
Deciding Inseparability and Conservative

Extensions in the Description Logic EL

Carsten Lutz

Fachbereich Mathematik und Informatik, Universität Bremen, Germany

Frank Wolter

Department of Computer Science, University of Liverpool, UK

Abstract

We study the problem of deciding whether two ontologies are inseparable w.r.t. a signature Σ,
i.e., whether they have the same consequences in the signature Σ. A special case is to decide
whether an extension of an ontology is conservative. By varying the language in which ontologies
are formulated and the query language that is used to describe consequences, we obtain differ-
ent versions of the problem. We focus on the lightweight description logic EL as an ontology
language, and consider query languages based on (i) subsumption queries, (ii) instance queries
over ABoxes, (iii) conjunctive queries over ABoxes, and (iv) second-order logic. For query lan-
guages (i) to (iii), we establish ExpTime-completeness of both inseparability and conservative
extensions. Case (iv) is equivalent to a model-theoretic version of inseparability and conserva-
tive extensions, and we prove it to be undecidable. We also establish a number of robustness
properties for inseparability.
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1. Introduction

The main use of ontologies in computer science is to provide a reference vocabulary
for some domain of interest. In logic-based ontology languages such as description log-
ics (DLs), this vocabulary is represented as predicate symbols whose meaning is formal-
ized using (a finite axiomatization of) a logical theory (2) formulated in these symbols.

? This research was partly supported by EPSRC grant EP/E065279/1.

Email addresses: clu@informatik.uni-bremen.de (Carsten Lutz), frank@csc.liv.ac.uk (Frank

Wolter).

URLs: http://informatik.uni-bremen.de/tdki/ (Carsten Lutz),

http://www.csc.liv.ac.uk/∼frank/ (Frank Wolter).

Preprint submitted to Elsevier 10 March 2009



Recent applications of ontologies, such as in health care and the bio-sciences, have led to
the development of very large ontologies that capture an extensive vocabulary. Notable
examples include the Systematized Nomenclature of Medicine, Clinical Terms (Snomed
CT), which comprises almost 0.5 million vocabulary items (22); and the thesaurus of
the US national cancer institute (NCI), which comprises more than 40.000 such items
(20). The design, maintenance, and customization of ontologies of this size are highly
non-trivial tasks that are supported by various tool suites, many of which are based on
DL reasoning systems.

Currently, the main service provided by such systems is to compute subsumption,
a basic reasoning service that helps to make explicit the structure of the vocabulary.
While being very useful, subsumption alone does not suffice to support the complex
engineering patterns used in the design and customization of large-scale ontologies. In
particular, subsumption provides only limited support for complex operations such as
the import, merging, combination, re-use, refinement, and extension of ontologies. The
consequences of these operations are hard to analyze and easily introduce unintended
changes to the logical theory that describes the vocabulary. Therefore, additional tool
support is required to identify theory changes. We give two concrete examples:

Ontology refinement. Suppose an ontology designer wants to extend an ontology with
new axioms that refine the description of a particular part Σ of the vocabulary. In this
case, he usually intends to preserve the theory (and thus the meaning) of most or all
of the non-Σ-symbols. For example, when a medical ontology is extended to refine the
axiomatization of the vocabulary for X-ray diagnostics, the theory that describes the
vocabulary of anatomy and drugs are not expected to change. Thus, an appropriate
reasoning service is to check for such unexpected theory change, and to report it to the
designer.

Ontology import. Suppose an ontology designer wants to import an existing ontology into
the one he is currently designing. For example, a medical ontology might be imported
into an ontology about the health-care regulations of a particular country. It is then
typically intended to use the vocabulary Σ of the imported ontology with its original
meaning. However, if the symbols from Σ are used to define new symbols in the importing
ontology, it may happen that new consequences about Σ become derivable and thus the
Σ-theory changes. As in the previous example, reasoning support should identify such
theory changes and report them to the user.

In this paper, we propose Σ-inseparability of two ontologies as a fundamental notion
for addressing problems of this kind. In short, two ontologies are Σ-inseparable if they
have the same logical consequences formulated in the signature (vocabulary) Σ. For
the operations on ontologies mentioned above, checking for Σ-inseparability is a central
reasoning service. Additionally, Σ-inseparability plays a fundamental role in defining
notions of a module inside an ontology. While we do not directly address modularity in
this paper, we note that understanding Σ-inseparability is crucial for any approach to
modularity: an ontology module should be independent from its host ontology, and thus
Σ-inseparable from the overall ontology regarding its own vocabulary Σ (10; 12; 16).
We also note that conservative extensions are the special case of Σ-inseparability where
one ontology is included in the other. Like Σ-inseparability, conservative extensions have
been proposed as a useful reasoning service for ontologies and were used to formalize
modularity (1; 12; 10; 14; 18).
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Above, we have defined Σ-inseparability of two ontologies in terms of their logical
consequences, but we have not made explicit the logical language that is used to formu-
late these consequences. From now on, we call this language the query language and say
that two ontologies are Σ-inseparable w.r.t. a query language QL iff they have as conse-
quences the same QL queries that use only symbols from Σ. When studying conservative
extensions between logical theories in mathematical logic, the query language typically
coincides with the language in which the theories are formulated. In DLs, ontologies are
formulated as TBoxes, which are sets of concept inclusions. In analogy with mathemat-
ical logic, one can thus define Σ-inseparability of two DL TBoxes based on the query
language that consists of all concept inclusions. Indeed, this is useful for applications in
which the user is mainly interested in subsumption between concepts, and it is one of
the choices that we consider in this paper.

In other applications, concept inclusions are not appropriate as a query language for
Σ-inseparability. An important example is the use of an ontology to access instance data
stored in an ABox using as a query mechanism either instance retrieval or conjunctive
query answering. In this case, the query language on which Σ-inseparability is based
should ensure that two ontologies are Σ-inseparable iff they give the same answers to
any (instance or conjunctive) query over any possible ABox. We will show that the query
language based on concept inclusions is too weak for this purpose, and introduce two ad-
ditional query language that can be used to define appropriate notions of Σ-inseparability:
one based on instance retrieval and one based on conjunctive query answering. Finally,
we also consider full second-order logic as a query language. The resulting notion of
Σ-inseparability is equivalent to a model-theoretic version in which two ontologies are
Σ-inseparable iff the classes of Σ-reducts of their models coincide. This notion has been
extensively investigated in the context of modular software design (13; 19).

We study the following three aspects of Σ-inseparability:
(i) The computational complexity of deciding Σ-inseparability of two ontologies.
(ii) The relation between different versions of Σ-inseparability, which are obtained from

the different query languages discussed above.
(iii) Robustness properties, which guarantee that Σ-inseparability is preserved under

natural modifications of the ontologies and signatures involved.
The notions of Σ-inseparability defined in this paper can be used with ontologies for-
mulated in any standard DL. However, the concrete results obtained for Points (i)-(iii)
above depend on the choice of the ontology language. In this paper, we concentrate on
ontologies formulated in the lightweight description logic EL (7; 4). This decision is mo-
tivated by the fact that many large-scale ontologies, such as those originating in the life
sciences, are formulated in EL or mild extensions thereof. Concrete examples include
Snomed CT and (early versions of) the NCI ontology.

The central result of this paper is that deciding Σ-inseparability and conservative ex-
tensions is ExpTime-complete for the three versions of Σ-inseparability derived from DL
query languages (concept inclusions, instance retrieval, conjunctive queries). For insep-
arability based on second-order logic (equivalently, model-theoretic inseparability), we
prove undecidability. We also show that (a) inseparability based on concept inclusions
coincides with inseparability based on instance retrieval, and (b) inseparability based
on conjunctive queries coincides with inseparability based on concept inclusions that
are formulated in an extension of EL with the universal role. Finally, we postulate two
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robustness properties and show that all versions of Σ-inseparability considered in this
paper enjoy these properties.

This paper is organized as follows. In Section 2, we introduce inseparability and query
languages, state the relationships between different versions of inseparability, and intro-
duce and analyze robustness properties. Section 3 introduces some technical tools that
we use extensively in the remainder of the paper, namely simulations, canonical mod-
els, and local entailment. An ExpTime upper bound for Σ-entailment based on concept
inclusions is established in Section 4. In Section 5, we prove the relationships between
different notions of inseparability as stated in Section 2 and use them to prove the Exp-

Time upper bound for inseparability based on instance retrieval and conjunctive query
answering. A matching lower bound, which applies already to the case of conservative
extensions, is established in Section 6. Undecidability of inseparability based in second-
order logic is proved in Section 7. Finally, we discuss some open questions in Section 8.
To improve readability, many proof details are deferred to the appendix.

2. Preliminaries

We introduce the description logic EL as well as (different versions of) inseparability
and the related notions of entailment and conservative extensions. We also describe the
relationship between the different versions of inseparability and introduce and investigate
two robustness properties.

2.1. The Description Logic EL

Let NC and NR be countably infinite and disjoint sets of concept names and role names.
EL-concepts C are built according to the syntax rule

C ::= > | A | C uD | ∃r.C,

where A ranges over NC, r ranges over NR, and C,D range over EL-concepts. The seman-
tics of EL is defined by means of interpretations I = (∆I , ·I), where the interpretation
domain ∆I is a non-empty set, and ·I is a function mapping each concept name A to
a subset AI of ∆I , each role name r to a binary relation rI ⊆ ∆I × ∆I , and each
individual name a to an element aI ∈ ∆I . The function ·I is inductively extended to
arbitrary concepts by setting

>I := ∆I

(C uD)I := CI ∩DI

(∃r.C)I := {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}.

An EL-TBox is a finite set of concept inclusions (CIs) C v D, where C and D are
EL-concepts. We write C .= D as abbreviation for the two CIs C v D and D v C. An
interpretation I satisfies a CI C v D, written I |= C v D, if CI ⊆ DI . I is a model of
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a TBox T if it satisfies all CIs in T . As an example, here is a simple EL-TBox T1:

Mother
.= Female u ∃has-child.Human

Father
.= Male u ∃has-child.Human

Male v Human

Female v Human

When introducing entailment, inseparability, and conservative extensions in the subse-
quent section, it is important to be precise about the concept and role names that occur in
a concept or TBox. We use the notion of a signature, which is a finite subset of NC ∪NR.
The signature sig(C) of a concept C is the set of concept and role names that occur
in C, and likewise for the signature sig(T ) of a TBox T . If sig(C) ⊆ Σ, we call C an
ELΣ-concept.

In description logic, an important way to query a TBox is subsumption (2). For two
EL-concepts C, D and a TBox T , we say that C is subsumed by D w.r.t. T (written
T |= C v D) iff all models of T satisfy the CI C v D. Thus, a subsumption query is
a concept implication C v D. Subsumption query answering means to decide whether
T |= C v D, given the query C v D and the TBox T . For example, reconsider the above
TBox T1. It is easy to see that T1 |= Mother v Human.

2.2. Entailment, Inseparability, Conservative Extensions

We introduce the three main notions studied in this paper: entailment between TBoxes,
which is the most basic notion; inseparability, which is defined in terms of entailment;
and conservative extensions, which are a special case of inseparability. All these notions
depend on the query language that is used to query a TBox. Subsumption queries are one
possible choice, but we shall also consider other options. To treat such query languages
in a uniform way, we adopt a rather general view on them: in what follows, a query
language is a set of sentences of second-order logic with second-order variables for unary
and binary relations, and in the signature consisting of the set NC of unary predicates
and the set NR of binary predicates.

Just like queries, EL-TBoxes can also be viewed in the framework of second-order
logic. The following well-known inductive translation (2) transforms EL-concepts C into
an equivalent first-order formula with one free variable x:

A] = A(x)

(C uD)] = C] uD]

(∃r.C)] = ∃y.(r(x, y) ∧ C](y/x))

A concept inclusion C v D thus corresponds to a first-order sentence ∀x.(C] ⇒ D]),
and a TBox to a conjunction of such sentences. From now on, we will not distinguish
between EL-concepts and their translation into first-order logic, and likewise for concept
inclusions and TBoxes. Thus, it makes sense to write T |= ϕ for an EL-TBox T and
a second-order sentence ϕ to denote second-order entailment. As usual, the signature
sig(ϕ) of a second-order sentence ϕ is defined as the set of predicates used in it.
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Definition 1 (Entailment, inseparability, conservative extension). Let QL be a query
language, Σ a signature, and T1, T2 TBoxes. Then
• T1 Σ-entails T2 w.r.t.QL, written T1 vQLΣ T2, if T2 |= ϕ implies T1 |= ϕ for all sentences
ϕ ∈ QL with sig(ϕ) ⊆ Σ;

• T1 and T2 are Σ-inseparable w.r.t. QL if T1 Σ-entails T2 and T2 Σ-entails T1;
• T2 is a Σ-conservative extension of T1 w.r.t. QL if T2 ⊇ T1 and T1 and T2 are Σ-

inseparable w.r.t. QL;
• T2 is a conservative extension of T1 w.r.t. QL if T2 is a Σ-conservative extension of T2

w.r.t. QL, with Σ = sig(T1).
A QL-sentence ϕ is a witness for the non-entailment T1 6vQLΣ T2 if sig(ϕ) ⊆ Σ, T1 6|= ϕ,
and T2 |= ϕ.

The notions of Σ-inseparability, Σ-conservative extensions, and conservative extensions
are all defined in terms of Σ-entailment. When developing algorithms, we may thus
concentrate on Σ-entailment. Only when giving counterexamples and complexity lower
bounds, we will consider conservative extensions as the most special case.

We now give three examples of query languages, all based on subsumption. First, the
simple language QLCN consists of all concept inclusions A v B, with A and B concept
names or the top concept >. This query language is useful if we are only interested in
the classification of TBoxes, i.e., the partial order on the concept names in the TBox
induced by the subsumption relation. Indeed, two TBoxes T1 and T2 over a signature Σ
have the same classification if and only if they are Σ-inseparable w.r.t. QLCN. Similarly,
if T2 is a conservative extension of T1 w.r.t. QLCN, then T2 only extends the existing
classification of T1 with new classes, but does not change it in any other way. Reconsider
the example TBox T1 from Section 2.1, and let T2 be T1 extended with the following:

∃has-child.Human v Parent

Parent v Human.

Then T2 is a conservative extension of T1 w.r.t. QLCN because the only new inclusion
A v B, where A,B are concept names, derivable from T2 is Parent v Human but Parent
is not in the signature of T1. It is easy to decide Σ-entailment w.r.t. QLCN by computing
all subsumptions between the (finitely many) concept names from Σ.

Second and more interesting, the language QLEL ) QLCN consists of all concept
inclusions C v D between (possibly composite) EL-concepts C and D. Intuitively, QLEL
is appropriate if we are interested not only in the classification of a TBox, but in all
consequences of the TBox that can be expressed in terms of concept inclusions. It is easy
to see that Σ-entailment w.r.t. QLEL implies Σ-entailment w.r.t. QLCN. The converse is
not true: take the example TBoxes T1 and T2 from above. Then T2 is not a conservative
extension of T1 w.r.t. QLEL, a witness being

∃has-child.Human v Human.

Deciding Σ-entailment w.r.t. QLEL is much less trivial than w.r.t. QLCN, and we will
study this problem in detail in the main part of this paper. For brevity, we write T1 vΣ T2

if T1 Σ-entails T2 w.r.t. QLEL.
We can define other query languages QLL by replacing the EL-concepts in QLEL

with concepts formulated in another description logic L, i.e., QLL consists of all concept
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implications C v D with C and D L-concepts. In general, different choices of L give
rise to distinct notions of Σ-entailment w.r.t. QLL. As our third example, we consider
the case L = ALC, where ALC is the extension of EL with a negation constructor ¬C
which has the obvious semantics (¬C)I = ∆I \CI . We use ∀r.C to abbreviate ¬∃r.¬C.
Consider the TBoxes

T1 : Human v ∃eats.>

Plant v ∃grows-in.Area

Vegetarian v Healthy

T2 : Human v ∃eats.Food

Food u Plant v Vegetarian

where T2 additionally contains all the CIs of T1. Then, T2 is a conservative extension of
T1 w.r.t. QLEL, as can be checked using the semantic criteria introduced below. However,
T2 is not a conservative extension of T1 w.r.t. QLALC , as witnessed by

Human u ∀eats.Plant v ∃eats.Vegetarian.

For deciding Σ-conservative extensions (of EL-TBoxes) w.r.t. QLALC , we can use the
algorithm for deciding conservative extensions in ALC, given in (14). As the above ex-
ample shows, this algorithm cannot be used to decide Σ-conservative extensions w.r.t.
QLEL.

2.3. ABoxes and Conjunctive Queries

In some applications, queries are asked against knowledge bases rather than TBoxes.
Such a knowledge base enriches a TBox with instance data, stored in an ABox.

Let NI be a countably infinite set of individual names. An EL-ABox is a finite set of
assertions of the form C(a) and r(a, b), where C is an EL-concept, r a role, and a, b ∈ NI.
An EL-knowledge base (KB) is a pair K = (T ,A) consisting of an EL-TBox and an
EL-ABox. To interpret ABoxes, we consider interpretations I which additionally assign
to each a ∈ NI an element aI ∈ ∆I . An interpretation I satisfies an assertion C(a) if
aI ∈ CI and an assertion r(a, b) if (aI , bI) ∈ rI . If α is an ABox assertion and I satisfies
α, we write I |= α. I is a model of an ABox A if it satisfies all assertions in A. It is a
model of a KB (T ,A) if it is a model of both T and A. The signature of an ABox A
is defined as the set of concept and role names occurring in A. Observe that individual
names are not part of the signature.

When working with knowledge bases, there are several options for querying. In this
paper, we consider the two most important ones: instance retrieval and conjunctive query
answering. For an EL-concept C, a KB K = (T ,A), and an individual name a, we say
that a is an instance of C w.r.t. K (written K |= C(a)) if all models of K satisfy the
assertion C(a). Now, an instance query is a concept C and instance query answering
means, given the query C and a knowledge base K, to produce all answers to C w.r.t. K,
i.e., all a ∈ NI such that K |= C(a).

A conjunctive query is an expression of the form q = ∃y.ψ(x,y), where x and y are
sequences of variables taken from a fixed and countably infinite set of variables NV, and
ψ is a conjunction of atoms C(v) and r(u, v) with C an EL-concept, r a role name,
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and u, v ∈ x ∪ y. The variables in x are called answer variables, and those in y bound
variables. To make the answer variables in q explicit, we write q(x). The signature of a
conjunctive query is defined as the set of concept and role names occurring in it.

Let K = (T ,A) be a knowledge base, q = ∃y1, . . . , ym.ψ a conjunctive query with
answer variables x = x1, . . . , xn, and a = a1, . . . , an a sequence of individual names.
Then a is an answer to q w.r.t. K, written K |= q(a), if for every model I of K, there
exists a mapping τ : NV → ∆I such that
• τ(xi) = ai, for 1 ≤ i ≤ n;
• for every atom C(v) ∈ q, τ(v) ∈ CI ;
• for every atom r(u, v) ∈ q, (τ(u), τ(v)) ∈ rI .
Conjunctive query answering means, given C, K, and q, to produce all answers to q
w.r.t. K.

In most applications, the instance data in an ABox has a different status than the
conceptual knowledge in the TBox. Often, the TBox is developed while the ABox is
not yet known. Moreover, even if an initial ABox is known, the ABox usually changes
frequently over the lifespan of an application. Therefore, to analyze the consequences of
changes to TBoxes, we quantify over all possible ABoxes that could possibly be used
together with the TBox.

We now define the corresponding notions of Σ-entailment.

Definition 2. Let T1 and T2 be EL-TBoxes and Σ a signature. Then
• T1 Σ-entails T2 w.r.t. QLiEL iff the following holds for all Σ-ABoxes A, Σ-concepts C,

and a ∈ NI:
(T2,A) |= C(a)⇒ (T1,A) |= C(a).

• T1 Σ-entails T2 w.r.t. QLqEL iff the following holds for all Σ-ABoxes A, conjunctive
Σ-queries q with k free variables, and k-tuples a of individual names in NI:

(T2,A) |= q(a)⇒ (T1,A) |= q(a).

In this definition, the terms “Σ-entails w.r.t. QLiEL” and “Σ-entails w.r.t. QLqEL”
are defined without specifying the query languages QLiEL and QLqEL. It is not hard,
however, to define first-order query languages QLiEL and QLqEL that are compatible with
Definition 2 and fit into the schema of query languages used in Definition 1. We only
consider the case of instance retrieval and leave the conjunctive query case to the reader.
For every individual name a ∈ NI, fix a variable xa. Then an ABox A can be translated
to a first-order formula

A] :=
∧

C(a)∈A

C](xa) ∧
∧

r(a,b)∈A

r(xa, xb),

and an assertion C(a) into a first-order formula C](xa). The query language QLiEL is
now defined as the set of all first-order sentences ∀x, xa.(A] → C](xa)) with x the set of
all variables in A].

In applications in which the ABox does not change frequently, it can also make sense
to consider entailment and inseparability between knowledge bases instead of between
TBoxes. In this case, the ABox is part of the two theories that are compared, and not
universally quantified as in Definition 2. This problem turns out to be computationally
much simpler. In fact, tractability of inseparability of knowledge bases will be a corollary
of our investigation of inseparability for TBoxes, see Definition 25 and Lemma 29 below.
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2.4. Relating Query Languages

We discuss the relationship between the query languages QLEL, QLiEL, and QLqEL. It
is not hard to see that

(1) Σ-entailment w.r.t. QLqEL implies Σ-entailment w.r.t. QLiEL, and
(2) Σ-entailment w.r.t. QLiEL implies Σ-entailment w.r.t. QLEL.

Indeed, (1) holds since every instance query C can be seen as a conjunctive query C(v),
and (2) follows from the fact that T |= C v D iff K |= D(a) with K = (T , {C(a)}).

Now for the converses of (1) and (2). Somewhat surprisingly, the converse of (2) is
true, and we will prove this in Section 5.1. In contrast, the converse of (1) is false. To
see this, consider the TBox T1 from Section 2.1, and let T2 be T1 extended with the
old-fashioned statement

Father v ∃spouse.Female.

Then, T2 is a conservative extension of T1 w.r.t. QLiEL, but not w.r.t. QLqEL, as witnessed
by the ABox {Father(a)} and the query ∃v.Female(v).

Interestingly, there is a moderate extension of QLEL that is still based on subsumption
queries, and for which Σ-entailment coincides with Σ-entailment inQLqEL. Let u be a fresh
role name not in NR, and call it the universal role. The set of ELu-concepts consists of all
EL-concepts C and all concepts of the form ∃u.C, where C is an EL-concept. Note that
we do not allow nesting of the ∃u.C constructor inside any constructor. Interpretations I
are required to interpret the universal role as uI = ∆I×∆I . The role name u is not part
of the signature of any concept, hence sig(C) = sig(∃u.C) for any EL-concept C, and
similarly for concept inclusions. Observe that the signature of the first-order translation
(∃u.C)] = ∃x.C](x) of ∃u.C coincides with the signature of ∃u.C. ELu-concepts C with
sig(C) ⊆ Σ are called ELuΣ-concepts.

The query language QLuEL consists of all concept inclusions C v D such that C is
an EL-concept and D an ELu-concept. Clearly, Σ-entailment w.r.t. QLuEL implies Σ-
entailment w.r.t. QLEL. To show that the converse does not hold, we can reuse the
example from above showing that the converse of (2) fails. In fact, the subsumption
Father v ∃u.Female is a witness for the fact that T2 is not a conservative extension of T1

w.r.t. QLuEL. Although maybe not too interesting in its own right, the query language
QLuEL is one of the central query languages studied in this paper. This is due to the fact
that, in Section 5.2, we show that Σ-entailment in QLuEL coincides with Σ-entailment in
QLqEL. In what follows, we write T1 vuΣ T2 to state that T1 Σ-entails T2 w.r.t. QLuEL.

The following theorem sums up the main results stated in this section. It will be proved
in Section 5.

Theorem 3. The following equivalences hold for any two TBoxes T1 and T2 and any
signature Σ:
• T1 viΣ T2 iff T1 vΣ T2.
• T1 vqΣ T2 iff T1 vuΣ T2.

Thus, it suffices to study Σ-entailment w.r.t. QLEL and QLuEL. This is what we will
do in the following sections.
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2.5. Properties of Σ-Inseparability

To use Σ-inseparability in applications such as the ones mentioned in the introduction,
it is important to properly understand its behavior. In this section, we postulate two
useful robustness properties for Σ-inseparability, and show that they are enjoyed by the
notions of Σ-inseparability studied in this paper. The first property is concerned with
extensions of the signature Σ by additional symbols.

Definition 4. Let L be a description logic and QL a query language. We say that the
pair (L,QL) is robust for signature extensions if for all L-TBoxes T1 and T2, we have the
following: if T1 Σ-entails T2 w.r.t. QL, then T1 Σ′-entails T2 w.r.t. QL for every Σ′ with
sig(T2) ∩ Σ′ ⊆ Σ.

Robustness under signature extensions is of particular interest for the query languages
QLiEL and QLqEL. We consider QLqEL, the argument for QLiEL is similar. Assume that
T1 and T2 are Σ-inseparable w.r.t. QLqEL. Then the answers to conjunctive Σ-queries
q of the KB (T1,A) coincide with the answers to q of the KB (T2,A), for every Σ-
ABox A. Robustness under signature extensions implies that even if the ABox and the
query contain additional symbols not occurring in (sig(T1)∪ sig(T2))\Σ, the answers still
coincide. This property is critical for applications in which it is not possible to restrict
ABoxes and conjunctive queries to a fixed signature Σ.

Robustness under signature extensions is closely related to Craig interpolation, a prop-
erty that is studied in mathematical logic and applied, for example, in the area of modular
software specification (13; 24; 19). In this paper, we use Craig interpolation of EL as es-
tablished in (21) to prove robustness under vocabulary extensions. We first state the
interpolation property of EL.

Theorem 5. EL has Craig interpolation: for every TBox T and ϕ ∈ QLEL with T |= ϕ,
there exists a TBox I(T , ϕ) (called an interpolant of T and ϕ) such that sig(I(T , ϕ)) ⊆
sig(T ) ∩ sig(ϕ), T |= I(T , ϕ), and I(T , ϕ) |= ϕ.

Corollary 6. (EL,QL) is robust for signature extensions, for all QL among QLEL,
QLuEL, QLiEL, and QLqEL.

Proof. By Theorem 3, it is sufficient to prove this result for QLEL and QLuEL. For QLEL
the proof is by a straightforward application of the Craig interpolation property of EL.
Assume T1 vΣ T2 and Σ ⊆ Σ′ with sig(T2) ∩ Σ′ ⊆ Σ. Let T2 |= C v D, where C,D are
ELΣ′ -concepts. Take an interpolant I(T2, C v D). Then sig(I(T2, C v D)) ⊆ Σ. Hence
T1 |= I(T2, C v D) and this yields T1 |= C v D, as required. The proof for QLuEL also
uses the Craig interpolation property of EL and is given in Section B of the appendix. 2

It follows from Corollary 6 that when deciding whether T1 Σ-entails T2 w.r.t. QLEL,
we can w.l.o.g. assume that Σ ⊆ sig(T2) because Σ′-entailment follows for all signatures
Σ′ with Σ′ ∩ sig(T2) ⊆ Σ.

We now introduce the second robustness property.

Definition 7. We say that a pair (L,QL) has the join-modularity property if for all
TBoxes T1, T2, the following holds: if T1 and T2 are Σ-inseparable w.r.t. QL and sig(T1)∩
sig(T2) ⊆ Σ, then T1 ∪ T2 and Ti are Σ-inseparable w.r.t. QL, for i = 1, 2.
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Join-modularity is of interest for collaborative ontology development. For example,
assume that two ontology developers extend a given ontology T0 independently of each
other, obtaining extended ontologies T1 and T2 with T0 ⊆ Ti and such that Ti is a
conservative extension of T0, for i ∈ {1, 2}. If the two developers worked on different
parts of the ontology, it is safe to assume that sig(T1) ∩ sig(T2) = sig(T0). Now, the
join-modularity property implies that the joint extension T1 ∪ T2 is also a conservative
extension of T0: since T1 and T2 are conservative extensions of T0, T1 and T2 are sig(T0)-
inseparable; it follows by join-modularity that they are sig(T0)-inseparable from T1 ∪ T2.

The join-modularity property is closely related to the Robinson consistency property
studied in mathematical logic and applied, similarly to the interpolation property, in
modular software specification (13). If a logic satisfies certain criteria, Robinson consis-
tency property and Craig interpolation are known to be equivalent. Unfortunately, to the
best our knowledge, the criteria considered in the literature do not apply to EL.

Theorem 8. (EL,QL) has the join-modularity property, for all QL among QLEL,
QLuEL, QLiEL, and QLqEL.

By Theorem 3, it is sufficient to prove this result for (EL,QLEL) and (EL,QLuEL). We
provide the proof in Section B of the appendix.

We close this section with the observation that (EL,QLCN) does not have the join-
modularity property. The TBoxes T1 = {A0 v ∃r.B} and T2 = {∃r.B v A1} are Σ-
inseparable w.r.t. QLCN, for Σ = {A0, A1, r, B}, but T1 ∪ T2 |= A0 v A1 and Ti 6|= A0 v
A1, for i = 1, 2.

3. Simulations, Canonical Models, and Local Entailment

The purpose of this section is to establish some notions that are crucial to our algo-
rithms for deciding Σ-entailment and their correctness proofs: we recall the tight con-
nection between EL and simulations on graphs, introduce a certain canonical model con-
struction for EL-concepts and TBoxes, and define a local version of entailment between
TBoxes.

Definition 9 (Simulation). Let I1 and I2 be interpretations and Σ a signature. A
relation S ⊆ ∆I1 ×∆I2 is a Σ-simulation from I1 to I2 if the following holds:
• for all concept names A ∈ Σ and all (d1, d2) ∈ S with d1 ∈ AI1 we have d2 ∈ AI2 ;
• for all role names r ∈ Σ, all (d1, d2) ∈ S, and all e1 ∈ ∆I1 with (d1, e1) ∈ rI1 , there

exists e2 ∈ ∆I2 such that (d2, e2) ∈ rI2 and (e1, e2) ∈ S.
The Σ-simulation S is called full if the domain dom(S) of S coincides with ∆I1 . For
d1 ∈ ∆I1 , d2 ∈ ∆I2 , we write
• (I1, d1) ≤Σ (I2, d2) if there is a Σ-simulation S with (d1, d2) ∈ S and
• (I1, d1) ≤full

Σ (I2, d2) if there is a full Σ-simulation S with (d1, d2) ∈ S.
If Σ = NC ∪ NR, we simply speak of a simulation and write ≤ instead of ≤Σ.

Let I be an interpretation, Σ a signature, and d ∈ ∆I . Then we define the abbreviation
dΣ,I := {C ∈ ELΣ | d ∈ CI} and dΣ,I,u := {C ∈ ELuΣ | d ∈ CI}. The following theorem
establishes a fundamental connection between simulations and EL-concepts. The proof
is standard, and therefore omitted, see e.g. (9).
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Theorem 10.

(i) If (I1, d1) ≤Σ (I2, d2) , then dΣ,I1
1 ⊆ dΣ,I2

2 . Conversely, if I1 and I2 are finite and
dΣ,I1

1 ⊆ dΣ,I2
2 , then (I1, d1) ≤Σ (I2, d2).

(ii) If (I1, d1) ≤full
Σ (I2, d2) , then dΣ,I1,u

1 ⊆ dΣ,I2,u
2 . Conversely, if I1 and I2 are finite

and dΣ,I1,u
1 ⊆ dΣ,I2,u

2 , then (I1, d1) ≤full
Σ (I2, d2).

The following example illustrates the difference between simulations and full simula-
tions. Let Σ = {A} and assume that I1 has domain ∆I1 = {d, d′} and that AI1 = {d′},
rI1 = {(d, d′)}. Further assume that I2 has domain ∆I2 = {d} and that AI2 = rI2 = ∅.
Then S = {(d, d)} is a Σ-simulation from I1 to I2, but there does not exist a full Σ-
simulation from I1 to I2 containing (d, d). This is reflected by the fact that d ∈ (∃u.A)I1
but d 6∈ (∃u.A)I2 .

We use sub(C) to denote the set of subconcepts of a concept C, including C itself. For
a TBox T , we use sub(T ) to denote the set of all subconcepts of concepts which occur
in T .

Definition 11 (Canonical model). Let C be an EL-concept and T a TBox. The canonical
model IC,T = (∆C,T , ·C,T ) of C and T is defined as follows:
• ∆C,T = {C} ∪ {C ′ | ∃r.C ′ ∈ sub(C) ∪ sub(T ), T |= C v ∃u.C ′};
• D ∈ AIC,T iff T |= D v A, for all A ∈ NC;
• (D,D′) ∈ rIC,T iff T |= D v ∃r.D′ and ∃r.D′ ∈ sub(T ) or ∃r.D′ is a conjunct in D,

for all r ∈ NR.

In the last item, the phrase “∃r.D′ is a conjunct in D” also includes the case that D =
∃r.D′. Clearly, the size of IC,T is polynomial in the size of C and T . Since subsumption
in EL w.r.t. TBoxes is decidable in polynomial time (7) and the proof is easily extended
to ELu, IC,T can also be constructed in time polynomial in the size of C and T . We
note that the model IC,T as defined here is a refinement of the model defined in (3)
to prove correctness of the algorithm in (4). We now establish some basic properties of
canonical models. The proof of this and all following results of this section can be found
in Appendix A.

Lemma 12. Let C be an EL-concept and T a TBox. Then
(1) for all E ∈ ∆IC,T , we have E ∈ EIC,T ;
(2) IC,T |= T .
(3) (IC,T , D) ≤ (IC′,T , D), for all EL-concepts C ′ and all D ∈ ∆IC,T ∩∆IC′,T .

Clearly, Points (1) and (2) of Lemma 12 imply that IC,T of T satisfying the concept
C. Point (3) states that the behavior of points in a canonical model IC,T depends only
on T , but not on C. In the remainder of this paper, we will use Points (1) to (3) of
Lemma 12 without explicit reference to this lemma. The next lemma relates canonical
models IC,T to other models of C and T (Point (1)), and to subsumption w.r.t. T (Points
(1) and (2)). Similar lemmas for the case of EL without TBoxes have been established
in (5).

Lemma 13. Let C and D be EL-concepts and T a TBox. Then the following holds:
(1) For all models I of T and all d ∈ ∆I , the following conditions are equivalent:

(a) d ∈ CI ;
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(b) (IC,T , C) ≤ (I, d);
(c) (IC,T , C) ≤full (I, d).

(2) The following conditions are equivalent:
(a) T |= C v D;
(b) C ∈ DIC,T ;
(c) (ID,T , D) ≤ (IC,T , C).

(3) The following conditions are equivalent:
(a) T |= C v ∃u.D;
(b) C ∈ (∃u.D)IC,T .

We now provide a local version of entailment between TBoxes. More precisely, we
consider pairs (T , C) of a TBox and a concept, and are interested in the consequences
that C has in models of T . The term “local” refers to the intuition that concepts are
interpreted locally in an interpretation, whereas TBoxes are interpreted globally.

Definition 14 (Local Entailment). Let C1 and C2 be EL-concepts, T1 and T2 TBoxes,
and Σ a signature. Then
• (T1, C1) locally Σ-entails (T2, C2), w.r.t. EL, in symbols (T1, C1) vΣ (T2, C2), iff for all
ELΣ-concepts E,

T2 |= C2 v E ⇒ T1 |= C1 v E.
• (T1, C1) locally Σ-entails (T2, C2) w.r.t. ELu, in symbols (T1, C1) vuΣ (T2, C2), iff for

all ELuΣ-concepts E,
T2 |= C2 v E ⇒ T1 |= C1 v E.

The following lemma characterizes local Σ-entailment in terms of simulations. Since
the largest Σ-simulation between two finite graphs can be computed in polynomial time
(9), the lemma implies that local Σ-entailment w.r.t. EL and ELu can be decided in
polynomial time.

Lemma 15. Let T1, T2 be TBoxes and C1, C2 EL-concepts and Σ a signature. Then
• (T1, C1) vΣ (T2, C2) iff (IC2,T2 , C2) ≤Σ (IC1,T1 , C1);
• (T1, C1) vuΣ (T2, C2) iff (IC2,T2 , C2) ≤full

Σ (IC1,T1 , C1).

Our algorithm deciding whether T1 vΣ T2 will systematically search for witnesses
C v D for T1 6vΣ T2 (and similarly for T1 vuΣ T2). Clearly, T1 6vΣ T2 iff there exists
an ELΣ-concept C such that (T1, C) 6vΣ (T2, C). Since Lemma 15 implies that local Σ-
entailment can be decided in polynomial time, it thus provides some first evidence that,
when searching for witnesses C v D for T1 6vΣ T2, the difficult part is to identify a
suitable concept C.

4. Deciding Σ-entailment w.r.t. QLEL

An initial observation about deciding Σ-entailment w.r.t. QLEL is that minimal wit-
ness sentences for non-Σ-entailment may be quite large. Let T1 be the empty TBox and
Σ = {A,B, r, s}. For each n ≥ 0, we define a TBox T ′n. It has additional concept names
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X0, . . . , Xn−1 and X0, . . . , Xn−1 that are used to represent a binary counter X: if Xi is
true, then the i-th bit is positive and if Xi is true, then it is negative. Define T ′n as

A v X0 u · · · uXn−1 (1)

uσ∈{r,s}∃σ.(Xi uX0 u · · · uXi−1) v Xi for all i < n (2)

uσ∈{r,s}∃σ.(Xi uX0 u · · · uXi−1) v Xi for all i < n (3)

uσ∈{r,s}∃σ.(Xi uXj) v Xi for all j < i < n (4)

uσ∈{r,s}∃σ.(Xi uXj) v Xi for all j < i < n (5)

X0 u · · · uXn−1 v B (6)

Observe that Lines 2-5 implement incrementation of the counter X. Then the smallest
consequence of T1 ∪ T ′n in the signature Σ which is not a consequence of T1 is C2n v B ,
where:

C0 = A

Ci = ∃r.Ci−1 u ∃s.Ci−1

Clearly, C2n is doubly exponentially large in the size of T1 and T ′n. If we use structure
sharing (i.e., define the size of C2n as the number of its distinct subconcepts), it is still
exponentially large.

We now design a ExpTime algorithm deciding Σ-entailment. At the end of Section 3,
we have seen that when searching for a witness for T1 6vΣ T2 is sufficient to search for
a C such that IC,T2 6≤Σ IC,T1 . Using Lemma 15, we now derive a characterization of
non-Σ-entailment w.r.t. QLEL which can be implemented almost directly. We start with
a technical lemma.

Lemma 16. Suppose T |= C v ∃r.D, where C, D are EL-concepts. Then one of the
following holds:
• there is a conjunct ∃r.C ′ of C such that T |= C ′ v D;
• there is a ∃r.C ′ ∈ sub(T ) such that T |= C v ∃r.C ′ and T |= C ′ v D.

Proof. Let T |= C v ∃r.D. By Point 2 of Lemma 13, C ∈ (∃r.D)IC,T . Thus, there is a
C ′ ∈ DIC,T such that (C,C ′) ∈ rIC,T . By definition of IC,T , (i) ∃r.C ′ is a conjunct of
C or (ii) ∃r.C ′ ∈ sub(T ) and T |= C v ∃r.C ′. In both cases it follows from Point 2 of
Lemma 13 that T |= C ′ v D. 2

The outdegree of a concept C is the maximum cardinality of any set P of pairs of the
form (r, C ′), with r a role name and C ′ a concept, such that u(r,C′)∈P∃r.C ′ ∈ sub(C).
We use |C| and |T | to denote the length of a C and a TBox T , i.e., the number of
occurrences of symbols needed to write it.

Proposition 17. Assume Σ ⊆ sig(T2). T1 does not Σ-entail T2 w.r.t. QLEL iff there
exists an ELΣ-concept C and a concept D ∈ sub(T2) such that

(a) T2 |= C v D;
(b) (T1, C) 6vΣ (T2, D);
(c) the outdegree of C is bounded by |T2|.
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Proof. We first show that if there exist an ELΣ-concept C and D ∈ sub(T2) with (a)
and (b), then T1 6vΣ T2. Assume that (a) and (b) are satisfied for C and D. By (b), there
is an ELΣ-concept E with T2 |= D v E and T1 6|= C v E. From the former and (a), we
get T2 |= C v E, which implies that T1 does not Σ-entail T2 w.r.t. QLEL.

Now we show that from T1 6vΣ T2 follows the existence of C and D satisfying (a) and
(b). If there exists C v D which follows from T2 but not from T1 with sig(C) ⊆ Σ and
D a Σ-concept in sub(T2), then we are done: we have T2 |= D v D and T1 6|= C v D,
therefore (T1, C) 6vΣ (T2, D). Assume that no such inclusion separating the two TBoxes
exists.

Let C v D be a witness for T1 6vΣ T2 such that no witness C ′ v D′ with D′ shorter
than D exists. Then D is of the form ∃r.D′:
• If D = >, then T1 |= C v D, contradicting the fact that C v D separates the two

TBoxes.
• If D is an atomic concept, then D ∈ sub(T2), which we have assumed not to be the

case.
• If D is a conjunction D1 uD2, then T2 |= C v Di for all i ∈ {1, 2} and T1 6|= C v Di

for some i ∈ {1, 2}. Thus, one of C v D1 and C v D2 separates the two TBoxes,
contradicting the minimality of D.

By Lemma 16, T2 |= C v ∃r.D′ implies that one of the following holds:
(1) there exists a conjunct ∃r.C ′ of C such that T2 |= C ′ v D′;
(2) there exists ∃r.C ′ ∈ sub(T2) such that T2 |= C v ∃r.C ′ and T2 |= C ′ v D′.

We first show that (1) cannot be true. Assume it is. Then we have T1 |= C ′ v D′

because otherwise C ′ v D′ is a witness, contradicting the minimality of D. It follows
that T1 |= ∃r.C ′ v ∃r.D′. Since ∃r.C ′ is a conjunct of C, T1 |= C v ∃r.C ′. Together
with T1 |= ∃r.C ′ v ∃r.D′, we obtain T1 |= C v ∃r.D′ = D. It follows that T1 |= C v D,
contradicting the fact that C v D is a witness.

Thus, (2) applies. We show that the concepts C and ∃r.C ′ (substituted for D) sat-
isfy Conditions (a) and (b). First, T2 |= C v ∃r.C ′ establishes Condition (a). For
Condition (b), observe that T1 6|= C v ∃r.D′ and T2 |= ∃r.C ′ v ∃r.D′. This means
(T1, C) 6vΣ (T2,∃r.C ′).

We have shown that T1 does not Σ-entail T2 w.r.t. QLEL iff there exist C and D such
that (a) and (b) hold. It thus remains to show that one can find such C and D satisfying
constraint (c) as well, whenever T1 does not Σ-entail T2 w.r.t. QLEL. This is done in
Section C of the appendix. 2

The main benefit of this characterization is that when searching for a subsumption
T2 |= C v D with sig(C v D) ⊆ Σ which does not follow from T1, it allows us to
concentrate on concepts D of a very simple form, namely subconcepts of T2. This is
achieved by considering sig(T2)-concepts instead of ELΣ-concepts as in the definition of
Σ-entailment w.r.t. QLEL.

We now devise an algorithm for deciding whether T1 vΣ T2. To check whether T1 vΣ

T2, the algorithm searches for an ELΣ-concept C such that for some D ∈ sub(T2), Points
(a)–(c) of Proposition 17 are satisfied. Intuitively, it proceeds in rounds. In the first
round, the algorithm considers the case where C is a conjunction of concept names in Σ.
For every such C and all D ∈ sub(T2), it checks whether Points (a) and (b) are satisfied.
By Lemma 15, this can be done in polynomial time. If all tests fail, the second round is
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started in which the algorithm considers concepts C of the form F0uu(r,E)∈P∃r.E, where
F0 is a conjunction of concept names and P is a set of pairs (r, E) with r a role name and
E a candidate for C from the first round (i.e., E is also a conjunction of concept names).
Because of Point (c), it will be sufficient to consider sets P of cardinality bounded by
|T2|. To check if such a concept C satisfies Points (a) and (b), we exploit the information
that we have gained about the concepts E in the previous round. If again no suitable
C is found, then in the third round we use the Cs from the second round as the Es in
F0 uu(r,E)∈P∃r.E, and so on.

For the algorithm to terminate and run in exponential time, we have to introduce
a condition that indicates when enough candidates C have been inspected in order to
know that there is no witness C v D. To obtain such a termination condition and to
avoid having to deal with double exponentially large concepts, our algorithm will not
construct the candidate concepts C directly, but rather use a certain data structure to
represent relevant information about C. The relevant information about C is suggested
by Proposition 17: for each C, we take the quadruple

C] = (F,KT1(C),KT2(C),KT1,T2(C)),

where F is the conjunction of all concept names occurring in the top-level conjunction
of C (if there are none, then F = >) and
• KT (C) = {D ∈ sub(T ) | T |= C v D};
• KT1,T2(C) = {D ∈ sub(T2) | (T1, C) vΣ (T2, D)}.
We call this the quadruple determined by C. By Proposition 17, the quadruple C] deter-
mined by a concept C gives us enough information to decide whether C is the left hand
side of a witness. In addition, it contains enough information to enable the recursive
search described above. In what follows F , F0, etc. range over conjunctions of concept
names and the concept >, and when writing C = F uu(r,E)∈P∃r.E we assume that P
is a finite set of pairs (r, E) in which r is a role and E an EL-concept.

Now the following lemma (proved in the appendix) states how KT (C) is computed
recursively during the search described above.

Lemma 18. Let T be a TBox and C = F0 uu(r,E)∈P∃r.E. Then

KT (C) = KT (F0 u u
(r,E)∈P

∃r.( u
D∈KT (E)

D)).

The algorithm deciding non-Σ-entailment w.r.t. QLEL is shown in Figure 1. Observe
that the Condition Q2 \ Q3 6= ∅ corresponds to satisfaction of Points (a) and (b) in
Proposition 17. Also observe that, in Point (b) of the definition of F3, we refer to the
canonical model ID,Ti

for the relevant concepts D. These models are constructed in
polynomial time when needed. To show that this algorithm really implements the initial
description given at the beginning of this section, we make explicit the concepts that we
describe by means of the quadruples constructed in Step 3 of Figure 1. This is done by
the following lemma, which will also be a central ingredient to our correctness proof.

Lemma 19. Let (F0,F1,F2,F3) be the quadruple obtained from F0 and Q in Step (3)
of Figure 1. Let, for each (r, q) ∈ Q, Cr,q be some concept such that C]r,q = q. Then
C] = (F0,F1,F2,F3), where C is defined as C = F0 uu(r,q)∈Q∃r.Cr,q.
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Input: TBoxes T1 and T2 and signature Σ ⊆ sig(T2).
(1) Compute the setN0 of quadruples determined by conjunctions of concept names

from Σ.
(2) if N0 contains a quadruple (F,Q1,Q2,Q3) such that Q2 \ Q3 6= ∅, then output

“T1 6vΣ T2”.
(3) Generate the sequence N1,N2, . . . of sets of quadruples with Ni+1 = Ni ∪ N ′i ,

where N ′i is the set of quadruples (F0,F1,F2,F3) which can be obtained from
a conjunction F0 of concept names from Σ and a set Q ⊆ (NR ∩ Σ) × Ni of
cardinality not exceeding |T2| in the following way:

• F1 = KT1(F0 u u
(r,(F,Q1,Q2,Q3))∈Q

∃r.( u
D∈Q1

D));

• F2 = KT2(F0 u u
(r,(F,Q1,Q2,Q3))∈Q

∃r.( u
D∈Q2

D));

• F3 = {D | D ∈ sub(T2) and
(a) for all A ∈ Σ, A ∈ KT2(D) implies A ∈ F1;
(b) if (D,D′) ∈ rID,T2 with r ∈ Σ, then
(i) there is a tuple (r, (F,Q1,Q2,Q3)) ∈ Q such that D′ ∈ Q3

or (ii) there is ∃r.C ′ ∈ F1 with (T1, C
′) vΣ (T2, D

′)
}

This is done untilNi contains a quadruple (F,Q1,Q2,Q3) such thatQ2\Q3 6= ∅,
or Ni+1 = Ni. Output “T1 6vΣ T2” if the first condition applies. Otherwise,
output “T1 vΣ T2”.

Fig. 1. Algorithm deciding non-Σ-entailment w.r.t.QLEL

Proof. Let (F0,F1,F2,F3) and C be as in the lemma. It is trivial that F0 is as required.
By Lemma 18, F1 and F2 are as required. It remains to consider F3. Fix D ∈ sub(T2). By
Lemma 15, (T1, C) vΣ (T2, D) iff (ID,T2 , D) ≤Σ (IC,T1 , C). By definition of simulations,
we therefore have D ∈ KT1,T2(C) iff the following holds:

(1) for all concept names A ∈ Σ, A ∈ KT2(D) implies A ∈ KT1(C);
(2) for all r ∈ Σ and D′ with (D,D′) ∈ rID,T2 there exists C ′ with (C,C ′) ∈ rIC,T1

and (ID,T2 , D′) ≤Σ (IC,T1 , C ′).
Point 1 is checked under Point (a) in the definition of F3 of the algorithm in Figure 1
since, as we have seen already, KT1(C) = F1. For Point 2, (C,C ′) ∈ rIC,T1 is equivalent
to (i) ∃r.C ′ is a conjunct of C or (ii) ∃r.C ′ ∈ KT1(C). In Case (i), C ′ = Cr,q for some
(r, q) ∈ Q and (T1, C

′) vΣ (T2, D
′) iff D′ is an element of the fourth component of q.

By Lemma 15, this is what is checked in (b.i) in the definition of F3 of the algorithm.
In Case (ii), ∃r.C ′ ∈ F1 and, by Lemma 15, (ID,T2 , D′) ≤Σ (IC,T1 , C ′) iff (T1, C

′) vΣ

(T2, D
′). This condition is exactly what is checked in (b.ii) in the definition of F3 of the

algorithm. 2

Proposition 20. The algorithm in Figure 1 is sound, complete, and runs in exponential
time.
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Proof. Soundness follows from Proposition 17 and Lemma 19. For completeness, assume
that T1 does not Σ-entail T2 w.r.t. QLEL. By Proposition 17, there exists ELΣ-concept C
of outdegree not exceeding |T2| and D ∈ sub(T2) such that T2 |= C v D and (T1, C) 6vΣ

(T2, D). If C is a conjunction of concept names, then the algorithm outputs “T1 6vΣ T2”
in Step 2. Now suppose C has quantifier depth n ≥ 1. Using Lemma 19, one can easily
show by induction on i that for all i ≥ 0, the set Ni contains all quadruples determined
by subconcepts C ′ of C of quantifier depth smaller than i. Hence, the algorithm outputs
“T1 6vΣ T2” after computing some Ni with i ≤ n.

For termination and complexity, observe that, by Lemma 15, the quadruple determined
by a conjunction of concept names from Σ can be computed in polynomial time. Hence
Steps 1 and 2 run in exponential time. For Step 3 observe that the number of tuples
(F,Q1,Q2,Q3) with F a conjunction of concept names from Σ and Qi ⊆ sub(T1 ∪ T2)
is bounded by 24|T1∪T2|. It follows that Ni = Ni+1 for some i ≤ 24|T1∪T2|. Hence, the
algorithm terminates and to show that it runs in exponential time it remains to check
that Ni+1 can be computed in exponential time from Ni. This follows from the following:
first, the number of pairs (F0, Q), with F0 a conjunction of concept names from Σ and
Q ⊆ (NR ∩Σ)×Ni of cardinality not exceeding |T2|, is still only exponential in |T1 ∪T2|;
and second, the computation of (F0,F1,F2,F3) from F0 and Q in Figure 1 can be done
in time polynomial in |T1 ∪ T2|. 2

In Figure 1, we assume that Σ ⊆ sig(T2). But, as observed above already, T1 vΣ T2 iff
T1 vΣ∩sig(T2) T2 because of robustness under vocabulary extensions. Thus, by applying
the algorithm to Σ ∩ sig(T2), we obtain a general decision procedure for Σ-entailment
w.r.t. QLEL and have proved the following result.

Theorem 21. Σ-entailment of EL-TBoxes w.r.t. QLEL is in ExpTime.

5. Σ-entailment w.r.t. Other Query Languages

In this section, we first prove the equivalences stated in Theorem 3 and then provide
an extension of the decision procedure for Σ-entailment w.r.t. QLEL to Σ-entailment
w.r.t. QLuEL.

5.1. Equivalence of Σ-entailment w.r.t. QLiEL and QLEL

To prove that Σ-entailment w.r.t. QLEL implies Σ-entailment w.r.t. QLiEL, we first
show that answering an instance query (T ,A) |= D(a) can be decomposed into two parts
that separate reasoning with the TBox T from reasoning with the ABox A.

Lemma 22. Let T be a TBox, Σ a signature, and A an ELΣ-ABox.
(1) For every ELΣ-concept D and a ∈ NI, (T ,A) |= D(a) iff there exists an ELΣ-

concept C such that T |= C v D and A |= C(a).
(2) For every ELuΣ-concept D and a ∈ NI, (T ,A) |= D(a) iff there exists an ELuΣ-

concept C such that T |= C v D and A |= C(a).

The first equivalence of Theorem 3 is now an easy consequence of Lemma 22.

Proposition 23. For all TBoxes T1 and T2 and any signature Σ: T1 vΣ T2 iff T1 viΣ T2.
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Proof. Suppose T1 6vΣ T2. Take ELΣ-concepts C and D such that T2 |= C v D, but
T1 6|= C v D. Let A = {C(a)}. Then (T2,A) |= D(a) but (T1,A) 6|= D(a). Hence
T1 6viΣ T2. Conversely, assume T1 6viΣ T2. Take a Σ-ABox A, an ELΣ-concept D and
a ∈ NI such that (T2,A) |= D(a) but (T1,A) 6|= D(a). Then, by Lemma 22, Point 1, there
exists an ELΣ-concept C such that T2 |= C v D and A |= C(a). Again by Lemma 22,
Point 1, T1 6|= C v D. Hence T1 6vΣ T2. 2

Proposition 23 and Theorem 21 yield the following result.

Theorem 24. Σ-entailment of EL-TBoxes w.r.t. QLiEL is in ExpTime.

5.2. Equivalence of Σ-entailment w.r.t. QLqEL and QLuEL
We first provide a notion of Σ-entailment between knowledge bases. Instead of inclu-

sions between concepts we now consider answers to conjunctive queries two KBs give.

Definition 25. Let (T1,A1) and (T2,A2) be KBs and Σ a signature. (T1,A1) Σ-query
entails (T2,A2), in symbols (T1,A1) vqΣ (T2,A2), if for all conjunctive Σ-queries q with
k free variables and k-tuples a of individual names in NI:

(T2,A2) |= q(a)⇒ (T1,A1) |= q(a).

The difference to Definition 2 is that here we do not define entailment between TBoxes
by considering answers to queries over arbitrary ABoxes, but we fix two KBs each con-
sisting of a TBox and an ABox and then consider the answers to queries these KBs give.
It turns out that this entailment relation is much easier to characterize semantically
than the former. We now give such a semantic characterization of Σ-query entailment
between KBs (Lemma 29) and then use this characterization to prove that Σ-entailment
between TBoxes w.r.t. QLqEL is equivalent to Σ-entailment between TBoxes w.r.t. QLuEL
(Proposition 30).

To start with, we extend the notion of canonical models discussed above to canonical
models for KBs (T ,A). Denote by obj(A) the set of individual names occurring in an
ABox A. For any TBox T , ABox A and finite set Ob of individual names with obj(A) ⊆
Ob, the canonical model IA,T ,Ob is defined as follows: fix some baux 6∈ Ob and set
• ∆IA,T ,Ob = Ob ∪ {baux} ∪ {C | ∃r.C ∈ sub(T ∪ A), (T ,A) |= ∃u.C(a)};
• aIA,T ,Ob = a, for all a ∈ Ob;
• aIA,T ,Ob = baux, for all a ∈ NI \ Ob.
• d ∈ AIA,T ,Ob iff d = aIA,T ,Ob for some a ∈ NI and (T ,A) |= A(a) or d = C ∈ NC ∩

∆IA,T ,Ob and T |= C v A, for all A ∈ NC;
• (d1, d2) ∈ rIA,T ,Ob iff one of the following three conditions holds:
· d1, d2 ∈ NI and r(d1, d2) ∈ A or
· d1 = a ∈ NI and d2 = C ∈ NC and (T ,A) |= ∃r.C(a) or
· d1 = C1 ∈ NC and d2 = C2 ∈ NC and T |= C1 v ∃r.C2, for all r ∈ NR.

We set IA,T = IA,T ,obj(A). To describe basic properties of canonical model for KBs, we
extend the notion of simulations to simulations preserving individuals.

Definition 26. Let Ob ⊆ NI. A Σ-simulation S between two models I1 and I2 preserves
Ob if (aI1 , aI2) ∈ S, for all a ∈ Ob. We write I1 ≤Ob

Σ I2 if there exists a Σ-simulation
between I1 and I2 preserving Ob and we write I1 ≤Ob,full

Σ I2 if there exists a full such Σ-
simulation. A Σ-homomorphism preserving Ob is a full Σ-simulation which is a function.
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The following lemma establishes the main properties of canonical models for KBs.

Lemma 27. Let T be a TBox, A an ABox, and Ob ⊇ obj(A) a finite set of individual
names. Then IA,T ,Ob is a model of (T ,A) and the following holds:

(1) For all finite sets Ob′,Ob′′ ⊇ obj(A): IA,T ,Ob′ ≤Ob,full IA,T ,Ob′′ .
(2) For all models I of T the following are equivalent:

(a) I |= A;
(b) IA,T ,Ob ≤Ob,full I.

(3) For all assertions α of the form C(a) and r(a, b), where C is a ELu-concept, r ∈ NR,
and a, b ∈ NI, the following conditions are equivalent:
(a) (T ,A) |= α;
(b) IA,T ,Ob |= α.

Proof. With the exception of Point 1, the proof is similar to the proof of Lemma 13 and
left to the reader. For Point 1, observe that C = NC ∩∆IA,T ,Ob does not depend on Ob
and that

S = {(D,D) | D ∈ C} ∪ {(bI,A,Ob′ , cI,A,Ob′′) | b, c ∈ NI \ obj(A)} ∪ {(a, a) | a ∈ obj(A)}

is a full Σ-simulation preserving NI between IA,T ,Ob′ and IA,T ,Ob′′ . 2

Let I be a model and Ob a non-empty set of individual names. Any model IOb,∗ with
the following properties is called an unravelling of I w.r.t. Ob (whereW = {aI | a ∈ Ob}):
• ∆I

Ob,∗
is the set of all words d0r1d1r2 · · · rndn, n ≥ 0, such that d0 ∈W and (di, di+1) ∈

rIi+1 for i < n;
• rIOb,∗

= {(wd,wdrd′) | wd,wdrd′ ∈ ∆I
Ob,∗} ∪ {(d, d′) ∈W 2 | (d, d′) ∈ rI}, for r ∈ NR;

• AIob,∗
= {wd | d ∈ AI}, for A ∈ NC;

• aIob,∗
= aI , for a ∈ Ob.

Observe that the relation S ⊆ ∆I ×∆I
Ob,∗

consisting of all pairs (d,wd) with d ∈ ∆I

and wd ∈ ∆I
Ob,∗

is a bisimulation (i.e., a simulation in both directions) between I and
IOb,∗. It follows that if I |= (T ,A) and Ob ⊇ obj(A), then IOb,∗ |= (T ,A).

Lemma 28. Let Ob be a non-empty finite set of individual names, Σ a signature, and
I,J models such that aI 6= bI for distinct a, b ∈ Ob. The following conditions are
equivalent:
• I ≤Ob,full

Σ J ;
• There exists a Σ-homomorphism from IOb,∗ to J preserving Ob.

Proof. Straightforward and left to the reader. 2

We are now in a position to characterize Σ-query entailment between KBs. Observe
that it follows from Point 3 of the characterization below that Σ-query entailment between
KBs is decidable in polynomial time.

Lemma 29. Let (T1,A1) and (T2,A2) be KBs, Σ a signature, and b 6∈ obj(A1). Then
the following conditions are equivalent:
• (T1,A1) vqΣ (T2,A2).
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• For all assertions α of the form C(a) and r(a, b), where C is a ELuΣ-concept, r ∈ Σ∩NR,
and a, b ∈ NI:

(T2,A2) |= α⇒ (T1,A1) |= α.

• IA2,T2 ≤
obj(A2)∪{b},full
Σ IA1,T1 .

Proof. The implication from Point 1 to Point 2 is trivial.
Point 2 implies Point 3. Assume that Point 3 does not hold. By the definition of

canonical models, simulations, and Theorem 10, at least one of the following conditions
holds:

(a) there exist b1, b2 ∈ obj(A2)∪ {b} and r ∈ Σ such that (bIA2,T2
1 , b

IA2,T2
2 ) ∈ rIA2,T2 and

(bIA1,T1
1 , b

IA1,T1
2 ) 6∈ rIA1,T1 ;

(b) there exists an a ∈ obj(A2) ∪ {b} and a ELuΣ-concept C such that aIA2,T2 ∈ CIA2,T2

and aIA1,T1 6∈ CIA1,T1 ;

(c) there exists an ELuΣ-concept C such that CIA2,T2 6= ∅ and CIA1,T1 = ∅.
For suppose that none of the conditions (a)-(c) holds. As (c) does not hold, by Theo-
rem 10, for every d ∈ ∆IA2,T2 there exists a d′ ∈ ∆IA1,T1 and a Σ-simulation Sd with
(d, d′) ∈ Sd. Moreover, as (b) does not hold, we may assume that d′ = aIA1,T1 whenever
d = aIA2,T2 and a ∈ obj(A2)∪{b}. Using the assumption that (a) does not hold, it follows
immediately that

⋃
d∈∆

IA2,T2 Sd is a full Σ-simulation preserving obj(A2)∪{b}. We have
derived a contradiction.

We now show that each of the conditions (a)-(c) implies that Point 2 does not hold.

Suppose (a) does not hold. By Lemma 27 (3), we have (T2,A2) |= r(b1, b2) and
(T1,A1) 6|= r(b1, b2). Thus Point 2 does not hold.

Suppose (b) does not hold. By Lemma 27 (3), we have (T2,A2) |= C(a) and (T1,A1) 6|=
C(a). Again, Point 2 does not hold.

Suppose (c) does not hold. Take any individual name a. By Lemma 27 (3), we have
(T2,A2) |= ∃u.C(a) and (T1,A1) 6|= ∃u.C(a). Again, Point 3 does not hold.

Point 3 implies Point 1. Assume Point 3 holds and let (T2,A2) |= q(a). Take a model
J of (T1,A1). We show that J |= q(a). Let Ob be the union of obj(A1 ∪A2) and the set
of individual names occurring in a. Then IA2,T2 ≤

obj(A2)∪{b},full
Σ IA1,T1 implies

IA2,T2,Ob ≤Ob,full
Σ IA1,T1

because for the largest full Σ-simulation between IA2,T2 and IA1,T1 preserving obj(A2)∪
{b} we have (bIA2,T2 , d) ∈ S for all d ∈ ∆IA1,T1 so that we obtain the required full Σ-
simulation by adding (c, d) to S for all c ∈ Ob \ obj(A2) and d ∈ ∆IA1,T1 . Observe that
by Lemma 27 (1),

IA1,T1 ≤Ob,full IA1,T1,Ob.

Moreover, since J is a model of (T1,A1), we obtain from Lemma 27 (2),

IA1,T1,Ob ≤Ob,full J .

Because of transitivity of the relation ≤Ob,full
Σ , we obtain from the three Σ-simulations

above that
IA2,T2,Ob ≤Ob,full

Σ J .
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By Lemma 28, there is a Σ-homomorphism from IOb,∗
A2,T2,Ob to J preserving Ob and,

therefore, from IOb,∗
A2,T2,Ob |= q(a) we obtain J |= q(a), as required. 2

Note that it is not sufficient to have IA2,T2 ≤
obj(A2),full
Σ IA1,T1 in Point 3 of Lemma 29:

consider the TBoxes T1 = ∅ and T2 = {A ≡ >}, the ABox A1 = A2 = {A(a)}, and the
signature Σ = {A}. Then (T1,A1) 6vqΣ (T2,A2) because (T2,A2) |= A(b) and (T1,A1) 6|=
A(b) for b 6= a. But we have IA2,T2 ≤

obj(A2),full
Σ IA1,T1 because ∆IA2,T2 × {aIA1,T1 } is a

full Σ-simulation preserving {a}.

Proposition 30. For all TBoxes T1 and T2 and any signature Σ: T1 vuΣ T2 iff T1 vqΣ T2.

Proof. Suppose T1 6vuΣ T2. Take an ELΣ-concept C and ELuΣ-concept D such that T2 |=
C v D but T1 6|= C v D. Let A = {C(a)}. If D is an ELΣ-concept, then (T1,A) 6|= D(a)
but (T2,A) |= D(a). If D = ∃u.D′, then (T1,A) 6|= ∃xD(x), but (T2,A) |= ∃xD(x). It
follows that T1 6vqΣ T2.

Conversely, let T1 6vqΣ T2. By the equivalence of Points 1 and 2 in Lemma 29 (and the
fact that (T1,A) |= r(a, b) iff (T2,A) |= r(a, b), for any assertion r(a, b)), (T1,A) 6|= D(a)
but (T2,A) |= D(a), for some Σ-ABox A and ELuΣ-concept D. Then, by Lemma 22,
Point 2, there exists a ELuΣ-concept C such that T2 |= C v D and A |= C(a). Again
by Lemma 22, Point 2, T1 6|= C v D. If D is an EL-concept, then we can assume that
C is an EL-concept. (To see this observe that T |= ∃u.C0 v D0 implies T |= > v D0,
for all EL-concepts C0, D0 and TBoxes T .) Thus, we even have T1 6vΣ T2. If D is an
ELu-concept, let C ′ = C0 if C = ∃u.C0 and C ′ = C, otherwise. Then we still have
T2 |= C ′ v D and T1 6|= C ′ v D. Hence T1 6vuΣ T2. 2

5.3. The Algorithm for QLuEL

The aim of this section is extend the algorithm from Figure 1 to an algorithm deciding
non-Σ-entailment w.r.t. QLuEL. Before we go into this, we establish an illustrative lemma
which shows that the difference between Σ-entailment w.r.t. QLEL and QLuEL is due to
non-Σ roles in the TBox T2.

Lemma 31. Let T1 and T2 be TBoxes, and Σ a signature that contains all role names
occurring in T2. Then T1 vΣ T2 iff T1 vuΣ T2.

Proof. The “if” direction is clear. For the “only if” direction, let C,D be ELΣ-concepts
such that T1 6|= C v ∃u.D, and T2 |= C v ∃u.D. The latter implies that, in the canonical
model IC,T2 , there is a d ∈ ∆IC,T2 with d ∈ DIC,T2 . This implies that there is a sequence
r1 · · · rk of role names from sig(C)∪sig(T2) such that d is reachable from C in IC,T2 along
d1, . . . , dk−1 ∈ ∆IC,T2 :

(C, d1) ∈ rIC,T2
1 , (d1, d2) ∈ rIC,T2

2 , . . . , (dk−1, d) ∈ rIC,T2
k .

By Point (2) of Lemma 13, this implies T2 |= C v ∃r1. · · · ∃rk.D. Since sig(T2)∩NR ⊆ Σ,
∃r1. · · · ∃rk.D is a Σ-concept. Moreover, T1 6|= C v ∃u.D and ∅ |= ∃r1. · · · ∃rk.D v ∃u.D
implies T1 6|= C v ∃r1. · · · ∃rk.D. Thus, T1 6vΣ T2. 2
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Now for the extension of the algorithm in Figure 1. To take into account consequences
of the form C v ∃u.D we work, in addition to the sets KT (C), with the set

Ku
T (C) = {D | ∃r.D ∈ sub(T ), T |= C v ∃u.D}.

We extend Proposition 17 as follows.

Proposition 32. Assume Σ ⊆ sig(T2). T1 does not Σ-entail T2 w.r.t. QLuEL iff
(1) there exist ELΣ-concepts C and D satisfying the conditions of Proposition 17 or
(2) there exists an ELΣ-concept C and D ∈ Ku

T2(C) such that
(a) there does not exist D′ ∈ ∆IC,T1 with (T1, D

′) vΣ (T2, D);
(b) the outdegree of C is bounded by |T2|.

Proof. Assume T1 6vuΣ T2. By Proposition 17, T1 6vΣ T2 iff Point 1 is satisfied. So it
remains to consider the case T1 vΣ T2. Thus, by Lemma 15, there exists an ELΣ-concept
C such that (IC,T2 , C) ≤Σ (IC,T1 , C) but (IC,T2 , C) 6≤full

Σ (IC,T1 , C). This means that
there exists D ∈ ∆IC,T2 such that
• there is no path from C to D following the relation

⋃
r∈Σ r

IC,T2 ;
• there does not exist a D′ ∈ ∆IC,T1 with (IC,T2 , D) ≤Σ (IC,T1 , D′).
Take such a D. It follows that D ∈ Ku

T2(C) because for all D0 ∈ ∆IC,T2 \Ku
T2(C) there

exists a path violating Point 1. Hence, by Lemma 15, C and D are as required for (a). It
remains to show that one can obtain C and D satisfying, in addition, (b). This is shown
in Lemma 50 in the appendix.

Conversely, suppose Point 1 or Point 2 holds. If Point 1 holds, then T1 6vΣ T2, and so
T1 6vuΣ T2. Now suppose that Point 2 holds. Take C and D ∈ Ku

T2(C) such that (a) holds.
Then D ∈ ∆IC,T2 but there does not exist D′ ∈ ∆IC,T1 with (IC,T2 , D) ≤Σ (IC,T1 , D′)
(Lemma 15). This implies (IC,T2 , C) 6≤full

Σ (IC,T1 , C) and so T1 6vuΣ T2. 2

We now give the algorithm deciding T1 6vuΣ T2 by extending the algorithm from Fig-
ure 1. The additional code implements directly Point 2 of Proposition 32. Instead of
quadruples representing concepts, we now work with 7-tuples where the additional three
entries store the information relevant for dealing with the universal role. Namely, we set
for C = F u u

(r,E)∈P
∃r.E,

C] = (F,KT1(C),KT2(C),KT1,T2(C),Ku
T1(C),Ku

T2(C),
⋃

C′∈∆
IC,T1 \{C}

KT1,T2(C ′)),

Due to the following lemma and Lemma 18, 7-tuples can be computed recursively similar
to the 4-tuples used before.

Lemma 33. Let T be a TBox, C = F0 uu(r,E)∈P∃r.E and D = u
E∈KT (C)

E. Then

Ku
T (C) = Ku

T (D) ∪
⋃

(r,E)∈P

Ku
T (E).

The algorithm is now given in Figure 2. Observe that, compared to Figure 1, we
have only added one more sufficient condition (the second condition in Steps 2 and 3)
under which the algorithm outputs T1 6vuΣ T2 and the computation of the three new
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Input: TBoxes T1 and T2 and signature Σ ⊆ sig(T2).
(1) Compute the set N0 of 7-tuples determined by conjunctions of concept names

in Σ.
(2) ifN0 contains a 7-tuple (F,Q1, . . . ,Q6) such thatQ2\Q3 6= ∅ orQ5\(Q3∪Q6) 6=
∅, then output “T1 6vuΣ T2”.

(3) Generate the sequence N1,N2, . . . of sets of 7-tuples with Ni+1 = Ni ∪ N ′i ,
where N ′i is the set of 7-tuples (F0,F1, . . . ,F6) which can be obtained from
a conjunction F0 of concept names from Σ and a set Q ⊆ (NR ∩ Σ) × Ni of
cardinality not exceeding |T2| in the following way:

• F1, F2 and F3 are computed from the components Q1, Q2 and Q3 of the
7-tuples in Q as in Figure 1.

• F4 = Ku
T1( u

D∈F1
D) ∪

⋃
(r,(F,Q1,...,Q6))∈QQ4.

• F5 = Ku
T2( u

D∈F2
D) u

⋃
(r,(F,Q1,...,Q6))∈QQ5.

• F6 =
⋃

(r,(F,Q1,...,Q6))∈QQ6 ∪
⋃
C′∈F4

KT1,T2(C ′)

This is done until Ni contains a 7-tuple (F,Q1, . . . ,Q6) such that Q2 \ Q3 6= ∅
or Q5 \ (Q3 ∪Q6) 6= ∅ or Ni+1 = Ni. Output “T1 6vuΣ T2” if one of the two first
conditions applies. Otherwise, output “T1 vuΣ T2”.

Fig. 2. Algorithm deciding Σ-entailment w.r.t. QLu
EL.

components F4, F5, and F6 of the new 7-tuples generated in Step 3. The new condition,
Q5 \ (Q3 ∪ Q6) 6= ∅, corresponds exactly to Point 2 of Proposition 32: there exists
D ∈ Q5 \ (Q3 ∪ Q6) iff there exists D ∈ Ku

T2(C) (meaning D ∈ Q5) such that there
does not exist D′ ∈ ∆IC,T1 = {C} ∪ {C ′ | ∃r.C ′ ∈ sub(C)} ∪Ku

T1(C) with (T1, D
′) vΣ

(T2, D). To prove completeness and soundness it is, therefore, sufficient to prove that the
computations of F4, F5 and F6 are correct. For F4 and F5 this follows from Lemma 33,
and for F6 this is trivial. Termination after at most exponentially many steps can be
proved similarly to the proof for the algorithm in Figure 1 and is left to the reader. With
Lemma 30, we thus obtain the following result.

Theorem 34. Σ-entailment of EL-TBoxes w.r.t. QLqEL is in ExpTime.

6. ExpTime-hardness

We prove that the ExpTime upper bounds stated in Theorem 21, 24, and 34 are tight
by establishing matching lower bounds. The lower bounds apply already to conservative
extensions, i.e., the special case of Σ-inseparability where T1 ⊆ T2 and Σ = sig(T1). By
the equivalences established in the preceding section, it suffices to consider the query
languages QLEL and QLuEL. We start with the former.

The proof is by reduction of the problem of determining whether Player 1 has a
winning strategy in version G5 of the two-player game Peek which was introduced and
proved to be ExpTime-complete in (23). An instance of Peek is a tuple (Γ1,Γ2,ΓI , ϕ)
where:
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• Γ1 and Γ2 are disjoint, finite sets of Boolean variables, with variables in Γ1 under the
control of Player 1, and variables in Γ2 under the control of Player 2;

• ΓI ⊆ (Γ1 ∪ Γ2) are the variables that are true in the initial state of the game;
• ϕ is a propositional logic formula over the variables Γ1 ∪ Γ2 which represents the

winning condition.
The game is played in a series of rounds. Each round produces an assignment for the
variables in Γ1 ∪ Γ2, and the game starts with the initial assignment ΓI . The players
alternate, with Player 1 moving first. In each turn of Player i ∈ {1, 2}, he selects a
variable from Γi whose truth value is flipped to reach the next assignment. All other
variables retain their truth value. A player may also make a skip move, i.e., not change
any of his variables. Player 1 wins if the formula ϕ ever becomes true. Player 2 wins if
he can forever prevent ϕ from becoming true.

Formally, a configuration of Peek is a pair (t, p) where t is a truth assignment for the
variables in Γ1 ∪Γ2 and p ∈ {1, 2} indicates the player that has to move next. A winning
strategy for Player 1 is a finite node-labeled tree (V,E, `) where ` is a node labeling
function that assigns to each node a configuration of G such that

(1) the root is labeled with (ΓI , 1);
(2) if an inner node is labeled with (t, 1), then it has a single successor labeled (t′, 2),

where t′ is obtained from t by switching the truth value of at most one variable
from Γ1;

(3) if an inner node is labeled with (t, 2), then it has ` successors labeled (t0, 1), . . . , (t`, 1),
where t0, . . . , t` are the configurations of G that can be obtained from t by switching
the truth value of at most one variable from Γ2;

(4) if a leaf is labeled (t, i), then t satisfies ϕ.
Given a game instance G = (Γ1,Γ2,ΓI , ϕ), we define TBoxes TG and T ′G such that TG∪T ′G
is not a conservative extension of TG iff Player 1 has a winning strategy in G. Intuitively,
witnesses C v D against conservativity are such that C describes a winning strategy for
Player 1 in G and, conversely, every winning strategy can be converted into a witness
against conservativity. For convenience, we assume that the set of variables Γ1 ∪ Γ2 is of
the form {0, . . . , n − 1} for some n ≥ 1. To describe winning strategies as concepts, we
use the following symbols:
• V0, . . . , Vn−1 and V 0, . . . , V n−1 to describe the truth values of the variables;
• F0, . . . , Fn to denote the variable that is flipped to reach the current configuration,

with Fn indicating a skip move;
• P1, P2 to denote the player which moves next;
• a single role name r.
Since EL-concepts correspond to trees in an obvious way (every existential restriction
∃r.C gives rise to an edge), it is not hard to see how winning strategies can be represented
as a concept formulated in the above signature.

In TG, we additionally use a concept name B that will occur on the right-hand side
of witnesses against conservativity, and a concept name M that serves as a marker. The
construction of TG starts with saying that the players alternate:

∃r.P1 v P2

∃r.P2 v P1

Then, we say that P1 and P2 should be disjoint. The idea is as follows: every concept C
which implies that P1 u P2 is true somewhere in the model is subsumed by the concept
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name B already w.r.t. TG, and thus cannot occur on the left-hand side of a witness
C v B. Here we use the concept name M :

P1 u P2 v M

∃r.M v M

M v B

We also need disjointness conditions for truth values and flipping markers:

Vi u V i v M for all i < n

Fi u Fj v M for all i, j ≤ n with i 6= j

Next, we say that if the marker Fi is set in a configuration, then the variable Vi flips:

∃r.(Fi u Vi) v V i for all i < n

∃r.(Fi u V i) v Vi for all i < n

If a marker Fj for a different variable Vj is set, then Vi does not flip:

∃r.(Fi u Vj) v Vj for all i ≤ n and j < n with i 6= j

∃r.(Fi u V j) v V j for all i ≤ n and j < n with i 6= j

Additionally, we should ensure that at least one of the Fi markers is true in every con-
figuration. This cannot be done in a straightforward way in TG, and we will use the
TBox T ′G.

To define T ′G, we start with translating the formula ϕ into a set of CIs. W.l.o.g., we
assume that ϕ is in NNF. For each ψ ∈ sub(ϕ), we introduce a concept name Xψ. For
each ψ ∈ sub(ϕ), we use σ(ψ) to denote
• the concept name Xψ if ψ is a non-literal and
• the concept name from V0, . . . , Vn−1, V 0, . . . , V n−1 corresponding to ψ if ψ is a literal.
For each non-literal ψ ∈ sub(ϕ), T ′G contains the following CI:
• if ψ = ϑ ∧ χ, then the CI is σ(ϑ) u σ(χ) v Xψ;
• if ψ = ϑ ∨ χ, then the CIs are σ(ϑ) v Xψ and σ(χ) v Xψ.
To continue, let Γ1 = {0, . . . , k − 1} and Γ2 = {k, . . . , n}, and introduce concept names
N,N ′, N ′′, N0, . . . , Nn−1 to be used as markers. The markers will help to ensure that
(i) each variable has a truth value in every configuration, (ii) a least one of the flipping
indicators F0, . . . , Fn is set in every configuration, and (iii) the flipping indicator denotes
a variable controlled by the player who moved to reach the current configuration. The
markers are set as follows:

Vi v Ni for all i < n

V i v Ni for all i < n

Fi v N ′ for all i ∈ {0, . . . , k − 1, n}

Fi v N ′′ for all i ∈ {k, . . . , n}
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Next, we set the marker N if the encoded truth assignment satisfies ϕ and (i)-(iii) are
satisfied:

Xϕ u P1 uN ′′ uN0 u · · · uNn−1 v N

Xϕ u P2 uN ′ uN0 u · · · uNn−1 v N
Then, the marker N is pulled up inductively ensuring that if Player 1 is to move, there
is the required single successor, and if Player 2 is to move, there are the required k + 1
successors:

P1 uN ′′ uN0 u · · · uNn−1 u ∃r.N v N

P2 uN ′ uN0 u · · · uNn−1 u u
i∈{0,...,k−1,n}

∃r.(N u Fi) v N

We require that P1 moves first and that the initial configuration is labeled as described
by ΓI . Only if this is satisfied, the concept name B from TG is implied:

P1 uN uu
i∈ΓI

Vi uu
i/∈ΓI

V i v B

Finally, we also deal with the case where already ΓI satisfies ϕ:

P1 uXϕ uu
i∈ΓI

Vi uu
i/∈ΓI

V i v B

The following lemma is proved in Appendix E.

Lemma 35. Player 1 has a winning strategy in G iff TG ∪ T ′G is not a conservative
extension of TG.

We have thus shown the following result.

Theorem 36. Deciding conservative extensions w.r.t. QLEL is ExpTime-hard and thus
ExpTime-complete.

Together with Lemmas 23, 30, and 31 and since the only role name in T ′G is from
Σ = sig(TG), we obtain the following corollary.

Corollary 37. For QL ∈ {QLEL,QLiEL,QL
q
EL}, deciding conservative extensions w.r.t.

QL is ExpTime-hard and thus ExpTime-complete.

7. Model Conservativity

We consider Σ-entailment w.r.t. second-order logic. Denote by SO the set of second-
order sentences with second-order variables for sets and binary relations in the signature
with unary predicates from NC and binary predicates from NR. Clearly, Σ-entailment
between two TBoxes w.r.t. SO implies Σ-entailment w.r.t. any other query language
introduced so far.

We start with observing that Σ-entailment w.r.t. SO can be easily characterized model-
theoretically without using any query language. Say that two interpretations I and J
coincide on a signature Σ, in symbols I|Σ = J |Σ, if ∆I = ∆J and XI = XJ for all
X ∈ Σ.
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Definition 38 (Semantic Σ-consequence, model conservative extension). Let T1 and T2

be TBoxes and Σ a signature. Then
• T2 is a semantic Σ-consequence of T1 if for every model I of T1 there exists a model
J of T2 that coincides with I on Σ.

• T2 is a model conservative extension of T1 if T1 ⊆ T2 and T2 is a semantic Σ-consequence
of T1 for Σ = sig(T1).

Model conservative extensions are a well-known notion in mathematical logic and
modular software verification (13). The relation between deduction-based notions of con-
servativity and model-conservativity in modular software design is discussed in (25; 26; 8).
The following lemma relates Σ-entailment w.r.t. SO and semantic Σ-consequence.

Lemma 39. Let T1 and T2 be TBoxes and Σ a signature. Then
• T2 is a semantic Σ-consequence of T1 iff T1 Σ-entails T2 w.r.t. SO.
• T2 is a model-conservative extension of T1 iff T2 is a conservative extension of T1

w.r.t. SO.

Proof. Point 2 follows from Point 1, so we concentrate on Point 1. The implication from
left to right follows from the fact that no second-order formula using only symbols from
Σ can distinguish two models whose Σ-reducts are isomorphic. For the other direction
observe that T2 |= ∃S1 · · · ∃Sn.

∧
T2 with {S1, . . . , Sn} = sig(T2)\Σ. Thus, if T1 Σ-entails

T2 w.r.t. SO, then T1 |= ∃S1 · · · ∃Sn.
∧
T2 which means that for every interpretation I

satisfying T1 there exists an interpretation J of T2 which coincides with I on Σ, as
required. 2

The proof also shows that if a TBox T2 is not Σ-entailed by a TBox T1 w.r.t. SO, then
there is a witness of the form ∃S1 · · · ∃Sn.

∧
T2.

For TBoxes formulated in the description logic ALC, model conservativity has been
proved Π1

1-hard in (18). In this section, we show that model conservative extensions, and
therefore also semantic Σ-consequence, are undecidable even in EL (we leave Π1

1-hardness
as an open question). The proof is by reduction of the halting problem for deterministic
Turing machines on the empty tape. We assume w.l.o.g. that the Turing machines are
such that (i) the initial state is not reachable from itself, (ii) the halting state does not
allow any further transitions, and (iii) all transitions move the head either right or left.
Let M = (Q,Γ,∆, q0, qh) be such a deterministic Turing machine, where Q is a set of
states, Γ an alphabet, ∆ a partial transition function, q0 ∈ Q the starting state, and
qh ∈ Q the halting state. We construct TBoxes TM and T ′M such that TM ∪ T ′M is not a
model conservative extension of TM iff M reaches qh from q0 on the empty tape. We use
the following concept and role names for describing computations of M :
• the elements of Q and Γ as concept names;
• concept names head, before, and after to represent the relation of a tape cell to the

head position;
• role names n (for next tape cell) and s (for successor configuration).
Our construction is such that models I of TM for which there does not exist a model J of
T ′M which coincides with I on sig(TM ) describe halting computations of M on the empty
tape. Essentially, such models have the form of a grid, with the vertical edges labeled
s and the horizontal ones labeled n. Thus, each row represents a configuration. We will
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enforce the roles n and s to be functional, except at row 0 and column 0 (because this
does not seem possible). Therefore, the actual grid representing the computation of M
starts at row 1 and column 1.

We start with the definition of TM . For now, it is easiest to simply assume n and s to
be functional and confluent (which will be enforced later by T ′M ). We first set before and
after correctly, exploiting the assumed functionality of n:

∃n.before v before ∃n.head v before head v ∃n.after after v ∃n.after.

Then we say that states are uniform over the tape: for all q ∈ Q,

q v ∃n.q ∃n.q v q.

Exploiting that q0 cannot reach itself and the above uniformity, we say that the tape is
initially blank (where b ∈ Γ is the blank symbol):

q0 v b.

For each transition δ(q, a) = (q′, a′, L), exploiting confluence of n and s, we set

∃n.(q u head u a) v ∃s.(q′ u head u ∃n.a′),

and for each transition δ(q, a) = (q′, a′, R),

(q u head u a) v ∃s.(a′ u q′ u ∃n.head).

We also say that symbols not under the head do not change: for all a ∈ Γ, put

a u before v ∃s.a, a u after v ∃s.a.

We would like to say that certain concept names such as before and head are disjoint.
Since disjointness cannot be expressed in EL, we revert to a trick that will become clear
when T ′M is defined. For now, we introduce a concept name D that serves as a marker
for problems with disjointness: for all q, q′ ∈ Q with q 6= q′ and all a, a′ ∈ Γ with a 6= a′,
put

q u q′ v D a u a′ v D before u head v D head u after v D before u after v D.

Up to now, we simply have assumed the described grid structure, but we did not enforce it.
In TM , we cannot do much more than saying that every point has the required successors:

> v ∃n.> u ∃s.>.

We now define T ′M , introducing new concept names N,A,B and a new role u0. The
concept name N serves as a marker. It is enforced to be true at the origin of the relevant
part of the grid (point (1,1)) if the described computation reaches the halting state:

qh v N ∃n.N v N ∃s.N v N

It remains to ensure that for a model I of TM there does not exist a model J of T ′M
which coincides with I on sig(TM ) iff (i) r and s are functional, (ii) r and s are confluent,
(iii) DI = ∅ (because then there are no problems with disjointness), (iv) the described
computation starts in the starting state with the head on the left-most cell and reaches
the halting state. Surprisingly, all this can be achieved with two simple CIs:

∃n.∃s.(N u q0 u head) v ∃u0.(∃n.∃s.A u ∃s.∃n.B)

A uB v ∃u0.D
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The following lemma is proved in the appendix.

Lemma 40. TM ∪ T ′M is not a model conservative extension of TM iff M halts on the
empty tape.

We have thus shown the following.

Theorem 41. The problem of checking whether an EL-TBox T1 is a model conservative
extension of an EL-TBox T2 is undecidable.

8. Conclusion

We have introduced different notions of entailment and inseparability between TBoxes
and of conservative extensions of TBoxes. Concentrating on the lightweight description
logic EL, we have then studied the robustness of these notions and analyzed their inter-
relationship and computational properties. In particular, we have shown that a variety of
‘EL-based’ notions of entailment is ExpTime-complete, but that Σ-entailment w.r.t. SO
is undecidable.

Our analysis leaves open a number of interesting questions, of which we discuss three.
First, the following notion of Σ-entailment has been suggested in (10; 11; 17):

Definition 42. Let QL be a query language, Σ a signature, and T1, T2 TBoxes. Then T1

and T2 are strongly Σ-inseparable w.r.t. QL if for all TBoxes T with sig(T )∩ sig(Ti) ⊆ Σ
for all i ∈ {1, 2}, T1 ∪ T and T2 ∪ T are Σ-inseparable w.r.t. QL.

This notion is relevant for importing a TBox into another one: if T1 and T2 are strongly
Σ-inseparable, then it is safe to import T1 instead of T2 into any TBox T if no non-Σ
symbols from T1 and T2 are used in T . Decidability and the exact complexity of strong
Σ-inseparability are yet unknown for the case of general EL-TBoxes.

Second, it would be interesting to carry out a more detailed analysis of how the two
inputs T1 and T2 contribute to the complexity of deciding Σ-entailment. In particular,
it would be of interest to know whether there is an algorithm that, given two general
EL-TBoxes T1 and T2,

(1) decides whether T1 ∪ T2 is a conservative extension of T1 and
(2) needs time polynomial in T1 and exponential in T2.

Note that we assume Σ = sig(T1), and that the second input consists only of T2, and not
T1 ∪ T2. Such a result would be in line with results on conservative extensions of ALC
TBoxes obtained in (14). They would be quite relevant since the extension T2 is usually
small compared to the extended TBox T1.

Finally, we point out that it would be worthwhile to develop decision procedures that
can be used for efficient implementation. In (15; 16), polynomial time algorithms are
developed for Σ-entailment between acyclic EL-TBoxes, and it is demonstrated that
these algorithms perform very well in practice. Blending these algorithms with the ones
from the current paper may be an interesting start.
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A. Proofs for Section 3

Lemma 12. Let C be an EL-concept and T a TBox. Then
(1) for all E ∈ ∆IC,T , we have E ∈ EIC,T ;
(2) IC,T |= T ;
(3) (IC,T , D) ≤ (IC′,T , D), for all EL-concepts C ′ and all D ∈ ∆IC,T ∩∆IC′,T .

Proof. (1) is straightforward by induction on the structure of E. The proof of (2) boils
down to establishing the following claim.

Claim. For all D ∈ ∆IC,T and all E ∈ sub(T ): D ∈ EIC,T iff T |= D v E.

The claim is proved by induction on the structure of E. We only consider the interesting
case of the induction, i.e., E = ∃r.F .

“⇒”. Let D ∈ (∃r.F )IC,T . Then there is a F ′ ∈ F IC,T with (D,F ′) ∈ rIC,T . We have
F ′ ∈ ∆IC,T and can apply IH to F , yielding T |= F ′ v F . Since (D,F ′) ∈ rIC,T , we have
T |= D v ∃r.F ′, thus T |= D v ∃r.F .

“⇐”. Let T |= D v ∃r.F . Then (D,F ) ∈ rIC,T . From (1), we get D ∈ (∃r.F )IC,T .

It is not hard to see that the claim implies (2): Let D v E ∈ T and F ∈ DIC,T . By the
claim, T |= F v D, and thus T |= F v E. Again by the claim, F ∈ EIC,T .

For (3), let D ∈ ∆IC,T ∩ ∆IC′,T . Define a relation S ⊆ ∆IC,T × ∆IC′,T by setting
S := {(E,E) | E ∈ ∆ID,T }. By construction, (D,D) ∈ S. It is easy to show that S is a
simulation, hence (IC,T , D) ≤ (IC′,T , D) as required. 2

Lemma 13. Let C and D be EL-concepts and T a TBox. Then the following holds:
(1) For all models I of T and all d ∈ ∆I , the following conditions are equivalent:

(a) d ∈ CI ;
(b) (IC,T , C) ≤ (I, d);
(c) (IC,T , C) ≤full (I, d).

(2) The following conditions are equivalent:
(a) T |= C v D;
(b) C ∈ DIC,T ;
(c) (ID,T , D) ≤ (IC,T , C).

(3) The following conditions are equivalent:
(a) T |= C v ∃u.D;
(b) C ∈ (∃u.D)IC,T .

Proof. (1) (c) ⇒ (b) is trivial and (b) ⇒ (a) follows from Theorem 10 since C ∈ CIC,T .
For (a) ⇒ (c), let I be a model of T and d ∈ CI . Define a relation S ⊆ ∆IC,T ×∆I by
setting (D, e) ∈ S iff e ∈ DI . We show that S is a full simulation. Let (D, e) ∈ S. Assume
D ∈ AIC,T , with A a concept name. This implies T |= D v A, and e ∈ AI follows from
e ∈ DI and I |= T . Now assume (D,D′) ∈ rIC,T . Then T |= D v ∃r.D′ and we obtain
e ∈ (∃r.D′)I . Hence, there exists e′ ∈ ∆I with (e, e′) ∈ rI and e′ ∈ D′I , which implies
(D′, e′) ∈ S. It follows that S is a simulation. By definition, we have (C, d) ∈ S. S is full
because D ∈ ∆IC,T implies T |= C v ∃u.D. Hence there exists e ∈ ∆I with e ∈ DI and
this implies (D, e) ∈ S.
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(2) (a) ⇒ (b). Assume T |= C v D. Since IC,T is a model of T and C ∈ CIC,T , this
implies C ∈ DIC,T . (b)⇒ (c) is an immediate consequence of (1). For (c)⇒ (a), let I be a
model of T and d ∈ CI . By (1), (IC,T , C) ≤ (I, d). Together with (ID,T , D) ≤ (IC,T , C)
and transitivity of “≤”, we get (ID,T , D) ≤ (I, d). Again by (1), we obtain d ∈ DI .

(3) (a) ⇒ (b) follows from IC,T |= T and C ∈ CIC,T . Conversely, let C ∈ (∃u.D)IC,T .
Then there is an E ∈ DIC,T . By (2), this yields T |= E v D. Since E ∈ ∆C,T , we have
T |= C v ∃u.E. Thus, T |= C v ∃u.D. 2

Lemma 15. Let T1, T2 be TBoxes and C1, C2 EL-concepts and Σ a signature. Then
• (T1, C1) vΣ (T2, C2) iff (IC2,T2 , C2) ≤Σ (IC1,T1 , C1);
• (T1, C1) vuΣ (T2, C2) iff (IC2,T2 , C2) ≤full

Σ (IC1,T1 , C1).

Proof. We only prove the first equivalence since the proof of the second is similar (using
Point 3 of Lemma 13 instead of Point 2) .

“⇒”. Assume (T1, C1) 6vΣ (T2, C2). Then there is an ELΣ-concept E such that T2 |=
C2 v E and T1 6|= C1 v E. By Point 2 of Lemma 13, this yields C2 ∈ EIC2,T2 and
C1 6∈ EIC1,T1 . Hence, by Theorem 10, (IC2,T2 , C2) 6≤Σ (IC1,T1 , C1).

“⇐”. Let (IC2,T2 , C2) 6≤Σ (IC1,T1 , C1). By Theorem 10, there exists an ELΣ-concept
E with C2 ∈ EIC2,T2 but C 6∈ EIC1,T1 . By Point 2 of Lemma 13, T2 |= C2 v E and
T1 6|= C1 v E. 2

B. Disjunction Property and Robustness

In this section, we prove that (EL,QLuEL) is robust under signature extensions and has
the join modularity property. Note that this section comes after the section on proofs for
Section 3 because we employ the canonical model construction and its properties. First,
we show two auxiliary lemmas which will be useful in subsequent sections as well.

Lemma 43 (Disjunction Property). Let T be a TBox and let

C = C0 uu
i∈I
∃u.Ci, D =t

i∈J
Di tt

i∈K
∃u.Di,

where C0, Ci, i ∈ I, Di, i ∈ J , and Di, i ∈ K, are EL-concepts. If T |= C v D, then
T |= C ′ v D′ for a C ′ ∈ {C0}∪ {∃u.Ci | i ∈ I} and D′ ∈ {Di | i ∈ J}∪ {∃u.Di | i ∈ K}.

Proof. We first show this property for C a EL-concept. Thus, assume that C is a EL-
concept, D as defined in the lemma, and T |= C v D. Take the canonical model IC,T of
T . By Lemma 12, C ∈ CIC,T . Since T |= C v D, we have C ∈ EIC,T for some disjunct
E ∈ {Di | i ∈ J}∪{∃u.Di | i ∈ K}. By Lemma 13, this implies T |= C v E, as required.

Next we show that, in general, from T |= C v D follows T |= C0 v D or T |= ∃u.Ci v
D, for some i ∈ I. Assume this is not the case. Take, for i ∈ I ∪{0}, a model Ii of T such
that xi ∈ CIi

i \DIi . Take the disjoint union I of the models Ii, i ∈ I ∪ {0}. Then I is a
model of T and x0 ∈ CI \DI . Hence T 6|= C v D and we have derived a contradiction.

To prove the lemma it remains to consider the case T |= ∃u.Ci v D, for some i ∈ I.
Fix an i ∈ I with this property. Using a construction similar to the disjoint union
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construction above, it is not difficult to see that then T |= > v Di, for some i ∈ J , or

T |= Ci vt
i∈K
∃u.Di. In the first case, T |= C0 v Di, as required. In the second case, by

the disjunction property for C a EL-concept proved above, we obtain T |= Ci v ∃u.Dj ,
for some j ∈ K. But then T |= ∃u.Ci v ∃u.Dj , as required. 2

Say that an ELu-concept C follows from a TBox T and a (possibly infinite) set Ψ of
ELu-concepts, written T ∪Ψ |= C, if for every model I of T and d ∈ ∆I : if d ∈ DI for
all D ∈ Ψ, then d ∈ CI . Observe that T |= C v D if, and only if, T ∪ {C} |= D and
that this consequence is compact in the sense that T ∪Ψ |= D implies that there exists
a finite subset Ψ′ of Ψ such that T ∪Ψ′ |= D.

Lemma 44. Let T be a TBox and Ψ a set of ELu-concepts. Then there exists a model
I of T and d ∈ ∆I such that, for all ELu-concepts C: d ∈ CI iff T ∪Ψ |= C.

Proof. Follows immediately from Lemma 43 and compactness: suppose no such model
exists. Let Γ = {C | T ∪ Ψ |= C, C a ELu-concept} and denote by Γ the set of all
ELu-concepts not in Γ. Then there does not exist a model I of T and d ∈ ∆I such that
d ∈ CI , for all C ∈ Γ, and d ∈ (¬C)I , for all C ∈ Γ. By compactness, there exist finite
subsets Γ0 of Γ and Γ0 of Γ such that no such model exists for Γ0 and Γ0. Hence

T |= u
C∈Γ0

C v t
D∈Γ0

D.

By Lemma 43, T |= u
C∈Γ0

C v D, for some D ∈ Γ0. But then T ∪ Ψ |= D and we have

derived a contradiction. 2

Theorem 45. (EL,QLuEL) is robust under signature extensions.

Proof. The proof employs the Craig interpolation property of EL. Suppose T1 vuΣ T2

and Σ′ ⊇ Σ with Σ′ ∩ sig(T2) ⊆ Σ. Let T2 |= C v D with sig(C v D) ⊆ Σ′. If D is an
EL-concept, then T1 |= C v D by robustness under signature extensions of (EL,QLEL).
Assume now D = ∃u.D′ and T2 6|= C v D′. By Lemma 13 (see Lemma 16 for a similar
observation), there are two cases:

(1) there exists ∃r.C ′ ∈ sub(C) such that T2 |= C ′ v D′.
(2) there exists ∃r.C ′ ∈ sub(T2) such that T2 |= C v ∃u.C ′ and T2 |= C ′ v D′.

If Point 1 applies, then, by robustness under vocabulary extensions of (EL,QLEL), T1 |=
C ′ v D′ and, therefore, T1 |= ∃u.C ′ v ∃u.D′. Also, |= C v ∃u.C ′. So we obtain T1 |=
C v ∃u.D′.

Now assume Point 2 applies to ∃r.C ′ ∈ sub(T2). Replace, in C, all role names r ∈ Σ′\Σ
by u, and all concept names A ∈ Σ′ \ Σ by >, and denote the resulting concept by
C∗. We have |= C v C∗. It follows immediately from sig(C) ∩ (sig(T2) ∪ sig(C ′)) ⊆ Σ
that T2 |= C∗ v ∃u.C ′. Then there exists a subconcept C∗0 of C∗ in EL such that
T2 |= C∗0 v ∃u.C ′. Moreover, |= C v ∃u.C∗0 . On the other hand, from T2 |= C ′ v D′,
we obtain sig(D′) ⊆ Σ because Σ′ ∩ (sig(T2) ∪ sig(C ′)) ⊆ Σ. Thus T2 |= C∗0 v ∃u.D′
and sig(C∗0 v ∃u.D′) ⊆ Σ. Hence T1 |= C∗0 v ∃u.D′ and from |= C v ∃u.C∗0 we obtain
T1 |= C v ∃u.D′. 2

35



Theorem 46. (EL,QLEL) and (EL,QLuEL) have the join modularity property.

Proof. We give a proof for (EL,QLuEL); the proof for (EL,QLEL) is a minor modification
of this proof and left to the reader.

Let T1 and T2 be Σ-inseparable w.r.t. QLuEL, where Σ is a signature with sig(T1) ∩
sig(T2) ⊆ Σ. Assume that Ti 6|= C v D, for some C v D ∈ QLuEL with sig(C v D) ⊆ Σ.
We show T1 ∪ T2 6|= C v D. Take the canonical model I0 = IC,T1 and let d0 = C ∈
∆I0 . Then d0 ∈ CI0 \ DI0 . Set ∆0 = ∆d0 = ∆I0 . In the following, we construct an
interpretation I∗ of T1 ∪ T2 refuting C v D. We define inductively an infinite sequence
I1, I2, . . . of interpretations. The interpretation I∗ = (∆I

∗
, ·I∗) is then defined as the

union of I0, I1, I2, . . . as follows:

∆I
∗

:=
⋃
i≥0

∆Ii ;

AI
∗

:=
⋃
i≥0

AIi , for all A ∈ NC;

rI
∗

:=
⋃
i≥0

rIi , for all r ∈ NR.

Given an intepretation I and d ∈ ∆I , recall that dΣ,I,u denotes the set of ELuΣ-concepts
E with d ∈ EI . For any Tbox T denote by ItI(d),T a model of T with d in its domain
such that

(∗) d ∈ EItI(d),T iff T ∪ dΣ,I,u |= E, for all ELu-concepts E.

By Lemma 44, such an interpretation always exists. Moreover, we may assume that
d is not within the range of any rItI(d),T (if it is, one can use standard unravelling (see
Section 5.2) to obtain a model with the required properties). Let n ≥ 0 and assume the
interpretation In with domain ∆n has been defined. If n is even, then take for every
d ∈ ∆n \∆n−1 (we set ∆−1 = ∅) the interpretation Id = ItIn (d),T2 with domain ∆d such
that ∆n ∩∆d = {d} and the ∆d, d ∈ ∆n \∆n−1, are mutually disjoint. If n is odd, then
take for every d ∈ ∆n \ ∆n−1 the interpretation Id = ItIn (d),T1 with domain ∆d such
that ∆n ∩∆d = {d} and the ∆d, d ∈ ∆n \∆n−1, are mutually disjoint. Now set

∆n+1 = ∆n ∪
⋃
d∈∆n\∆n−1

∆d,

rIn+1 = rIn ∪
⋃
d∈∆n\∆n−1

rId ,

AIn+1 = AIn ∪
⋃
d∈∆n\∆n−1

AId .

For all d ∈ ∆I
∗

there exists a (uniquely) determined minimal natural number n(d) with
d ∈ ∆n(d) \∆n(d)−1. If n(d) 6= 0, then there exists a uniquely determined d∗ ∈ ∆n(d)−1

with d ∈ ∆d∗ . We set d∗ = d0 for n(d) = 0 and prove the following by induction on the
construction of D. For all d ∈ ∆I

∗
and EL-concepts D:

• if n(d) is even then
(1) if sig(D) ∩ sig(T1) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId ;
(2) if sig(D) ∩ sig(T2) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId∗ ;
• if n(d) is odd then
(1) if sig(D) ∩ sig(T2) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId ;
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(2) if sig(D) ∩ sig(T1) ⊆ Σ, then d ∈ DI∗ ⇔ d ∈ DId∗ .
The implications from right to left are trivial, so we consider the implications from left
to right only. We concentrate on the case n(d) even (the case n(d) odd is proved in the
same way) and prove the induction step for D = ∃r.C. First consider Point 1. So let
sig(D)∩ sig(T1) ⊆ Σ and assume d ∈ DI∗ with n(d) even. There exists c ∈ ∆I

∗
such that

c ∈ CI∗ and (d, c) ∈ rI∗ . Assume first that c ∈ ∆n(d). Then, by construction, c 6∈ ∆n(d)−1.
Then r ∈ Σ because for any r 6∈ sig(T1), rI

∗ ∩ (∆n(d) \∆n(d)−1)2 = ∅. We obtain n(c) =
n(d) and, by IH, c ∈ CIc . We obtain T2 ∪ cΣ,In(d),u |= C. By compactness and closure
under conjunction of cΣ,In(d),u, there exists a concept C0 in cΣ,In(d),u with T2 |= C0 v C.
Then T2 |= ∃r.C0 v ∃r.C. We have ∃r.C0 ∈ dΣ,In(d),u and so T2 ∪ dΣ,In(d),u |= ∃r.C. But
then d ∈ DId .

Now assume c 6∈ ∆n(d). Then c ∈ ∆d, c∗ = d, and n(c) = n(d) + 1. By induction
hypothesis (for n(c) odd), c ∈ CI∗ iff c ∈ CIc∗ = CId . Hence d ∈ (∃r.C)Id .

Consider now Point 2. Let sig(D) ∩ sig(T2) ⊆ Σ and d ∈ DI∗ . There exists c ∈ ∆I
∗

such that c ∈ CI∗ and (d, c) ∈ rI∗ . Assume first that c ∈ ∆d∗ . Then c∗ = d∗ and, by
induction hypothesis, c ∈ CId∗ . As we also have (d, c) ∈ rId∗ , we obtain d ∈ DId∗ .

Now assume c 6∈ ∆d∗ . Then c ∈ ∆d. Then r ∈ Σ because for any r 6∈ sig(T2), rI
∗∩∆d×

∆d = ∅. By induction hypothesis c ∈ CIc . Hence T1 ∪ cΣ,In(d)+1,u |= C. By compactness
and closure under conjunction of cΣ,In(d)+1,u, there exists a concept C0 in cΣ,In(d)+1,u with
T1 |= C0 v C. Then T1 |= ∃r.C0 v ∃r.C. We have d ∈ (∃r.C0)Id . Since sig(∃r.C0) ⊆ Σ
it follows from Σ-inseparability w.r.t. QLuEL of T1 and T2 and compactness that ∃r.C0 ∈
dΣ,In(d),u. So d ∈ (∃r.C0)Id∗ . Id∗ is a model of T1. Hence d ∈ (∃r.C)Id∗ .

It follows immediately that I∗ is a model of T1∪T2: let C0 v D0 ∈ Ti. If CI
∗

0 \DI
∗

0 6= ∅,
then there exists a an interpretation Id of Ti with CId

0 \D
Id
0 6= ∅ which is a contradiction.

It remains to show that d0 ∈ CI
∗ \ DI∗ . d0 ∈ CI

∗
by the claim above and since

d0 ∈ CI0 . If D is a EL-concept, then d0 6∈ DI
∗

follows from d0 6∈ DI0 and the claim
above. Now suppose D = ∃u.D0. Using the claim above it is readily proved by induction
on n that ∆n ∩DI

∗

0 = ∅, for all n ≥ 0. Hence DI
∗

= ∅, as required. 2

C. Proofs for Section 4

Let P and Q be finite sets of pairs (r, E), where r is a role and E a EL-concept. We
say that Q covers P w.r.t. a TBox T , in symbols P ≤T Q, if for all ∃r.G ∈ sub(T ) and
(r, E) ∈ P with T |= E v G there exists (r, E′) ∈ Q with T |= E′ v G.

Lemma 47. Let T be a TBox, C0 = F0 u u
(r,E)∈P

∃r.E, and C1 = F0 u u
(r,E)∈Q

∃r.E and

assume P ≤T Q. Then the following holds:
• KT (C0) ⊆ KT (C1).
• If C ′ is a EL-concept with ∃r.C0 ∈ sub(C ′) and C ′′ the resulting concept when ∃r.C0

is replaced by ∃r.C1 in C ′, then KT (C ′) ⊆ KT (C ′′).

Proof. We show Point 1. Point 2 can be proved by induction or directly using a similar
construction and is left to the reader.

Let H ∈ sub(T ) \KT (C1). We have to show that H /∈ KT (C0). There is a model I
of T with d0 ∈ CI1 \HI . For each (r, E) ∈ P , take a copy Ir,E of the canonical model
IE,T such that all these copies have disjoint domains, and their domains are disjoint
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from that of I. In the copy Ir,E , the point corresponding to E in the canonical model
IE,T is denoted by dr,E . Define a new interpretation I ′ as follows:
• take the union of I and the models Ir,E , for all (r, E) ∈ P ;
• for each (r, E) ∈ P add the tuple (d0, dr,E) to rI

′
.

Observe that d0 ∈ CI
′

0 . The following claims can be proved by induction on the structure
of the EL-concept D0:

(a) for all (r, E) ∈ P , all d ∈ ∆Ir,E , and all EL-concepts D0, d ∈ DI′0 iff d ∈ DIr,E

0 .
(b) for all d ∈ ∆I and D0 ∈ sub(T ), d ∈ DI0 iff d ∈ DI′0 .

The only interesting case is the direction from right to left in (b), when D0 = ∃r.D′0.
Let d ∈ (∃r.D′0)I

′
. Then there is a d′ ∈ D′

I′
0 such that (d, d′) ∈ rI

′
. If d′ ∈ ∆I , we

have (d, d′) ∈ rI and it remains to apply IH. Now let d′ ∈ ∆Ir,E for some (r, E) ∈ P .
Then d = d0 and d′ = dr,E . By (a) above, dr,E ∈ D′

I′
0 implies dr,E ∈ D′

Ir,E

0 . With
Point 2 of Lemma 13, we get T |= E v D′0. Since P ≤T Q, there is an (r, E′) ∈ Q such
that T |= E′ v D′0. We have d = d0 ∈ CI1 and, therefore, there is a d′′ ∈ (E′)I with
(d, d′′) ∈ rI . Hence, d ∈ (∃r.D′0)I .

Since I and all the Ir,E are models of T and by (a) and (b) above, it follows that I ′
is a model of T . (b) implies d0 ∈ CI

′

0 \HI
′

and we derive H 6∈ KT (C0). 2

Lemma 48. Assume Σ ⊆ sig(T2). Suppose there exists an ELΣ-concept C and a concept
D ∈ sub(T2) such that

(a) T2 |= C v D;
(b) (T1, C) 6vΣ (T2, D).

Then there exist C and D with properties (a) and (b) such that
(c) the outdegree of C is bounded by |T2|.

Proof. Let C be an ELΣ-concept and D ∈ sub(T2) such that Points (a) and (b) hold.
If the outdegree of C is bounded by |T2|, C itself is as required. Assume that this is not
the case. Then there exists a subconcept C0 of C such that C0 = F uu(r,E)∈P∃r.E,
where F is a conjunction of concept names and |P | > |T2|. Let Q be a minimal subset
of P such that P ≤T2 Q. Clearly, the cardinality of Q is bounded by |T2|. Now, replace
in C the subconcept C0 with C1 := F uu(r,E)∈Q∃r.E and call the result C ′. We have
|C ′| ≤ |C| and, by Lemma 47, KT2(C) = KT2(C ′). To obtain the desired concept C ′,
we now execute the described contraction until the outdegree is bounded by |T2|. The
resulting concept C ′ satisfies (a) because KT2(C) = KT2(C ′). (b) holds for C ′ because
∅ |= C v C ′. 2

Lemma 18 Let T be a TBox and C = F0 uu(r,E)∈P∃r.E. Then

KT (C) = KT (F0 u u
(r,E)∈P

∃r.( u
D∈KT (E)

D)).

Proof. The condition of Point 1 of Lemma 47 is satisfied for C0 = C and C1 = F0 u
u

(r,E)∈P
∃r.( u

D∈KT (E)
D) and vice versa. 2
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D. Proofs for Section 5

Lemma 22 Let T be a TBox, Σ a signature, and A an ELΣ-ABox.
(1) For every ELΣ-conceptD and a ∈ NI, (T ,A) |= D(a) iff there exists an ELΣ-concept

C such that T |= C v D and A |= C(a).
(2) For every ELuΣ-conceptD and a ∈ NI, (T ,A) |= D(a) iff there exists an ELuΣ-concept

C such that T |= C v D and A |= C(a).

Proof. The directions from right to left are trivial, so we concentrate on the other
direction.

Point 1. Let D0 be a ELΣ-concept, a0 ∈ NI, and assume that (T ,A) |= D0(a0). Set,
for every a ∈ ob = Obj(A) ∪ {a0},

tA(a) = {C | A |= C(a), C an ELΣ-concept}.

We show that T ∪ tA(a0) |= D0. Then, using compactness, we find a ELΣ-concept C such
that T |= C v D0 and A |= C(a0), as required. Assume T ∪tA(a0) 6|= D0. Take, for every
a ∈ ob, a model Ia of T with a point da such that for all EL-concepts C: dIa ∈ CIa iff
T ∪ tA(a) |= C. Such models exist by Lemma 44. We may assume that they are mutually
disjoint. Take the following union I of the models Ia:
• ∆I =

⋃
a∈ob ∆Ia ;

• AI =
⋃
a∈obA

Ia , for A ∈ NC;
• rI =

⋃
a∈ob r

Ia ∪ {(da, db) | r(a, b) ∈ A}, for r ∈ NR;
• aI = da, for a ∈ ob.
For all EL-concepts C and all a ∈ ob the following holds for all d ∈ ∆Ia :

d ∈ CIa iff d ∈ CI .

The proof is by induction on the construction of C. The only interesting case is C = ∃r.D
and the direction from right to left. Assume d ∈ CI ∩∆Ia . For d 6= da, d ∈ CIa follows
immediately by IH. Assume d = da. Take d′ with (d, d′) ∈ rI and d′ ∈ DI . Again,
if d′ ∈ ∆Ia , then the claim follows immediately from the IH. Now assume d′ 6∈ ∆Ia .
Then d′ = b for some b with r(a, b) ∈ A. By IH, d′ ∈ DIb . Hence T ∪ tA(b) |= D. By
compactness, there exists a concept E ∈ tA(b) such that T |= E v D. FromA |= E(b) and
r(a, b) ∈ A we obtain A |= ∃r.E(a). Therefore, ∃r.E ∈ tA(a). But then T ∪ tA(a) |= ∃r.D
and we obtain da ∈ CIa .

It follows that I is a model of (T ,A) and I 6|= D0(a0). Hence (T ,A) 6|= D0(a0), and
we have derived a contradiction.

Point 2. Let D0 be a ELuΣ-concept, a0 ∈ NI, and assume that (T ,A) |= D0(a0). Set,
for every a ∈ ob = Obj(A) ∪ {a0},

tuA(a) = {C | A |= C(a), C an ELuΣ-concept}.

We show that T ∪ tuA(a0) |= D0. Then, using compactness, we find a ELuΣ-concept C such
that T |= C v D0 and A |= C(a0), as required. The construction is the same (except
that now D0 can be of the form ∃u.D and the sets tuA(a) contain ELu-concepts). So we
just provide the inductive proof of

d ∈ (∃u.C)Ia iff d ∈ (∃u.C)I ,

for all d ∈ ∆Ia and a ∈ ob. Assume d ∈ (∃u.C)I ∩∆Ia . By IH, there exists b ∈ ob such
that CIb ∩ ∆Ib 6= ∅. Take such a b. Then T ∪ tuA(b) |= ∃u.C. By compactness, there
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exists E ∈ tuA(b) with T |= E v ∃u.C. Assume first that E is an EL-concept. Then
T |= ∃u.E v ∃u.C. Moreover, A |= ∃u.E(a) because A |= E(b). We obtain ∃u.E ∈ tuA(a).
Hence T ∪tuA(a) |= ∃u.C and so d ∈ (∃u.C)Ia . Now assume E = ∃u.E′. Then one can show
similarly that ∃u.E′ ∈ tuA(a) and so T ∪ tuA(a) |= ∃u.C which implies d ∈ (∃u.C)Ia . 2

Let P and Q be finite sets of pairs (r, E), where r is a role and E a EL-concept.
Then Q strongly covers P w.r.t. a TBox T , in symbols P ≤uT Q, if P ≤T Q and for
all ∃s.G ∈ sub(T ) and (r, E) ∈ P with T |= E v ∃u.G there exists (r, E′) ∈ Q with
T |= E′ v ∃u.G.

Lemma 49. Let T be a TBox, C0 = F0 u u
(r,E)∈P

∃r.E, C1 = F0 u u
(r,E)∈Q

∃r.E, and

assume P ≤uT Q. Then the following holds:
• Ku

T (C0) ⊆ Ku
T (C1).

• If C ′ is a EL-concept with ∃r.C0 ∈ sub(C ′) and C ′′ the resulting concept when ∃r.C0

is replaced by ∃r.C1 in C ′, then Ku
T (C ′) ⊆ Ku

T (C ′′).

Proof. Similar to the proof of Lemma 47 and left to the reader. 2

Proposition 50. Let T1 and T2 be TBoxes and Σ a signature. If C is an ELΣ-concept
and D ∈ Ku

T2(C) such that (a) there does not exist D′ ∈ ∆IC,T1 , (T1, D
′) vΣ (T2, D),

then there exist a ELΣ-concept C ′ and D′ ∈ Ku
T2(C ′) satisfying (a) and the outdegree of

C ′ is bounded by |T2|.

Proof. The argument is similar to the proof of Proposition 17. Assume C and D have
property (a). If the outdegree of the C is bounded by |T2|, C itself is as required. Assume
that this is not the case. Then there exists a subconcept C0 of C such that C0 = F u
u(r,E)∈P∃r.E, and |P | > |T2|. Let Q be a minimal subset of P such that P ≤uT2 Q.
The cardinality of Q is bounded by |T2|. Now, replace in C the subconcept C0 with
C1 := F uu(r,E)∈Q∃r.E and call the result C ′. We have |C ′| ≤ |C| and, by Lemma 49,
Ku
T2(C) = Ku

T2(C ′). To obtain the desired concept C ′, we now execute the described
contraction until the outdegree is bounded by |T2|. The resulting concept C ′ and D
satisfy (a) because Ku

T2(C) = Ku
T2(C ′) and ∅ |= C v C ′. 2

Lemma 33. Let T be a TBox, C = F0 uu(r,E)∈P∃r.E, where F0 is a conjunction of

concept names, and D = u
E∈KT (C)

E. Then

Ku
T (C) = Ku

T (D) ∪
⋃

(r,E)∈P

Ku
T (E).

Proof. The inclusion “⊇” is clear. Conversely, assume that ∃r.H ∈ sub(T ) but H 6∈
Ku
T (D) ∪

⋃
(r,E)∈P K

u
T (E). We show H 6∈ Ku

T (C). The construction is similar to the
proof of Lemma 47, so we only give a sketch. Take, for every (r, E) ∈ P , a copy Ir,E of
the canonical model IE,T such that all these copies have disjoint domains. In the copy
Ir,E , the point corresponding to E ∈ ∆IE,T is denoted by dr,E . We have HIr,E = ∅ for
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all (r, E) ∈ P . Consider, in addition, the canonical model ID,T and assume it is disjoint
from the models Ir,E , (r, E) ∈ P . Again, HID,T = ∅. Define a new model I by taking
the union of the model ID,T and the models Ir,E , (r, E) ∈ P , and adding (D, dr,E) to
the interpretation of rI for every (r, E) ∈ P , and D to the interpretation of BI for all
conjuncts B of F0 which are not in sig(T ).

To prove that H 6∈ Ku
T (C), it is sufficient to show that I is a model of T refuting

C v ∃u.H. We clearly have D ∈ CI . Thus, it is sufficient to show
• for all d ∈ ∆ID,T and G ∈ sub(T ): d ∈ GI iff d ∈ GID,T and
• for all (r, E) ∈ P , d ∈ Ir,E , and G ∈ sub(T ): d ∈ GI iff d ∈ GIr,E .
This can be proved by induction on the construction of G (similarly to the proof of
Lemma 47) and is left to the reader. 2

E. Omitted Proofs for Section 6

Lemma 35. Player 1 has a winning strategy in G iff TG ∪ T ′G is not a conservative
extension of TG.

Proof. First assume that Player 1 has a winning strategy (V,E, `) in G. We first define
a mapping m : V → {0, . . . , n} as follows: if (v, v′) ∈ E, `(v) = (t, i), and `(v′) = (t′, i′),
then m(v′) is the variable that was switched to reach t′ from t (we assume that m(v′) = n
means that no variable was switched). If v ∈ V is the root, m(v) = n (this is arbitrary).
We associate a concept C(v) with each node v ∈ V : if `(v) = (t, i), then

C(v) := Pi u Fm(v) uu
i∈t

Vi u u
i∈(Γ1∪Γ2)\t

V i

As a next step, we inductively associate another concept W (v) with each node v ∈ V :
• if v is a leaf, then W (v) := C(v);

• if v has successors v0, . . . , v`−1, then W (v) = C(v) uu
i<`
∃r.W (vi).

Let ε be the root of (V,E, `) and define W := W (ε). It is not too difficult to verify that
TG ∪ T ′G |= W v B. We show that TG 6|= W v B, and thus TG ∪ T ′G is not a conservative
extension of TG. Define a model I as follows:
• ∆I := {W} ∪ {C | ∃r.C ∈ sub(W )};
• AI := {C ∈ ∆I | A is a conjunct in C} for all A ∈ NC;
• rI := {(C,C ′) | ∃r.C ′ is a conjunct in C} for all r ∈ NR.
Here, “D being a conjunct of C” refers to top-level conjunctions and includes the case
that C = D. It is easy to verify that I is a model of TG, and that W ∈ W I . Also, we
have BI := ∅, and thus TG 6|= W v B.

For the converse direction, we start with a preliminary. A model I of a TBox T is a
tree model if the graph (∆I ,

⋃
r∈NR

rI) is a tree. As in Section 7, for two interpretations I
and I ′ and a signature Σ we write I|Σ ≡ I ′|Σ if ∆I = ∆I

′
and σI = σI

′
for all symbols

X ∈ Σ. If

(∗) for every tree model I of TG, there is a model I ′ of TG ∪T ′G with I|sig(TG) = I ′|sig(TG)

then TG ∪ T ′G is a conservative extension of TG. To see this, let TG 6|= C v D with
sig(C)∪ sig(D) ⊆ sig(TG). Then there is a model I of TG and a d ∈ CI \DI , and we can
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unravel I into a tree model J of TG with root d and such that d ∈ CJ \DJ . The existence
of a model J ′ of TG ∪ T ′G with J |sig(TG) = J ′|sig(TG) then shows that TG ∪ T ′G 6|= C v D.

To prove the converse of Lemma 35, it thus suffices to show that if Player 1 does not
have a winning strategy, then (∗) holds. Thus, suppose that Player 1 does not have a
winning strategy, and let I be a tree model of TG. We define a sequence of interpretations
I0, I1, . . . whose limit I ′ is the desired interpretation, i.e., a model of TG ∪ T ′G with
I|sig(TG) = I ′|sig(TG).

To define I0, we start with I and redefine the interpretation of the concept names that
occur in T ′G, but not in TG; these are N , N ′, N ′′, N0, . . . , Nn−1, and Xψ, with ψ ∈ sub(ϕ)
not a literal. The interpretation of the new symbols by I ′ directly reflects the CIs in T ′G:

NI0i = V Ii ∪ V
I
i for all i < n

(N ′)I0 = F I0 ∪ · · · ∪ F Ik−1 ∪ F In
(N ′′)I0 = F Ik ∪ · · · ∪ F In
XI0ϑ∧χ = XI0ϑ ∩XI0χ for all ϑ ∧ χ ∈ sub(ϕ)

XI0ϑ∨χ = XI0ϑ ∪XI0χ for all ϑ ∨ χ ∈ sub(ϕ)

NI0 = (Xϕ u P1 uN ′′ uN0 u · · · uNn−1)I0 .

∪ (Xϕ u P2 uN ′ uN0 u · · · uNn−1)I0 .

The interpretation I0 is almost the desired one, except that the definition of NI0 does not
take into account all CIs in T ′G with N on the right-hand side. This problem is addressed
by the interpretations I1, I2, . . . , which are identical to I0 except for the interpretation
of N :

NIi+1 = NIi ∪ (P1 uN ′′ uN0 u · · · uNn−1 u ∃r.N)Ii

∪ (P2 uN ′ uN0 u · · · uNn−1 u u
i∈{0,...,k−1,n}

∃r.(N u Fi))Ii .

Let I ′ be the limit of the sequence I0, I1, . . . . By construction, I ′ is a model of TG.
Additionally, all CIs in T ′G are easily seen to be satisfied by I ′, with the exception of

(I) P1 uN u u
i∈ΓI

Vi u u
i/∈ΓI

V i v B and

(II) P1 uXϕ u u
i∈ΓI

Vi u u
i/∈ΓI

V i v B.

Assume that one of these CIs is not satisfied by I ′. We show that this implies the existence
of a winning strategy for Player 1 in G, in contradiction to the assumption that there is
no such strategy.

The case of (II) is simple. If (II) is not satisfied, there is a d ∈ ∆I
′

that satisfies
the left-hand side of this CI and is not in BI

′
. Together with the CIs in TG, these two

properties of d imply that d satisfies exactly one of Vi and V i, for all i < n, and that the
corresponding valuation is ΓI . Since d ∈ XI′ϕ and by construction of I ′, ΓI satisfies ϕ.
Thus, there is a trivial winning strategy for P1 in G.

Now assume that (I) is violated. Then there is a d0 ∈ ∆I
′

with d0 ∈ LI
′ \BI′ , where

L denotes the left-hand side of (I). Since I is a tree model, so is I ′. In the following, we
use subsets S ⊆ ∆I

′
such that the restriction I ′|S of I ′ to domain S is a tree with root
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d0 to descibe partial winning strategies. More precisely, define the node-labeled graph
GS as (S, rI

′|S , `), where `(d) = (td, pd) with

• td the valuation that makes variable i true if d ∈ V I′i and false if d ∈ V I
′

i , for all i < n;
• pd = 1 if d ∈ P I′1 and pd = 2 if d ∈ P I′2 .
Regarding well-definedness of `(d), note that since d0 /∈ BI′ , the CIs in TG ensure that

d /∈ V I′i ∩V
I′
i , for all i < n. For the same reason, d /∈ P I′1 ∩P I

′

2 . Moreover, we will choose

the set S such that for all elements d ∈ S, we have d ∈ V I′i ∪V
I′
i and d ∈ P I′1 ∪P I

′

2 (see
Point (iii) below).

We inductively construct a finite sequence of subsets S0, . . . , Sm of ∆I
′

such that GSm

is a (complete) winning strategy for Player 1 in G. During the construction, we ensure
that for all i ≥ 0,

(i) GSi satisfies Conditions (1) to (3) of winning strategies for Player 1 in G;
(ii) all elements of Si are in NI

′
;

(iii) Si ⊆ V I
′

j ∪ V
I′
j for all j < n and Si ⊆ P I

′

1 ∪ P I
′

2 .
We start with S0 = {d0}. Then, (i)-(iii) are satisfied since d0 ∈ LI

′
. To define Si+1 from

Si, we proceed as follows. If i > 0 and all leaves of I ′|Si
are in XI

′

ϕ , then Si is the last
element of the sequence. Otherwise, we do the following for all leaves d of I ′|Si with
d /∈ XI′ϕ . By (ii), d ∈ NI′ . By construction of I ′ and since d /∈ XI′ϕ , this means that

d ∈ (P1 uN ′′ uN0 u · · · uNn−1 u ∃r.N)I
′

∪ (P2 uN ′ uN0 u · · · uNn−1 u u
i∈{0,...,k−1,n}

∃r.(N u Fi))I
′
.

If the former is the case, add an element e ∈ NI
′

to Si such that (d, e) ∈ rI
′
. Oth-

erwise, add elements e0, . . . , ek−1, en such that ej ∈ (N u Fj)I
′

and (d, ej) ∈ rI
′
, for

j ∈ {0, . . . , k − 1, n}. Condition (ii) is clearly satisfied. By construction of I ′, e and the
ej are elements of

(Xϕ u P1 uN ′′ uN0 u · · · uNn−1)I
′

∪ (Xϕ u P2 uN ′ uN0 u · · · uNn−1)I
′

∪ (P1 uN ′′ uN0 u · · · uNn−1 u ∃r.N)I
′

∪ (P2 uN ′ uN0 u · · · uNn−1 u u
i∈{0,...,k−1,n}

∃r.(N u Fi))I
′
.

This implies that Si ⊆ P I
′

1 ∪ P I
′

2 . Additionally, it shows that e and the ej are instances
of N0, . . . , Nn−1. By construction of I ′, it follows that (iii) is satisfied. To show that
Condition (i) is satisfied as well, we need to argue that (a) pe = 2 iff pd = 1, (b) te is
obtained from td by switching the truth value of a variable in Γ1 or te = td, (c) tej

is
obtained from td by switching the truth value of variable j for all j < k, and (d) ten = td.
Assume that d ∈ P I′1 (the case that d ∈ P I′2 is analogous). By the CIs in TG, this implies
e ∈ P I′2 . This shows (a). Since e ∈ P I′2 and e is contained in the above union, we have
e ∈ (N ′)I

′
. By construction of I ′, there thus is a j ∈ {0, . . . , k− 1, n} such that e ∈ F I′j .

Together with the CIs in TG, this means that the truth value of variable j is different in
te and td if j < n. Also by CIs in TG, e ∈ F I′i means that all truth values in td and te of
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variables ` with ` 6= j are identical, which establishes (b). The proofs of (c) and (d) are
similar and left to the reader.

We have to argue that the construction of the sequence S0, S1, . . . terminates. By (ii),
d0 ∈ NI

′
. Let ` be minimal such that d0 ∈ NI` . It is easily verified that if d ∈ Si and

d ∈ NIj , then all successors of d are in NIj−1 , for all i, j ≥ 0. Termination follows.

Finally, it remains to note that, by construction, the last element Sm of the constructed
sequence satisfies Condition (4) of winning strategies. 2

F. Omitted Proofs for Section 7

Lemma 40. TM ∪ T ′M is not a model conservative extension of TM iff M halts on the
empty tape.

Proof. “⇐” Assume that M halts on the empty tape and let c0, . . . , ck be the halting
computation of M . Extend this computation to an infinite sequence of computations by
setting c` := ck for all ` > k. We define an interpretation I as follows:
• ∆I := N×N;
• sI := {((i, j), (i+ 1, j)) | i, j ≥ 0};
• nI := {((i, j), (i, j + 1)) | i, j ≥ 0};
• qI := {(i, j) | i, j > 0 and the state in cj−1 is q} for all q ∈ Q;
• aI := {(i, j) | i, j > 0 and tape cell i− 1 in cj−1 is labeled a} for all a ∈ Γ;
• headI := {(i, j) | i, j > 0 and the head position in cj−1 is i− 1};
• beforeI := {(i, j) | (i′, j) ∈ headI for some i′ > i};
• afterI := {(i, j) | (i′, j) ∈ headI for some i′ < i};
• DI = ∅.
It is not hard to verify that I is a model of TM (setting c` = ck for all ` > k is justified by
the fact that M does not allow any transitions in the halting state). Moreover, I cannot
be extended to a model of TM ∪ T ′M : in any model J of T ′M which coincides on sig(TM )
with I we would have (0, 0) ∈ (∃n.∃s.(N u q0 u head))J , so we have to interpret u0, A,
and B such that (0, 0) ∈ (∃u0.(∃n.∃s.A u ∃s.∃n.B))J . To do this, we have to interpret
A and B in J such that (i, j) ∈ (A u B)J for some i, j ≥ 0. Thus, we must ensure that
(i, j) ∈ DJ . This, however, is impossible since DI = ∅ is fixed. It follows that TM ∪ T ′M
is not a model conservative extension of TM .

“⇒”. Assume that M does not halt on the empty tape and let I be a model of TM . We
have to show that I can be extended to a model of TM ∪ T ′M . If qIh = ∅, then we simply
set AI := BI := NI := uI0 := ∅. If qIh 6= ∅, let NI be the smallest set such that qIh ⊆ NI ,
(∃n.N)I ⊆ NI , and (∃s.N)I ⊆ NI . If the result is such that (∃n.∃s.(Nuq0uhead))I = ∅,
we are done. So assume the contrary. First assume that

(i) There are d, d1, d2, d3, d4 ∈ ∆I with dnId1s
Id2 and dsId3n

Id4 such that d2 6= d4.
Then we can set uI0 := ∆I × {d}, AI := {d2}, and BI := {d4}, and obtain a model of
T ′M . Now assume

(ii) There are d1, d2, d3, d4 ∈ ∆I with d1n
Id2s

Id4, d1s
Id3n

Id4, and d4 ∈ DI .
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Then we can set uI0 := ∆I × {d1} and AI := BI := {d4} to obtain a model of T ′M . Now
assume that neither (i) nor (ii) are the case. We show that this is impossible since it
implies that M halts on the empty tape. Let d0 ∈ (∃n.∃s.(N uq0uhead))I . Then there is
a d′0 ∈ ∆I and a d ∈ (N u q0 u head)I such that d0n

Id′0s
Id. For d′ ∈ ∆I , we say that d′

is reachable from d in n steps if there exists a sequence d0, . . . , dn with d0 = d, dn = d′,
and (di, di+1) ∈ nI ∪ sI for all i < n. We say that that d′ is reachable from d if d′ is
reachable from d in n steps, for some n ≥ 0. We first show the following:

Claim. Let d′ be reachable from d. Then we have:
(1) there are d1, d2, d3 ∈ ∆I such that d1n

Id2s
Id′ and d1s

Id3n
Id′;

(2) if d′nIe and d′nIe′, then e = e′;
(3) if d′sIe and d′sIe′, then e = e′;

Point 1 is proved by induction on the minimal n such that d′ is reachable from d in n
steps. For the induction start, we have d′ = d. Recall that d0n

Id′0s
Id. By the CIs in TM ,

there are d1, d2 ∈ ∆I such that d0s
Id1n

Id2. Since (i) does not hold, d2 = d and we are
done. For the induction step, let d′ be reachable from d in n > 0 steps. Then there is a
d1 such that d1 is reachable from d in n − 1 steps and d1n

Id′ or d1s
Id′. We only treat

the first case since the second is analogous. By IH, there is a d2 such that d2s
Id1. By the

CIs in TM , there are d3 and d4 such that d2n
Id3s

Id4. Since (i) does not holds, d4 = d′

and we are done.

Now for Points 2 and 3. We only treat Point 2 explicitly since Point 3 is analogous.
Let d′ be reachable from d and let e, e′ ∈ ∆I such that d′nIe and d′nIe′. By Point 1,
there is a d1 such that d1s

Id′. By the CIs in TM , there are d2, d3 such that d1n
Id2s

Id3.
Since (i) does not hold, we have d3 = e = e′, and are done. This finishes the proof of the
claim.

Set R := {d′ ∈ ∆I | d′ is reachable from d}. Points 2 and 3 of the claim together with
the fact that (i) does not hold implies that we can easily find a bijection τ : R→ N×N
such that for all e, e′ ∈ R, we have
• enIe′ iff τ(e) = (i, j) and τ(e) = (i+ 1, j) for some i, j ∈ N;
• esIe′ iff τ(e) = (i, j) and τ(e) = (i, j + 1) for some i, j ∈ N.
Our aim is to read off a halting computation from M on the empty tape from I, being
guided by τ . To do this, we first show that (a) for all q, q′ ∈ Q with q 6= q′, qI∩q′I∩R = ∅,
(b) for all a, a′ ∈ Γ with a 6= a′, aI ∩ a′I ∩ R = ∅, and (c) beforeI ∩ R, afterI ∩ R, and
headI ∩ R are pairwise disjoint. Since the argument is the same in all three cases, we
concentrate on (a). Assume e ∈ qI ∩ q′I ∩ R. By the GCIs in TM , d′ ∈ DI . By Point 1
of the claim, there are d1, d2, d3 ∈ ∆I such that d1n

Id2s
Id′ and d1s

Id3n
Id′. This is a

contradiction to the fact that (ii) is false

We can now read off a halting computation from M in the obvious way: the i-th
configuration is described by the elements Ri := {d ∈ R | τ(d) = (j, i) for some j ≥ 0}.
By the CIs in TM and (a), there is a unique state q ∈ Q such that Ri ⊆ qI . By the CIs
in TM and (b), for each j ≥ 0, there is a unique a ∈ Γ such that τ−1(j, i) ∈ aI . And by
the CIs in TM and (c), there is a unique j ≥ 0 such that τ−1(j, i) ∈ headI . Let us call
the resulting sequence of configurations c0, c1, . . . . By choice of d above and the CIs in
TM , c0 is the initial configuration of M on the empty tape. By the CIs in TM , ci+1 is
a successor configuration of ci for all i ≥ 0. By definition of NI and since d ∈ NI , it
follows that we eventually reach a halting configuration. 2
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