
Mathematical Logic for Life Science Ontologies

Carsten Lutz1 and Frank Wolter2

1 Department of Computer Science, University of Bremen, Germany
2 Department of Computer Science, University of Liverpool, UK

clu@informatik.uni-bremen.de,frank@csc.liv.ac.uk

Abstract. We discuss how concepts and methods introduced in mathe-
matical logic can be used to support the engineering and deployment of
life science ontologies. The required applications of mathematical logic
are not straighforward and we argue that such ontologies provide a new
and rich family of logical theories that wait to be explored by logicians.

1 Introduction

In recent years, life sciences such as medicine and biology have experienced an
abundant growth of terminology. This is mainly due to increasing interdisci-
plinarity and significant scientific advances such as the decoding of the human
genome, which have established novel research areas such as pharmacogenomics
(study of the effect of genes on drug response). Indeed, life science terminology
has grown to a point where it information processing and exchange is seriously
hampered as it can no longer be guaranteed that multiple parties interpret the
data in the same way and using the same terminology. To address this problem,
there is a strong trend to construct reference terminologies, which list a standard
vocabulary to be used in information processing and data exchange, and which
also fixes the meaning of each vocabulary item.

Reference terminologies, which are nowadays usually called ontologies, are
often given in a logical language to obtain a formal semantics and make use of
automated reasoning technology. More specifically, a logical signature is used
to define the vocabulary and a (finitely axiomatized) logical theory defines the
meaning of the vocabulary. Such ontologies are typically formulated in fragments
of first-order logic and are thus amenable to the concepts and tools developed in
mathematical logic. The aim of this paper is to provide a glimpse into the field
of life science ontologies for readers with a mathematical logic background, to
demonstrate that concepts and tools from mathematical logic can be fruitfully
applied to engineering problems for ontologies, and to argue that, conversely,
life science ontologies provide a rich landscape of logical theories that present
interesting and novel challenges for logicians.

The paper is divided into two parts. In the first part, we introduce a typical
and successful example of a medical ontology: Snomed CT, the Systematized
Nomenclature of Medicine, Clinical Terms. We give an idea of what Snomed CT
is, how it is developed and kept up to date, what its main applications are, and
what kind of logical axioms are used to define the logical theory unterlying it. In



the second part of this paper, we show how concepts from mathematical logic can
be applied to ontologies in general, and to Snomed CT in particular. As concrete
examples for successful such applications, we consider conservative extensions as
a tool for achieving modularity of ontologies and uniform interpolants as a tool
for obtaining an axiomation of a relevant fragment of an ontology. We close with
some hints to other techiques from mathematical logic that potentially have
interesting applications in the area of ontologies.

2 Snomed CT

A large number of medical ontologies have emerged in recent years, including
the National Cancer Institute (NCI) thesaurus [11], the Foundational Model
of Anatomy (FMA) [1], Galen [26], and Snomed CT [22, 28]. Among these
ontologies, Snomed CT plays a particularly prominent role as it is used to
produce the standard healthcare terminology for a number of countries such as
the US, Canada, the UK, and Sweden.

2.1 Overview

Snomed CT is a comprehensive clinical healthcare terminology that comprises
more than 400.000 vocabulary items and almost the same number of logical ax-
ioms. Since 2007, the intellectual property rights of Snomed CT are held by
a not-for-profit association called International Heath Terminology Standards
Development Organisation (IHSTDO). Currently, IHSTDO is made of nine na-
tions, including the ones listed above. The general goal is to develop Snomed
CT into the global clinical terminology, thus “enabling clinicians, researchers
and patients to share and exchange healthcare and clinical data worldwide” [2].

Technically, Snomed CT is a finite set of first-order predicate logic sen-
tences and uses standard Tarski semantics. Medical terms are regarded as unary
predicates such as

Disease, Appendicitis, Inflammation, Arthritis,

and binary predicates such as

Associated Morphology, Finding Site, Procedure Site.

An example of a typical Snomed CT axiom is as follows:

∀x (Appendicitis(x)→ Disease(x)∧
∃y(Associated Morphology(x, y) ∧ Inflammation(y))).

Though easily translatable, the official syntax of Snomed CT is not classi-
cal first-order syntax and does not contain variables and first-order quantifiers.
Instead, the syntax is based on so-called description logics (DLs), a family of



knowledge representation formalisms often used as ontology languages [6]. In
description logic, a theory generally consists of axioms of the form

∀x (ϕ(x)→ ψ(x)) and ∀x (ϕ(x)↔ ψ(x)),

where ϕ(x) and ψ(x) are first-order formulas with one free variable using unary
and binary predicates (formulated in DL syntax).

The admissible form of ϕ(x) and ψ(x) depends on the description logic used.
Without going into any details, we briefly give three examples of descriptions
logics in increasing order of expressivity. The most inexpressive one is EL [5],
where ϕ(x) and ψ(x) are composed using conjunction and guarded existential
quantification. Although inexpressive, EL is a popular ontology language and
is used, for example, for Snomed CT. When EL is extended with disjunction,
negation, and guarded universal quantification, we obtain the description logic
ALC. For example, the NCI thesaurus is formulated in this language. By further
admitting guarded counting quantifiers and a number of other constructors, one
obtains the description logic OWL DL (the Web Ontology Language) that, for
example, is used for the medical ontology GALEN.

In many ontologies, the structure of axioms is restricted further by impos-
ing unfoldability. In this case, ϕ(x) has to be an atom P (x), and thus ax-
ioms ∀x (P (x) → ψ(x)) give necessary conditions for being a P and axioms
∀x (P (x)↔ ψ(x)) give both necessary and sufficient conditions. In addition, no
predicate name may be used on the left-hand side of more than one axiom and
an acyclicity condition is enforced which basically says that ψ may not refer to
P , neither directly nor indirectly. Both Snomed CT and NCI are unfoldable
terminologies, whereas GALEN is not.

2.2 Applications and Engineering

The main purpose of Snomed CT is to produce a hierarchically organized cat-
alogue of medical terms, with more general terms higher up in the hierarchy
and more specialized ones further down. Each term is annotated with a natural
language description of its meaning, a numerical code that uniquely identifies
the term, and a logical axiom that defines the term’s meaning (on a high level
of abstraction).

The classical application of Snomed CT is to simply use the catalogue and
numerical codes in medical IT applications, without exploiting or having access
to the logical axioms [3] (but see below). As an example for this use of Snomed
CT, consider the generation, processing, and storage of medical records. Whether
working in a hospital or independently, physicians have to generate a detailed
record of every patient visit, including details on findings, diagnosis, treatment,
and medication. The purpose of the resulting medical records is manifold and
ranges from archiving via accounting and billing to communication with external
labs and hospitals. When a physician enters a medical record at his PC, he can
browse medical terms by navigating along the Snomed CT hierarchy and view
the natural language descriptions when necessary. After selecting a relevant term,



the Snomed CT numerical code can be automatically inserted into the record.
In fact, there is a strong trend towards electronic medical records, and standard
data formats such as the Health Level 7 Clinical Document Architecture (CDA)
are already in wide-spread use. To make sure that medical records represented in
such standard formats are not misinterpreted, it is important to use standardized
medical terminology. To this effect, CDA is based on Snomed CT numerical
codes (among others). The general idea of Snomed CT is that, if this standard
is adopted by the healthcare system of a nation, then all medical data storage
and exchange is in terms of Snomed CT codes.

Why, then, is Snomed CT a logical theory? We first note that other stan-
dardized medical terminologies such as ICD-10 are not based on logic. However,
the designers of Snomed CT find it useful to employ logic during the design
and maintenance of their ontology. In fact, engineering a large terminology is
far from trivial. To generate an ontology of the size of Snomed CT that covers
a range of specialized areas, many medical experts and IT experts have to work
together and follow agreed-upon design patterns that guide design decisions. But
even with a good design methodology, ensuring that the ontology is of consistent
quality and free of mistakes is very difficult. It is here that logic comes into play:
the designers of Snomed CT use automated reasoning to verify their modelling
and derive consequences that are only implicit in it. Traditionally, they concen-
trate on deciding implication in the description logic EL; for example, a recently
discovered mistake was the following entailed implication:

Snomed CT |= ∀x (Amputation of arm(x)→ Amputation of hand(x)).

As we will discuss later, deciding entailment of implications is only the tip of the
iceberg and there are many more opportunities for automated reasoning and logic
techniques to support ontology design. Additional need for automated reasoning
support is due to the fact that medical knowledge, national legislation, etc., are
constantly changing, which requires frequent changes to the ontology. Finally,
Snomed CT is customized to national needs and translated into various (hu-
man) languages, which results in a large number of different, but closely related
versions of the same ontology that need to be consistent with one another. From
the perspective of mathematical logic, we thus have a huge and continuously
developing first-order theory and a large number of slightly modified variants of
this theory that are closely interrelated.

The design of large ontologies is not only difficult, but also time-consuming
and expensive. For this reason and since IHSTDO is pleasantly liberal in giv-
ing out Snomed CT for research purposes, Snomed CT is increasingly being
viewed as a valuable general-purpose tool and many novel applications are being
proposed. Often, these novel applications involve logical reasoning and provide
additional opportunities to apply techniques from logic. We mention only one
such application as an example. Given that electronic medical records are gaining
rapid popularity and that they use Snomed CT codes for representing medical
data, it is an intriguing idea to exploit not only the codes, but also the logical
definitions when querying medical data, thus enabling more complete answers.



For example, when answering a query asking for patients with a liver disease, we
may use Snomed CT to deduce that hepatitis is a liver disease and thus include
all patients suffering from hepatitis in the answer. In this way, query answering
turns into logical deduction. From a logic perspective, an interesting new flavour
of this application is scale: in addition to the already large Snomed CT, the
logical theory now also comprises a potentially huge amount of medical data (as
ground facts), and new questions arise due to the special use of deduction in this
application [23, 17].

3 Mathematical Logic

Today, it has become standard to apply automated reasoning and knowledge
representation techniques during the design and deployment of ontologies. In
particular, reasoning in languages such as EL, ALC, and OWL-DL has been
investigated in depth and found to be decidable and PTime-, ExpTime-, and
coNExpTime-complete, respectively [5, 6]. A large variety of automated reason-
ing systems are available and fruitfully employed by ontology engineers and users.
In this section, we consider the potential role of mathematical logic, understood
as the study of properties of logical theories and their interrelation. Specifically,
we discuss how the notions of conservative extension and uniform interpolation
can be employed for ontology engineering tasks. It is worth, though, to men-
tion that these notions have previously been used in other areas of computer
science. For example, uniform interpolation has been studied in AI under the
name forgetting for more than a decade [27, 8] and modular program specifi-
cation is another area of computer science where notions of conservativity and
interpolation are of great interest [25, 21].

3.1 Conservative Extensions

As mentioned above, ontologies are not static objects, but are frequently cor-
rected, customized, extended, and even merged with other ontologies. To under-
stand and control the relationship between the resulting distinct versions of an
ontology, one can directly employ notions from mathematical logic. The simplest
such notion is probably that of a conservative extension. In mathematical logic,
conservative extensions are used for relative consistency proofs and to decom-
pose a theory into simpler subtheories. In ontology engineering, they can be used
to give a rigorous definition of when the extension of an ontology by additional
axioms interferes (in some possibly unintended way) with the original ontology,
and to decompose an ontology into subtheories and modules [29]. To describe
this application in more detail, recall that the notion of a conservative exten-
sion comes in two flavours. Let T and T ′ be two sets of axioms and L a logical
language.

– Model-theoretic: T ∪T ′ is a model-conservative extension of T if every model
of T can be expanded to a model of T ′;



– Language-dependent : T ∪T ′ is an L-conservative extension of T if T ∪T ′ |= ϕ
implies T |= ϕ, for all L-sentences ϕ with sig(ϕ) ⊆ sig(T ).

In mathematical logic, L is typically first-order logic (FO) or some language that
extends FO. Every model-theoretic conservative extension is an FO-conservative
extension, but the converse is well-known to fail. Both notions can, in princi-
ple, be used without modification to analyse the effect of adding axioms T ′ to
a given ontology T . It tuns out, however, that the corresponding decision prob-
lem “decide whether T ∪ T ′ is a conservative extension of T” is undecidable
for theories T and T ′ formulated in EL, ALC, and OWL-DL, both for model-
conservative extensions and FO-conservative extensions [19, 18]. In the case of
unfoldable theories, the situation changes: for ALC and OWL-DL, model and
FO-conservativity are still undecidable whereas for EL, model-conservativity is
decidable in polynomial time [14].

The tractability result for unfoldable EL-theories has been used to extract
modules from Snomed CT. The need for module extraction is due to the huge
size of Snomed CT and the fact that in many applications, only a small subset
Σ of the 400.000 terms of Snomed CT are required. In this case, it is useful
to extract a minimal subset M of the set of Snomed CT axioms such that
Σ is included in the signature sig(M) of M and Snomed CT is a conserva-
tive extension of M . The user can then work with M instead of Snomed CT.
By extending the algorithm that decides model-conservativity, one can extract
such modules in polynomial time. A very encouraging experimental evaluation
of this approach has been given in [14], see also the discussion of Figure 3.2
below. Interestingly, the modules extracted using such a logic-based approach
are significantly smaller than modules extracted using heuristic approaches.

Under some natural conditions, model-conservativity becomes decidable even
for non-unfoldable theories. For example, if T ′ and T share unary predicates only,
then model-conservativity is coNExpTimeNP-complete for ALC [14]. Taken to-
gether, the stated negative and positive results show that a naive application
of mathematical logic concepts to ontology engineering can fail because the as-
sociated algorithmic problems become unfeasible even for very weak fragments
of FO, and thus the true challenge lies in adapting these notions to the needs
of ontology engineers and users. Instead of resorting to unfoldable theories or
unary predicates, there is another interesting direction to explore: the reason for
undecidability of FO-conservativity in the case of non-unfoldable theories is due
to the fact that we have considered FO-consequences, rather than consequences
formulated at the same level of abstractness as ontologies. Indeed, an ontology
engineer or user is typically not interested in arbitrary FO-consequences of an
ontology, but in consequences relevant to her application. We now consider two
notions of conservative extensions tailored towards ontology engineering.
Implication Conservativity. As illustrated by the “amputation of arm” example
above, ontology engineers typically concentrate on implications formulated in the
language L of the ontology. Therefore, it is natural to consider L-conservativity
with L the set of implications ∀x(ϕ(x) → ψ(x)) formulated in EL, ALC, and
OWL-DL, respectively. For simplicity, we simply speak of EL-conservativity,



ALC-conservativity, and OWL-conservativity. To analyze these syntactically de-
fined notions of conservative extension, it is useful to first establish a model-
theoretic characterization. Using techniques from modal logic, one can show
that an ALC-theory T ∪ T ′ is an ALC-conservative extension of T if and only if
for every model M of T , there exists a sig(T )-bisimilar model M ′ of T ∪T ′. Using
this characterization, one can show that deciding ALC-conservativity is decid-
able and 2ExpTime-complete [9]. A similar characterization, using simulations
instead of bisimulations, can be used to characterize EL-conservativity. In this
case, the corresponding decision problem is ExpTime-complete [19]. Unfortu-
nately, OWL-conservativity is undecidable [12]. We note, though, that there are
extensions of ALC with guarded counting quantifiers for which conservativity is
still decidable and 2ExpTime-complete [18].

Because of their high computational complexity, it remains to be seen in how
far the decision problems associated with these notions of conservativity are
useful in practice. Recall, however, that Snomed CT is unfoldable. To analyze
EL-conservativity for unfoldable EL-theories, it is preferable to follow a proof-
theoretic approach. Using the sequent calculus of [13], one can give a polynomial
time algorithm that decides EL-conservativity. The resulting algorithm has fruit-
fully been employed to ontology versioning [15].

Query Conservativity. At the end of Section 2, we have briefly discussed how
Snomed CT can be used to query electronic medical records. In logic terms,
one poses a query to a theory K that consists of an ontology T and a set A
of ground facts that represent the data (called an ABox in description logic).
Query languages of interest are instance queries of the form “output all con-
stant symbols a such that T ∪ A |= P (a)” and conjunctive queries in which
P is a first-order formula built from conjunction and existential quantification.
To compare theories K1 and K2, it is in principle possible to again apply stan-
dard notions of conservativity. However, ground facts change frequently and are
typically unknown at the design time of the ontology. Thus, it is more useful
to regard ground facts not as a part of the theory, but as an unknown “black-
box”. We say that T ∪ T ′ is a query-conservative extension of T if, and only
if, for all sets A of ground facts and all queries q using symbols from T only,
T ∪T ′∪A |= q[a] iff T ∪A |= q[a]. The resulting notions of conservativity depend
on the query language used and typically lie between implication conservativity
and FO-conservativity. Again, model-theoretic and proof-theoretic methods can
be applied to analyze it. For example, in [20] it is shown using model-theoretic
methods that for EL, query-conservativity (w.r.t. conjunctive queries) can be
reduced to implication conservativity for an extension of EL with non-guarded
existential quantification, and that the corresponding decision problem is decid-
able and ExpTime-complete.

3.2 Uniform Interpolation

As mentioned above, many applications of ontologies require only a rather small
part of a large ontology, identified by a subvocabulary. Therefore, ontology users



are interested in generating small ontologies that “say the same” about the sub-
vocabulary of interest as the original ontology. As discussed above, one possibility
to obtain such an ontology is to extract a module, i.e., a subset of the original
ontology of which the latter is a conservative extension. Another interesting way
of generating such a small ontology is to compute a uniform interpolant. Let
Σ be a signature, T a logical theory, and L a logical language. A finite set of
L-sentences TΣ is called a uniform interpolant for T w.r.t. Σ and L if

– the signature sig(TΣ) of TΣ is contained in Σ;
– T |= TΣ ;
– for all ϕ ∈ L: if T |= ϕ and sig(ϕ) ∩ T ⊆ Σ, then TΣ |= ϕ.

In other words, TΣ provides an axiomatization of what T “says” about Σ in L
without using symbols not in Σ. Apart from the motivation discussed above,
there are various applications of uniform interpolants in ontology engineering.
An example is ontology exploration: to avoid mistakes, an ontology engineer can
identify a signature that captures a certain subject matter (such as amputations),
generate a uniform interpolant that axiomatizes this subject matter, and then
inspect it for problems. Another example is ontology re-use, where it may be
more appropriate to import a uniform interpolant covering only the relevant
terms than being forced to import additional terms as well.

For many logical languages, it is known that uniform interpolants do not
always exist; this is true for FO, but also for various modal logics [10, 30]. Positive
results are known for propositional intuitionistic logic [24] and the modal µ-
calculus [7]. Thus, the applicability of uniform interpolants crucially depends on
the ontology language used and the language L in which uniform interpolants are
to be axiomatized. The following simple example shows that even for EL, uniform
interpolants do not always exist unless one admits second-order expressivity in L:
let Σ = {A, r} and

T = {∀x (A(x)→ B(x)),∀x (B(x)→ ∃y(r(x, y) ∧B(y))}.

The class of Σ-reducts of T -models coincides with the models satisfying

A(x)→ (there exist x1, x2, . . . such that r(x, x1), r(x1, x2), . . .)

and the first-order theory of this class of models is axiomatized by

{A(x)→ ∃x1 · · · ∃xn (r(x, x1) ∧ · · · ∧ r(xn−1, xn)) | n > 0}

which is not finitely axiomatizable in FO. We are thus again faced with the
problem that a naive application of tools from mathematical logic is only of
limited use, and a more careful analysis of the situation is required. We explore
three options.

First, there are useful cases in which uniform interpolants are guaranteed
to exist: observe that, although rather simple, the theory T above is not un-
foldable. Indeed, it turns out [15, 16] that for unfoldable EL-theories, uniform
interpolants w.r.t. EL-implications always exist. These uniform interpolants can



be of exponential size in the worst case, and so their practical relevance can
only be evaluated with the help of experiments. Figure 3.2, which is taken from
[16], compares the size of minimal modules based on model-conservative exten-
sions extracted from Snomed CT using the prototype implementation MEX
with the size of uniform interpolants computed using the prototype implemen-
tation NUI. For 83 randomly generated signatures consisting of 3000 unary and
20 binary predicates, it gives the number of modules and uniform interpolants
(vertical axis) of a given size (horizontal axis), where the size is measured as as
the number of symbols that occur in the module/interpolant. Thus, 10 uniform
interpolants consist of more than 1 000 000 symbols. For all 83 signatures, the
size of corresponding modules is between 125 000 and 150 000 symbols (which
is about 3% of full Snomed CT). Note that, in contrast to modules, the size of
uniform interpolants depends a lot on the concrete signature. It is not clear yet,
however, whether the very large uniform interpolants have a smaller axiomatiza-
tion not found by the prototype implementation. Similar results hold for uniform
interpolants formulated in languages L that correspond to query conservativity
as discussed above. These first experiments suggest that uniform interpolants
can become a useful tool for ontology engineering.

Second, even in setups where uniform interpolants are not guaranteed to ex-
ist, it might well be the case that for those ontologies that are actually used,
uniform interpolants do usually exist. Then, it is of interest to develop algo-
rithms that decide, given a signature Σ and an ontology T , whether a uniform
interpolant exists. An example of such a result is the following: there do not al-
ways exist uniform interpolants for ALC-theories (with uniform interpolants also
formulated in ALC), but it is decidable whether a uniform interpolant exists.
Tight complexity bounds and experimental evaluation is still missing, though.

Third, one can move to a language L for the uniform interpolant that admits
second-order expressivity. The modal µ-calculus has uniform interpolation, and



so a natural option is to consider as the language L extensions of EL, ALC, and
OWL-DL with fixpoint operators.

4 Discussion

We have discussed how two notions introduced in mathematical logic, conser-
vative extensions and uniform interpolation, can be applied to ontology engi-
neering. Many other notions from mathematical logic remain to be explored. An
example is interpretations between logical theories, which can be regarded as a
generalization of conservative extensions. In many applications of ontologies such
as data integration, mappings between the symbols of ontologies are of crucial
importance. Investigating the relation between the mappings used by ontology
engineers and theory interpretations as known from mathematical logic could
be of great interest. Another research direction is abstract model theory for on-
tology languages: a main problem in the field of ontology languages is a lack of
logic-based criteria to classify languages and understand their place within the
landscape of all potential ontology languages. Currently, only concrete languages
are investigated and compared, and methods from abstract model theory might
well lead to a better understanding.

References

1. Foundational Model Explorer. http://fme.biostr.washington.edu:8089/FME/index.html.
2. http://www.ihtsdo.org/.
3. KR-Med: Representing and sharing knowledge using SNOMED, volume 410. CEUR

Workshop Proceedings, 2008.
4. H. Andreka, J. Madarasz, and I. Nemeti. Logic of space-time and relativity theory.

In Handbook of Spatial logic, pages 607–711. Springer, 2007.
5. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. IJCAI.

Morgan Kaufmann, 2005.
6. F. Baader, D. Calvanes, D. McGuiness, D. Nardi, and P. Patel-Schneider. The

Description Logic Handbook: Theory, implementation and applications. Cambridge
University Press, 2003.

7. G. D’Agostino and G. Lenzi. An axiomatization of bisimulation quantifiers via the
µ-calculus. Theoret. Comput. Sci., 338, 2005.

8. T. Eiter and K. Wang. Semantic forgetting in answer set programming. Artif.
Intell., 172(14):1644–1672, 2008.

9. S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for
conservative extensions in description logic. In Proc. KR, pages 187–197, 2006.

10. S. Ghilardi and M. Zawadowski. Undefinability of propositional quantifiers in the
modal system S4. Studia Logica, 55, 1995.

11. J. Golbeck, G. Fragaso, F. Hartel, J. Hendler, B. Parsia, and J. Oberhaler. The
national cancer institute’s thesaurus and ontology. J. of Web Semantics, 2003.

12. B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies:
Theory and practice. Journal of Artificial Intelligence Research, 31:273–318, 2008.

13. M. Hofmann. Proof-theoretic approach to description-logic. In Proc. LICS, pages
229–237, 2005.



14. B. Konev, C. Lutz, D. Walther, and F. Wolter. Semantic modularity and module
extraction in description logic. In Proc. ECAI, pages 55–59, 2008.

15. B. Konev, D. Walther, and F. Wolter. The logical difference problem for description
logic terminologies. In Proc. IJCAR, Lecture Notes in Computer Science, pages
259–274. Springer, 2008.

16. B. Konev, D. Walther, and F. Wolter. Forgetting and uniform interpolation in
large-scale description logic terminologies. In Proceedings of IJCAI, 2009.

17. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in el using a
relational database system. In Proceedings of IJCAI, 2009.

18. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive descrip-
tion logics. In Proc. IJCAI, pages 453–458, 2007.

19. C. Lutz and F. Wolter. Conservative extensions in the lightweight description logic
EL. In Proc. CADE, Lecture Notes in Computer Science, pages 84–99. Springer,
2007.

20. C. Lutz and F. Wolter. Deciding inseparability and conservative extensios in the
description logic EL. Journal of Symbolic Computation, 2009.

21. P. Mosses, editor. CASL Reference Manual. LNCS. Springer Verlag, 2004.
22. I. H. T. S. D. Organisation. SNOMED CT User Guide. 2008. Available from

http://www.ihtsdo.org/snomed-ct/snomed-ct-publications/.
23. C. Patel, J. Cimino, J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma,

E. Schonburg, and K. Srinivas. Matching patient records to clinical trials using
ontologies. In Proceedings of International Semantic Web Conference, volume 4825
of Lecture Notes in Computer Science, pages 816–829. Springer, 2007.

24. A. Pitts. On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. J. Symbolic Logic, 57, 1992.

25. J. G. R. Diaconescu and P. Stefaneas. Logical support for modularisation. In
G. Huet and G. Plotkin, editors, Logical Environments, 1993.

26. A. L. Rector and J. Rogers. Ontological and practical issues in using a description
logic to represent medical concept systems: Experience from galen. In Reasoning
Web, pages 197–231, 2006.

27. R. Reiter and F. Lin. Forget it! In Proceedings of AAAI Fall Symposium on
Relevance, pages 154–159, 1994.

28. K. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass., 2000. Fall Symposium Special Issue.

29. H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies,
volume 5445 of Lecture Notes in Computer Science. Springer, 2009.

30. A. Visser. Uniform interpolation and layered bisimulation. In Gödel ’96 (Brno,
1996), volume 6 of Lecture Notes Logic. Springer Verlag, 1996.


