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Abstract. We investigate the expressive power and computational
complexity of ELν , the extension of the lightweight description logic
EL with concept constructors for greatest fixpoints. It is shown that
ELν has the same expressive power as EL extended with simula-
tion quantifiers and that it can be characterized as a largest fragment
of monadic second-order logic that is preserved under simulations
and has finite minimal models. As in basic EL, all standard reason-
ing problems for general TBoxes can be solved in polynomial time.
ELν has a range of very desirable properties that EL itself is lack-
ing. Firstly, least common subsumers w.r.t. general TBoxes as well
as most specific concepts always exist and can be computed in poly-
nomial time. Secondly, ELν shares with EL the Craig interpolation
property and the Beth definability property, but in contrast to EL al-
lows the computation of interpolants and explicit concept definitions
in polynomial time.

1 INTRODUCTION

The well-known description logic (DL) ALC is usually regarded as
the basic DL that comprises all Boolean concept constructors and
from which more expressive DLs are derived by adding further ex-
pressive means. This fundamental role of ALC is largely due to its
well-behavedness regarding logical, model-theoretic, and computa-
tional properties which can, in turn, be explained nicely by the fact
that ALC-concepts can be characterized as the bisimulation invari-
ant fragment of first-order logic (FO): an FO formula is invariant
under bisimulation if, and only if, it is equivalent to anALC-concept
[22, 12, 16]. For example, invariance under bisimulation can ex-
plain the tree-model property of ALC and its favorable computa-
tional properties [24]. In the above characterization, the condition
thatALC is a fragment of FO is much less important than its bisimu-
lation invariance. In fact,ALCµ, the extension ofALC with fixpoint
operators, is not a fragment of FO, but inherits almost all important
properties of ALC [7, 11, 19]. Similar to ALC, ALCµ’s fundamen-
tal role (in particular in its formulation as the modal mu-calculus)
can be explained by the fact that ALCµ-concepts comprise exactly
the bisimulation invariant fragment of monadic second-order logic
(MSO) [14, 7]. Indeed, from a purely theoretical viewpoint it is hard
to explain why ALC rather than ALCµ forms the logical under-
pinning of current ontology language standards; the facts that mu-
calculus concepts can be hard to grasp and that, despite the same the-
oretical complexity, efficient reasoning inALCµ is more challenging
than in ALC are probably the main reasons.

In recent years, the development of very large ontologies and the
use of ontologies to access instance data has led to a revival of inter-
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est in tractable DLs. The main examples are EL [4] and DL-Lite [8],
the logical underpinnings of the OWL profiles OWL2 EL and OWL2
QL, respectively. In contrast to ALC, a satisfactory characterization
of the expressivity of such DLs is still missing, and a first aim of this
paper is to fill this gap for EL. To this end, we characterize EL as
a maximal fragment of FO that is preserved under simulations and
has finite minimal models. Note that preservation under simulations
alone would characterize EL with disjunctions, and the existence of
minimal models reflects the “Horn-logic character” of EL.

The second and main aim of this paper, however, is to introduce
and investigate two equi-expressive extensions of EL with greatest
fixpoints, ELν and ELν+, and to prove that they stand in a simi-
lar relationship to EL as ALCµ to ALC. To this end, we prove that
ELν (and therefore also ELν+, which admits mutual fixpoints and
is exponentially more succinct than ELν ) can be characterized as a
maximal fragment of MSO that is preserved under simulations and
has finite minimal models. Similar to ALCµ, ELν and ELν+ inherit
many good properties of EL such as its Horn-logic character and the
crucial fact that reasoning with general concept inclusions (GCIs)
is still tractable. In contrast to ALCµ, the development of practical
decision procedures is thus no obstacle to using ELν+. Moreover,
ELν+ has a number of very useful properties that EL and most of its
extensions are lacking. To begin with, we show that in ELν+ least
common subsumers (lcs) w.r.t. general TBoxes always exist and can
be computed in polynomial time (for a bounded number of concepts).
This result can be regarded as an extension of similar results for least
common subsumers w.r.t. classical TBoxes in EL with greatest fix-
point semantics in [2]. Similarly, in ELν+ most specific concepts
always exist and can be computed in linear time; a result which also
generalizes [2]. Secondly, we show that ELν+ has the Beth definabil-
ity property with explicit definitions being computable in polytime
and of polynomial size. It has been convincingly argued in [21, 20]
that this property is of great interest for structuring TBoxes and for
ontology based data access. Another application of ELν+ is demon-
strated in [15], where the succinct representations of definitions in
ELν+ are used to develop polytime algorithms for decomposing cer-
tain general EL-TBoxes.

To prove these result and provide a better understanding of the
modeling capabilities of ELν+ we show that it has the same ex-
pressive power as extensions of EL by means of simulation quan-
tifiers, a variant of second-order quantifiers that quantifies “modulo
a simulation of the model”; in fact, the relationship between simu-
lation quantifiers and ELν+ is somewhat similar to the relationship
between ALCµ and bisimulation quantifiers [10].

Most proofs are provided in an appendix.



2 PRELIMINARIES
Let NC and NR be countably infinite and mutually disjoint sets of
concept and role names. EL-concepts are built according to the rule

C := A | > | ⊥ | C uD | ∃r.C,

where A ∈ NC, r ∈ NR, and C,D range over EL-concepts3. An
EL-concept inclusion takes the form C v D, where C,D are EL-
concepts. As usual, we use C ≡ D to abbreviate C v D,D v C.
A general EL-TBox T is a finite set of EL-concept inclusions. An
ABox assertion is an expression of the form A(a) or r(a, b), where
a, b are from a countably infinite set of individual names NI,A ∈ NC,
and r ∈ NR. An ABox is a finite set of ABox assertions. By Ind(A)
we denote the set of individual names in A. An EL-knowledge base
(KB) is a pair (T ,A) that consists of an EL-TBox T and an ABoxA.

The semantics of EL is based on interpretations I = (∆I , ·I),
where the domain ∆I is a non-empty set, and ·I is a function map-
ping each concept name A to a subset AI of ∆I , each role name r
to a binary relation rI ⊆ ∆I ×∆I , and each individual name a to
an element aI of ∆I . The interpretation CI ⊆ ∆I of EL-concepts
C in an interpretation I is defined in the standard way [5], and so are
models of TBoxes, ABoxes, and KBs. We will often make use of the
fact that EL-concepts can be regarded as formulas in FO (and, there-
fore, MSO) with unary predicates from NC, binary predicates from
NR, and exactly one free variable [5]. We will often not distinguish
between EL-concepts and their translations into FO/MSO.

We now introduce ELν , the extension of EL with greatest fix-
points and the main language studied in this paper. ELν -concepts
are defined like EL-concepts, but additionally allow the greatest fix-
point constructor νX.C, where X is from a countably infinite set of
(concept) variables NV and C an ELν -concept. A variable is free in
a concept C if it occurs in C at least once outside the scope of any
ν-constructor that binds it. An ELν -concept is closed if it does not
contain any free variables. An ELν -concept inclusion takes the form
C v D, where C,D are are closed ELν -concepts. The semantics of
the greatest fixpoint constructor is as follows, where V is an assign-
ment that maps variables to subsets of ∆I and V[X 7→ W ] denotes
V modified by setting V(X) = W :

(νX.C)I,V =
[
{W ⊆ ∆I |W ⊆ CI,V[X 7→W ]}

Example 1 For the concept C = νX.(∃has parent.X), we have
e ∈ CI if, and only if, there is an infinite has parent-chain start-
ing at e in I, i.e., there exist e0, e1, e2, . . . such that e = e0 and
(ei, ei+1) ∈ has parentI for all i ≥ 0.

We can now form the TBox T = {Human being v C} stating
that every human being has an infinite chain of parents.

We will also consider an extended version of the ν-constructor that
allows to capture mutual recursion. It has been considered e.g. in
[9, 23] and used in a DL context in [19]; it can be seen as a variation
of the fixpoint equations considered in [7]. The constructor has the
form νiX1 · · ·Xn.C1, . . . , Cn where 1 ≤ i ≤ n. The semantics is
defined by setting (νiX1 · · ·Xn.C1, . . . , Cn)I,V toS
{Wi | ∃W1, . . . ,Wi−1,Wi+1, . . . ,Wn s.t. for 1 ≤ j ≤ n:

Wj ⊆ CI,V[X1 7→W1,...,Xn 7→Wn]
j }

We use ELν+ to denote EL extended with this mutual greatest fix-
point constructor. Clearly, νX.C ≡ ν1X.C, thus every ELν -concept

3 In the literature, EL is typically defined without ⊥. The sole purpose of
including ⊥ here is to simplify the formulation of some results.

is equivalent to an ELν+-concept. We now consider the converse di-
rection. Firstly, the following proposition follows immediately from
well known results on mutual fixpoint constructors [7].

Proposition 2 For every ELν+-concept one can construct an equiv-
alent ELν -concept.

In this paper, we define the length of a concept C as the number of
occurrences of symbols in it. Then the translation in Proposition 2
yields an exponential blow-up and one can show that indeed there is
a sequence of ELν+-concepts C0, C1, . . . such that Ci is of length
p(i), p a polynomial, whereas the shortest ELν -concept equivalent
to Ci is of length at least 2i (see appendix).

By extending the translation of EL-concepts into FO in the obvi-
ous way, one can translate closed ELν+-concepts into MSO formu-
las with one free first-order variable. We will often not distinguish
between ELν+-concepts and their translation into MSO.

3 CHARACTERIZING EL USING
SIMULATIONS

The purpose of this section is to provide a model-theoretic charac-
terization of EL as a fragment of FO that is similar in spirit to the
well-known characterization of ALC as the bisimulation-invariant
fragment of FO. To this end, we first characterize ELt, the extension
of EL with the disjunction constructor t, as the fragment of FO that
is preserved under simulation. Then we characterize the fragment
EL of ELt using, in addition, the existence of minimal models. A
pointed interpretation is a pair (I, d) consisting of an interpretation
I and d ∈ ∆I . A signature Σ is a set of concept and role names.

Definition 3 (Simulations) Let (I1, d1) and (I2, d2) be pointed in-
terpretations and Σ a signature. A relation S ⊆ ∆I1 × ∆I2

is a Σ-simulation between (I1, d1) and (I2, d2), in symbols S :
(I1, d1) ≤Σ (I2, d2), if (d1, d2) ∈ S and the following conditions
hold:

1. for all concept names A ∈ Σ and all (e1, e2) ∈ S, if e1 ∈ AI1
then e2 ∈ AI2 ;

2. for all role names r ∈ Σ, all (e1, e2) ∈ S, and all e′1 ∈ ∆I1 with
(e1, e

′
1) ∈ rI1 , there exists e′2 ∈ ∆I2 such that (e2, e

′
2) ∈ rI2

and (e′1, e
′
2) ∈ S.

If such an S exists, then we also say that (I2, d2) Σ-simulates
(I1, d1) and write (I1, d1) ≤Σ (I2, d2).

If Σ = NC ∪ NR, then we omit Σ and use the term simulation to de-
note Σ-simulations and (I1, d1) ≤ (I2, d2) stands for (I1, d1) ≤Σ

(I2, d2). It is well-known that the description logic EL is intimately
related to the notion of a simulation, see for example [3, 17]. In par-
ticular, EL-concepts are preserved under simulations in the sense that
if d1 ∈ CI1 for an EL-concept C and (I1, d1) ≤ (I2, d2), then
d2 ∈ CI2 . This observation, which clearly generalizes to ELt, il-
lustrates the (limitations of the) modeling capabilities of EL/ELt.
We now strengthen it to an exact characterization of the expressive
power of these logics relative to FO.

Let ϕ(x) be an FO-formula (or, later, MSO-formula) with one free
variable x. We say that ϕ(x) is preserved under simulations if, and
only if, for all (I1, d1) and (I2, d2), I1 |= ϕ[d1] and (I1, d1) ≤
(I2, d2) implies I2 |= ϕ[d2].

Theorem 4 An FO-formula ϕ(x) is preserved under simulations if,
and only if, it is equivalent to an ELt-concept.
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To characterize EL, we add a central property of Horn-logics on
top of preservation under simulations. Let L be a set of FO (or, later,
MSO) formulas, each with one free variable. We say that L has (fi-
nite) minimal models if, and only if, for every ϕ(x) ∈ L there exists
a (finite) pointed interpretation (I, d) such that for all ψ(x) ∈ L, we
have I |= ψ[d] if, and only if, ∀x.(ϕ(x)→ ψ(x)) is a tautology.

Theorem 5 The set of EL-concepts is a maximal set of FO-formulas
that is preserved under simulations and has minimal models (equiv-
alently: has finite minimal models): if L is a set of FO-formulas that
properly contains all EL-concepts, then either it contains a formula
not preserved under simulations or it does not have (finite) minimal
models.

We note that de Rijke and Kurtonina have given similar characteriza-
tions of various non-Boolean fragments of ALC. In particular, The-
orem 4 is rather closely related to results proved in [16] and would
certainly have been included in the extensive list of characterizations
given there had EL already been as popular as it is today. In con-
trast, the novelty of Theorem 5 is that it makes the Horn character of
EL explicit through minimal models while the characterizations of
disjunction-free languages in [16] are based on simulations that take
sets (rather than domain-elements) as arguments.

4 SIMULATION QUANTIFIERS AND ELν

To understand and characterize the expressive power and modeling
capabilities of ELν , we introduce three distinct types of simulation
quantifiers and show that, in each case, the resulting language has the
same expressive power as ELν .

Simulating interpretations. The first language ELsi extends EL by
the concept constructor ∃sim(I, d), where (I, d) is a finite pointed
interpretation in which only finitely many σ ∈ NC ∪ NR have a non-
empty interpretation σI ⊆ ∆I . The semantics of ∃sim(I, d) is de-
fined by setting for all interpretations J and e ∈ ∆J ,

e ∈ (∃sim(I, d))J iff (I, d) ≤ (J , e).

Example 6 Let I be an interpretation such that ∆I = {d},
(d, d) ∈ has parentI , and σI = ∅ for all remaining role and
concept names σ. Then ∃sim(I, d) is equivalent to the concept
νX.(∃has parent.X) from Example 1.

To attain a better understanding of the constructor ∃sim, it is inter-
esting to observe that every ELsi-concept is equivalent to a concept
of the form ∃sim(I, d).

Lemma 7 For every ELsi-concept C one can construct, in linear
time, an equivalent concept of the form ∃sim(I, d).

Proof By induction on the construction ofC. IfC = A for a concept
nameA, then let I = ({d}, ·I), whereAI = {d} and σI = ∅ for all
symbols distinct from A. Clearly, A and ∃sim(I, d) are equivalent.
For C1 = ∃sim(I1, d1) and C2 = ∃sim(I2, d2) assume that ∆I1 ∩
∆I2 = {d1} = {d2}. Then ∃sim(I1 ∪I2, d1) is equivalent to C1 u
C2, where ∆I1∪I2 = ∆I1 ∪∆I2 , and σI1∪I2 = σI1 ∪ σI2 for all
σ ∈ NC∪NR. For C = ∃r.∃sim(I, d) construct a new interpretation
I′ by adding a new node e to ∆I and setting (e, d) ∈ rI

′
. Then

∃sim(I′, e) and C are equivalent.

We will show that there are polynomial translations between ELsi
and ELν+. When using ELν+ in applications and to provide a trans-
lation from ELν+ to ELsi, it is convenient to have available a “syn-
tactic” simulation operator.
Simulating models of TBoxes. The second language ELst extends
EL by the concept constructor ∃simΣ.(T , C), where Σ is a finite
signature, T a general TBox, and C a concept. To admit nestings of
∃sim, the concepts of ELst are defined by simultaneous induction;
namely, ELst-concepts, concept inclusions, and general TBoxes are
defined as follows:

• every EL-concept, concept inclusion, and general TBox is an
ELst-concept, concept inclusion, and general TBox, respectively;

• if T is a general ELst-TBox, C an ELst-concept, and Σ a finite
signature, then ∃simΣ.(T , C) is an ELst-concept;

• if C,D are ELst-concepts, then C v D is a ELst-concept inclu-
sion;

• a general ELst-TBox is a finite set of ELst-concept inclusions.

The semantics of ∃simΣ.(T , C) is as follows:

d ∈ (∃simΣ.(T , C))I iff there exists (J , e) such that J is a
model of T , e ∈ CJ and (J , e) ≤Γ (I, d), where Γ = (NC ∪
NR) \ Σ.

Example 8 Let T = {A v ∃has parent.A} and Σ = {A}. Then
∃simΣ.(T , A) is equivalent to the concept ∃sim(I, d) defined in Ex-
ample 6.

We will later exploit the fact that ∃simΣ.(T , C) is equivalent to
∃simΣ ∪ {A}.(T ′, A), where A is a fresh concept name and T ′ =
T ∪ {A v C}. Another interesting (but subsequently unexploited)
observation is that we can w.l.o.g. restrict Σ to singleton sets since

∃sim({σ} ∪ Σ).(T , C) ≡ ∃sim{σ}.(∅, ∃simΣ.(T , C))

∃sim∅.(T , C) ≡ ∃sim{B}.(T , C)

where B is a concept name that does not occur in T and C.
Simulating models of KBs. The third language ELsa extends EL
by the concept constructor ∃simΣ.(T ,A, a), where a is an individ-
ual name in the ABox A, T is a TBox, and Σ a finite signature.
More precisely, we define ELsa-concepts, concept inclusions, gen-
eral TBoxes, and KBs, by simultaneous induction as follows:

• every EL-concept, concept inclusion, general TBox, and KB is an
ELsa-concept, concept inclusion, general TBox, and KB, respec-
tively;

• if (T ,A) is a general ELsa-KB, a an individual name in A, and
Σ a finite signature, then ∃simΣ.(T ,A, a) is an ELsa-concept;

• if C,D are ELsa-concepts, then C v D is an ELsa-concept in-
clusion;

• a general ELsa-TBox is a finite set of ELsa-concept inclusions;
• an ELsa-KB is a pair (T ,A) consisting of a general ELsa-TBox

and an ABox.

The semantics of ∃simΣ.(T ,A, a) is as follows:

d ∈ (∃simΣ.(T ,A, a))I iff there exists d ∈ (∃simΣ.(T ,A, a))I

iff there exists a model J of (T ,A) such that (J , aJ ) ≤Γ (I, d),
where Γ = (NC ∪ NR) \ Σ.

Example 9 Let T = ∅, A = {has parent(a, a)}, and Σ = ∅. Then
∃simΣ.(T ,A, a) is equivalent to the concept ∃sim(I, d) defined in
Example 6.
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Let L1,L2 be sets of concepts. We say that L2 is polynomially at
least as expressive as L1, in symbols L1 ≤p L2, if for every C1 ∈
L1 one can construct in polynomial time aC2 ∈ L2 such thatC1 and
C2 are equivalent. We say that L1,L2 are polynomially equivalent,
in symbols L1 ≡p L2, if L1 ≤p L2 and L2 ≤p L1.

Theorem 10 The languages ELν+, ELsi, ELst, and ELsa are poly-
nomially equivalent.

We provide sketches of proofs of ELsi ≤p ELν+, ELν+ ≤p ELst,
ELst ≤p ELsa, and ELsa ≤p ELsi.
ELsi ≤p ELν+. By Lemma 7, considering ELsi-concepts of the
form ∃sim(I, d) is sufficient. Each such concept is equivalent to the
ELν+-concept ν`d1 · · · dn.C1, . . . , Cn, where the domain ∆I =
{d1, . . . , dn} is regarded as a set of concept variables, d = d`, and

Ci =
l
{A | di ∈ AI} u

l
{∃r.dj | (di, dj) ∈ rI}.

ELν+ ≤p ELst. Let C be a closed ELν+-concept. An equivalent
ELst-concept is constructed by replacing each subconcept of C of
the form ν`X1, . . . , Xn.C1, . . . , Cn with an ELst-concept, proceed-
ing from the inside out. We assume that for every variable X that
occurs in the original ELν+-concept C, there is a concept name AX
that does not occur in C. Now ν`X1, . . . , Xn.C1, . . . , Cn (which
potentially contains free variables) is replaced with the ELst-concept

∃sim{AX1 , . . . , AXn}.({AXi v C
↓
i | 1 ≤ i ≤ n}, AX`)

where C↓i is obtained from Ci by replacing every variable X with
the concept name AX .
ELst ≤p ELsa. Let C be an ELst-concept. As already ob-
served, we may assume that D is a concept name in all subcon-
cepts ∃simΣ.(T , D) of C. Now replace each ∃simΣ.(T , A) in C,
proceeding from the inside out, by ∃simΣ.(T ,A, a), where A =
{A(a)}. The resulting concept is equivalent to C.
ELsa ≤p ELsi. To prove this inclusion, we make use of canon-
ical models for ELsa-KBs, and extension of the canonical models
used for EL in [4]. In particular, canonical models for ELsa can be
constructed by an extension of the algorithm given in [4], see the
appendix for details.

Theorem 11 (Canonical model) For every consistent ELsa-KB
(T ,A), one can construct in polynomial time a model IT ,A of
(T ,A) with |∆IT ,A | bounded by twice the size of (T ,A) and
such that for every model J of (T ,A), we have (IT ,A, aIT ,A) ≤
(J , aJ ) for all a ∈ Ind(A).

To prove ELsa ≤p ELsi, it suffices to show that any outer-
most occurrence of a concept of the form ∃simΣ.(T ,A, a) in an
ELsa-concept C can be replaced with the equivalent ELsi-concept
∃sim(IΣ

T ,A, a), where IΣ
T ,A denotes IT ,A except that all σ ∈ Σ are

interpreted as empty sets. First let d ∈ (∃simΣ.(T ,A, a))J . Then
there is a model I′ of (T ,A) such that (I′, aI

′
) ≤Σ (J , d). By

Theorem 11, (IT ,A, aIT ,A) ≤ (I′, aI
′
). Thus, by closure of sim-

ulations under composition, (IΣ
T ,A, a) ≤Σ (J , d) as required. The

converse direction follows from the condition that IT ,A is a model
of (T ,A). This finishes our proof sketch for Theorem 10.

It is interesting to note that, as a consequence of the proofs of
Theorem 10, for every ELν+-concept there is an equivalent ELν+-
concept of polynomial size in which the greatest fixpoint construc-
tor is not nested, and similarly for ELst, ELsa. An important con-
sequence of the existence of canonical models, as granted by The-
orem 11, is that reasoning in our family of extensions of EL is

tractable. Recall that KB consistency is the problem of deciding
whether a given KB has a model; subsumption w.r.t. general TBoxes
is the problem of deciding whether a subsumption C v D follows
from a general TBox T (in symbols, T |= C v D); and the instance
problem is the problem of deciding whether an assertion C(a) fol-
lows from a KB (T ,A) (in symbols, (T ,A) |= C(a)).

Theorem 12 (Tractable reasoning) Let L be any of the languages
ELν , ELν+, ELsi, ELst, or ELsa. Then KB consistency, subsump-
tion w.r.t. TBoxes, and the instance problem can be decided in PTIME

.

Proof (sketch) By Theorem 10, it suffices to concentrate on L =
ELsa. The PTIME decidability of KB consistency is proved in the
appendix as part of the algorithm that constructs the canonical model.
Subsumption w.r.t. general TBoxes can be polynomially reduced in
the standard way to the instance problem. Finally, by Theorem 11,
we can decide the instance problem as follows: to decide whether
(T ,A) |= C(a), where we can w.l.o.g. assume that C = A for
a concept name A, we check whether (T ,A) is inconsistent or
aIT ,A ∈ AIT ,A . Both can be done in PTIME .

Besides of the canonical model of a KB from Theorem 11, we also
require the canonical model IT ,C of a general ELν+-TBox T and
conceptC which is defined by taking the reduct not interpretingA of
the canonical model IT ′,A for T ′ = T ∪{A v C} andA = {A(a)}
(A a fresh concept). We set dC = aIT ′,A . IT ,C is a model of T with
dC ∈ CIT ,C such that (IT ,C , dC) ≤ (J , e) for all models J of T
with e ∈ CJ .

5 CHARACTERIZING ELν USING
SIMULATIONS

When characterizing EL as a fragment of first-order logic in Theo-
rem 5, our starting point was the observation that EL-concepts are
preserved under simulations and that EL is a Horn logic, thus having
finite minimal models. The same is true for ELν : first, ELν -concepts
are preserved under simulations, as ELsi is obviously preserved un-
der simulations and, by Theorem 10, every ELν -concept is equiva-
lent to an ELsi-concept. And second, a finite minimal model of an
ELν -concept C is given by the canonical model (IT ,C , dC) defined
above for T = ∅. However, ELν is clearly not a fragment of FO.
Instead, it relates to MSO in exactly the way that EL related to FO.

Theorem 13 The set of ELν -concepts is a maximal set of MSO-
formulas that is preserved under simulations and has finite minimal
models: ifL is a set of MSO-formulas that properly contains all ELν -
concepts, then either it contains a formula not preserved under sim-
ulations or is does not have finite minimal models.

Proof Assume that L ⊇ ELν is preserved under simulations and has
finite minimal models. Let ϕ(x) ∈ L. We have to show that ϕ(x)
is equivalent to an ELν -concept. To this end, take a finite minimal
model of ϕ, i.e., an interpretation I and a d ∈ ∆I such that for all
ψ(x) ∈ Lwe have that ∀x.(ϕ(x)→ ψ(x)) is valid iff I |= ψ[d]. We
will show thatϕ is equivalent to (the MSO translation of) ∃sim(I, d).
We may assume that ∃sim(I, d) ∈ L. Since d ∈ (∃sim(I, d))I ,
we thus have that ∀x.(ϕ(x)→ ∃sim(I, d)(x)) is valid. Conversely,
assume that d′ ∈ (∃sim(I, d))J for some interpretation J . Then
(I, d) ≤ (J , d′). We have (I, d) |= ϕ[d]. Thus, by preservation of
ϕ(x) under simulations, J |= ϕ[d′]. Thus ∀x.(∃sim(I, d)(x) →
ϕ(x)) is also valid. This finishes the proof.
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A number of closely related characterizations remain open. For
example, we conjecture that an extension of Theorem 4 holds for
ELν,t and MSO (instead of EL and FO). Also, it is open whether
Theorem 13 still holds if finite minimal models are replaced by arbi-
trary minimal models.

6 APPLICATIONS
The µ-calculus is considered to be extremely well-behaved regarding
its expressive power and logical properties. The aim of this section is
to take a brief look at the expressive power of its EL-analogues ELν
and ELν+. In particular, we show that ELν+ is more well-behaved
than EL in a number of respects. Throughout this section, we will not
distinguish between the languages previously proved polynomially
equivalent.

To begin with, we construct the least common subsumer (LCS)
of two concepts w.r.t. a general ELν+-TBox (the generalization to
more than two concepts is straightforward). Given a general ELν+-
TBox T and concepts C1, C2, a concept C is called a LCS of C1, C2

w.r.t. T in ELν+ if T |= Ci v C for i = 1, 2; if T |= Ci v D for
i = 1, 2 and D a ELν+-concept, then T |= C v D. It is known [2]
that in EL the LCS does not always exist.

Example 14 In EL, the LCS of A,B w.r.t.

T = {A v ∃has parent.A,B v ∃has parent.B}

does not exist. In ELν , however, the LCS ofA,B w.r.t. T is given by
νX.∃has parent.X (see Example 1).

To construct the LCS in ELν+, we adopt the product construction
used in [2] for the case of classical TBoxes with a fixpoint semantics.
For interpretations I1 and I2, the product I1 × I2 is defined by
setting ∆I1×I2 = ∆I1 × ∆I2 , (d1, d2) ∈ AI1×I2 iff di ∈ AIi

for i = 1, 2, and ((d1, d2), (d′1, d
′
2)) ∈ rI1×I2 iff (di, d

′
i) ∈ rIi for

i = 1, 2.

Theorem 15 (LCS) Let T be a general ELν+-TBox and C1 and
C2 be ELν+-concepts. Then ∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2)) is
the LCS of C1, C2 w.r.t. T in ELν+.

The same product construction has been used in [2] for the case of
classical TBoxes with a fixpoint semantics, which, however, addi-
tionally require a notion of conservative extension (see Section 7).

Our second result concerns the most specific concept, which plays
an important role in the bottom-up construction of knowledge bases
and has received considerable attention in the context of EL [2, 6].
Formally, a concept C is the most specific concept (MSC) for an in-
dividual a in a knowledge base (T ,A) in ELν+ if (T ,A) |= C(a)
and for every ELν+-concept D with (T ,A) |= D(a), we have
T |= C v D. In EL, the MSC need not exist, as is witnessed by
the knowledge base (∅, {has parent(a, a)}), where the MSC for a
is non-existent.

Theorem 16 (MSC) In ELν+, the MSC always exists for any a in
any KB (T ,A) and is given as ∃sim∅.(T ,A, a).

In [2], the MSC in EL-KBs based on classical TBoxes with a fixpoint
semantics is defined. The relationship between ELν+ and fixpoint
TBoxes is discussed in more detail in Section 7.

We now turn our attention to issues of definability and interpola-
tion. From now on, we use sig(C) to denote the set of concept and

role names used in the concept C. A concept C is a Σ-concept if
sig(C) ⊆ Σ. Let T be a general ELν+-TBox, C an ELν+-concept
and Γ a finite signature.

We start with considering the fundamental notion of a Γ-definition.
The question addressed here is whether a given concept can be ex-
pressed in an equivalent way by referring only to the symbols in a
given signature Γ [21, 20]. Formally, a Γ-concept D is an explicit Γ-
definition of a conceptC w.r.t. a TBox T if, and only if, T |= C ≡ D
(i.e., C and D are equivalent w.r.t. T ). Clearly, explicit Γ-definitions
do not always exist in any of the logics studied in this paper: for
example, there is no explicit {A}-definition of B w.r.t. the TBox
{A v B}. However, it is not hard to show the following using the
fact that ∃simΣ.(T , C) is the most specific Γ-concept that subsumes
C w.r.t. T .

Proposition 17 Let C be an ELν+-concept, T a general ELν+-
TBox and Γ a signature. There exists an explicit Γ-definition of C
w.r.t. T iff ∃simΣ.(T , C) is such a definition (Σ = sig(T , C) \ Γ).

It is interesting to note that if T happens to be a general EL-TBox
and C an EL-concept and there exists an explicit Γ-definition of
C w.r.t. T , then the concept ∃simΣ.(T , C) from Proposition 17 is
equivalent w.r.t. T to an EL-concept over Γ. This follows from the
fact that EL has the Beth definability property (see below for a defi-
nition) which follows immediately from interpolation results proved
for EL in [15]. The advantage of giving explicit Γ-definitions in
ELν+ even when T and C are formulated in EL is that Γ-definitions
in ELν+ are of polynomial size while the following example shows
that they may be exponentially large in EL.

Example 18 Let T consist of Ai ≡ ∃ri.Ai+1 u ∃si.Ai+1 for
0 ≤ i < n, and An ≡ >. Let Γ = {r0, . . . , rn−1, s0, . . . , sn−1}.
Then A0 has an explicit Γ-definition w.r.t. T in EL, namely C0,
where Ci = ∃ri.Ci+1 u ∃si.Ci+1 and Cn = >. This definition
is of exponential size and it is easy to see that there is no shorter
Γ-definition of A0 w.r.t. T in EL.

Say that a concept C is implicitly Γ-defined w.r.t. T iff T ∪ TΓ |=
C ≡ CΓ, where TΓ andCΓ are obtained from T andC, respectively,
by replacing each σ 6∈ Γ by a fresh symbol σ′. The Beth definability
property, which was studied in a DL context in [21, 20], ensures that
concepts that are implicity Γ-defined have an explicit Γ-definition.

Theorem 19 (Beth Property) ELν+ has the polynomial Beth de-
finability property: for every general ELν+-TBox T , concept C, and
signature Γ such that C is implicitly Γ-defined w.r.t. T , there is an
explicit Γ-definition w.r.t. T , namely ∃sim(sig(T , C) \ Γ).(T , C).

The proof of Theorem 19 relies on ELν having a certain interpolation
property. Say that two general TBoxes T1 and T2 are ∆-inseparable
w.r.t. ELν if T1 |= C v D iff T2 |= C v D for all ELν -inclusions
C v D.

Theorem 20 (Interpolation) Let T1 ∪ T2 |= C v D and as-
sume that T1 and T2 are ∆-inseparable w.r.t. ELν for ∆ =
sig(T1, C) ∩ sig(T2, D). Then the ∆-concept F = ∃simΣ.(T1, C),
Σ = sig(T1, C) \ ∆, is an interpolant of C,D w.r.t. T1, T2; i.e.
T1 |= C v F and T2 |= F v D.

We show how Theorem 19 follows from Theorem 20. Assume that
T ∪ TΓ |= C ≡ CΓ, where T , TΓ, C, CΓ satisfy the conditions of
Theorem 19. Then T and TΓ are Γ-inseparable and Γ ⊇ sig(T , C)∩
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sig(TΓ, CΓ). Thus, by Theorem 20, T |= ∃simΣ.(TΓ, CΓ) v C
for Σ = sig(TΓ, CΓ) \ Γ. Now Theorem 19 follows from the
fact that ∃simΣ.(TΓ, CΓ) is equivalent to ∃simΣ′.(T , C) for Σ′ =
sig(T , C) \ Γ.

In [15], it is shown that EL also has this interpolation property.
However, the advantage of using ELν+ is that interpolants are of
polynomial size. The decomposition algorithm for EL given in [15]
crucially depends on this property of ELν+.

7 RELATION TO TBOXES WITH FIXPOINT
SEMANTICS

There is a tradition of considering DLs that introduce fixpoints at
the TBox level instead of at the concept level [18, 19, 1]. In [3],
Baader proposes and analyzes such a DL based on EL and greatest
fixpoints. This DL, which we call ELgfp here, differs from ELν in
that (i) TBoxes are classical TBoxes rather than sets of GCIsC v D,
i.e., sets of expressionsA ≡ C withA ∈ NC andC a concept (cycles
are allowed) and (ii) the ν-concept constructor is not present; instead,
a greatest fixpoint semantics is adopted for TBoxes.

On the concept level, ELν is clearly strictly more expressive than
ELgfp: since fixpoints are introduced at the TBox level, concepts of
ELgfp coincide with EL-concepts, and thus there is no ELgfp-concept
equivalent to the ELν -concept νX.∃r.X . In the following, we show
that ELν is also more expressive than ELgfp on the TBox level, even
if we restrict ELν -TBoxes to (possibly cyclic) concept definitions,
as in ELgfp. We use the standard notion of logical equivalence, i.e.,
two TBoxes T and T ′ are equivalent iff T and T ′ have precisely
the same models. As observed by Schild in the context ofALC [19],
every ELgfp-TBox T = {A1 ≡ C1, . . . , An ≡ Cn} is equivalent in
this sense to the ELν+-TBox {Ai ≡ νiX1, . . . , Xn.C

′
1, . . . , C

′
n |

1 ≤ i ≤ n}, where each C′i is obtained from Ci by replacing each
Aj with Xj , 1 ≤ j ≤ n. Note that since we are translating to mutual
fixpoints, the size of the resulting TBox is polynomial in the size of
the original one. In the converse direction, there is no equivalence-
preserving translation.

Lemma 21 For each ELgfp-TBox, there is an equivalent ELν+-
TBox of polynomial size, but no ELgfp-TBox is equivalent to the ELν -
TBox T0 = {A ≡ P u νX.∃r.X}.

Proof It is not difficult to show that for every ELgfp-TBox T , defined
concept name A in T , and role name r, at least one of the following
holds:

• there is an m ≥ 0 such that T |= A v ∃rn.> implies n ≤ m or
• T |= A v ∃rn.B for some n > 0 and defined concept name B.

Since neither of these is true for T0, T is not equivalent to T0.

Restricted to classical TBoxes, ELgfp and ELν become equi-
expressive if the strict notion of equivalence used above is replaced
with one based on conservative extensions, thus allowing the in-
troduction of new concept names that are suppressed from logical
equivalence.

8 Conclusion
We have introduced and investigated the extensions ELν and ELν+

of EL with greatest fixpoint operators. The main result of this paper
is that ELν+ can be regarded as a completion of EL regarding its ex-
pressive power in which reasoning is still tractable, but where many

previously non-existent concepts (such as the LCS and MCS) exist
and/or can be expressed more succinctly (such as interpolants and
explicit concept definitions). Interestingly, the alternative extension
of EL by smallest rather than greatest fixpoints is much less well-
behaved. For example, even the addition of transitive closure to EL
leads to non-tractable reasoning problems [13].
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A Proofs for Section 2
We develop a variant of ELsi that is polynomially equivalent to ELν
and use it to prove that ELν+ is exponentially more succinct than
ELν .

Definition 22 A enriched tree interpretation is a tuple (∆I , ·I ,→ε),
where ∆I and ·I are as in an interpretation and→ε ⊆ ∆I × ∆I

such that the following conditions are satisfied:

• the graph GI := (∆I ,
S
r∈NR

rI) is a tree and r 6= s implies
rI ∩ sI = ∅;

• if d→ε e, then e is an ancestor of d in GI .

A pointed enriched tree interpretation is a pair (I, d) with I an en-
riched tree interpretation and d ∈ ∆I . Let (I1, d1) be a pointed
enriched tree interpretation, (I2, d2) a pointed interpretation, and
Σ a signature. A Σ-simulation between (I1, d1) and (I2, d2) is a
Σ-simulation S between ((∆I1 , ·I1), d1) and (I2, d2) such that

• (e1, e2) ∈ S and e1 →ε e
′
1 implies (e′1, e2) ∈ S.

The logic ELtsi is defined as ELsi, but requires the interpretation I
inside the constructor ∃sim(I, d) to be an enriched tree interpretation
with root d. We will now show that concepts can be translated back
and forth between ELν and ELtsi such that equivalence is preserved
and only a polynomial blowup occurs.

Lemma 23 ELν ≤p ELtsi.

Proof. Let C be a closed ELν -concept and V the set of variables
used in C. With every subconcept D of C, we associate an enriched
tree interpretation IC and a map πC : ∆IC → 2V, proceeding by
induction on the structure of D:

• if D is a concept name, then ∆ID = {d}, DID = {d}, σID = ∅
for all symbols σ distinct from D,→ε= ∅, and πC(d) = ∅;

• if D is a variable, then ∆ID = {d}, σID = ∅ for all symbols σ,
→ε= ∅, and πC(d) = {D};

• ifD = D1uD2, assume w.l.o.g. that ID1 and ID2 have the same
root and ∆ID1 ∩∆ID2 is a singleton that contains that root. Then
set ID = ID1 ∪ ID2 and πD = πD1 ∪ πD2 ;

• if D = ∃r.E, construct ID from IE by adding a new node e and
setting (e, d) ∈ rID ; extend πE to πD by setting πD(e) = ∅;

• if D = νX.E, then construct ID from IE by setting

→ε =→ε ∪ {(d, e) | X ∈ πE(d) and e is the root of IE}

and πD from πE by setting πD(d) = πE(d) \ {X} for all d ∈
∆ID .

It can be shown that ∃sim(Ic, d), with d the root of Ic, is equivalent
to C.

Lemma 24 ELtsi ≤p ELν .

Proof. Since the proof of Lemma 7 works also for ELtsi and does not
increase the size of concepts, it suffices to show that every concept
∃sim(I, d0) with I an enriched tree interpretation, can be translated
to an ELν -concept with only a polynomial blowup. To this end, de-
fine W = {d ∈ ∆I | e →ε d for some e}, fix a variable Xd for
each d ∈ W , and define a concept Cd for each d ∈ ∆I by proceed-
ing bottom-up:

• if d ∈ ∆I is a leaf, then Cd =
d
{A ∈ NC | d ∈ AI} ud

d→εe
Xe;

• if d ∈ ∆I \W has successors d1, . . . , dk in I, where (d, di) ∈ rIi
for 1 ≤ i ≤ k, then Cd =

d
{A ∈ NC | d ∈ AI} u

d
d→εe

Xe ud
1≤i≤k ∃ri.Cdi ;

• if d ∈ W has successors d1, . . . , dk in I, where (d, di) ∈ rIi
for 1 ≤ i ≤ k, then Cd = νXd.

`d
{A ∈ NC | d ∈ AI} ud

d→εe
Xe u

d
1≤i≤k ∃ri.Cdi

´
.

It can be shown that Cd0 is equivalent to ∃sim(I, d0).

We have thus established the following.

Theorem 25 ELν and ELtsi are polynomially equivalent.

Based on Theorem 25, we can use ELtsi instead of ELν+ when prov-
ing that ELν+ is exponentially more succinct than ELν . This is what
we do in the following.

Theorem 26 Every ELν -concept that is equivalent to the ELν+-
concept

ν0X0, . . . , Xn.C0, . . . , Cn, with Ci = Ai u ∃r.Xi+1 u ∃s.Xi+1

(and where we set Xn+1 := X0) has length at least 2n.

Proof. We use Ei to denote the concept given in Theorem 26. It suf-
fices to show that in every ELtsi-concept of the form ∃sim(I, d)
that is equivalent to Ei, we have |∆I | ≥ 2n. Thus, let ∃sim(I, d) be
equivalent to Ei. To start with, it is easy to use Ei, the semantics of
ELν+, and the definition of simulations to show that we must have
d ∈ AI0 and d /∈ AIi for i 6= 0. Using the same arguments, it is clear
that there must be dr ∈ ∆I and ds ∈ ∆I such that (d, dr) ∈ rI ,
(d, ds) ∈ sI , dr, ds ∈ AI1 and dr, ds /∈ AIi for i 6= 1. In particular,
we have d 6= dr and d 6= ds due to the concept memberships and
dr 6= ds since I is an enriched tree interpretation. We can repeat this
argument for the next level of the tree interpretation, getting addi-
tional (and distinct) domain elements drr , drs, dss, and dsr . Clearly,
this argument can be repeated n times (but not more often since then,
the concept names Ai start repeating on each path), thus yielding a
binary tree of depth n, which has > 2n nodes.

Note that the concept given in Theorem 26 can be represented by
an ELν -concept that has only polynomially many different subcon-
cepts, i.e., structure sharing can be used to avoid the blowup iden-
tified in Theorem 26. We leave it as an open problem whether this
holds for all ELν -concepts. This is not a trivial question unless the
number of variables that can be bound simultaneously in a mutual
fixpoint operator is bounded by a constant.

B Proofs for Section 3
In this section, we prove Theorems 4 and 5. We require some basic
and well-known operations on interpretations. First, for an interpre-
tation I and d ∈ ∆I , we denote by Id the tree-unraveling of I in d:
the domain ∆Id consists of all words

dr1d1r2 · · · rndn

such that n ≥ 0 and (di, di+1) ∈ rIi+1 for all i ≥ 0 (we set d0 =
d). We let σ · d′ ∈ AId iff d′ ∈ AI and rId consists of all pairs
(σ, σrd′) ∈ ∆Id ×∆Id .

Secondly, for ` ≥ 0, we denote with I`d the subinterpretation of
Id induced by all elements that are reachable in at most `-many steps
from the root d of the tree Id.
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Definition 27 (`-local) A concept C is called `-local iff there is
some ` ≥ 0 such that for all pointed interpretations (I, d) we have
d ∈ CI iff d ∈ CI

`
d .

Let Σ be a finite signature. A pointed Σ-interpretation (I, d) is a
pointed interpretation in which σI = ∅ for all σ 6∈ Σ.

Definition 28 Let Σ be finite, and (I, d) a pointed Σ-interpretation.
The `-characteristic conceptX`(I, d) of (I, d) is recursively defined
as follows:

X0(I, d) :=
d
{A ∈ NC | d ∈ AI}

X`+1(I, d) := X0(I, d) u
d
r∈NR

d
{∃r.X`(I, d′) | (d, d′) ∈

rI}

Observe that for X`+1(I, d) to be well-defined, we have to ensure
that there are only finitely many conjuncts inX when forming a con-
junction

d
C∈X C. This can be easily proved by induction. In fact,

one can easily prove that, up to logical equivalence, there exist only
finitely many `-characteristic concepts for each finite signature.

Observation 1 For each finite signature Σ and each ` ≥ 0 there are,
up to logical equivalence, finitely many `-characteristic concepts of
pointed Σ-interpretations.

Observation 2 e ∈ (X`(I, d))J iff (I`d, d) ≤ (J , e).

Proof We start with the direction from left to right. The proof is by
induction on `. For ` = 0, the claim is trivial. Now assume that it has
been proved for ` and let e ∈ (X`+1(I, d))J . We may assume that
I is already a tree-structure. Then for all r ∈ NR and every d′ with
(d, d′) ∈ rI , we have e ∈ (∃r.X`(I, d′))J . So there is some e′ with
(e, e′) ∈ rJ such that e′ ∈ (X`(I, d′))J . The induction hypothesis
yields that there is a simulation Sd′ : (I`d′ , d′) ≤ (J , e′). We define

Sd := {(d, e)} ∪
[
r∈Σ

[
(d,d′)∈rI

Sd′

and show that Sd is a simulation.
Condition 1 of Definition 3 holds for all (d′, e′) 6= (d, e) in Sd as

they already belong to simulations. Additionally, e ∈ (X0(I, d))J

and so d ∈ AI implies e ∈ AJ for all concept names A ∈ Σ, too.
Condition 2 is met for (d, e): By definition of Sd, for all r ∈ Σ

and every r-successor d′ of d there is an r-successor e′ of e such that
(d′, e′) ∈ Sd.

Let (d1, e1) ∈ S and let (d, e) 6= (d1, e1). So (d1, e1) ∈ Sd′ for
some r-successor d′ of d. Now let s ∈ Σ and d2 be an s-successor
of d1 in I`+1

d . It is to show, that there is some s-successor e2 of e1

such that (d2, e2) ∈ Sd.
The tree interpretation (I`+1

d , d) is composed of d, connected by
edges to the roots of the subtrees I`d′ , obtained from its successors
d′. So every s-successor of d1 in I`+1

d is an s-successor of d1 in I`d′ .
As Sd′ is a simulation, there must be some s-successor e2 of e1 such
that (d2, e2) ∈ Sd′ ; hence (d2, e2) ∈ Sd.

For the converse direction, assume that (I`d, d) ≤ (J , e). Note
that d ∈ (X`(I, d))Id and that X`(I, d) has nesting-depth not
exceeding ` and is therefore `-local. Hence d ∈ (X`(I, d))I

`
d ,

which, as EL-concepts are preserved by simulation, yields e ∈
(X`(I, d))J .

Proof of Theorem 4 Let Σ denote the signature of a FO-formula
ϕ(x) what is preserved under simulation. It follows that ϕ(x) is in-
variant under bisimulations, and so it can be regarded as an ALC-
concept F . We may assume that F contains symbols from Σ only.

Clearly, every ALC-concept is `-local for ` the nesting-depth of ex-
istential and value restrictions in F . We define

XF := {X`(I`d, d) | d ∈ F I , I a Σ-interpretation }.

According to Observation 1, on each level `, there are up to logical
equivalence only finitely many `-characteristic concepts for Σ; thus,
we may assume that XF is finite and

F
C∈XF

C is well defined. It
remains to be shown that F and

F
C∈XF

C are equivalent. To this
end, it is sufficient to show that e ∈ FJ iff e ∈ (

F
C∈XF

C)J for
all pointed Σ-interpretations (J , e). Let e ∈ FJ . We may assume
that X`(J `e , e) ∈ XF . As (J `e , e) ≤ (J , e), Observation 2 yields
e ∈ (X`(J `e , e))J , which entails e ∈ (

F
C∈XF

C)J .
Conversely, let e ∈ (

F
C∈XF

C)J . Then e ∈ (X`(I`d, d))J for
some X`(I`d, d) ∈ XF . From Observation 2, we obtain (I`d, d) ≤
(J , e). Due to the `-locality of F , we have d ∈ F I

`
d and as F is

simulation preserved, e ∈ FJ .

Proof of Theorem 5 Assume that L is a fragment of FO containing
EL that is preserved under simulations and has (finite) minimal mod-
els. Let ϕ(x) ∈ L. We show ϕ(x) is equivalent to an EL-concept.
ϕ(x) is logically equivalent to

F
C∈XF

C, where XF is as intro-
duced in the proof of Theorem 4. Note thatXF contains EL-concepts
only. Thus, it is sufficient to show that

F
C∈XF

C is logically equiv-
alent to one of its disjuncts.

Assume otherwise. Then ∀x(ϕ(x) → C(x)) is not a tautology
for any C ∈ XF , where C(x) denotes the translation of C into FO.
Then d 6∈ CI for any C ∈ XF , where (I, d) is the (finite) mini-
mal model of ϕ(x). Thus d 6∈ (

F
C∈XF

C)I and we have derived a
contradiction.

C Proofs for Section 4

We use the abbreviations

~X = X1 · · ·Xn, ~C = C1 · · ·Cn.

To prove the claims for the translations to and from ELν+ we re-
mind the reader of the following well-known characterization of
the greatest fixpoint operator. For a fixpoint concept νX.C, we
write C(νX.C) to denote the result of unfolding the fixpoint once,
i.e., replacing every occurrence of X in C with (νX.C). Simi-
larly, the expression Ci(νiX1 · · ·Xn.C1, . . . , Cn) denotes the re-
sult of replacing every occurrence of Xj in Ci, 1 ≤ j ≤ n, with
νjX1 · · ·Xn.C1, . . . , Cn.

We will consider concepts ναX.C and ναi X1 · · ·Xn.C1, . . . , Cn
for every ordinal α. The semantics is defined by transfinite induction
as

(ν0
i
~X. ~C)I,V = ∆I

(να+1
i

~X. ~C)I,V = (Ci(ν
α
i
~X. ~C))I,V

(νλi ~X. ~C)I,V =
T
α<λ(ναi ~X. ~C)I,V

where λ is a limit ordinal. It is standard to show that for
all interpretations, d ∈ ∆I , and assignments V , we have
that d ∈ (νiX1 · · ·Xn.C1, . . . , Cn)I,V if, and only if, d ∈
(ναi X1 · · ·Xn.C1, . . . , Cn)I,V for all α < |∆I |.

Lemma 29 ELsi ≤p ELν+.

8



Proof We show that the claim that the concept ∃sim(I, d) is equiv-
alent to the ELν+-concept ν`d1 · · · dn.C1, . . . , Cn, where ∆I =
{d1, . . . , dn} is regarded as a set of concept variables, d = d`, and

Ci =
l

A∈NC

{A | di ∈ AI} u
l

r∈NR

{∃r.dj | (di, dj) ∈ rI},

is correct.
Let J be an interpretation and e ∈ (∃sim(I, d))J . Then

(I, d) ≤ (J , e). We show by transfinite induction on α that
for all f ∈ ∆J and di ∈ ∆I with (I, di) ≤ (J , f), we
have f ∈ (ναi d1 · · · dn.C1, . . . , Cn)J . Clearly, this yields e ∈
(ν`d1 · · · dn.C1, . . . , Cn)J as required. Since the induction start is
trivial, we concentrate on the induction step and the transfinite step.
Let f ∈ ∆J and di ∈ ∆I with (I, di) ≤ (J , f).

• f ∈ (να+1
i `d1 · · · dn.C1, . . . , Cn)J .

Let (r1, di1), . . . , (rm, dim) be those elements of NR × ∆I

such that (di, dij ) ∈ rIj for 1 ≤ j ≤ m. Since (I, di) ≤
(J , f), we find f1, . . . , fm ∈ ∆J such that (f, fj) ∈ rJj and
(I, dij ) ≤ (J , fj) for 1 ≤ j ≤ m. The induction hypothe-
sis yields fj ∈ (ναijd1 · · · dn.C1, . . . , Cn)J . By definition of the
C1, . . . , Cn and the semantics of να+1

i d1 · · · dn.C1, . . . , Cn, this
yields f ∈ (να+1

i d1 · · · dn.C1, . . . , Cn)J as required.
• f ∈ (νλi d1 · · · dn.C1, . . . , Cn)J , λ a limit ordinal.

By IH, we have that f ∈ (ναi d1 · · · dn.C1, . . . , Cn)J for all α <
λ, thus it remains to use the semantics of νλi d1 · · · dn.C1, . . . , Cn.

Conversely, let J be an interpretation and e ∈
(ν`d1 · · · dn.C1, . . . , Cn)J . We construct a sequence
S0 ⊆ S1 ⊆ · · · of relations on ∆I ×∆J such that

(dk, f) ∈ Si implies f ∈ (νkd1 · · · dn.C1, . . . , Cn)J . (∗)

Start with putting S0 = {(d`, e)}. For the induction step, first
set Si+1 = Si. Then further extend Si+1 by considering all
(dk, f) ∈ Si \Si−1 (where S−1 := ∅). Let (r1, di1), . . . , (rm, dim)
be those elements of NR × ∆I such that (dk, dij ) ∈ rIj for
1 ≤ j ≤ m. We have f ∈ (νkd1 · · · dn.C1, . . . , Cn)J , thus
also f ∈ (Ck(νkd1 · · · dn.C1, . . . , Cn))J . By definition of Ck,
we thus find f1, . . . , fm ∈ ∆J such that (f, fj) ∈ rj and fj ∈
(νijd1 · · · dn.C1, . . . , Cn)J for 1 ≤ j ≤ m. Add (fj , dij ) to Si+1

for 1 ≤ j ≤ m. Clearly, (∗) is satisfied.
Finally, set S :=

S
i≥0 Si. Using the definition of the Si, (∗),

and the definition of the concepts C1, . . . , Cn, it is straightforward
to show that S is a simulation between (I, d`) and (J , e). Thus,
e ∈ (∃sim(I, d`))J as required.

We call an ELν+-concept C with free variables X1, . . . , Xk
equivalent to an ELst-conceptD if for all interpretations I, d ∈ ∆I ,
and assignments V , we have d ∈ CI,V iff d ∈ DJ , where J is ob-
tained from I by setting AJX = V(X) for all variables X .

Lemma 30 ELν+ ≤p ELst.

Proof The concept C] is produced by starting with C and then
replacing each subconcept of the form ν`X1, . . . , Xn.C1, . . . , Cn
with an ELst-concept, proceeding from the inside out. We assume
that for every variable X that occurs in the original ELν+-concept
C, there is a concept name AX that does not occur in C.

We replace each subconcept ν`X1, . . . , Xn.C1, . . . , Cn (which
potentially contains free variables) with the ELst-concept

∃sim{AX1 , . . . , AXn}.({AXi v C
↓
i | 1 ≤ i ≤ n}, AX`)

where C↓i is obtained from Ci by replacing every variable X with
the concept name AX . It thus remains to show that the above ELs-
concept is equivalent to ν`X1, . . . , Xn.C1, . . . , Cn (in the above
sense).

Let I be an interpretation, V an assigment, and d ∈
(ν`X1, . . . , Xn.C1, . . . , Cn)I,V . We obtain the interpretation J
from I by setting AJXi

= (νiX1, . . . , Xn.C1, . . . , Cn)I,V for
1 ≤ i ≤ n and AJY = V(Y ) for all concept variables Y /∈
{X1, . . . , Xn}. Thus, d ∈ AJX`

. Since νiX1 · · ·Xn.C1, . . . , Cn ≡
Ci(νiX1 · · ·Xn.C1, . . . , Cn) for 1 ≤ i ≤ n and by definition of J ,
J satisfies AXi v C↓i for 1 ≤ i ≤ n. By definition of J , the iden-
tity map on ∆I is an Σ \ {AX1 , . . . , AXn}-simulation from (J , d)
to (I, d). It follows that d ∈ ∃sim{AX1 , . . . , AXn}.({AXi v C↓i |
1 ≤ i ≤ n}, AX`) as required.

Let I be an interpretation with d ∈
(∃sim{AX1 , . . . , AXn}.({AXi v C↓i | 1 ≤ i ≤ n}, AX`)I . Then
there exists a modelJ of {AXi v C

↓
i | 1 ≤ i ≤ n} and an e ∈ AJX`

such that (J , e) ≤Σ\{AX1 ,...,AXn} (I, d). Define an assignment
VI by setting VI(X) = AIX for all variables X , and similarly for
VJ . We have to show that d ∈ (ν`X1, . . . , Xn.C1, . . . , Cn)I,VI .
To do this, we establish two claims.

Claim 1. For all ordinals α and 1 ≤ i ≤ n, VJ (Xi) ⊆
(ναi X1, . . . , Xn.C1, . . . , Cn)J ,VJ .

The induction start is trivial, hence it remains to consider the
induction step and the transfinite step:

• VJ (Xi) ⊆ (να+1
i X1, . . . , Xn.C1, . . . , Cn)J ,VJ .

Let e′ ∈ VJ (Xi). As required for J we have AJXj
= VJ (Xj)

f.a. 1 ≤ j ≤ n. The induction hypothesis claims VJ (Xj) ⊆
(ναj X1, . . . , Xn.C1, . . . , Cn)J ,VJ for all 1 ≤ j ≤ n. Hence
(C↓i )J ,VJ ⊆ (Ci(ν

α
i X1, . . . , Xn.C1, . . . , Cn))J ,VJ . Since J

is a model of AXi v C
↓
i it follows that

e′ ∈ (Ci(ν
α
i
~X. ~C))J ,VJ = (να+1

i
~X. ~C)J ,VJ .

• VJ (Xi) ⊆ (νλi X1, . . . , Xn.C1, . . . , Cn)J ,VJ , λ a limit ordinal.
Let e′ ∈ VJ (Xi). By IH, e′ ∈
(ναi X1, . . . , Xn.C1, . . . , Cn)J ,VJ for all α < λ and thus

e′ ∈
\
α<λ

(ναi ~X. ~C)J ,VJ = (νλi ~X. ~C)J ,VJ .

The second claim is also proved by transfinite induction on α.

Claim 2. For 1 ≤ i ≤ n we have: if e′ ∈
(ναi X1, . . . , Xn.C1, . . . , Cn)J ,VJ and (J , e′) ≤Σ\{AX1 ,...,AXn}

(I, d′) then d′ ∈ (ναi X1, . . . , Xn.C1, . . . , Cn)I,VI .

Again, the induction start is trivial and we concentrate on the
induction step and transfinite step:

• d′ ∈ (να+1
i X1, . . . , Xn.C1, . . . , Cn)I,VI .

Let (r1, ei1), . . . , (rm, eim) be those elements of NR ×∆J such
that (e′, eij ) ∈ rIj for 1 ≤ j ≤ m. Since (J , e′) ≤ (I, d′), we
find d1, . . . , dm ∈ ∆I such that (d′, dj) ∈ rIj and (J , eij ) ≤
(I, dj) for 1 ≤ j ≤ m. The induction hypothesis yields dj ∈
(ναijd1 · · · dn.C1, . . . , Cn)I,VI . By definition of the C1, . . . , Cn

and the semantics of να+1
i d1 · · · dn.C1, . . . , Cn, this yields d′ ∈

(να+1
i d1 · · · dn.C1, . . . , Cn)I,VI as required.

• d′ ∈ (νλi X1, . . . , Xn.C1, . . . , Cn)I,VI , λ a limit ordinal.
If e′ ∈ (ναi X1, . . . , Xn.C1, . . . , Cn)I,VI for all α < λ then, by
the induction hypothesis, d′ ∈ (ναi X1, . . . , Xn.C1, . . . , Cn)I,VI

for all α < λ. Thus d′ ∈ (νλi X1, . . . , Xn.C1, . . . , Cn)I,VI .
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It remains to argue that Claims 1 and 2 imply d ∈
(ν`X1, . . . , Xn.C1, . . . , Cn)I,VI : Since e ∈ AJX`

, we have e ∈
V(X`). By Claim 1, e ∈ (να` X1, . . . , Xn.C1, . . . , Cn)J ,VJ for all
ordinals α. By Claim 2, d ∈ (να` X1, . . . , Xn.C1, . . . , Cn)J ,VI for
all ordinals α. Thus, d ∈ (ν`X1, . . . , Xn.C1, . . . , Cn)I,VI as re-
quired.

We are now going to prove Theorem 11. First, we require the fol-
lowing folklore result.

Lemma 31 It can be checked in poly-time whether there exists a (Σ-
)simulation between two finite pointed interpretations.

We give a slightly modified formulation from which Theorem 11 fol-
lows directly.

Theorem 32 It is decidable in polynomial time whether an ELsa-
KB is satisfiable. Moreover, given a satisfiable ELsa-KB (T ,A),
one can construct in polynomial time an interpretation IT ,A with
|∆IT ,A | bounded by twice the size of (T ,A) and the following prop-
erty:

(CAN) IT ,A is a model of (T ,A) with aIT ,A = a for all a ∈
Ind(A) such that for every model J of (T ,A) there exists a simula-
tion S between IT ,A and J with (a, aJ ) ∈ S for all a ∈ Ind(A).

Proof The construction of IT ,A will be given by induction on the
number of nestings of ∃sim in T . For a ELsa-concept C, denote by
sub0(C) the set of subconcepts of C that are not within the scope of
any ∃sim. For a TBox T we set

sub0(T ) =
[

CvD∈T

sub0(C) ∪ sub0(D).

Suppose (T ,A) is given. By induction, we may assume that for any

F = ∃simΣ.(T ′,A′, a′) ∈ sub0(T )

we have decided already whether (T ′,A′) is satisfiable and, if so,
have constructed an interpretation IF = IT ′,A′ satisfying (CAN). If
F is not satisfiable, we replace F by⊥ everywhere in T . Clearly the
resulting TBox (denoted, for simplicity, by T as well) is equivalent
to T . If F is satisfiable, we construct an isomorphic copy I′F of IF
with the following modifications:

• the domains ∆I
′
F of I′F are mutually disjoint and disjoint from

Ind(A);
• individual names are not interpreted in I′F ;
• all Σ-symbols are interpretated as empty sets;
• the point a′ of IF is renamed to dIF in I′F .

We can construct a model of (T ,A) only if (T ,A) is satisfiable. To
enable us to construct a model that can be used to check satisfiabil-
ity of (T ,A), we first replace every occurrence of ⊥ in T that is
not within the scope of any ∃sim by a fresh concept names A⊥ and
denote the resulting TBox by T ⊥. We construct the model IT⊥,A
satisfying (CAN) for (T ⊥,A) and then decide, depending on the in-
terpretation of A⊥, whether be obtain a model of (T ,A) or (T ,A)
is unsatisfiable. Let

∆0 = Ind(A) ∪ {dC | ∃r.C ∈ sub0(T ⊥)},

where the dC are pairwise distinct fresh objects. We define an inter-
pretation I0 as follows. Let

∆I0 = ∆0 ∪
[

F∈sub0(T⊥),F=∃simΣ.(T ′,A′,a′)

∆I
′
F

and set (d1, d2) ∈ rI0 iff

1.0 d1 = a1, d2 = a2 and r(a1, a2) ∈ A, or
1.1 d1 = dC1 ∈ ∆0, d2 = dC2 ∈ ∆0 and ∃r.C2 is a top-tevel

conjunct of C1, or
1.2 d1, d2 ∈ ∆I

′
F for some F and (d1, d2) ∈ rI

′
F , or

1.3 d1 = dC1 , C1 has a top-level conjunct F = ∃simΣ.(T ′,A′, a′)
and (dIF , d2) ∈ rI

′
F .

Finally, set d ∈ AI0 iff

2.0 d = a0 and A(a0) ∈ A, or
2.1 d = dD ∈ ∆0 and A is a top-level conjunct of D;
2.2 d ∈ ∆I

′
F for some F and d ∈ AI

′
F , or

2.3 d = dD , D has a top-level conjunct F = ∃simΣ.(T ′,A′, a′) and
dIF ∈ A

I′F .

It remains to satisfy the inclusions of T ⊥ in I0. We may assume
that, in each C v D ∈ T ⊥,D is a concept name, of the form ∃r.D′,
or of the form ∃simΣ.(T ′,A′, a′). Now we expand I0 by applying
exhaustively the following rules:

3.1 Let C v A ∈ T ⊥ and assume that d ∈ CI0 but d 6∈ AI0 . Then
update I0 by setting AI0 := {d} ∪ AI0 (and leaving everything
else unchanged).

3.2 Let C v ∃r.D ∈ T ⊥ and assume that d ∈ CI0 but d 6∈
(∃r.D)I0 . Then update I0 by setting rI0 := {(d, dD)} ∪ rI0
(and leaving everything else unchanged).

3.3 Let C v F ∈ T ⊥ for F = ∃simΣ.(T ′,A′, a′) and assume that
d ∈ CI0 but d 6∈ F I0 . Then update I0 by adding (d, d′) to rI0

whenever (dIF , d
′) ∈ rI

′
F and by adding d to AI0 whenever

dIF ∈ A
I′F .

The resulting interpretation is denoted by IT⊥,A. We show that
IT⊥,A satisfies (CAN) for (T ⊥,A), that the construction above is
in poly-time, and that the domain of IT bot,A is of linear size. The
latter is easily proved and left to the reader. We now prove (CAN).

Claim 1. For every model J of (T ⊥,A) there exists a simulation S
between IT⊥,A and J with (a, aJ ) ∈ S for all a ∈ Ind(A).

The proof is by induction on the number of nestings of ∃sim in T ⊥.
We consider the induction step from n to n + 1. The case n = 0 is
proved in the same way and left to the reader.

Assume Claim 1 has been proved for all (T ′,A′) with at most n
nestings of ∃sim and let T ⊥ have n+1 nestings of ∃sim. Assume that
J is a model of (T ⊥,A). We construct a simulation S : IT⊥,A ≤
J with (a, aJ ) ∈ S for all a ∈ Ind(A). By induction hypothesis,
for every F = ∃simΣ.(T ′,A′, a′) ∈ sub0(T ⊥), Claim 1 holds for
(T ′,A′). So we have, in particular, (I′F , dIF ) ≤ (I, a′I) for every
model I of (T ′,A′).

To construct S, we first define a set S0 as the union of

{(dC , e) ∈ ∆0 ×∆J | C ∈ sub0(T ⊥), e ∈ CJ }

and
{(a, aJ ) | a ∈ Ind(A)}.

By definition, for each F = ∃simΣ.(T ′,A′, a′) ∈ sub0(T ⊥) and
e ∈ FJ there exists a model J ′ of (T ′,A′) with f = a′J

′
such

that
(J ′, f) ≤Γ (J , e),
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where Γ = (NC ∪ NR) \ Σ. By induction hypothesis, we have
(IT ′,A′ , a′) ≤ (J ′, f). Thus,

(I′F , dIF ) ≤ (J , e). (1)

Let SF,e be a simulation that witnesses (I′F , dIF ) ≤ (J , e) and let

S := S0∪
[
{SF,e | e ∈ FJ , F := ∃simΣ.(T ′,A′, a′) ∈ sub0(T ⊥)}.

We prove that S is a simulation between IT ,C and J . Then, by def-
inition, Claim 1 is proved. To this end, we first prove the following
claim.

Claim 1.a. S is a simulation between I0 and J .

Let (d1, e1) ∈ S. First, we show that if d1 ∈ AI0 , then e1 ∈ AJ . Let
d1 ∈ AI0 . If d1 ∈ ∆0, then (d1, e1) ∈ S0. Assume first d1 = dC
and e1 ∈ CJ for some concept C. If dC ∈ AI0 , then we have two
cases:

2.1 A is a top-level conjunct of C. As e1 ∈ CJ , we have e1 ∈ AJ ,
as required.

2.3 C has the top-level conjunct F := ∃simΣ.(T ′,A′, a′) and dIF ∈
AI
′
F . Then e1 ∈ FJ and so, by (1), we obtain e1 ∈ AJ .

Assume now that d1 = a ∈ Ind(A). Then e1 = aJ and A(a) ∈ A.
We obtain e1 = aJ ∈ AJ from the condition that J is a model of
(T ,A).

In case d1 ∈ ∆I
′
F for some F = ∃simΣ.(T ′,A′, a′) ∈

sub0(T ⊥) Item 2.2 applies. As (d1, e1) ∈ S and d1 ∈ ∆I
′
F the

definition of S stipulates (d1, e1) ∈ SF,e for some e ∈ ∆J . Then
e1 ∈ AJ because SF,e is a simulation.

Let now (d1, d2) ∈ rIT ,A . We have to show that there is e2 ∈
∆J such that (e1, e2) ∈ rJ and (d2, e2) ∈ S. We distinguish the
following cases:

1.0 d1 = a1, d2 = a2 and r(a1, a2) ∈ A. By definition of S, e1 =
aJ1 . As J is a model of (T ,A), we obtain (e1, e2) ∈ rJ for
e2 = aJ2 . Moreover, (d2, e2) ∈ S.

1.1 Both, d1 = dC1 and d2 = dC2 are in ∆0 and ∃r.C2 a top-level
conjunct ofC1. As (dC1 , e1) ∈ S0 we have e1 ∈ CJ1 and so there
is e2 ∈ CJ2 with (e1, e2) ∈ rJ . Hence (d1, e2) ∈ S.

1.3 d1 = dC1 ∈ ∆I0 where F := ∃simΣ(T ′,A′, a′) is a top-
level conjunct of C1, and (dIF , d2) ∈ rI

′
F . Since e1 ∈ CJ1 we

have e1 ∈ FJ . By (1), (I′F , dIF ) ≤ (J , e1). Thus, there exists
e2 ∈ ∆J with (e1, e2) ∈ rJ and (d2, e2) ∈ SF,e1 . We obtain
(d2, e2) ∈ S.

1.2 Both d1 and d2 are in ∆I
′
F . As we assume (d1, e1) ∈ S there

must be SF,e′ ⊆ S containing (d1, e1). We have (d1, d2) ∈ rI
′
F

and so, since SF,e′ is a simulation, there exists e2 ∈ ∆J with
(e1, e2) ∈ rJ such that (d2, e2) ∈ SF,e′ . Hence (d2, e2) ∈ S.

Claim 1.a. is proved. To prove Claim 1, it remains to show that iter-
ated applications of the rules (3.1)-(3.3) to I0 preserve the condition
that S is a simulation. So, assume that I0 ⊆ I1 ⊆ . . . is a sequence
resulting from applications of the rules (3.1)-(3.3) and assume that
S is a simulation between Ik and J such that (a, aJ ) ∈ S for all
a ∈ Ind(A). We show S is a simulation between Ik+1 and J .

3.1 Assume d1 ∈ CIk , C v A ∈ T , and Ik+1 coincides with Ik
except thatAIk+1 := AIk∪{d1}). Clearly it is sufficient to show
that e1 ∈ AJ for every (d1, e1) ∈ S. We have S : (Ik, d1) ≤
(J , e1) and so e1 ∈ CJ . Hence, since J |= T , e1 ∈ AJ , as
required.

3.2 Assume d1 ∈ CIk , C v ∃r.D ∈ T , and Ik+1 coincides Ik
except that rIk := rIk ∪ {(d1, dD)}). Assume that (d1, e1) ∈
S for some e1 ∈ ∆J . Clearly it is sufficient to show that there
exists e2 with (e1, e2) ∈ rJ such that (dD, e2) ∈ S. We have
e1 ∈ CJ and as J |= T by assumption there is an e2 ∈ DJ

with (e1, e2) ∈ rJ . According to the definition of S we have
(dD, e2) ∈ S, as required.

3.3 Assume d1 ∈ CIk , C v F ∈ T with F = ∃simΣ.(T ′,A′, a′)
and Ik+1 coincides with Ik except that

rIk+1 = rIk ∪ {(d1, d2) | (dI′
F
, d2) ∈ rI

′
F }

and
AIk+1 = rIk ∪ {d1 | dI′

F
∈ AI

′
F },

for r ∈ NR and A ∈ NC. We consider the condition on roles. Let
(dI′

F
, d2) ∈ rI

′
F and let (d1, e1) ∈ S for some e1 ∈ ∆J . Clearly

it is enough to show that there exists e2 with (e1, e2) ∈ rJ and
(d2, e2) ∈ S. We have e1 ∈ CJ and as J |= T by assump-
tion, we have e1 ∈ FJ . So SF,e1 ⊆ S and we have SF,e1 :
(I′F , dIF ) ≤ (J , e1). Hence there exists e2 with (e1, e2) ∈ rJ
and (d2, e2) ∈ SF,e1 , as required.

This finishes the proof of Claim 1. We now show

Claim 2. The following conditions hold.

• IT⊥,A is a model of (T ⊥A);
• for all a ∈ Ind(A) and allD: (T ⊥,A) |= D(a) iff a ∈ DIT⊥,A ;
• for all dC ∈ ∆0 and all D: (T ⊥,A) |= C v D iff dC ∈
D
IT⊥,A .

The proof is again by induction on the number of nestings
of ∃sim. Assume this has been proved for all T ′,A′ such that
∃simΣ.(T ′,A′, a′) occurs in T ⊥.

For Point 1 note that IT⊥,A is, by definition, a model of A.
TT⊥,A |= T follows immediately from the fact that none of the
rules (3.1)-(3.3) is applicable to IT⊥,A and that rule (3.3) constructs
a model satisfying the required F = ∃simΣ.(T ′,A′, a′) because I′F
is the reduct of the interpretation IT ′,A′ not interpreting Σ-symbols
that is, by induction hypothesis, a model of (T ′,A′). Points 2 and
3 follow immediately from the induction hypothesis, Claim 1, and
Point 1.

It follows that IT⊥,A satisfies (CAN) for (T ⊥,A). We now use
this model to check satisfiability of (T ,A) and construct IT ,A in
case it is satisfiable. Denote by IT ,A the restriction of IT⊥,A to all
d ∈ ∆

IT⊥,A such that there exist a ∈ Ind(A), d0, . . . , dn = d, and

role names r1, . . . , rn with d0 = a and (di, di+1) ∈ r
IT⊥,A
i+1 for

i < n.

Claim 3. (T ,A) is satisfiable iffAIT ,A
⊥ = ∅. Moreover, ifAIT ,A

⊥ =
∅, then IT ,A satisfies (CAN).

Clearly, IT ,A still has the properties from Claim 1 and 2. More-
over, for d ∈ ∆IT ,A , we have d ∈ A

IT ,A
⊥ iff there exists a ∈

Ind(A) such that

(T ⊥,A) |= ∃r1.∃r2. · · · ∃rn.A⊥(a)

for some sequence r1, . . . , rn of role names. It thus follows from the
construction of T ⊥ from T that (T ,A) is satisfiable iff AIT ,A

⊥ =
∅. The proof of the second claim is straightforward and left to the
reader.
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Finally, we show that IT ,A can be constructed in polynomial
time. As the domain of IT ,A is clearly of linear size, it is suffi-
cient to show that one can check the pre-condition “d ∈ CI” of
the rules (3.1)-(3.3) in polynomial time. The only concepts C of in-
terest are of the form ∃simΣ.(T ,A, a). But we know that check-
ing d ∈ (∃simΣ.(T ,A, a))I is equivalent to checking whether
(T ,A) is satisfiable and there exists a Γ-simulation between between
(IT ,A, a) and (I, d), for Γ = (NC ∪ NI) \ Σ. Thus, checking this
pre-condition is in polynomial time, by Lemma 31.

D Proofs for Section 6
To prove Theorem 15, we require two basic observations.

Observation 3 Let (I, d), (J , e), and (K, f) be pointed interpreta-
tions. Then

1. (I × J , (d, e)) ≤ (I, d) and (I × J , (d, e)) ≤ (J , e).
2. If (K, f) ≤ (I, d) and (K, f) ≤ (J , e), then

(K, f) ≤ (I × J , (d, e)).

Proof For the second claim observe that if S1 is a simulation between
(K, f) and (I, d) and S2 is a simulation between (K, f) and (J , e),
then

S = {(f ′, (d′, e′)) | (f ′, d′) ∈ S1 and (f ′, e′) ∈ S2}

is a simulation between (K, f) and (I × J , (d, e)).

We also use the easily proved fact that for canonical models
(IT ,D, dD) and (IT ,C , dC) we have

T |= C v D ⇐⇒ (IT ,D, dD) ≤ (IT ,C , dC).

Proof of Theorem 15 Let T be a general TBox in ELν+ and C1, C2

be two ELν+ concepts. We show that

∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2))

is the LCS of C1 and C2, for the canonical models IT ,Ci of T , Ci.

(a) We show

T |= Ci v ∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2)).

for i = 1, 2. Let i = 1 (i = 2 is considered in the same way).
Observation 3 shows

(IT ,C1 × IT ,C2 , (dC1 , dC2)) ≤ (IT ,C1 , dC1).

Let now J be a model of T and e ∈ CJ1 . Then (IT ,C1 , dC1) ≤
(J , e), which by transitivity of the simulation relation yields
e ∈ ∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2))J . Hence T |= C1 v
∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2)), as required.

(b) for all ELν+-concepts D we have to show: If T |= C1 v D and
T |= C2 v D then

T |= ∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2)) v D.

To this end, it is sufficient to show

(IT ,D, dD) ≤ (IT ,C1 × IT ,C2 , (dC1 , dC2)).

As T |= Ci v D for i = 1, 2, we have

(IT ,D, dD) ≤ (IT ,Ci , dCi).

The second part of Observation 3 yields

(IT ,D, dD) ≤ (IT ,C1 × IT ,C2 , (dC1 , dC2)),

as required.

Finally, we show the interpolation property for ELν . We formulate
the result to be proved again.

Theorem 20 Let T1∪T2 |= C0 v D0 and assume that T1 and T2 are
Γ-inseparable w.r.t. ELν for Γ = sig(T1, C0) ∩ sig(T2, D0). Then
T2 |= ∃simΣ.(T1, C0) v D), for Σ = sig(T1, C0) \ Γ.

Proof Assume that T2 6|= ∃simΣ.(T1, C0) v D0, for Σ =
sig(T1, C0) \∆. We show that T1 ∪ T2 6|= C0 v D0.

Take the canonical model (IT1,C0 , dC0) defined above. We set
I0 = IT1,C0 , d0 = dC0 , and ∆0 = ∆d0 = ∆I0 . In the following,
we construct an interpretation I∗ of T1 ∪ T2 refuting C0 v D0. We
define inductively an infinite sequence I1, I2, . . . of interpretations.
The interpretation I∗ = (∆I

∗
, ·I
∗
) is then defined as the union of

I0, I1, I2, . . . as follows:

∆I
∗

:=
[
i≥0

∆Ii ;

AI
∗

:=
[
i≥0

AIi , for all A ∈ NC;

rI
∗

:=
[
i≥0

rIi , for all r ∈ NR.

Given an intepretation I, we denote by I �Γ the reduct of I inter-
preting the symbols in Γ only. For d ∈ ∆I and any TBox T , we
denote by ItI(d),T the canonical model IT ,∃sim(I�Γ,d) of the pair
T , ∃sim(I �Γ, d).

Let n ≥ 0 and assume the interpretation In with domain ∆n

has been defined. If n is even, then take for every d ∈ ∆n \ ∆n−1

(we set ∆−1 = ∅) the interpretation Id = ItIn (d),T2 with domain
∆d such that ∆n ∩ ∆d = {d} and the ∆d, d ∈ ∆n \ ∆n−1, are
mutually disjoint. If n is odd, then take for every d ∈ ∆n \ ∆n−1

the interpretation Id = ItIn (d),T1 with domain ∆d such that ∆n ∩
∆d = {d} and the ∆d, d ∈ ∆n \∆n−1, are mutually disjoint. Now
set

∆n+1 = ∆n ∪
S
d∈∆n\∆n−1

∆d,

rIn+1 = rIn ∪
S
d∈∆n\∆n−1

rId ,

AIn+1 = AIn ∪
S
d∈∆n\∆n−1

AId .

For all d ∈ ∆I
∗

there exists a (uniquely) determined minimal natural
number n(d) with d ∈ ∆n(d) \ ∆n(d)−1. If n(d) 6= 0, then there
exists a uniquely determined d∗ ∈ ∆n(d)−1 with d ∈ ∆d∗ . We set
d∗ = d0 for n(d) = 0 and prove the following by induction on the
construction of D. For all d ∈ ∆I

∗
and EL-concepts D:

• if n(d) is even then

1. if sig(D) ∩ sig(T1, C0) ⊆ Γ, then d ∈ DI
∗
⇔ d ∈ DId ;

2. if sig(D) ∩ sig(T2, D0) ⊆ Γ, then d ∈ DI
∗
⇔ d ∈ DId∗ ;

• if n(d) is odd then

1. if sig(D) ∩ sig(T2, D0) ⊆ Γ, then d ∈ DI
∗
⇔ d ∈ DId ;

2. if sig(D) ∩ sig(T1, C0) ⊆ Γ, then d ∈ DI
∗
⇔ d ∈ DId∗ .

The implications from right to left are trivial, so we consider the
implications from left to right only. We concentrate on the case n(d)
even (the case n(d) odd is proved in the same way) and prove the
induction step for D = ∃r.C. First consider Point 1. So let sig(D)∩
sig(T1, C0) ⊆ Γ and assume d ∈ DI

∗
with n(d) even. There exists

c ∈ ∆I
∗

such that c ∈ CI
∗

and (d, c) ∈ rI
∗

. Assume first that c ∈
∆n(d). Then, by construction, c 6∈ ∆n(d)−1. Then r ∈ Γ because
for any r 6∈ sig(T1, C0), rI

∗
∩ (∆n(d) \∆n(d)−1)2 = ∅. We obtain
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n(c) = n(d) and, by IH, c ∈ CIc . We obtain, by the construction of
Ic,

T2 |= ∃sim(In(d)�Γ, c) v C

But then
T2 |= ∃r.∃sim(In(d)�Γ, c) v ∃r.C

and so from the validity of

∃sim(In(d)�Γ, d) v ∃r.∃sim(In(d)�Γ, c)

we obtain
T2 |= ∃sim(In(d)�Γ, d) v D

which implies d ∈ DId , as required.
Now assume c 6∈ ∆n(d). Then c ∈ ∆d, c∗ = d, and n(c) =

n(d) + 1. By IH (for n(c) odd), c ∈ CI
∗

iff c ∈ CIc∗ = CId .
Hence d ∈ (∃r.C)Id .

Consider now Point 2. Let sig(D) ∩ sig(T2, D0) ⊆ Γ and d ∈
DI
∗

. There exists c ∈ ∆I
∗

such that c ∈ CI
∗

and (d, c) ∈ rI
∗

.
Assume first that c ∈ ∆d∗ . Then c∗ = d∗ and, by IH, c ∈ CId∗ . As
we also have (d, c) ∈ rId∗ , we obtain d ∈ DId∗ .

Now assume c 6∈ ∆d∗ . Then c ∈ ∆d. Then r ∈ Γ because for any
r 6∈ sig(T2, D0), rI

∗
∩∆d ×∆d = ∅. By IH, c ∈ CIc . Hence

T1 |= ∃sim(In(d)+1�Γ, c) v C.

Then
T1 |= ∃r.∃sim(In(d)+1�Γ, c) v ∃r.C.

We have d ∈ (∃r.∃sim(In(d)+1 �Γ, c))Id and by Γ-inseparability
of T1 and T2, d ∈ (∃r.∃sim(In(d)+1 � Γ, c))In(d) . So, d ∈
(∃r.∃sim(In(d)+1 � Γ, c))Id∗ . Id∗ is a model of T1. Hence d ∈
(∃r.C)Id∗ , as required.

Since I∗ has finite outdegree, it follows that the claim above holds
for all ELν -concepts D (not just all EL-concepts).

It follows immediately that I∗ is a model of T1∪T2: letC v D ∈
Ti. If CI

∗
0 \DI

∗
0 6= ∅, then there exists a an interpretation Id of Ti

with CId
0 \D

Id
0 6= ∅ which contradicts the claim above.

It remains to show that d0 ∈ CI
∗

0 \ DI
∗

0 . d0 ∈ CI
∗

0 is clear by
definition. Now assume d0 ∈ DI

∗
0 . By the claim above (for ELν -

concepts), we obtain d0 ∈ DId
0 . By construction of Id0 , this implies

T2 |= ∃sim(IT1,C0�Γ, d0) v D0.

But the latter statement is equivalent to T2 |= ∃simΣ.(T1, C0) v D0

and we have derived a contradiction.
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