
The Modular Structure of an Ontology:
Atomic Decomposition and Module Count

Chiara DEL VESCOVO aBijan PARSIA a Uli SATTLER a and Thomas SCHNEIDER b

a University of Manchester, UK {delvescc,bparsia,sattler}@cs.man.ac.uk
b Universität Bremen, Germany tschneider@informatik.uni-bremen.de

Abstract Extracting a subset of a given ontology that captures all the ontology’s
knowledge about a specified set of terms is a well-understood task. This task can be
based, for instance, on locality-based modules. However, a single module does not
allow us to understand neither topicality, connectedness, structure, or superfluous
parts of an ontology, nor agreement between actual and intended modeling.

The strong logical properties of locality-based modules suggest that the family
of all such modules of an ontology can support comprehension of the ontology
as a whole. However, extracting that family is not feasible, since the number of
locality-based modules of an ontology can be exponential w.r.t. its size.

In this paper we report on a new approach that enables us to efficiently extract
a polynomial representation of the family of all locality-based modules of an onto-
logy. We also describe the fundamental algorithm to pursue this task, and report on
experiments carried out and results obtained.

Keywords. locality-based modules, decomposition, ontology comprehension

1. Introduction

Why modularize an ontology? Modern ontologies can get quite large as well as com-
plex, which poses challenges to tools and users when it comes to processing, editing,
analyzing them, or reusing their parts. This suggests that exploiting modularity of onto-
logies might be fruitful, and research into this topic has been an active area for ontology
engineering. Much recent effort has gone into developing logically sensible modules,
that is, parts of an ontology which offer strong logical guarantees for intuitive modu-
lar properties. One such guarantee is called coverage. It means that a module captures
all the ontology’s knowledge about a given set of terms (signature)—a kind of depend-
ency isolation. A module in this sense is a subset of an ontology’s axioms that provides
coverage for a signature, and each possible signature determines such a module. Cov-
erage is provided by modules based on conservative extensions, but also by efficiently
computable approximations, such as modules based on syntactic locality [5].

We call the task of extracting one module given a signature GetOne; it is well under-
stood and starting to be deployed in standard ontology development environments, such
as Protégé 4,1 and online.2 Locality-based modules have already been effectively used
for ontology reuse [14] and as a subservice for incremental reasoning [4].

1http://www.co-ode.org/downloads/protege-x
2http://owl.cs.manchester.ac.uk/modularity

Despite its usefulness, the service GetOne does not provide information about the
ontology as a whole. It cannot help us to exploit an ontology as a one-piece of software,
and understand its topicality, connectedness, structure, superfluous parts, or agreement
between actual and intended modeling. To gain that understanding, we aim at revealing
an ontology’s modular structure, a task that we call GetStruct. That structure is determined
by the set of all modules and their inter-relations, or at least a suitable subset thereof.

From a naïve point of view, a necessary step to achieve GetStruct is GetAll, the task of
extracting all modules. This is the case as long as we have not specified what a “suitable
subset of all modules” is, or do not know how to obtain such a subset efficiently. It might
well be that GetAll is feasible and yields a small enough structure, in which case it would
solve GetStruct. While GetOne is well-understood and often computationally cheap, GetAll
has hardly been examined for module notions with strong logical guarantees, with the
works described in [7, 8] being promising exceptions. GetOne also requires the user to
know in advance the right signature to input to the extractor: we call this a seed signature
for the module and note that each module can have several such seed signatures. Since
there are non-obvious relations between the final signature of a module and its seed
signature, users are often unsure how to generate a proper request and confused by the
results. If they had access to the overall modular structure of the ontology determined by
GetStruct, they could use it to guide their extraction choices.

While GetAll seems to be a necessary step to perform GetStruct, we note that in the
worst case, the number of all modules of an ontology is exponential in the number of
terms or axioms in the ontology, in fact in the minimum of these numbers. In [20], we
have shown cases of (artificial) ontologies with exponentially many modules w.r.t. their
sizes, and obtained empirical results confirming that in general ontologies have too many
modules to extract all of them, even with an optimized extraction methodology. Then,
some other form of analysis would have to be designed.

In this paper, we report on new insights regarding the modular structure of onto-
logies which leads to a new, polynomial algorithm for GetStruct (provided that module
extraction is polynomial) that generates a linear (in the size of the ontology), partially
ordered set of modules and atoms which succinctly represent all (potentially exponen-
tially many) modules of an ontology. We use this decomposition to give an estimate of
the number of modules of an ontology, and compare these numbers with the real number
of modules (when possible), obtained following the same approach as in [20]. For full
proofs and more details, the reader is referred to [9].

Related work. One solution to GetStruct is described in [7, 6] via partitions related to
E-connections. When this technique succeeds, it divides an ontology into three kinds
of disjoint modules: (A) those which import vocabulary from others, (B) those whose
vocabulary is imported, and (C) isolated parts. In experiments and user experience, the
numbers of parts extracted were quite low and often corresponded usefully to user un-
derstanding. For instance, the tutorial ontology Koala, consisting of 42 logical axioms,
is partitioned into one A-module about animals and three B-modules about genders, de-
grees and habitats. It has also been shown in [7] that certain combinations of these parts
provide coverage. Partitions can be computed efficiently.

Ontology partitions based on E-connections require rather strong conditions to en-
sure modular separation. However, it has been observed that ontologies with fairly elab-
orate modular structure have impoverished E-connections based structures. For the onto-

logy Periodic,3 for example, such a combination is still the whole ontology, even though
Periodic seems well structured. Furthermore, the robustness properties of the parts (e.g.,
under vocabulary extension [17]) are not as well-understood as those of locality-based
modules. Finally, there is only a preliminary implementation of the partition algorithm.

Among the other approaches to GetStruct we find the tool ModOnto [2], which aims
at providing support for working with ontology modules, that borrows intuitions from
software modules. This approach is logic-based and a-posteriori but, to the best of our
knowledge, it has not been examined whether such modules provide coverage. Another
procedure to partition an ontology is described in [22]. However, this method only takes
the concept hierarchy into account, therefore it cannot guarantee to provide coverage.

In [15], it was shown how to decompose the signature of an ontology to obtain
the dependencies between its terms. In contrast to the previous ones, this approach is
syntax-independent. While gaining information about term dependencies is one goal of
our approach, we are also interested in the modules of the ontology.

Among the a-posteriori approaches to GetOne, only some provide logical guarantees.
Those are usually restricted to “small” DLs where deciding conservative extensions—
which underly coverage—is tractable. Examples are the module extraction feature of
CEL [25] and the system MEX [16]. However, we want to cover DLs up to OWL 2.

There are several logic-based approaches to modularity that function a-priori, i.e.,
the modules of an ontology have to be specified in advance using features that are ad-
ded to the underlying (description) logic and whose semantics is well-defined. These ap-
proaches often support distributed reasoning; they include C-OWL [24], E-connections
[19], Distributed Description Logics [3], and Package-Based Description Logics [1].
Even in these cases, however, we may want to understand the modular structure of the
syntactically delineated parts (modules), because decisions about modular structure have
to be taken early in the modeling which may enshrine misunderstandings. Currently
there is no requirement that these modules provide coverage, so GetStruct can be useful
to verify the imposed structure throughout the development process. Examples were re-
ported in [7], where user attempts to capture the modular structure of their ontology by
separating the axioms into separate files were totally at odds with the analyzed structure.

2. Preliminaries

Underlying description logics. We assume the reader to be familiar with OWL and the
underlying description logics (DLs) [12, 11]. We consider an ontology to be a finite set
of axioms, which are of the form C v D or C ≡ D, where C,D are (possibly complex)
concepts, or R v S, where R,S are (possibly inverse) roles. Since we are interested in
the logical part of an ontology, we disregard non-logical axioms such as annotation and
declaration axioms. However, it is easy to add those in retrospect once the logical part of
a module has been extracted. This is included in the publicly available implementation
of locality-based module extraction in the OWL API.4

Let NC be a set of concept names, and NR a set of role names. A signature Σ

is a set of terms, i.e., Σ ⊆ NC ∪ NR. We can think of a signature as specifying a
topic of interest. Axioms using only terms from Σ are “on-topic”. For instance, if Σ =
{Animal,Duck,Grass,eats}, then Duckv ∃eats.Grass is on-topic, while Duckv Bird is
off-topic. Given an ontology O (axiom α), its signature is denoted with Õ (α̃).

3http://www.cs.man.ac.uk/~stevensr/ontology/periodic.zip
4http://owlapi.sourceforge.net

Conservative extensions and locality. Conservative extensions (CEs) capture the above
described encapsulation of knowledge. They are defined in [5] as follows.

Definition 2.1. Let L be a DL,M⊆O be L-ontologies, and Σ be a signature.

1. O is a deductive Σ-conservative extension (Σ-dCE) ofM w.r.t. L if for all axioms
α over L with α̃ ⊆ Σ, it holds thatM |= α if and only if O |= α .

2. M is a dCE-based module for Σ of O if O is a Σ-dCE ofM w.r.t. L.

Unfortunately, CEs are hard or even impossible to decide for many DLs, see [10, 17].
Therefore, approximations have been devised. We focus on syntactic locality [21] (here
for short: locality). Locality-based modules can be efficiently computed and provide cov-
erage, that is, they capture all the relevant entailments, but not necessarily only those
[5, 13]. Although locality is defined for the DL SHIQ, an extension to SHOIQ(D)
is straightforward [5, 13] and has been implemented in the OWL API. For the sake of
completeness, we define locality and locality-based modules below. However, the atomic
decomposition introduced later does not rely on locality because it will work for almost
every notion of a “module for a signature”.

Definition 2.2. An axiom α is called syntactically ⊥-local (>-local) w.r.t. signature Σ if
it is of the form C⊥ vC, CvC>, R⊥ v R (Rv R>), or Trans(R⊥) (Trans(R>)), where C
is an arbitrary concept, R is an arbitrary role name, R⊥ /∈ Σ (R> /∈ Σ), and C⊥ and C>

are from Bot(Σ) and Top(Σ) as defined in Table (a) (Table (b)) below.

(a) ⊥-Locality Let A⊥,R⊥ /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N\{0}

Bot(Σ) ::= A⊥ | ⊥ | ¬C> |CuC⊥ |C⊥uC | ∃R.C⊥ |>n̄R.C⊥ | ∃R⊥.C |>n̄R⊥.C

Top(Σ) ::=> | ¬C⊥ |C>1 uC>2 |>0R.C

(b) >-Locality Let A>,R> /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N\{0}

Bot(Σ) ::=⊥ | ¬C> |CuC⊥ |C⊥uC | ∃R.C⊥ |>n̄R.C⊥

Top(Σ) ::= A> | > | ¬C⊥ |C>1 uC>2 | ∃R>.C> |>n̄R>.C> |>0R.C

It has been shown in [5] thatM⊆O and all axioms in O\M being ⊥-local (or all
axioms being >-local) w.r.t. Σ∪ M̃ is sufficient forO to be a Σ-dCE ofM. The converse
does not hold: e.g., the axiom A≡ B is neither⊥- nor>-local w.r.t. {A}, but the ontology
{A≡ B} is an {A}-dCE of the empty ontology.

A locality-based module is computed as follows [5]: given an ontology O, a seed
signature Σ ⊆ Õ and an empty set M, each axiom α ∈ O is tested whether it is local
with respect to Σ; if not, α is added toM, the signature Σ is extended with all terms in
α̃ , and the test is re-run against the extended signature untilM is stable.M is denoted
as >-mod(Σ,O) or ⊥-mod(Σ,O), respectively.

Sometimes the resulting modules are quite large; for example, given the ontology
O= {Ci v D | 1≤ i≤ n}, the module>-mod({D},O) contains the whole ontology. In or-
der to make modules smaller, we will nest alternatively⊥- and>-module extraction. The
resulting sets are again dCE-based modules, denoted ⊥>-mod(Σ,O) or >⊥-mod(Σ,O),
depending on the type of the first extraction [21]. We can keep nesting the extraction
until a fixpoint is reached. The number of steps needed to reach it can be at most as big
as the number of axioms in O [21].

The fixpoint, denoted as >⊥∗-mod(Σ,O), does not depend on the type of the first
extraction [9]. In contrast,>- and⊥-modules do not have to be equal—in fact, the former
are usually larger than the latter. Through the nesting, >⊥∗-mod(Σ,O) is always con-
tained in >-mod(Σ,O) and ⊥-mod(Σ,O).

From now on, we will denote by x-mod(Σ,O) the x-moduleM extracted from an on-
tology O by using the notion of x-locality w.r.t. Σ, where x ∈ {>,⊥,⊥>,>⊥, . . . ,>⊥∗},
including any alternate nesting of these symbols. Finally, we want to point out that, for
M= x-mod(Σ,O), neither Σ⊆ M̃ nor M̃ ⊆ Σ needs to hold.

Properties of locality-based modules. We list in this paragraph the properties of
locality-based modules of interest for this paper. Proofs can be found in the papers cited.

Proposition 2.3. Let O be an ontology, Σ be a signature, x ∈ {⊥,>,>⊥∗}; let M =

x-mod(Σ,O) and Σ′ be a signature with Σ⊆ Σ′ ⊆ Σ∪M̃. Then x-mod(Σ′,O) =M.
(For x ∈ {⊥,>}, see [5]; the transfer to nested modules is straightforward).

Locality is anti-monotonic: a growing seed signature makes no more axioms local.

Corollary 2.4. Let Σ1 and Σ2 be two sets of terms, and let x ∈ {>,⊥}. Then, Σ1 ⊆ Σ2
implies x-local(Σ2)⊆ x-local(Σ1) (see [5]).

Remark 2.5. Some obvious tautologies are always local axioms, for any choice of a seed
signature Σ. Hence, they will not appear in locality-based modules. Anyway, they do not
add any knowledge to an ontology O.

Proposition 2.6. In general, the following are not modules (see [9]): the union, inter-
section or complement of modules.

Definition 2.7. Let O be an ontology,M⊆O a module, and Σ⊆ Õ a signature.
M is called self-contained if O is a (Σ∪M̃)-dCE ofM.
M is called depleting if O\M is a (Σ∪M̃)-dCE of the empty ontology.

Proposition 2.8. If S is an inseparability relation that is robust under replacement, then
every depleting SΣ-module is a self-contained SΣ-module (see [18]).

Theorem 2.9. Let S be a monotonic inseparability relation that is robust under replace-
ment, T a TBox, and Σ a signature. Then there is a unique minimal depleting SΣ-module
of T (see [18]).

Remark 2.10. From now on, we use the notion of >⊥∗-locality from [21]. However,
the results we obtain can be generalized to every notion of module that guarantees the
existence of a unique and depleting module for each signature Σ. In particular, the same
conditions guarantee also that such notions of modules satisfy self-containedness.

Fields of sets and atoms. We want to describe the relationships between an ontology
O and a family F(O) of subsets thereof by means of a well-understood structure. To this
end, we introduce in what follows some notions of algebra.

Definition 2.11. A field of sets is a pair (O,F), where O is a set and F is an algebra
over O i.e., set of subsets of O that is closed under intersection, union and complement.
Elements of O are called points, while those of F are called complexes.

Given a finite set O and a family F of subsets of O, we can build the set B(O,F) =
(O,F ′), where F ′ is the closure of F under union, intersection and complement. Then
B(O,F) is clearly a field of sets, as well as a partial order w.r.t. the inclusion relation “⊆”,
because ⊆ is reflexive, transitive and antisymmetric. We focus on the minimal elements
of B(O,F), i.e., elements a ∈ B(O,F) such that there exists no non-empty element b of
B(O,F)\{a} with b⊂ a.

Definition 2.12. The minimal elements of B(O,F)\{ /0} with respect to “⊆” are called
atoms.5 The principal ideal of an element a ∈ B(O,F) is the set

(a] := {x ∈ B(O,F) | x⊆ a}.

3. The Atomic Decomposition

Modules and atoms. In what follows, we are using the notion of >⊥∗-locality from
[21]. However, the approach we present can be applied to any notion of a module that
is monotonic, self-contained, and depleting. These properties have a deep impact on the
modules generated, as described in Proposition 3.1. See [18] for more details.

Proposition 3.1. Any module notion that satisfies monotonicity, self-containedness, and
depletingness is such that any given signature generates a unique module.

We are going to define a correspondence among ontologies with relative families of
modules and fields of sets as defined in Definition 2.11. Axioms correspond to points.
Let then F(O) denote the family of >⊥∗-modules of O (or let Fx(O) be such family
for each corresponding notion x of module if not univocally specified). Then F(O) is
not, in general, closed under union, intersection and complement: given two modules,
neither their union nor their intersection nor the complement of a module is, in general,
a module; hence, only some complexes correspond to modules. Next, we introduce the
(induced) field of modules, that is the field of sets over F(O). This enables us to use
properties of fields of sets also for ontologies.

Definition 3.2. Given an ontology O and the family F(O) of >⊥∗-modules of O, we
define the (induced) field of modules B(F(O)) as the closure of the set F(O) under
union, intersection and complement.

Definition 3.3. A syntactic tautology is an axiom that does not occur in any module and
hence belongs to O\>⊥∗-mod(Õ,O). A global axiom is an axiom that occurs in each
module, in particular in >⊥∗-mod(/0,O).

Remark 3.4. To make the presentation easier, we assume that O contains no syntactic
tautologies or global axioms. This is no real restriction: we can always remove those
unwanted axioms that occur in either all or no module, and consider them separately.

An (induced) field of modules is, by construction, a field of sets. It is partially
ordered by ⊆ and, due to the finiteness of O, can thus be represented via its Hasse dia-
gram. Next, we define atoms of our field of modules as building blocks of modules of an
ontology; recall that these are the ⊆-minimal complexes of B(F(O))\{ /0}.

5Slightly abusing notation, we use B(O,F) here for the set of complexes in B(O,F).

Definition 3.5. The family of atoms from B(F(O)) is denoted by A(F(O)) and is called
atomic decomposition.

An atom is a set of axioms such that, for any module, it either contains all axioms
in the atom or none of them. Moreover, every module is the union of atoms. Next, we
show how atoms can provide a succinct representation of the family of modules. Before
proceeding further, we summarize in the following table the four structures introduced
so far and, for each, its elements, source, maximal size, and mathematical structure.

Structure O F(O) B(F(O)) A(F(O))

Elements axioms α modules M complexes atoms a,b, . . .
Source ontology engineers module extractor closure of F(O) atoms of B(F(O))

Maximal size baseline exponential exponential linear
Mathem. object set family of sets complete lattice poset

Atoms and their structure. The family A(F(O)) of atoms of an ontology, as in Defini-
tion 3.5, has many properties of interest for us.

Lemma 3.6. The family A(F(O)) of atoms of an ontology O is a partition of O, and
thus #A(F(O))≤ #O.

Hence the atomic decomposition is succinct; we will see next whether its computa-
tion is tractable and whether it is indeed a representation of F(O).

The following definition aims at defining a notion of “logical dependence” between
axioms: the idea is that an axiom α depends on another axiom β if, whenever α occurs
in a moduleM then β also belongs toM. A slight extension of this argument allows us
to generalize this idea because, by definition of atoms, whenever α occurs in a module,
all axioms belonging to α’s atom a occur. Hence, we can formalize this idea by defining
a relation between atoms.

Definition 3.7. (Relations between atoms) Let a 6= b be atoms of an ontology O. Then:

– a is dependent on b (written a � b) if, for every module M∈ F(O) such that
a⊆M, we have b⊆M.

– a and b are independent if there exist two disjoint modulesM1,M2 ∈ F(O) such
that a⊆M1 and b⊆M2.

– a and b are weakly dependent if they are neither independent nor dependent; in
this case, there exists an atom c∈A(F(O)) which both a and b are dependent on.

We also define the relation “�” to be the inverse of “�”, i.e., b� a ⇔ a� b.

Proposition 3.8. For every pair of distinct atoms exactly one of the relations in Defini-
tion 3.7 applies.

The logical dependence between atoms can, in general, be incomplete: for example,
consider the following (hypothetical) family of modules: F(O) = {M1,M2,M3,M4}
whereM1 = a∪b,M2 = a∪ c,M3 = a∪b∪d andM4 = a∪ c∪d. Following Defini-
tion 3.7, the atoms b, c and d depend on a. However, we want our structure to reflect that
b and c act as “intermediates” in the dependency of d on a, i.e., that d depends via “c or
b” on a. Since in Def. 3.7 we do not capture disjunctions of occurrences of atoms, we call
the pairs (d,b) and (d,c) problematic. Fortunately, problematic atom pairs do not exist

in an atomic decomposition obtained via locality-based modules, as Lemma 3.9 shows.
Its consequences on the dependency relation on atoms are captured by Proposition 3.12.

Lemma 3.9. Since the >⊥∗ notion of module is monotonic, self-contained, and deplet-
ing, there are no problematic pairs in the set A(F(O)) of atoms over O.

The key to proving Lemma 3.9 is the following result.

Proposition 3.10. The module >⊥∗-mod(α̃,O) is the smallest containing α .

Proof. We recall >⊥∗-mod satisfies the properties as in Prop. 2.3. Then:
(i)Mα is not empty since it contains α (recall thatO does not contain syntactic tautolo-
gies)
(ii)Mα is the unique and thus smallest module for the seed signature α̃

(iii) by monotonicity, enlarging the seed signature α̃ results in a superset ofMα

(iv) M′ = >⊥∗-mod(M̃′,O) = >⊥∗-mod(M̃′ ∪ α̃,O) ⊇ >⊥∗-mod(α̃,O) by self-
containedness and monotonicity, thus any moduleM′ that contains α needs to contain
alsoMα .

Corollary 3.11. Given an atom a, for every axiom α ∈ a we have that Mα =
>⊥∗-mod(ã,O). Moreover, a is dependent on all atoms belonging toMα \a.

Proposition 3.12. The binary relations “�” and “�” are partial orders over the set
A(F(O)) of atoms of an ontology O.

Definition 3.7 and Proposition 3.12 allow us to draw a Hasse diagram also for the
atomic decomposition A(F(O)), where independent atoms belong to different chains,
see Figure 1 for the Hasse diagram of Koala. The edges in this diagram denote depend-
ency: an edge from node a to b means that b� a, i.e., atom a depends on b. Some atoms
depend on more than one atom. Their nodes have more than one outgoing edge.

Atoms as a module base. As an immediate consequence of our observations so far, a
module is a disjoint finite union of atoms. Conversely, it is not true that arbitrary unions
of atoms are modules. However, the atomic decomposition satisfies another interesting
property: from each atom, it is straightforward to identify the smallest module containing
it.

Definition 3.13. The principal ideal of an atom a is the set (a] = {α ∈ b | b� a} ⊆ O.

Proposition 3.14. For every atom a, (a] is a module.

Definition 3.15. A module is called compact if there exists an atom a in A(F(O)) such
thatM= (a].

Given the (possibly exponential w.r.t. the ontology size) family F(O) of all modules
of an ontology O, there is a well-defined injection that maps every moduleM to the set
of atoms in ℘(A(F(O))) whose union isM: given the module signature M̃, its image
is the set of all atoms that are relevant w.r.t.M’s terminology, defined in the following.
Hence, A(F(O)) is indeed a succinct representation of all modules.

Definition 3.16. We say that an atom a is relevant w.r.t. its terminology for a moduleM
if its signature ã is contained in the module’s signature M̃.

The well-definedness of Def. 3.16 follows from the properties of depletingness and
self-containedness that locality-based modules satisfy. We can however restrict our at-
tention to just some relevant (w.r.t. its terminology) atoms to identify our module within
the atomic decomposition.

Definition 3.17. Let (P,≥) be a poset, and (P,≤) its dual. Then, an antichain is a set of
pairwise incomparable elements A⊆ P, i.e. such that for each a,b ∈ A, neither a≥ b nor
b≥ a (dually, neither a≤ b nor b≤ a).

Proposition 3.18. Let M⊆ O be a module. Then, there exists an antichain of atoms
a1, . . . ,aκ such thatM=

⋃
κ
i=1 (ai].

In particular, the set of compact modules is a base for the set F(O) of all modules.

4. Computing the atomic decomposition

As we have seen, the atomic decomposition is a succinct representation of all modules
of an ontology: its linearly many atoms represent all its worst case exponentially many
modules. Next, we will show how we can compute the atomic decomposition in polyno-
mial time, i.e., without computing all modules, provided that module extraction is poly-
nomial (which is the case, e.g., for syntactic locality-based modules). Our approach relies
on modules “generated” by a single axioms, which can be used to generate all others.

Definition 4.1. Given an ontologyO and decompositionA(F(O)), we call moduleM:

1) α-module if there is an axiom α ∈ O such thatM=>⊥∗-mod(α̃,O).
2) fake if there exist two incomparable (w.r.t. set inclusion) modulesM1 6=M2 with
M1∪M2 =M; a module is called genuine if it is not fake.

Please note that our notion of genuinity is different from the one in [20], where the
incomparable “building” modules were also required to be disjoint.

The following lemma provides the basis for the computation in polynomial time of
the atomic decomposition since it allows us to construct A(F(O)) via α-modules only.

Lemma 4.2. The notions of compact (as in Def. 3.15), α and genuine modules coincide.

Algorithm 1 gives our procedure for computing atomic decompositions that runs in
time polynomial in the size of O (provided that module extraction is polynomial), and
calls a module extractor as many times as there are axioms inO. It considers, in ToDoAx,
all axioms that are neither tautologies nor global, see Remark 3.4, and computes all genu-
ine modules, all atoms with their dependency relation and the cardinalities of all modules
and atoms. For each axiom α “generating” a module, that module is stored in Mod(α)

and the corresponding atom is constructed in At(α); those functions are undefined for
axioms outside GenAx. We prove the correctness of Algorithm 1 in [9].

Algorithm 1 Atomic decomposition
Input: An ontology O.
Output: The set G of genuine >⊥∗-modules;
the poset of atoms (A(F(O)),�); the set of gen-
erating axioms GenAx; for α ∈ GenAx, the car-
dinality CardAt(α) of its atom.

ToDoAx ←>⊥∗-mod(Õ,O)\>⊥∗-mod(/0,O)
GenAx ← /0
for each α ∈ ToDoAx do

Mod(α)←>⊥∗-mod(α̃,O) { 6= /0}
new ← true
for each β ∈ GenAx do

if Mod(α) = Mod(β) then
At(β) ← At(β)∪{α}
CardAt(β) ← CardAt(β)+1
new ← f alse

end if
end for
if new = true then

At(α) ← {α}
CardAt(α) ← 1
GenAx ← GenAx∪{α}

end if
end for
for each α ∈ GenAx do

for each β ∈ GenAx do
if β ∈ Mod(α) then

At(β)� At(α)
end if

end for
end for
A(F(O)) ← {At(α) | α ∈ GenAx}
G ← {Mod(α) | α ∈ GenAx}
return [(A(F(O)),�), G, GenAx, CardAt(·)]

Name #logical DL #Gen. #Con.#max.#max.
axioms modscomp. mod. atom

Koala 42ALCON(D) 23 5 18 7
Mereology 44 SHIN 17 2 11 4
University 52 SOIN(D) 31 11 20 11
People 108 ALCHOIN 26 1 77 77
miniTambis173 ALCN(D) 129 85 16 8
OWL-S 277 SHOIN(D) 114 1 57 38
Tambis 595 ALCN(D) 369 119 236 61
Galen 4,528 ALEHF+ 3,340 807 458 29

Table 1. Experiments summary

1

12 23

2

18

3

20

4

7 5

6

17 8

910 11

14

13 15

16

19

21

22

1

12 23

2

18

3

20

4

7 5

6

17 8

910 11

14

13 15

16

19

21

22

Figure 1. The atomic decomposition of Koala

5. Empirical evaluation

We ran Algorithm 1 on a selection of ontologies6, including those used in [8, 20], and
indeed managed to compute the atomic decomposition in all cases, even for ontologies
where a complete modularization was previously impossible. Table 1 summarizes onto-
logy data: size, expressivity, number of genuine modules, number of connected compon-
ents, size of largest module and of largest atom. Our tests were obtained on a 2.16 GHz
Intel Core 2 Duo Macbook with 2 GB of memory running Mac OS X 10.5.8; each atomic
decomposition was computed within a couple of seconds, (resp. 3 minutes for Galen).

We have also generated a graphical representation using GraphViz7. Our atomic
decompositions show atom size as node size, see e.g. Fig. 1. It shows four isolated atoms,

6Ontologies and their decompositions can be found at http://bit.ly/i4olY0 .
7http://www.graphviz.org/About.php

e.g., Atom 22, consisting of the axiom DryEucalyptForest v Forest. This means
that, although other modules may use 22’s terms, they do not “need” 22’s axioms for any
entailment. Hence, removing (the axioms in) isolated atoms from the ontology would
not result in the loss of any entailments regarding other modules or terms. Of course,
for entailments involving both DryEucalyptForest and Forest and possibly other
terms, axioms in isolated atoms may be needed. A similar structure is observable in all
ontologies considered, see the graphs at http://bit.ly/i4olY0 .

6. Labelling

The atomic decomposition partitions the ontology into highly coherent fragments. How-
ever, we still need to understand their structure and access their content. To this aim, it
can be useful to label an atom with the terms that we find relevant. An obvious candidate
is simply the signature of the corresponding genuine module. However, genuine mod-
ules, and hence their signatures, can be too numerous, as well as unstructured. Another
candidate is suggested by Proposition 3.18: we could label an atom a with the set of all
its minimal seed signatures for which a is relevant. As before, a genuine module can have
in principle a large number of such signatures, even more numerous than the number of
axioms it contains. So, we suggest here different candidates for a labelling and discuss
them; but we leave applying them for future work.

Definition 6.1. Given: an ontology O; the atomic decomposition of the ontology
A(F(O)) = {a1,a2, . . . ,an}; the set of genuine modules G = {Mi | Mi = (ai],1≤ i≤
n}. We define the following labelling functions Lab j(.) from A(F(O)) to Õ:
Lab1(ai) := ãi Lab3(ai) :=

⋃
Σ∈mssig(Mi)

Σ

Lab2(ai) := ãi \
⋃

b≺ai
Lab2(b) Lab4(ai) :=

⋃
Σ∈mssig(Mi)

Σ \
⋃

b≺ai
Lab4((b])

Lab1 is defined to label each atom with the vocabulary used in its axioms. However,
an atom a can be large and reuse terms already introduced in the atoms that a is dependent
on. To better represent the “logical dependency” between terms, we recursively define
Lab2 to label an atom only with the “new terms” introduced.

We want to note that such label can be empty, as in the following example: let us
consider the ontologyO= {Av B,Cv D,AuCv BtD}. This ontology generates 3 atoms,
one for each axiom, such that the atom a3 = AuCv BtD is dependent on both the other
2, which are independent of each other. Clearly, Lab2(a3) is empty, because (a3] reuses
terms from the other atoms. Moreover, let us consider the axiom Av Bu(Ct¬C). Then,
all the labelling defined so far will include the term C in the label for the atom containing
this axiom, even if this axiom does not say anything about it.

This behaviour does not occur for labellings Lab3 and Lab4, because C is not neces-
sary in any of the minimal seed signatures for (a3]. Moreover, these labellings are also
useful to discover “hidden relations” between an atom and terms that do not occur in it.
For example, let us consider the ontologyO= {A≡ B,Bv C,BuDv CtE,Dv E,E≡ F}.
Then, each axiom identifies an atom, and O equals the principal ideal of the atom a3
containing the axiom BuD v CtE. Although the signature of a3 contains neither A nor
F, the set Σ = {A,F} is indeed a minimal seed signature of the genuine module (a3]. The
need of this axiom for the signature Σ is not evident at first sight. However, the set of all
minimal seed signatures of a moduleM is in principle exponential in the size of M̃.

7. Module number estimation via atomic decomposition

In order to test the hypothesis that the number of modules does not grow exponentially
with the size of the ontology, in [8] we tried to compute a full modularization for the
ontologies of different size listed in Table 1 but managed to compute all modules for two
ontologies only, namely Koala and Mereology. Then, we sampled subontologies of these
ontologies, and extracted all of their modules. The results we obtained made us tend
towards rejecting the hypothesis, but they were not strong enough for a clear rejection.

One plausible application of the atomic decomposition is an estimate of the number
of modules of an ontology: Proposition 3.18 implies that a module is the union of prin-
cipal ideals of the atoms over an antichain. In general, the converse does not hold, but
prima facie this seems to be a reasonable approximation, and can help us in understand-
ing whether or not the number of modules is exponential w.r.t. the size of the ontology:
as a matter of fact, if all antichains of an atomic decomposition generate distinct mod-
ules, then an efficient way to find a lower bound of the number of antichains of a poset
is simply extracting the size a of the maximal antichain and compute 2a.

Unfortunately, the measure 2a is not always a lower bound of the actual number of
modules. For example, consider the ontology O = {Ai v Ai+1 | i = 0, . . . ,n− 1}, which
consists of a single subsumption path p. The atomic decomposition of O consists of n
independent atoms: >⊥∗-mod({Ai,Ai+1},O) = {Ai v Ai+1}, for every i = 0, . . . ,n− 1.
Hence, the maximal antichain is of size n, and we would estimate that O has 2n mod-
ules. However, the modules of O are all subpaths of p: for seed signatures Σ of size
< 2, >⊥∗-mod(Σ,O) = /0; for all other Σ, >⊥∗-mod(Σ,O) is the smallest subpath of p
containing all concepts in Σ. The actual module number is therefore only n(n−1)

2 . The
explanation for the difference lies in the fact that atoms are not really independent, since
they share parts of the minimal seed signatures of their induced modules.

Based on the module numbers from that previous experiment, we have now per-
formed an atomic decomposition of all the subontologies, computed the length a of the
maximal antichain as well as the ratio between 2a and the number of modules for the
respective ontology. If that ratio is greater (less) than 1, then the value 2a overestimates
(underestimates) the module number. The picture below contains plots of the measured
ratios against the subontology size for 3 ontologies. The y-axis is scaled logarithmically,
ensuring that ratios r and 1/r have the same vertical distance from the value 1.

R
at

io
2a

:#
m

od
ul

es

0,1

1,0

10,0

0 10 20 30 40 50

0,01

0,10

1,00

10,00

70 75 80 85 90 95

0,01

0,10

1,00

10,00

0 10 20 30

Subontology size Koala Subontology size People Subontology size Galen

To interpret the plots for every ontology O and its collections of subsets, the following
observations are of interest.

How much does the maximal, minimal, or average ratio differ from 1? If it tends to dif-
fer much in one direction, the estimate needs to be scaled. If it differs erratically, then
the estimate will not be useful.

Does the maximal (minimal) ratio grow (shrink) when the size of O grows? If it does,
the the growth (shrinkage) function needs to be qualified for the estimate to be useful.
It is problematic to predict the function if it differs between ontologies.

Are the differences to the “ideal” ratio 1 the same for the ratios >1 and those <1? If
they are not and if such an imbalance only occurs for some ontologies, then we should
ask the question what property of the ontology is responsible for it. The degree of
imbalance could then serve as gauge for that property.

How much do the maximal and the minimal ratio differ? Their quotient represents a
margin for the estimate. E.g., if the maximal and minimal ratio are 3.0 and 0.5, then
we can conclude from the measured value x = 2a that O has between 0.333x and 2x
modules. The quotient is 6; therefore we can estimate the module number up to one
order of magnitude. Quotients > 10 decrease precision to more orders of magnitude.

We made the following observations for the ontologies we examined.

Koala. The ratio ranges from 0.36 to 2.61. For example, if we measure a maximal anti-
chain of length 10 for any subontology of Koala, then we can estimate that the mod-
ule number is between 210

2.61 ≈ 392 and 210

0.36 ≈ 2,844. The plot shows an even bal-
ance between “> 1” and “< 1” ratios. The minimal ratio seems to be constant with
growing subontology size, but the maximal ratio seems to grow slightly. The quotient
between max and min is 7.25.

Mereology. The observations are similar, with a slight imbalance towards ratios < 1. The
min and max ratio are 0.40 and 1.42, yielding a quotient of only 3.55.

People. The ratio is almost always < 1; it ranges from 0.09 to 1.14. This yields a quo-
tient of 12.67, i.e., the prediction of the module number is only up to two orders of
magnitude. For example, for a maximal antichain of length 10, the number of mod-
ules can now be between 898 and 11,378. Furthermore, the underestimation appears
to grow with the ontology size.

University. The ratio is evenly distributed and ranges from 0.25 to 5.35. The quotient of
21.4 is even larger than for People.

Galen. There is almost always a ratio < 1, and the underestimation appears to grow with
the subontology size. For the first 28 subontologies of very small size (up to 26 out
of Galen’s 4,528 axioms), we already obtain a quotient of 1.14/0.04 = 28.5.

In summary, the ratio behaves quite differently for these five ontologies, and this restricts
its use as an estimate of the module number. For some ontologies, the measured value 2a

tends to underestimate the module numbers, for others, there is no tendency. For some
ontologies, the margin for the estimate obtained from 2a is simply too large.

8. Conclusion and outlook

We have presented the atomic decomposition of an ontology, and shown how it is a suc-
cinct, tractable representation of the modular structure of an ontology: it is of polyno-
mial size and can be computed in polynomial time in the size of the ontology (provided
module extraction is polynomial), whereas the number of modules of an ontology is ex-
ponential in the worst case and prohibitely large in cases so far investigated. Moreover,
it can be used to assemble all other modules without touching the whole ontology and
without invoking a direct module extractor.

Future work is three-fold: first, we will try to compute, from the atomic decompos-
ition, more precise upper and lower bounds for the number of all modules to answer
an open question from [20]. Second, we will continue to investigate suitable labels for
atoms, e.g., suitable representation of seed and module signatures, and how to employ
the atomic decomposition for ontology engineering, e.g., to compare the modular struc-
ture with engineers’ intuitive understanding of the domain and thus detect modelling er-
rors, and to identify suitable modules for reuse. Third, we will investigate when module
extraction using the atomic decomposition is faster than using a module extractor.

References

[1] J. Bao, G. Voutsadakis, G. Slutzki, and V. Honavar. Package-based description logics. In
[23], pp. 349–371.

[2] C. Bezerra, F. Freitas, A. Zimmermann, and J. Euzenat. ModOnto: A tool for modularizing
ontologies. In Proc. WONTO-08, vol. 427 of ceur-ws.org, 2008.

[3] A. Borgida and L. Serafini. Distributed description logics: Assimilating information from
peer sources. J. Data Semantics, 1:153–184, 2003.

[4] B. Cuenca Grau, C. Halaschek-Wiener, and Y. Kazakov. History matters: Incremental onto-
logy reasoning using modules. In Proc. ISWC-07, vol. 4825 of LNCS, pp. 183–196, 2007.

[5] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies: Theory
and practice. J. of Artif. Intell. Research, 31:273–318, 2008.

[6] B. Cuenca Grau, B. Parsia, and E. Sirin. Combining OWL ontologies using E-connections.
J. of Web Sem., 4(1):40–59, 2006.

[7] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web ontologies. In
Proc. of KR-06, pp. 198–209. AAAI Press, 2006.

[8] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure of an ontology:
an empirical study. In Proc. of WoMO-10, vol. 211 of FAIA, pp. 11–24. IOS Press, 2010.

[9] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure of an onto-
logy: atomic decomposition. Technical report, University of Manchester, 2011. Available at
http://bit.ly/i4olY0.

[10] S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for conservative
extensions in description logics. In Proc. of KR-06, pp. 187–197, 2006.

[11] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc. of KR-06,
pp. 57–67, 2006.

[12] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
The making of a web ontology language. J. of Web Sem., 1(1):7–26, 2003.

[13] E. Jiménez-Ruiz, B. Cuenca Grau, U. Sattler, T. Schneider, and R. Berlanga Llavori. Safe
and economic re-use of ontologies: A logic-based methodology and tool support. In Proc. of
ESWC-08, vol. 5021 of LNCS, pp. 185–199, 2008.

[14] A. Jimeno, E. Jiménez-Ruiz, R. Berlanga, and D. Rebholz-Schuhmann. Use of shared lexical
resources for efficient ontological engineering. In SWAT4LS-08, ceur-ws.org, 2008.

[15] B. Konev, C. Lutz, D. Ponomaryov, and F. Wolter. Decomposing description logic ontologies.
In Proc. of KR-10, pp. 236–246. AAAI Press, 2010.

[16] B. Konev, C. Lutz, D. Walther, and F. Wolter. Logical difference and module extraction with
CEX and MEX. In Proc. of DL 2008, vol. 353 of ceur-ws.org, 2008.

[17] B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modularization. In [23],
pp. 25–66.

[18] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter, and M. Za-
kharyaschev. Minimal module extraction from DL-Lite ontologies using QBF solvers. In
Proc. of IJCAI-09, pp. 836–841, 2009.

[19] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract description
systems. Artificial Intelligence, 156(1):1–73, 2004.

[20] B. Parsia and T. Schneider. The modular structure of an ontology: an empirical study. In
Proc. of KR-10, pp. 584–586. AAAI Press, 2010.

[21] U. Sattler, T. Schneider, and M. Zakharyaschev. Which kind of module should I extract? In
DL 2009, vol. 477 of ceur-ws.org, 2009.

[22] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept hierarchies.
In Proc. of ISWC-04, vol. 3298 of LNCS, pp. 289–303. Springer-Verlag, 2004.

[23] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, eds. Modular Ontologies: Concepts,
Theories and Techniques for Knowledge Modularization, vol. 5445 of LNCS. Springer, 2009.

[24] H. Stuckenschmidt, F. van Harmelen, P. Bouquet, F. Giunchiglia, and L. Serafini. Using C-
OWL for the alignment and merging of medical ontologies. In Proc. KR-MED, ceur-ws.
org, pp. 88–101, 2004.

[25] B. Suntisrivaraporn. Module extraction and incremental classification: A pragmatic approach
for EL+ ontologies. In Proc. of ESWC-08, vol. 5021 of LNCS, pp. 230–244, 2008.

