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1 Introduction

The well-known description logic (DL) ALC is usually regarded as the basic DL that
comprises all Boolean concept constructors and from which all expressive DLs are de-
rived by admitting additional concept constructors. The fundamental role of ALC is
largely due to the fact that it is very well-behaved regarding its logical, model-theoretic,
and computational properties. This good behavior can, in turn, be explained nicely by
the fact that ALC-concepts can be characterized exactly as the bisimulation invariant
fragment of first-order logic (FO) in the sense that an FO formula is invariant under
bisimulation if, and only if, it is equivalent to an ALC-concept [22, 13, 16]. In particu-
lar, invariance under bisimulation explains the tree-model property of ALC as well as
its favorable computational properties [24]. In the mentioned characterization, the con-
dition thatALC is a fragment of FO is much less important than its bisimulation invari-
ance. In fact, ALCµ, the extension of ALC with fixpoint operators, is not a fragment
of FO, but inherits almost all important properties of ALC [8, 12]. Similar to ALC,
ALCµ’s fundamental role (in particular in its formulation as the modal mu-calculus)
can be explained by the fact that ALCµ-concepts can be characterized exactly as the
bisimulation invariant fragment of monadic second-order logic (MSO) [14, 8]. Indeed,
from a purely theoretical viewpoint it is hard to explain why ALC rather than ALCµ
forms the logical underpinning of current ontology language standards; the facts that
mu-calculus concepts can be hard to grasp and that, despite the same theoretical com-
plexity, efficient reasoning in ALCµ is more challenging than in ALC are probably the
only reasons for the limited interest in ALCµ compared to ALC.

In recent years, the development of very large ontologies and the use of ontologies to
access instance data has led to a revival of interest in tractable DLs. The main examples
are EL [5] and DL-Lite [9], the logical underpinnings of the OWL profiles OWL2
EL and OWL2 QL, respectively. In contrast to ALC, a satisfactory characterization
of the expressivity of such DLs is still missing, and a first aim of this paper is to fill
this gap for EL. To this end, we characterize EL as a maximal fragment of FO that
is preserved under simulations and has finite minimal models. Note that preservation
under simulations alone would characterize EL with disjunctions, and the existence of
minimal models reflects the “Horn-aspect” of EL.

The second and main aim of this paper, however, is to introduce and investigate
two equi-expressive extensions of EL with greatest fixpoints, ELν and ELν+, and to



prove that they stand in a similar relationship to EL as ALCµ to ALC. To this end,
we prove that ELν (and therefore also ELν+, which admits mutual fixpoints and is
exponentially more succinct than ELν) can be characterized as a maximal fragment
of MSO that is preserved under simulations and has finite minimal models. Similar to
ALCµ, ELν and ELν+ inherit many good properties of EL, the most interesting being
that reasoning with general concept inclusions (GCIs) is still tractable and that the same
type of algorithm can be used. Thus, in contrast toALCµ, the development of practical
decision procedures is no obstacle to using ELν .

Moreover, ELν+ has a number of very useful properties that EL and most of its
extensions are lacking. To begin with, we show that in ELν+ least common subsumers
(LCS) w.r.t. general TBoxes always exist and can be computed in polynomial time (for
a bounded number of concepts). This result can be regarded as an extension of similar
results for least common subsumers w.r.t. classical TBoxes in EL with greatest fixpoint
semantics in [1]. Similarly, in ELν+ most specific concepts always exist and can be
computed in linear time; a result which also generalizes [1]. Secondly, we show that
ELν+ has the Beth definability property with explicit definitions being computable in
polytime and of polynomial size. It has been convincingly argued in [21, 20] that this
property is of great interest for structuring TBoxes and for ontology based data access.
Another application of ELν+ is demonstrated in [15], where the succinct representa-
tions of definitions in ELν+ are used to develop polytime algorithms for decomposing
certain general EL-TBoxes.

To prove these result and provide a better understanding of the modeling capabil-
ities of ELν+ we show that it has the same expressive power as extensions of EL by
means of simulation quantifiers, a variant of second-order quantifiers that quantifies
”modulo a simulation of the model”; in fact, the relationship between simulation quan-
tifiers and ELν+ is somewhat similar to the relationship between ALCµ and bisim-
ulation quantifiers [11]. Proofs are omitted for brevity and the reader is referred to
www.csc.liv.ac.uk/∼frank/publ/publ.html.

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of concept and role
names. EL-concepts are built according to the rule

C := A | > | ⊥ | C uD | ∃r.C,

where A ∈ NC, r ∈ NR, and C,D range over EL-concepts3. An EL-concept inclusion
takes the form C v D, where C,D are EL-concepts. A general EL-TBox T is a finite
set of EL-concept inclusions. An ABox assertion is an expression of the form A(a) or
r(a, b), where a, b are from a countably infinite set of individual names NI, A ∈ NC,
and r ∈ NR. An ABox is a finite set of ABox assertions. By Ind(A) we denote the set
of individual names inA. An EL-knowledge base (KB) is a pair (T ,A) that consists of
an EL-TBox T and an ABox A.

3 In the literature, EL is typically defined without ⊥. The sole purpose of including ⊥ here is to
simplify the formulation of some results.



The semantics of EL is based on interpretations I = (∆I , ·I), where the domain
∆I is a non-empty set, and ·I is a function mapping each concept name A to a subset
AI of ∆I , each role name r to a binary relation rI ⊆ ∆I ×∆I , and each individual
name a to an element aI of ∆I . The interpretation CI ⊆ ∆I of EL-concepts C in an
interpretation I is defined in the standard way [6]. We will often make use of the fact
that EL-concepts can be regarded as formulas in FO (and, therefore, MSO) with unary
predicates from NC, binary predicates from NR, and exactly one free variable [6]. We
will often not distinguish between EL-concepts and their translations into FO/MSO.

We now introduce ELν , the extension of EL with greatest fixpoints and the main
language studied in this paper. ELν-concepts are defined like EL-concepts, but addi-
tionally allow the greatest fixpoint constructor νX.C, where X is from a countably
infinite set of (concept) variables NV and C an ELν-concept. A variable is free in a
concept C if it occurs in C at least once outside the scope of any ν-constructor that
binds it. An ELν-concept is closed if it does not contain any free variables. An ELν-
concept inclusion takes the form C v D, where C,D are are closed ELν-concepts. The
semantics of the greatest fixpoint constructor is as follows, where V is an assignment
that maps variables to subsets of ∆I and V[X 7→ W ] denotes V modified by setting
V(X) = W :

(νX.C)I,V =
⋃
{W ⊆ ∆I |W ⊆ CI,V[X 7→W ]}

We will also consider an extended version of the ν-constructor that allows to capture
mutual recursion. It has been considered e.g. in [10, 23] and used in a DL context in
[19]; it can be seen as a variation of the fixpoint equations considered in [8]. The con-
structor has the form νiX1 · · ·Xn.C1, . . . , Cn where 1 ≤ i ≤ n. The semantics is
defined by setting (νiX1 · · ·Xn.C1, . . . , Cn)I,V to⋃

{Wi | ∃W1, . . . ,Wi−1,Wi+1, . . . ,Wn s.t. for 1 ≤ j ≤ n:
Wj ⊆ CI,V[X1 7→W1,...,Xn 7→Wn]

j }

We use ELν+ to denote EL extended with this mutual greatest fixpoint constructor.
Clearly, νX.C ≡ ν1X.C, thus every ELν-concept is equivalent to an ELν+-concept.
Conversely, we have the following result [8]:

Proposition 1. For every ELν+-concept, one can construct an equivalent ELν-concept
of at most exponential size.

By extending the translation of EL-concepts into FO in the obvious way, one can trans-
late closed ELν+-concepts into an MSO formula with one free first-order variable. We
will often not distinguish between ELν+-concepts and their translation into MSO.

3 Characterizing EL using simulations

The purpose of this section is to provide a model-theoretic characterization of EL as
a fragment of FO that is similar in spirit to the well-known characterization of ALC
as the bisimulation-invariant fragment of FO. To this end, we first characterize ELt,
the extension of EL with the disjunction constructor t, as the fragment of FO that



is preserved under simulation. Then we characterize the fragment EL of ELt using,
in addition, the existence of minimal models. A pointed interpretation is a pair (I, d)
consisting of an interpretation I and d ∈ ∆I . A signatureΣ is a set of concept and role
names.

Definition 1 (Simulations). Let (I1, d1) and (I2, d2) be pointed interpretations and Σ
a signature. A relation S ⊆ ∆I1×∆I2 is aΣ-simulation between (I1, d1) and (I2, d2),
in symbols S : (I1, d1) ≤Σ (I2, d2), if (d1, d2) ∈ S and the following conditions hold:

1. for all concept names A ∈ Σ and all (e1, e2) ∈ S, if e1 ∈ AI1 then e2 ∈ AI2 ;
2. for all role names r ∈ Σ, all (e1, e2) ∈ S, and all e′1 ∈ ∆I1 with (e1, e′1) ∈ rI1 ,

there exists e′2 ∈ ∆I2 such that (e2, e′2) ∈ rI2 and (e′1, e
′
2) ∈ S.

If such an S exists, then we also say that (I2, d2) Σ-simulates (I1, d1) and write
(I1, d1) ≤Σ (I2, d2).

If Σ = NC ∪ NR, then we omit Σ and use the term simulation to denote Σ-simulations
and (I1, d1) ≤ (I2, d2) stands for (I1, d1) ≤Σ (I2, d2). It is well-known that the de-
scription logic EL is intimately related to the notion of a simulation, see for example
[4, 17]. In particular, EL-concepts are preserved under simulations in the sense that if
d ∈ CI for an EL-concept C and (I1, d1) ≤Σ (I2, d2), then d2 ∈ CI2 . This obser-
vation, which clearly generalizes to ELt, illustrates the (limitations of the) modeling
capabilities of EL/ELt. We now strengthen it to an exact characterization of the ex-
pressive power of these logics relative to FO.

Let ϕ(x) be an FO-formula (or, later, MSO-formula) with one free variable x. We
say that ϕ(x) is preserved under simulations if, and only if, for all (I1, d1) and (I2, d2),
I1 |= ϕ[d1] and (I1, d1) ≤ (I2, d2) implies I2 |= ϕ[d2].

Theorem 1. An FO-formula ϕ(x) is preserved under simulations if, and only if, it is
equivalent to an ELt-concept.

To characterize EL, we add a central property of Horn-logics on top of preservation
under simulations. Let L be a set of FO (or, later, MSO) formulas, each with one free
variable. We say that L has (finite) minimal models if, and only if, for every ϕ(x) ∈ L
there exists a (finite) pointed interpretation (I, d) such that for all ψ(x) ∈ L, we have
I |= ψ[d] if, and only if, ∀x.(ϕ(x)→ ψ(x)) is a tautology.

Theorem 2. The set of EL-concepts is a maximal set of FO-formulas that is preserved
under simulations and has minimal models (equivalently: has finite minimal models): if
L is a set of FO-formulas that properly contains all EL-concepts, then either it contains
a formula not preserved under simulations or it does not have (finite) minimal models.

We note that de Rijke and Kurtonina have given similar characterizations of various
non-Boolean fragments of ALC. In particular, Theorem 1 is rather closely related to
results proved in [16] and would certainly have been included in the extensive list of
characterizations given there had EL already been as popular as it is today. In contrast,
the novelty of Theorem 2 is that it makes the Horn character of EL explicit through
minimal models while the characterizations of disjunction-free languages in [16] are
based on simulations that take sets (rather than domain-elements) as arguments.



4 Simulation quantifiers and ELν

To understand and characterize the expressive power and modeling capabilities of ELν ,
we introduce three distinct types of simulation quantifiers and show that, in each case,
the resulting language has the same expressive power as ELν .
Simulating interpretations. The first language ELsi extends EL by the concept con-
structor ∃sim(I, d), where (I, d) is a finite pointed interpretation in which only finitely
many σ ∈ NC ∪ NR have a non-empty interpretation σI ⊆ ∆I . The semantics of
∃sim(I, d) is defined by setting for all interpretations J and e ∈ ∆J ,

e ∈ (∃sim(I, d))J iff (I, d) ≤ (J , e).

Example 1. Let I consist of one point d such that (d, d) ∈ rI . Then e ∈ (∃sim(I, d))J
iff there is an infinite r-chain starting at e in I, i.e., there exist e0, e1, e2, . . . such that
e = e0 and (ei, ei+1) ∈ rJ for all i ≥ 0.

To attain a better understanding of the constructor ∃sim, it is interesting to observe that
every ELsi-concept is equivalent to a concept of the form ∃sim(I, d).

Lemma 1. For every ELsi-concept C one can construct, in linear time, an equivalent
concept of the form ∃sim(I, d).

Proof. By induction on the construction of C. If C = A for a concept name A, then let
I = ({d}, ·I), whereAI = {d} and σI = ∅ for all symbols distinct fromA. Clearly,A
and ∃sim(I, d) are equivalent. For C1 = ∃sim(I1, d1) and C2 = ∃sim(I2, d2) assume
that ∆I1 ∩∆I2 = {d1} = {d2}. Then ∃sim(I1 ∪ I2, d1) is equivalent to C1 uC2. For
C = ∃r.∃sim(I, d) construct a new interpretation I ′ by adding a new node e to∆I and
setting (e, d) ∈ rI′ . Then ∃sim(I ′, e) and C are equivalent. ut

We will show that there are polynomial translations between ELsi and ELν+. When us-
ing ELν in applications and to provide a translation from ELν+ to ELsi, it is convenient
to have available a “syntactic” simulation operator.
Simulating models of TBoxes. The second language ELst extends EL by the concept
constructor ∃simΣ.(T , C), where Σ is a finite signature, T a general TBox, and C a
concept. To admit nestings of ∃sim, the concepts of ELst are defined by simultaneous
induction; namely, ELst-concepts, concept inclusions, and general TBoxes are defined
as follows:

– every EL-concept, concept inclusion, and general TBox is an ELst-concept, con-
cept inclusion, and general TBox, respectively;

– if T is a general ELst-TBox, C an ELst-concept, and Σ a finite signature, then
∃simΣ.(T , C) is an ELst-concept;

– if C,D are ELst-concepts, then C v D is a ELst-concept inclusion;
– a general ELst-TBox is a finite set of ELst-concept inclusions.

The semantics of ∃simΣ.(T , C) is as follows:

d ∈ (∃simΣ.(T , C))I iff there exists (J , e) such that J is a model of T , e ∈ CJ
and (J , e) ≤Γ (I, d), where Γ = (NC ∪ NR) \Σ.



Example 2. Let T = {A v ∃r.A} and Σ = {A}. Then ∃simΣ.(T , A) is equivalent to
the concept ∃sim(I, d) defined in Example 1.

We will later exploit the fact that ∃simΣ.(T , C) is equivalent to ∃simΣ ∪{A}.(T ′, A),
where A is a fresh concept name and T ′ = T ∪ {A v C}. Another interesting (but
subsequently unexploited) observation is that we can w.l.o.g. restrictΣ to singleton sets
since

∃sim({σ} ∪Σ).(T , C) ≡ ∃sim{σ}.(∅,∃simΣ.(T , C))
∃sim∅.(T , C) ≡ ∃sim{B}.(T , C)

where B is a concept name that does not occur in T and C.
Simulating models of KBs. The third language ELsa extends EL by the concept con-
structor ∃simΣ.(T ,A, a), where a is an individual name in the ABox A, T is a TBox,
and Σ a finite signature. More precisely, we define ELsa-concepts, concept inclusions,
general TBoxes, and KBs, by simultaneous induction as follows:

– every EL-concept, concept inclusion, general TBox, and KB is an ELsa-concept,
concept inclusion, general TBox, and KB, respectively;

– if (T ,A) is a general ELsa-KB, a an individual name inA, andΣ a finite signature,
then ∃simΣ.(T ,A, a) is an ELsa-concept;

– if C,D are ELsa-concepts, then C v D is an ELsa-concept inclusion;
– a general ELsa-TBox is a finite set of ELsa-concept inclusions;
– an ELsa-KB is a pair (T ,A) consisting of a general ELsa-TBox and an ABox.

The semantics of ∃simΣ.(T ,A, a) is as follows:

d ∈ (∃simΣ.(T ,A, a))I iff there exists a modelJ of (T ,A) such that (J , aJ ) ≤Γ
(I, d), where Γ = (NC ∪ NR) \Σ.

Example 3. Let T = ∅, A = {r(a, a)}, and Σ = ∅. Then ∃simΣ.(T ,A, a) is equiva-
lent to the concept ∃sim(I, d) defined in Example 1.

Let L1,L2 be sets of concepts. We say that L2 is polynomially at least as expressive as
L1, in symbols L1 ≤p L2, if for every C1 ∈ L1 one can construct in polynomial time
a C2 ∈ L2 such that C1 and C2 are equivalent. We say that L1,L2 are polynomially
equivalent, in symbols L1 ≡p L2, if L1 ≤p L2 and L2 ≤p L1.

Theorem 3. The languages ELν+, ELsi, ELst, and ELsa are polynomially equivalent.

We provide sketches of proofs of ELsi ≤p ELν+, ELν+ ≤p ELst, ELst ≤p ELsa, and
ELsa ≤p ELsi.
ELsi ≤p ELν+. By Lemma 1, considering ELsi-concepts of the form ∃sim(I, d) is suf-
ficient. Each such concept is equivalent to the ELν+-concept ν`d1 · · · dn.C1, . . . , Cn,
where ∆I = {d1, . . . , dn} is regarded as a set of concept variables, d = d`, and

Ci =
l
{A | di ∈ AI} u

l
{∃r.dj | (di, dj) ∈ rI}.

ELν+ ≤p ELst. Let C be a closed ELν+-concept. An equivalent ELst-concept is con-
structed by replacing each subconcept of C of the form ν`X1, . . . , Xn.C1, . . . , Cn with



an ELst-concept, proceeding from the inside out. We assume that for every variable X
that occurs in the original ELν+-concept C, there is a concept name AX that does not
occur in C. Now ν`X1, . . . , Xn.C1, . . . , Cn (which potentially contains free variables)
is replaced with the ELst-concept

∃sim{AX1 , . . . , AXn}.({AXi v C
↓
i | 1 ≤ i ≤ n}, AX`

)

whereC↓i is obtained fromCi by replacing every variableX with the concept nameAX .

ELst ≤p ELsa. Let C be an ELst-concept. As already observed, we may assume
that D is a concept name in all subconcepts ∃simΣ.(T , D) of C. Now replace each
∃simΣ.(T , A) in C, proceeding from the inside out, by ∃simΣ.(T ,A, a), where A =
{A(a)}. The resulting concept is equivalent to C.

ELsa ≤p ELsi. To prove this inclusion, we make use of canonical models for ELsa-
KBs, similar to those used for EL in [5]. In particular, canonical models for ELsa can
be constructed by an extension of the algorithm given in [5], see the full version for
details.

Theorem 4 (Canonical model). For every satisfiable ELsa-KB (T ,A), one can con-
struct in polynomial time a model IT ,A of (T ,A) with |∆IT ,A | bounded by twice the
size of (T ,A) and such that for every model J of (T ,A), we have (IT ,A, aIT ,A) ≤
(J , aJ ) for all a ∈ Ind(A).

To prove ELsa ≤p ELsi, it suffices to show that any outermost occurrence of a concept
of the form ∃simΣ.(T ,A, a) in an ELsa-concept C can be replaced with the equivalent
ELsi-concept ∃sim(IΣT ,A, a), where IΣT ,A denotes IT ,A except that all σ ∈ Σ are
interpreted as empty sets. First let d ∈ (∃simΣ.(T ,A, a))J . Then there is a model I ′
of (T ,A) such that (I ′, aI′) ≤Σ (J , d). By Theorem 4, (IT ,A, aIT ,A) ≤ (I ′, aI′).
Thus, by closure of simulations under composition, (IΣT ,A, a) ≤Σ (J , d) as required.
The converse direction follows from the condition that IT ,A is a model of (T ,A). This
finishes our proof sketch for Theorem 3.

It is interesting to note that, as a consequence of the proofs of Theorem 3, for every
ELν+-concept there is an equivalent ELν+-concept of polynomial size in which the
greatest fixpoint constructor is not nested, and similarly for ELst, ELsa. An important
consequence of the existence of canonical models, as granted by Theorem 4, is that
reasoning in our family of extensions of EL is tractable.

Theorem 5 (Tractable reasoning). Let L be any of the languages ELν , ELν+, ELsi,
ELst, or ELsa. Then KB consistency, subsumption w.r.t. TBoxes, and the instance prob-
lem can be decided in PTIME.

Proof. By Theorem 3, it suffices to concentrate on L = ELsa. Consistency can be
decided in PTIME by the algorithm that constructs the canonical model. Subsumption
can be polynomially reduced in the standard way to the instance problem. Finally, by
Theorem 4, we can decide the instance problem as follows: to decide whether (T ,A) |=
C(a), where we can w.l.o.g. assume that C = A for a concept name A, we check
whether (T ,A) is inconsistent or aIT ,A ∈ AIT ,A . Both can be done in PTIME. ut



5 Characterizing ELν using simulations

When characterizing EL as a fragment of first-order logic in Theorem 2, our starting
point was the observation that EL-concepts are preserved under simulations and that EL
is a Horn logic, thus having finite minimal models. The same is true for ELν : first,
ELν-concepts are preserved under simulations, as ELsi is obviously preserved under
simulations and, by Theorem 3, every ELν-concept is equivalent to an ELsi-concept.
And second, a finite minimal model of an ELν-concept C can be constructed by taking
the canonical model IT ,A from Theorem 4 for T = {A v C} and A = {A(a)}. As
required, we then have |= C v D iff (T ,A) |= D(a) iff a ∈ DIT ,A , for all ELν-
concepts D. However, ELν is clearly not a fragment of FO. Instead, it relates to MSO
in exactly the way that EL related to FO.

Theorem 6. The set of ELν-concepts is a maximal set of MSO-formulas that is pre-
served under simulations and has finite minimal models: if L is a set of MSO-formulas
that properly contains all ELν-concepts, then either it contains a formula not preserved
under simulations or it does not have finite minimal models.

Proof. Assume that L ⊇ ELν is preserved under simulations and has finite mini-
mal models. Let ϕ(x) ∈ L. We have to show that ϕ(x) is equivalent to an ELν-
concept. To this end, take a finite minimal model of ϕ, i.e., an interpretation I and
a d ∈ ∆I such that for all ψ(x) ∈ L we have that ∀x.(ϕ(x) → ψ(x)) is valid iff
I |= ψ[d]. We will show that ϕ is equivalent to (the MSO translation of) ∃sim(I, d).
We may assume that ∃sim(I, d) ∈ L. Since d ∈ (∃sim(I, d))I , we thus have that
∀x.(ϕ(x) → ∃sim(I, d)(x)) is valid. Conversely, assume that d′ ∈ (∃sim(I, d))J for
some interpretation J . Then (I, d) ≤ (J , d′). We have (I, d) |= ϕ[d]. Thus, by preser-
vation of ϕ(x) under simulations, J |= ϕ[d′]. Thus ∀x.(∃sim(I, d)(x)→ ϕ(x)) is also
valid. ut

A number of closely related characterizations remain open. For example, we conjecture
that an extension of Theorem 1 holds for ELν,t and MSO (instead of EL and FO).
Also, it is open whether Theorem 6 still holds if finite minimal models are replaced by
arbitrary minimal models.

6 Applications and Logical Properties

The µ-calculus is considered to be extremely well-behaved regarding its expressive
power and logical properties. The aim of this section is to take a brief look at the ex-
pressive power of its EL-analogues ELν and ELν+. In particular, we show that ELν+
is more well-behaved than EL in a number of respects. Throughout this section, we will
not distinguish between the languages previously proved polynomially equivalent.

To begin with, we construct the least common subsumer (LCS) of two concepts
w.r.t. a general ELν+-TBox (the generalization to more than two concepts is straight-
forward). Given a general ELν+-TBox T and concepts C1, C2, a concept C is called
the LCS of C1, C2 w.r.t. T in ELν+ if

– T |= Ci v C for i = 1, 2;



– if T |= Ci v D for i = 1, 2 and D a ELν+-concept, then T |= C v D.

It is known that, in EL, the LCS does not always exist [1].

Example 4. In EL, the LCS of A,B w.r.t.

T = {A v ∃has parent.A,B v ∃has parent.B}

does not exist. In ELν , however, the LCS ofA,B w.r.t. T is given by νX.∃has parent.X .

To construct the LCS in ELν+, we adopt the product construction used in [1] for the
case of classical TBoxes with a fixpoint semantics. For interpretations I1 and I2, the
product I1 × I2 is defined by setting ∆I1×I2 = ∆I1 × ∆I2 , (d1, d2) ∈ AI1×I2 iff
di ∈ AIi for i = 1, 2, and ((d1, d2), (d′1, d

′
2)) ∈ rI1×I2 iff (di, d′i) ∈ rIi for i = 1, 2.

Theorem 7. Let T be a general ELν+-TBox and C1 and C2 be ELν+-concepts. Then
∃sim(IT ,C1 × IT ,C2 , (dC1 , dC2)) is the LCS of C1, C2 w.r.t. T in ELν .

The same product construction has been used in [1] for the case of classical TBoxes
with a fixpoint semantics, which, however, additionally require a notion of conservative
extension (see Section 7).

Our second result concerns the most specific concept, which plays an important
role in the bottom-up construction of knowledge bases and has received quite a bit of
attention in the context of EL [1, 7]. Formally, a concept C is the most specific concept
(MSC) for an individual a in a knowledge base (T ,A) in ELν+ if

– (T ,A) |= C(a) and
– for every ELν+-concept D with (T ,A) |= D(a), we have T |= C v D.

In EL, the MSC need not exist, as is witnessed by the KB (∅, {has parent(a, a)}),
where the MSC for a is non-existent.

Theorem 8. In ELν+, the MSC always exists for any a in any KB (T ,A) and is given
as ∃sim∅.(T ,A, a).

In [1], the MSC in EL-KBs based on classical TBoxes with a fixpoint semantics is
defined. The relationship between ELν+ and fixpoint TBoxes is discussed in more detail
in Section 7.

We now turn our attention to issues of definability and interpolation. From now
on, we use sig(C) to denote the set of concept and role names used in the concept C.
A concept C is a Σ-concept if sig(C) ⊆ Σ. Let T be a general ELν+-TBox, C an
ELν+-concept and Γ a finite signature.

We start with considering the fundamental notion of a Γ -definition. The question
addressed here is whether a given concept can be expressed in an equivalent way by
referring only to the symbols in a given signature Γ [21, 20]. Formally, a Γ -concept D
is an explicit Γ -definition of a concept C w.r.t. a TBox T if, and only if, T |= C ≡ D
(i.e.,C andD are equivalent w.r.t. T ). Clearly, explicit Γ -definitions do not always exist
in any of the logics studied in this paper: for example, there is no explicit {A}-definition
of B w.r.t. the TBox {A v B}. However, it is not hard to show the following using the
fact that ∃simΣ.(T , C) is the most specific Γ -concept that subsumes C w.r.t. T .



Proposition 2. Let C be an ELν+-concept, T a general ELν+-TBox and Γ a sig-
nature. There exists an explicit Γ -definition of C w.r.t. T iff ∃simΣ.(T , C) is such a
definition (for Σ = sig(T , C) \ Γ ).

It is interesting to note that if T happens to be a general EL-TBox andC an EL-concept
and there exists an explicit Γ -definition of C w.r.t. T , then the concept ∃simΣ.(T , C)
from Proposition 2 is equivalent w.r.t. T to an EL-concept over Γ . This follows from
the fact that EL has the Beth definability property (see below for a definition) which
follows immediately from interpolation results proved for EL in [15].

The advantage of giving explicit Γ -definitions in ELν+ even when T and C are for-
mulated in EL is that Γ -definitions in ELν+ are of polynomial size while the following
example shows that they may be exponentially large in EL.

Example 5. Let T consist of Ai ≡ ∃ri.Ai+1 u ∃siAi+1 for 0 ≤ i < n, and An ≡ >.
Let Γ = {r0, . . . , rn−1, s0, . . . , sn−1}. Then A0 has an explicit Γ -definition w.r.t. T in
EL, namely C0, where Ci = ∃ri.Ci+1 u ∃si.Ci+1 and Cn = >. This definition is of
exponential size and it is easy to see that there is no shorter Γ -definition of A0 w.r.t. T
in EL.

Say that a concept C is implicitly Γ -defined w.r.t. T iff T ∪ TΓ |= C ≡ CΓ , where TΓ
and CΓ are obtained from T and C, respectively, by replacing each σ 6∈ Γ by a fresh
symbol σ′. The Beth definability property, which was studied in a DL context in [21,
20], ensures that explicit Γ -definitions always exist when they possibly can.

Theorem 9. ELν+ has the polynomial Beth definability property: for every general
ELν+-TBox T , concept C, and signature Γ such that C is implicitly Γ -defined w.r.t. T ,
there is an explicit Γ -definition w.r.t. T , namely ∃sim(sig(T , C) \ Γ ).(T , C).

The proof of Theorem 9 relies on ELν having a certain interpolation property. Say
that two general TBoxes T1 and T2 are ∆-inseparable w.r.t. ELν if T1 |= C v D iff
T2 |= C v D for all ELν-inclusions C v D.

Theorem 10. Let T1 ∪ T2 |= C v D and assume that T1 and T2 are ∆-inseparable
w.r.t. ELν for ∆ = sig(T1, C) ∩ sig(T2, D). Then the ∆-concept F = ∃simΣ.(T1, C),
Σ = sig(T1, C) \ ∆, is an interpolant of C,D w.r.t. T1, T2; i.e. T1 |= C v F and
T2 |= F v D.

We show how Theorem 9 follows from Theorem 10. Assume that T ∪ TΓ |= C ≡ CΓ ,
where T , TΓ , C, CΓ satisfy the conditions of Theorem 9. Then T and TΓ are Γ -insepa-
rable and Γ ⊇ sig(T , C)∩sig(TΓ , CΓ ). Thus, by Theorem 10, T |= ∃simΣ.(TΓ , CΓ ) v
C forΣ = sig(TΓ , CΓ )\Γ . Now Theorem 9 follows from the fact that ∃simΣ.(TΓ , CΓ )
is equivalent to ∃simΣ′.(T , C) for Σ′ = sig(T , C) \ Γ .

In [15], it is shown that EL also has this interpolation property. However, the ad-
vantage of using ELν+ is that interpolants are of polynomial size. The decomposition
algorithm for EL given in [15] crucially depends on this property of ELν+.



7 Relation to TBoxes with Fixpoint Semantics

There is a tradition of considering DLs that introduce fixpoints at the TBox level instead
of at the concept level [18, 19, 2]. In [4], Baader proposes and analyzes such a DL based
on EL and greatest fixpoints. This DL, which we call ELgfp from now on, differs from
our ELν in that (i) TBoxes are classical TBoxes rather than sets of GCIs (but cycles are
allowed) and (ii) the ν-concept constructor is not present; instead, a greatest fixpoint
semantics is adopted for the defined concept names.

On the concept level, ELν is clearly strictly more expressive than ELgfp: since fix-
points are introduced at the TBox level, concepts of ELgfp coincide with EL-concepts,
and thus there is no ELgfp-concept equivalent to the ELν-concept νX.∃r.X . In the
following, we show that ELν is also more expressive than ELgfp also on the TBox
level, even if we restrict ELν-TBoxes as in ELgfp. We use the standard notion of logi-
cal equivalence, i.e., two TBoxes T and T ′ are equivalent iff T and T ′ have precisely
the same models. As observed by Schild in the context of ALC [19], every ELgfp-
TBox T = {A1 ≡ C1, . . . , An ≡ Cn} is equivalent in this sense to the ELν+-TBox
{Ai ≡ νiX1, . . . , Xn.C

′
1, . . . , C

′
n | 1 ≤ i ≤ n}, where each C ′i is obtained from Ci

by replacing each Aj with Xj , 1 ≤ j ≤ n. Note that since we are using mutual fix-
points the size of the resulting TBox is polynomial in the size of the original one. In the
converse direction, there is no equivalence-preserving translation.

Lemma 2. For each ELgfp-TBox, there is an equivalent ELν+-TBox of polynomial size,
but no ELgfp-TBox is equivalent to the ELν-TBox {A ≡ P u νX.∃r.X}.

Proof. (sketch) It is not hard to prove that for every ELgfp-TBox T , defined concept
name A in T , and role name r, one of the following holds:

– there is an m ≥ 0 such that A v ∃rn.> implies n ≤ m or
– A v ∃rn.B for some n > 0 and defined concept name B.

However, no such TBox can be equivalent to A v ∃rn.B since T |= ∃rn.> for all
n > 0, but there is no n > 0 and defined concept name B with A v ∃rn.B. ut

ELgfp and ELν become equi-expressive if the strict notion of equivalence used above is
replaced with one based on conservative extensions, thus allowing the introduction of
new concept names that are suppressed from logical equivalence. However, we believe
that not having to deal with conservative extensions is an advantage of ELν over ELgfp,
as conservative extensions tend to make simple definitions somewhat awkward, c.f. the
least common subsumers and most specific concepts for ELgfp in [3, 4].
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