
Decomposition and Modular Structure of
BioPortal Ontologies?

Chiara Del Vescovo1, Damian D. G. Gessler2, Pavel Klinov2, Bijan Parsia1,
Ulrike Sattler1, Thomas Schneider3, and Andrew Winget4

1 University of Manchester, UK
{delvescc|bparsia|sattler}@cs.man.ac.uk

2 University of Arizona, AZ, USA
dgessler@iplantcollaborative.org,pklinov@email.arizona.edu

3 Universität Bremen, Germany
tschneider@informatik.uni-bremen.de

4 St. John’s College, NM, USA
andrewwinget@gmail.com

Abstract We present the first large scale investigation into the modular
structure of a substantial collection of state-of-the-art biomedical ontolo-
gies, namely those maintained in the NCBO BioPortal repository.5 Using
the notion of Atomic Decomposition, we partition BioPortal ontologies
into logically coherent subsets (atoms), which are related to each other
by a notion of dependency. We analyze various aspects of the resulting
structures, and discuss their implications on applications of ontologies.
In particular, we describe and investigate the usage of these ontology de-
compositions to extract modules, for instance, to facilitate matchmaking
of semantic Web services in SSWAP (Simple Semantic Web Architecture
and Protocol). Descriptions of those services use terms from BioPortal so
service discovery requires reasoning with respect to relevant fragments
of ontologies (i.e., modules). We present a novel algorithm for extracting
modules from decomposed BioPortal ontologies which is able to quickly
identify atoms that need to be included in a module to ensure logically
complete reasoning. Compared to existing module extraction algorithms,
it has a number of benefits, including improved performance and the pos-
sibility to avoid loading the entire ontology into memory. The algorithm
is also evaluated on BioPortal ontologies and the results are presented
and discussed.

Keywords: OWL, modularity, atomic decomposition, semantic Web
services, SSWAP

1 Introduction

State-of-the art biomedical ontologies, e.g., those provided by the NCBO Bio-
Portal, are often maintained as monolithic collections of axioms in single files or
? This is an author version of the contribution to Proc. ISWC 2011. The original
publication is available at www.springerlink.com.

5 http://bioportal.bioontology.org/

{delvescc|bparsia|sattler}@cs.man.ac.uk
dgessler@iplantcollaborative.org,pklinov@email.arizona.edu
tschneider@informatik.uni-bremen.de
andrewwinget@gmail.com
http://www.springerlink.com/content/q6x3j4g2g40p2q12
http://bioportal.bioontology.org/

2 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

in a few files. This is not ideal for applications which require access to individual
fragments of ontologies, for example, axioms relevant for a particular term. One
example is use of ontology terms in descriptions of Semantic Web services or
requests for their discovery. In such cases it is undesirable to load the entire
ontology into memory (or transfer it over the network) in order to reason about
a limited signature.

Semantic Web Services, such as SSWAP6 (Simple Semantic Web Architec-
ture and Protocol [8]) or SADI (Semantic Automated Discovery and Integration
[14]), offer particular challenges for monolithic ontologies. In this application,
semantic Web services reference (and dereference) ontological terms at transac-
tion time–often requiring only a few terms from numerous ontologies in order to
complete a transaction between two agents. This creates two challenges specific
to ontology decomposition and modularity: 1) Semantic Web services operate
under both AAA (Anyone can say Anything about Anything7) and the OWA
(Open World Assumption). Thus even if service providers had complete know-
ledge of all BioPortal ontologies before transaction, this could become incomplete
at transaction time because service providers could be presented with new terms
from new ontologies where said terms could imply arbitrarily complex relations
with cached ontologies (e.g., class subsumption or equivalence). This implies
new, on-demand reasoning, which places a premium on minimizing the size and
complexity of relevant ontologies to those components necessary and sufficient
for the transaction at hand; 2) memory and hard disk resources are not limit-
ing for virtually all biological ontologies. But network bandwidth and latency is
limiting: large, monolithic ontologies can exceed 10 Mbytes when serialized as
RDF/XML. Therefore it is important to investigate the possibility of maintain-
ing ontologies in a more flexible form which supports reasoning over small (from
the network’s or the reasoner’s viewpoint) fragments.

This paper presents the first, to our knowledge, large-scale investigation into
decomposability and modular aspects of the NCBO BioPortal ontologies and
demonstrates that most of them can be split into small logically coherent parts
(atoms), from which modules can be efficiently assembled before reasoning. We
discuss such good (on average) decomposability of BioPortal ontologies, its im-
plications for applications, and also comment on occasional poor decomposabil-
ity (Section 3). Finally, we describe a novel algorithm for decomposition-based
module extraction (and the auxiliary algorithm for computing minimal seed sig-
natures) and present evaluation results in Section 4.

2 Modularity and Atomic Decomposition

We assume the reader to be familiar with OWL and the underlying Description
Logics [1], and sketch here some of the central notions around locality-based
modularity [2] and Atomic Decomposition [6]. We use L for a Description Logic,
6 http://sswap.info
7 For details see paragraph 2.2.6 of the “RDF: Concepts and Abstract Syntax’ docu-
ment at http://www.w3.org/TR/rdf-concepts/#section-anyone

http://sswap.info
http://www.w3.org/TR/rdf-concepts/#section-anyone

Modular Structure and Decomposition of BioPortal Ontologies 3

e.g., SHIQ, and O,M, etc., for an ontology, i.e., a finite set of axioms. Moreover,
we respectively use α̃ or Õ for the signature of an axiom α or of an ontology O,
i.e., the set of class, property, and individual names used in α or in O.

Given a set of terms, or seed signature, Σ, a Σ-moduleM based on deductive-
Conservative Extensions [9] is a minimal subset of an ontology O such that, for
all axioms α with terms only from Σ, we have thatM |= α iff O |= α, i.e. O and
M have the same entailments over Σ. Deciding if a set of axioms is a module
in this sense is hard or even impossible for expressive DLs [12], but if we drop
the minimality requirement we can define “good sized” approximations, as in the
case of syntactic locality, or locality for short, which can be efficiently extracted.
Such modules provide strong logical guarantees by capturing all the relevant
entailments about Σ, despite not necessarily being minimal subsets of O with
this property [11]. A module extractor is implemented in the OWL API.8

Given an ontology O and a seed signature Σ, we say that an axiom α ∈ O
is ⊥-local w.r.t. Σ if we can “clearly identify” the result of replacing all terms
in α not in Σ with ⊥ as a tautology; see [2] for a formal definition. Then, a
⊥-module for Σ contains all axioms that are non-⊥-local w.r.t. Σ, plus all those
needed to preserve the meaning of terms occurring in these axioms. Similarly
we can define >-modules. Additionally, by nesting these two notions until a
fixpoint is reached we obtain >⊥∗-modules. Hence, locality-based modules come
in 3 flavours, namely >,⊥, and >⊥∗: roughly speaking, a >-module for Σ gives
a view “from above” because it contains all subclasses of class names in Σ; a
⊥-module for Σ gives a view “from below” since it contains all superclasses of
class names in Σ; a >⊥∗-module is a subset of both the corresponding >- and
⊥-modules, containing all entailments to imply that two classes in Σ are in the
subclass relation, but not necessarily all their sub- or super-classes. Given a
module notion x ∈ {>,⊥,>⊥∗}, we denote by x-mod(Σ,O) the x-module of O
w.r.t. Σ.

In [6] we have introduced a new approach to represent the whole family FxO
of locality-based x-modules of an ontology O. The key point is observing that
some axioms appear in a module only if other axioms do. In this spirit, we
have defined a notion of “logical dependence” as follows: an axiom α depends on
another axiom β if, whenever α occurs in a module M, then β belongs to M,
too. Next, we observe that, for each axiom α, the x-module for the signature α̃
is the smallest x-module containing α; we call α-module a module x-mod(α̃,O)
and denote it byMx

α.
The dependence between axioms allows us to identify clumps of highly inter-

related axioms that are never split across two or more modules [6]; these clumps
are called atoms. More precisely, for x ∈ {>,⊥,>⊥∗} an x-atom of an ontology
O is a maximal subset of O which is either contained in, or disjoint with, any
x-module of O. The family of x-atoms of O is denoted by A(FxO) and is called
x-Atomic Decomposition (x-AD). If x is clear from the context, we drop it.

Since every atom is a set of axioms, and atoms are pairwise disjoint, the AD
is a partition of the ontology O. Hence, the number of atoms is at most linear

8 http://owlapi.sourceforge.net

http://owlapi.sourceforge.net

4 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

w.r.t. the size of O. Moreover, atoms are the building blocks of all modules [7].
For an atom a ∈ A(FxO), the moduleMx

a = x-mod(ã,O) is called compact.

Proposition 1. Let a be an atom in the AD A(FxO) of an ontology O and
α ∈ a; then, for any selection of axioms S = {α1, . . . , ακ} ⊆ a we have that
x-mod(S̃,O) =Mx

α. In particular, for each αi ∈ a, Mx
αi

=Mx
α. Vice versa, if

Mx
α =Mx

β, then there exists some a such that α, β ∈ a.

As a consequence of Prop. 1, the set of compact modules coincides with the
set of α-modules, and we denote byMa the moduleMα for each α ∈ a. Now, we
are ready to extend the definition of logical dependence to atoms. Let a and b be
two distinct atoms of an ontology O. Then, a is dependent on b (written a � b) if
Mb ⊆Ma. The dependence relation � on AD is a partial order (i.e., dependence
is transitive, reflexive, and antisymmetric) and thus can be represented by means
of a Hasse diagram, i.e. a graph showing the dependencies between its nodes.
Moreover, � provides the basis for a polynomial-time algorithm for computing
the AD, since they allow us to construct A(FxO) via α-modules only [6].

Given the Hasse diagram of an AD, it is easy to get all compact modules of
an ontology by considering the principal ideal of an atom a, i.e. the set (a] =
{α ∈ b | a � b} ⊆ O.

Example 2. Consider the ontology {α1, . . . , α7} and its ⊥-AD:
α1 = ‘Animal v (= 1hasGender.>)’,
α2 = ‘Animal v (≥ 1hasHabitat.>)’,
α3 = ‘Person v Animal’,
α4 = ‘Vegan ≡ Person u ∀eats.(Vegetable t Mushroom)’,
α5 = ‘TeeTotaller ≡ Person u ∀drinks.NonAlcoholicThing’,
α6 = ‘Student v Person u ∃hasHabitat.University’,
α7 = ‘GraduateStudent ≡ Student u ∃hasDegree.{BA, BS}’

a1

a2

a3 a4 a5

a6

Here the ⊥-atoms in the AD contain the following axioms respectively: a1 =
{α1, α2}, a2 = {α3}, a3 = {α4}, a4 = {α5}, a5 = {α6}, a6 = {α7}. The compact
module for the atom a6 isMa6 = a1 ∪ a2 ∪ a5 ∪ a6.

Next, we are interested in modules that do not “fall apart”, and thus can be
said to have an internal logical coherence. A module is called fake if there exist
two �-uncomparable modulesM1,M2 withM1 ∪M2 =M; a module is called
genuine if it is not fake. Interestingly, the notions of α-modules, principal ideals
of atoms, and genuine modules coincide [6], so from now on we refer to them
simply as Genuine Modules (GMs). Note that fake modules are represented in
the Hasse diagram of an AD as union of principal ideals of atoms; the converse
does not hold: not all combinations of principal ideals of atoms are fake modules.

Whilst getting GMs is an easy task to perform via ADs, extracting a module
for a general signature is more complicated. This happens because axioms can
pull in a module terms that are not “strictly necessary” for them to be non-
local. For example, only axiom α4 in Ex. 2 is non-⊥-local w.r.t. Σ = {Vegan}.
However, each module containing α4 contains also α1, α2, and α3, because in
order to preserve the meaning of Vegan we need first to preserve the meaning of
the other terms occurring in this axioms. To guarantee this condition, we need

Modular Structure and Decomposition of BioPortal Ontologies 5

to enlarge Σ with the terms pulled in by relevancy, and then re-check the axioms
against relevancy w.r.t. the new signature.

We formalize this idea as follows. We define a minimal seed signature for
a module M = x-mod(Σ,O) to be a ⊆-minimal signature Σ′ such that M =
x-mod(Σ′,O). We denote the set of all minimal seed signatures of a module by
x-mssig(M,O). We call an atom a relevant for a signature Σ if there exists
Σ′ ∈ x-mssig(Ma,O) such that Σ′ ⊆ Σ.

Proposition 3. Let x ∈ {⊥,>} and Σ0 the input signature. Let us consider
Mx

0 = {α ∈ (a] | a is relevant for Σ0} and, for i ≥ 1,Mx
i = {α ∈ (a] | a is relev-

ant for M̃x
i−1 ∪Σ0}. Then, the chain of inclusions Mx

0 (Mx
1 (. . . eventually

stops, and denoted byMx
∗ the fixpoint, we have thatMx

∗ = x-mod(Σ0,O).

The procedure described in Prop. 3 is equivalent to the standard extraction
of a module only for the two notions > and ⊥, because the >⊥∗-AD only partially
reflecting dependencies between atoms; see [3] for an example.

In summary, x-atoms and related genuine modules form a basis for all x-
locality-based modules. Next, we analyse ADs of existing ontologies and discuss
their decomposability.

3 Decomposability of BioPortal Ontologies

Decomposing ontologies into suitable parts is clearly beneficial when it comes to
processing, editing, and analyzing them, or to reusing their parts. When ontolo-
gies are decomposed automatically, e.g., by computing an AD, it is interesting to
discuss and evaluate the suitability of such decomposition for different scenarios,
and whether all or which ontologies decompose “well”, what it means to decom-
pose well, and which properties of an ontology lead to “good” decomposability.

In this paper we discuss and evaluate the performance of ADs w.r.t. a specific
task, i.e. Fast Module Extraction. Suitable application and maintainance scen-
arios for this task are, as stated before, semantic Web services, or SADI services.
We prove that in these cases the AD is generally a good decomposition. On
the other hand, “good decomposability” may have a different meaning in other
scenarios.

A first such scenario, called Collaborative Ontology Development and Reuse,
involves different ontology engineers working on different modules of an ontology.
The aim is to minimize the risk of conflicts which could result from two or more
ontology engineers making changes to logically related parts of the ontology
(i.e., one engineer could be changing the semantics of terms used by another).
Modularity provides the notion of “safety” which defines conditions under which
there is no such risk [2]. We assume that each engineer works within their module
and uses other terms in a safe way, and that modules different engineers work
on do not overlap. Here, a fine-grained decomposition is desirable.

Another scenario, called Topicality for Ontology Comprehension, is based on
the assumption that, in order to enable the understanding of what the ontology

6 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

deals with, we can search for its “topics” and their interrelations [4]. In this case,
a good decomposition should provide a “bird’s-eye” view of the topical structure
of an ontology. This means that a very fine-grained decomposition is undesirable
because it does little to help understanding. On the other hand, large clumps of
axioms could aggregate, hence hide, specific topical relations. In this scenario, a
good decomposition should be only modestly fine-grained.

We now present the results of decomposing BioPortal ontologies w.r.t. our
notions of locality. Due to space restrictions we present only summaries of this
results, but full decompositions, spreadsheets with metrics and other data is
available online at http://tinyurl.com/modbioportal.

The 3 notions of ADs we use are strongly related since >⊥∗-AD is a refinement
w.r.t. set inclusion of both ⊥- and >-AD, see [3]. As a consequence, we expect
ontologies to have more, smaller >⊥∗-atoms than ⊥- or >-atoms.

Proposition 4. The >⊥∗-AD is finer than both the ⊥-AD and >-AD, i.e., for
any >⊥∗-atom a, there exists a ⊥-atom b and a >-atom c with a ⊆ b and a ⊆ c.

The NCBO BioPortal ontology repository contains over 250 bio-medical on-
tologies, of which 218 are OWL or OBO ontologies. Among these, we filtered out
those whose file was corrupted, those that do not contain any logical axioms, and
some very large ontologies.9 The result is a corpus of 181 ontologies, designed
and built by domain experts, that vary greatly in size and expressivity [10].

We have decomposed these 181 BioPortal ontologies according to all three
notions of syntactic locality: ⊥, >, and >⊥∗. For each decomposition, we compute
a basic set of metrics: for each ontology, we compute the average and maximal
size of atoms and Genuine Modules (GM) measured in numbers of axioms (axs.
in the table), and then we take the average of the resulting numbers over all 181
ontologies. The results are presented in the following table.

Average Average Average Average Average
Notion of average maximum average maximum nr. of conn.
locality axs./atom axs./atom axs./GM axs./GM components

>⊥∗ 1.73 86 66 143 826
⊥ 2.19 93 73 156 45
> 330.45 1, 417 1, 166 2, 093 1.64

It can be seen that the >⊥∗-AD is generally quite fine-grained: the average
size of an atom is less than 2 axioms; indeed, only 54 ontologies out of 181 have
at least one atom greater than 10 axioms. Next, ⊥-AD is fairly, even suprisingly
close in granularity to >⊥∗-AD as the average atom is only slightly larger than
2 axioms, and all other metrics are surprisingly close. This remark is supported
by the Spearman’s coefficient [13] comparing the number of atoms per ontology
in the ⊥-AD with the one in the >⊥∗-AD. It has a value of ρ ∼= 0.9946, showing
a strong, monotonic correlation between the two measures. Moreover, closer
inspection reveals that these two ADs even coincide in 34/181 ontologies. This
is interesting for FME, as we will see later.
9 See the technical report [3] for statistics for ontologies with over 20K axioms.

http://tinyurl.com/modbioportal

Modular Structure and Decomposition of BioPortal Ontologies 7

In contrast, >-AD is substantially coarser than both >⊥∗ and ⊥-ADs as the
average atom is two orders of magnitude larger, and all other metrics are much
larger as well. Given the nature of >-locality [2], this is not surprising, and
it supports our general understanding that >-ADs are not a good choice when
small size of atoms and modules are relevant. Also, observe that the connectivity
of >⊥∗-AD is much looser than that of the other two ADs: this reflects the fact
that the dependency relation, for >⊥∗-AD, only reflects one kind of dependency,
which is the reason why a >⊥∗ version of Prop. 3 does not hold.

In the majority of the ontologies investigated, we observe rather good de-
composability in terms of atom size. There are, however, ontologies that contain
abnormally huge atoms even for >⊥∗-AD, e.g., over 6K axioms. This is of con-
cern since a module of these ontologies is likely to be of at least that size. For
example, in the context of Web services, an attempt to discover a service whose
description uses terms from such an atom may require transmitting and reas-
oning with thousands of axioms, which is undesirable. We observe these huge
atoms both in absolute terms, i.e., with more than 200 axioms, and in relative
terms, i.e., with more than 50% of axioms of the ontology. In the following table,
we list ontologies whose >⊥∗-ADs have a huge atom, absolute, relative, or both.
We report their size, the size of the maximal atoms, plus some other data that
is explained in what follows.

Ontology O (ID in BioPortal) #O #max #Eq. #Disj.
Atom axs. axs.

Nanoparticle Ontology (1083) 16, 267 6, 425 42 6, 106
Breast Tissue Cell Lines Ontology (1438) 2, 734 2, 201 0 7
IMGT Ontology (1491) 1, 112 729 38 594
SNP Ontology (1058) 3, 481 598 30 210
Amino Acid Ontology (1054) 477 445 8 190
Comparative Data Analysis (1128) 804 434 8 190
Family Health History (1126) 1, 091 378 0 1
Neural Electromagnetic Ontologies (1321) 2, 286 259 21 0
Computer-based Patient Record Ontology (1059) 1, 454 238 18 20

Basic Formal Ontology (1332) 95 89 13 41
Ontology of Medically-related Social Entities (1565) 138 100 17 41
Ontology for General Medical Science (1414) 194 102 17 41
Cancer Research and Mgmt Acgt Master (1130) 5, 435 3, 796 16 42

We carried out a preliminary investigation of ontologies with huge atoms,
trying to understand the reasons for the existence of huge atoms. It turns out that
some huge atoms are due to the abundance of Disjoint Covering Axioms (DCAs)
and we assume that their abundance is due to a specific usage pattern of ontology
editors. More precisely, one version of DCAs is a pair of axioms of the form
{A ≡ (B0t. . .tBn),PairwiseDisjoint(B0, . . . , Bn)}. Since our notion of modularity
is based on axioms and subsets of an ontology and is self-contained, any module
that mentions Bi contains both axioms, and thus pulls in all axioms about Bj as
well. When DCAs occur on many classes on all levels in the class hierarchy of an
ontology, then this results, unsurprisingly, in a huge atom. Moreover, note that
not only disjointness causes axioms to tie together, as the explicit covering axiom

8 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

shows the same behaviour. For disjointness, however, this “pulling-in” effect does
not occur if we rewrite the n-ary disjointness axiom into equivalent pairwise
disjointness axioms or even make the disjointness implicit, as in the following
example: {B0 v Au(= 0R.>), . . . , Bn−1 v Au(= n−1 R.>), Bn v Au(≥ n R.>)}.

In the previous table, we see that ontologies with huge atoms often have a
large number of DCAs in these atoms, as indicated by the number of equivalence
class and disjointness axioms in the last two columns: e.g., in the first ontology,
which also has the largest atom, almost all axioms in this atom are disjointness
axioms; additionally, upon inspection, it turns out that some of the equivalence
axioms in this atom are covering axioms involving 10 or more classes. Also, in
the second ontology, even though the largest atom only contains 7 disjointness
axioms, it turns out that one disjointness axiom contains 52 terms.

The numbers for Comparative Data Analysis and Amino Acid ontologies look
very similar because the first ontology imports the second. Trivially, large atoms
persist also in the imports closure of an ontology: they can only grow. This is
particularly relevant for ontologies that are used as base for others. In our corpus,
we indeed find such a basis, which causes other ontologies to decompose badly
in the sense described above: the Basic Formal Ontology consists of 95 axioms,
89 of which form an atom, which is due to the abundant usage of DCAs. Among
the “relative huge atoms” ontologies, two import the Basic Formal Ontology, and
their decomposability is affected.

Other patterns also lead to huge atoms, and an investigation of possible
patterns is part of future work.

The last remark about this data concerns its analysis under the viewpoint
of scenarios different from semantic Web services. For Collaborative Ontology
Development and Reuse, these results are promising since they show a seemingly
good decomposability of ontologies for >⊥∗-AD and ⊥-AD, i.e., the existence of
small, disjoint sets of axioms that can be safely updated in parallel. In contrast,
in the Topicality for Ontology Comprehension scenario we observe that, when
the number of atoms is comparable with the number of axioms, then atoms do
not provide any summarization over axioms and we cannot hope that considering
atoms can provide any summarization benefit. In this case, the atoms reflect only
very fine-grained topics of an ontology [4]. However, the dependency structure
reflects the logical dependency between atoms, and thus can be used to consider,
e.g., dependent components which, in turn, may better reflect the topics of an
ontology. Of course, to really support ontology comprehension, we might have to
consider “most relevant” atoms of an ontology [5] and, definitely, suitable labeling
of modules. Both directions are part of future work.

4 Labeled Atomic Decomposition and Decomposition-
Based Module Extraction

One particular application of atomic decomposition explored in this paper is
module extraction. In this section we describe a module extraction algorithm,
called FME for “Fast Module Extraction”, which is (a) usually faster than the

Modular Structure and Decomposition of BioPortal Ontologies 9

standard ME algorithm and (b) does not require loading the entire ontology into
memory.

As explained in Section 2, every module is a union of atoms, however, not
every union of atoms is a module. In general, it is non-trivial to determine
which atoms the module for a given seed signature Σ consists of. In particular,
a seemingly irrelevant atom, whose signature is disjoint with Σ, may turn out
to be a part of the module. One way to help determining relevant atoms is to
label them, i.e., associate them with extra information regarding seed signatures.
In this paper we consider a particular kind of labels which, for each atom a,
contains the set of the Minimal Seed Signatures MSS((a]) (recall that each (a]
is a module).

Labelling each atom a with the minimal seed signatures of its module MSS((a])
can have several uses. First, every Σ ∈ MSS((a]) can be regarded as a (minimal)
topic that determines (a] and a. In this sense, all MSSs of all atoms constitute all
relevant minimal topics about which the ontology speaks. This can be exploited
for comprehension. The case where atoms have too many MSSs—(a] could have
up to 2#(a] many—is the subject of a representation method that allows the
adjustment of granularity and is deferred to future work. Second, the collection
of all MSSs guides the extraction of a single module by suggesting possible topics
(MSSs as inputs of the extraction algorithm). Again, the number of topics needs
to be controlled by adjusting the granularity of the presentation.

4.1 Labeling Algorithm and Evaluation

First, we present an AD-driven algorithm for computing, for each atom a in the
decomposition, the set of its minimal seed signatures MSS((a]). Currently, the
algorithm is limited to > or ⊥-locality. We plan to extend it to >⊥∗-locality in
the future.

Note: in Algorithm 1 the symbol ∪∗ means “union and minimization w.r.t.
set inclusion”. This operator guarantees that every set S of seed signatures does
not contain Σ′ if Σ ⊆ Σ′ for some Σ ∈ S. For example, {Σ1, Σ2} ∪∗ {Σ3, Σ4},
where Σ2 ⊂ Σ3, is equal to {Σ1, Σ2, Σ4}.

Algorithm 1 first computes the set MGS(a) (minimal globalizing signatures)
for all axioms in a (Line 4). For an axiom α and a given notion of locality x,
MGS(α) is the set of all Σ ⊆ α̃ such that α is x-non-local w.r.t. Σ and α is
x-local w.r.t. all proper subsets of Σ. For bottom atoms a (i.e., atoms which do
not depend on other atoms) the sets MSS((a]) and MGS((a]) coincide.

Now, every signature Σ ∈ MGS(a) is necessarily a seed signature for (a]
but, unless a is a bottom atom, is not necessarily minimal. The reason is that
Σ′ ⊂ Σ could be a seed signature for a module (b], for some atom b � a if
Σ ⊆ Σ′ ∪ (̃b]. In that case, informally, Σ′ first “pulls” (b] into the module (Σ′

being a seed signature for (b]) and then the extended seed signature Σ′ ∪ (̃b]
“pulls” the axioms of a and the rest of (a]. With “extended seed signature”, we
mean the seed signature against which locality is checked at some iteration of
the standard ME algorithm. Even worse, there could be MSSs for (a] which are

10 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

Algorithm 1 Computing MSSs for a principal ideal
1: Input: Ontology O; its AD x-mod-AD, x ∈ {>,⊥}; atom a
2: Output: MSS(a), the set of all MSSs for (a]

3: MSS(a),PreMSS(a) ← ∅
4: MGS(a) ←

⋃∗
α∈a MGS(α)

5: DD(a) ← the set of atoms that a non-transitively depends on
6: if DD(a) = ∅ then
7: return MGS(a)
8: end if
9: for each b ∈ DD(a) do
10: MSS(b) ← recursively compute MSSs for (b]
11: end for
12: for each Σ ∈ MGS(a) do
13: RCΣ(a) ← {b ∈ DD(a) | Σ ∩ (̃b] 6= ∅}
14: for each {b1, . . . , bn} ∈ ℘(RCΣ(a)) do
15: Σa ← Σ \

⋃
i=1,...,n (̃bi]

16: for each X ∈ MSS(b1)× · · · ×MSS(bn) do
17: PreMSS(a) ← PreMSS(a) ∪∗ {Σa ∪X}
18: end for
19: end for
20: end for
21: for each Σ ∈ PreMSS(a) do
22: MSS(a) ← MSS(a) ∪∗ {{Σ′} | Σ′ ⊆ Σ and x-mod(Σ′,O) = (a]}
23: end for
24: return MSS(a)

not subsets of any signature in MGS(a) – or not even subsets of ã, as illustrated
in Example 5.

Example 5. Let O = {α, β, γ} with α = ‘A ≡ B u C’, β = ‘B ≡ D t E’, and
γ = ‘C ≡ F t G)’. Then the following hold:

⊥-mod({A},O) = ⊥-mod({B, C},O) = {α, β, γ}
⊥-mod({B},O) = ⊥-mod({D},O) = ⊥-mod({E},O) = {β}
⊥-mod({C},O) = ⊥-mod({F},O) = ⊥-mod({G},O) = {γ}

Therefore, there are three atoms a = {α}, b = {β}, c = {γ} with the dependen-
cies b � a and c � a. Now take the MSS {B, C} for a and replace B and C, which
occur in b and c, with the MSSs {D} and {F} for b and c. Then {D, F} is an MSS
for (a] = O although obviously {D, F} is disjoint with ã and with any member of
MGS(a).

Despite these complications, axioms of a can only be pulled into the module
once the extended seed signature includes at least one of the members of MGS(a).
The algorithm next recursively computes MSS for all direct children of a (Line
10) and then proceeds to discover other MSSs of (a] by combining the sets MSS
for direct children of a with the set MGS(a) (Lines 12–20).

Modular Structure and Decomposition of BioPortal Ontologies 11

It does so by “elaborating” each Σ ∈ MGS(a). It selects those atoms b � a

which behave as described above, i.e., (̃b] overlaps with Σ. The set of all such
direct children of a w.r.t. Σ is stored as RCΣ(a) (Line 13). Then the algorithm
removes from Σ (the signature being “elaborated”) the terms in the “lower” atoms
(
⋃
i=1,...,n (̃bi]) and stores the result in Σa (Line 15). Lines 16–18 go through all

seed signatures X which are guaranteed to pull every atom in RCΣ(a). Then,
X ∪Σa is a seed signature (not necessarily minimal) for (a], as explained above.
All such X ∪Σa are collected in PreMSS(a).

The members Σ ∈ PreMSS(a) are not guaranteed to be a minimal seed
signature for (a] because of possible weak dependencies between direct children
of a. Informally, there could be a subset of Σ which first pulls some bi, then
some child of bi and only then bj . Therefore, the algorithm has to “minimize”
every Σ ∈ PreMSS(a) by checking whether any of its subsets are, by themselves,
already seed signatures of (a] (Lines 21–23). However, entries of PreMSS(a) are
usually good approximations of truly minimal seed signatures; in particular, they
are much better approximations than just the signature of (a].

4.2 Properties of the Labeling Algorithm

The correctness of Algorithm 1 is established in [3]. It requires time exponential
in the size of the ontology in the worst case, see the discussion in [3]. Despite the
worst-case intractability the algorithm has the anytime property: the loops for
elaborating (Lines 14–21) and minimizing (Line 21–23) a seed signature could
be interrupted upon time-out, which will result in computing some subset of the
MSS set for an atom.10 This allows for practical approximations in the case when
computing all MSS takes too long. We call atoms whose labels do not contain
all MSS dirty (other atoms are called clean).

Dirty atoms require special handling during module extraction because their
relevance may not be determinable due to missing of some MSS. In other words,
if a dirty atom a is not relevant to a signature, it could mean two things: first,
the atom is not a part of the module or, second, the atom is part of the module
but a seed signature, which would indicate the relevance of a, has not been
computed due to the time-out. Therefore, in order for the FME algorithm to
remain correct it is forced to include dirty atoms into the module even though
they may be irrelevant. This means, in particular, that performance of the FME
algorithm directly depends on whether the MSS algorithm has been able to
compute all MSS for every atom. This is subject of the evaluation which we
discuss next. The open-source Java implementation used for our experiments is
available at http://tinyurl.com/bioportalFME.

4.3 Evaluation of the Labeling Algorithm

We evaluated the labeling algorithm on the same BioPortal ontologies as used
in Sect. 3. The main goal of the evaluation is to assess the practical feasibility of
10 Minimization has to be interrupted carefully to make sure that all produced signa-

tures are minimal w.r.t. inclusion even though some signatures could be missing.

http://tinyurl.com/bioportalFME

12 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

computing all MSS for atoms in the BioPortal ontologies. We set the time-out for
computing labels for every atom to be 5 seconds, so the algorithm is guaranteed
to finish in 5 times the number of atoms in seconds. The results are presented
in the following table.

Total no. Avg. size Avg. number Max. size Number of Max. number
of ont.s of MSS(a) of terms in of MSS(a) ont. with of

all MSS(a) dirty atoms dirty atoms
181 1.4 2.1 4, 252 5 554

For the vast majority of ontologies (176 out of 181) the algorithm was able to
compute all MSS for all atoms. Also, the average label size (that is, the number
of MSSes per atom) and the average number of terms in all MSSes per atom are
small: 1.4 and 2.1, respectively (when averaged first within an ontology then over
all ontologies). This is yet another consequence of the simplicity of the BioPortal
ontologies: their atoms are relevant to only a small number of terms which implies
a small average number of atoms (and consequently, axioms) per module, see the
next subsection. This observation might suggest that the BioPortal ontologies, in
contrast to those examined by Del Vescovo et al. in [5], do not have exponential
numbers of modules, but it is no firm evidence because it does not tell us about
the asymptotic growth of their module numbers relative to their sizes.

Regarding the few ontologies with dirty atoms, they either do not decom-
pose well or have an interesting property of the AD graph: certain atoms non-
transitively depend on a high number of other atoms. Both reasons are true, e.g.,
for the Nanoparticle ontology, for which the MSS algorithm left 554 atoms dirty
and managed to compute 1, 019 MSS sets for one atom, and the International
Classification for Nursing Practice ontology (72 dirty atoms and 4, 252 MSS sets,
respectively). We leave it for future research to investigate such cases, where a
subset of an ontology turns out to be relevant for such a high number of distinct,
but overlapping, seed signatures.

4.4 Fast Module Extraction Algorithm and Evaluation

Finally, we present a LAD-based FME algorithm, which extracts modules based
on Prop. 3 (i.e., by examining MSS sets in labels), and its evaluation. Similarly
to the labeling algorithm, the current version of the FME algorithm is restricted
to >- or ⊥-locality.

The relevance check at Line 6 takes into account the possible dirtiness of an
atom. More formally, the atom is possibly relevant to Σ if it is clean and there
exists Σ′ ∈ MSS(a) such that Σ′ ⊆ Σ or it is dirty and (̃a] ∩Σ 6= ∅ and there is
no Σ′ ∈ MSS(a) such that Σ ⊂ Σ′.11

The FME algorithm has two important advantages over the standard ME
algorithm. First, it should be faster for most of ontologies because it benefits from
11 Observe that if a subset of MSS(a) contains a proper superset of Σ, then, since all

seed signatures are minimal, the full set MSS(a) cannot contain a subset of Σ.

Modular Structure and Decomposition of BioPortal Ontologies 13

Algorithm 2 Atomic decomposition-based module extraction algorithm (FME)
1: Input: LAD for FME of an ontology O, a seed signature Σ
2: Output: The module x-mod(Σ,O), where x ∈ {>,⊥}
3: M ← ∅
4: repeat
5: enlarged ← false
6: M ← M∪ “all atoms that are possibly relevant to Σ”
7: if M̃ \Σ 6= ∅ then
8: enlarged ← true
9: end if
10: Σ ← Σ ∪ M̃
11: until enlarged = false
12: return M

the labeled AD in two ways: i) it exploits labels to quickly detect relevant atoms,
ii) once an atom a is established to be relevant the corresponding module (a] is
added to the module without further checks. Second, it consumes substantially
less memory since only relevant atoms (and their principal ideals) need to be
loaded. The second advantage is especially important when modules are small
comparing to the size of the ontology. This is the case with most of the BioPortal
ontologies where the median module’s size for small seed signatures is under 1%,
as illustrated by the FME evaluation results, which we show next.

We ran the FME algorithm on the same set of BioPortal ontologies, which
were used for decomposition and the labeling evaluation. Seed signatures are
generated by a random selection of class names. For each size both FME and
ME algorithms were run 100 times on different seed signatures and the results
are averaged over all runs. The results are averaged over all 181 ontologies and
presented in the following table. Correctness of the FME algorithm was also
verified empirically by checking that the resulting modules contain all axioms
extracted by the standard ME algorithm.12

Size of Avg. (median) rel. Number of Avg. ME Avg. FME Max. FME
seed sig. module size (%) positive cases runtime (ms) speed-up speed-up

2 0.77 (0.04) 173 1.09 7.33 37.28
5 0.91 (0.08) 169 1.15 3.86 27.12

10 0.99 (0.13) 150 1.18 2.48 8.34

“Relative module size” = size of the module divided by the size of the ontology
“Positive cases” = ontologies for which FME is faster than ME
“Avg. (max.) speed-up” = average (max.) value of ME time divided by FME time

12 The converse is only guaranteed to be true when there is no dirty atoms. Otherwise
an FME module could be a superset (i.e., an approximation) of the ME module for
the same seed signature. Of course, the irrelevant atoms can easily be removed by
running the ME algorithm on the FME module, i.e., by refining the approximation.

14 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

Several conclusions can be drawn from the results. First, good decomposab-
ility of BioPortal ontologies indeed implies small modules on average (column
2). Second, even the standard ME is very fast (around 1 millisecond). Third, the
FME algorithm is typically faster than the standard ME algorithm, however,
this depends on several factors: i) decomposability of the ontology, ii) average
number of atoms’ labels, and iii) size of the seed signature. The first factor is
important for both FME and ME algorithms as it effects the size of the module.
The second factor determines how quickly the FME algorithm can perform the
relevance check on an atom. In the worst case, the algorithm has to examine
each MSS for an atom to decide if it is relevant.13 The seed signature’s size
determines the number of relevant atoms. When the seed signature gets larger,
the algorithm has to examine more atoms for relevancy. Finally, note that the
results include ontologies with dirty atoms on which the FME algorithm could
be up to 5 times slower than the ME algorithm because of considering possibly
irrelevant atoms (this illuminates the importance of efficient labeling).

We also investigated the cases in which the FME algorithm runs an order of
magnitude faster than the standard ME algorithm. This seems to be the case
with ontologies which decompose into small atoms with a low number of MSS set,
and small seed signatures. This is fairly typical for BioPortal ontologies, including
some well-known ones. We illustrate this by comparing the running time of FME
and ME on randomly generated samples of size between 10K and 60K axioms of
GO (the Gene Ontology) and ChEBI (Chemical Entities of Biological Interest
Ontology).14 Seed signatures of size 2, 5 and 10 are generated as in the previous
experiment. The results are shown in the two figures below (GO on the left,
ChEBI on the right).

Sheet1

Page 1

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

2 classes
5 classes
10 classes

Sample size (thousands of logical axioms)

Sp
ee

d-
up

 (M
E

tim
e

/ F
M

E
 ti

m
e)

CHEBI

Page 1

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

2 classes
5 classes
10 classes

Sample size (thousands of logical axioms)

Sp
ee

d-
up

 (M
E

tim
e

/ F
M

E
 ti

m
e)

The graphs show that FME time tends to grow more slowly with the size
of the ontology than ME time. This is unsurprising because the ratio of the
module’s size to the ontology size is decreasing (provided the seed signature’s

13 In fact, this depends on the data structure used to store sets of MSS. We use simple
hash sets, so the check takes O(|MSS(a)| × |Σ|), where Σ is the seed signature.

14 Both ontologies are slightly over 60K logical axioms.

Modular Structure and Decomposition of BioPortal Ontologies 15

size remains constant) and the FME is usually able to quickly locate relevant
atoms while the ME algorithm has to examine each axiom.15 As in the previous
experiments, the speed-up is greater for smaller seed signatures. Note, however,
that for seed signatures of 10 terms the relative speed-up of FME decreases
after 30K axioms for ChEBI. Although it is still an order of magnitude, the
behavior suggests that additional optimizations might be necessary for FME.
For example, the relevance check could be made much quicker if MSS sets are
stored in a data structure tuned for testing set inclusion.

In addition, the FME algorithm can work when only labels and the graph
structure of the AD (but not axioms) are loaded into memory. This could be
important for maintaining large ontologies, or even large collections of large
ontologies, such as ontology repositories. In that case, contrary to the standard
ME, the FME algorithm could still extract modules by loading axioms of only
relevant atoms (plus possibly some dirty atoms for which irrelevance cannot be
proved). For example, if BioPortal ontologies were maintained in the decomposed
form, it would be possible to provide clients, such as SSWAP, with modules for
a required seed signature in a scalable (from the memory perspective) way.

5 Summary and Future Directions

In this paper we have presented results of decomposing and extracting modules
from most of BioPortal ontologies. We showed that the majority of ontologies
decompose well, discussed possible reasons for poor decomposability, and im-
plications of decomposability for possible use cases, in particular, semantic Web
service annotation and discovery. In addition, we presented novel AD-based al-
gorithms for computing minimal seed signatures for compact modules and mod-
ule extraction.

Overall, the reported results show the utility of ontology modularity and de-
composition for such tasks as semantic Web service matchmaking. In particular,
it is likely that only small portion of a biomedical ontology is relevant for terms
used in a Web service description, e.g., on SSWAP or SADI (see the average
module size in the table on Page 13). Therefore, reasoning required to discover
the service could be (efficiently) performed on a small set of OWL axioms. Fur-
thermore, decomposition helps to get that set (module) faster than the standard
module extraction and without the necessity to keep the ontology in memory.

We intend to continue our work on decomposition in several directions. First,
we will investigate the possibility of maintaining ontologies in a decomposed
form. This is more scalable from the memory perspective, enables faster ME,
and is also potentially useful for comprehension and collaborative development
of the ontology. However, it will require the possibility of incremental updates
to the AD since its computation can be time consuming. Second, we will extend
15 For space reasons our description of the FME algorithm does not show how labels

serve as indexes by enabling us to perform the relevance test only on atoms whose
MSS sets overlap with the seed signature. We must mention that a syntactic indexing
(but coarser and less efficient) could be used for the standard ME as well.

16 Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget

our algorithms to >⊥∗-modules and, possibly, to semantic locality. Third, we
will keep on investigating modeling guidelines for developing well decomposable
ontologies and will seek to improve understanding of poor decomposability.

Acknowledgements We thank the anonymous reviewers for their comments
and Evan Lane for discussions with D.G. and A.W. This material is based
upon work supported by the National Science Foundation (NSF) under grant
#0943879 and the NSF Plant Cyberinfrastructure Program (#EF-0735191).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

2. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. J. of Artif. Intell. Research 31, 273–318 (2008)

3. Del Vescovo, C., Gessler, D., Klinov, P., Parsia, B., Sattler, U., Schneider, T.,
Winget, A.: Decomposition and modular structure of bioportal ontologies. Tech.
rep. (2011), http://tinyurl.com/modbioportal

4. Del Vescovo, C., Parsia, B., Sattler, U.: Topicality in logic-based ontologies. In:
Proc. of ICCS-11. pp. 187–200 (2011)

5. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: an empirical study. In: Proc. of DL 2010. ceur-ws.org (2010)

6. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: Atomic decomposition. In: Proc. of IJCAI-11. pp. 2232–2237 (2011)

7. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: atomic decomposition. Tech. rep., University of Manchester (2011),
available at http://bit.ly/i4olY0

8. Gessler, D., Schiltz, G.S., May, G.D., Avraham, S., Town, C.D., Grant, D.M., Nel-
son, R.T.: SSWAP: A simple semantic web architecture and protocol for semantic
web services. BMC Bioinformatics 10, 309 (2009)

9. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logics. In: Proc. of KR-06. pp. 187–197 (2006)

10. Horridge, M., Parsia, B., Sattler, U.: The state of bio-medical ontologies. In: Proc.
of 2011 ISMB Bio-Ontologies SIG (2011)

11. Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga Llavori,
R.: Safe and economic re-use of ontologies: A logic-based methodology and tool
support. In: Proc. of ESWC-08. LNCS, vol. 5021, pp. 185–199 (2008)

12. Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal properties of modularization.
In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies,
LNCS, vol. 5445, pp. 25–66. Springer (2009)

13. Spearman, C.: The proof and measurement of association between two things.
Amer. J. Psychol. 15, 72–101 (1904)

14. Wilkinson, M.D., Vandervalk, B., McCarthy, L.: SADI Semantic Web services –
’cause you can’t always GET what you want! In: Proc. of APSCC. pp. 13–18 (2009)

http://tinyurl.com/modbioportal
ceur-ws.org
http://bit.ly/i4olY0

	Decomposition and Modular Structure of BioPortal Ontologies
	Introduction
	Modularity and Atomic Decomposition
	Decomposability of BioPortal Ontologies
	Labeled Atomic Decomposition and Decomposition-Based Module Extraction
	Labeling Algorithm and Evaluation
	Properties of the Labeling Algorithm
	Evaluation of the Labeling Algorithm
	Fast Module Extraction Algorithm and Evaluation

	Summary and Future Directions

