕ1

M(y, y′) ∧ ϕ0
N(y, y′) ∧

∨
(θ,θ′)∈H0

(ϕθ(y) ∧ ϕθ′(y′))))

• Analogously, we express that the vertical matching relation is respected and for each
grid element there is at most one tile type.

It follows by construction that Sol22n (S0, w) 6= ∅ if and only if G0 |= ∃x : sol(x). Thus, the
first-order theory of G0 is indeed 2NEXP-hard under logspace reductions.

We conclude with a non-elementary lower bound for ground tree rewrite graphs with
an additional unary predicate. For a GTRS R = (A, Σ, R) and a set of trees L ⊆ TrA, we
denote with (G(R), L) the structure that results from the labelled graph G(R) by adding the
set L as an additional unary predicate. Note that if L is a regular set of trees, then (G(R), L)
is a tree-automatic structure, and hence has a decidable first-order theory. On the other
hand, a reduction from satisfiability for first-order logic over binary words (see [11]) shows:
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THEOREM 13. There exists a fixed GTRS R1 = (A, Σ, R) and a fixed regular tree language
L ⊆ TrA such that the first-order theory of (G(R1), L) is non-elementary.
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