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1 Introduction

One of the main applications of description logics (DLs) is ontology-based data
access: a conceptual model of a domain is formalized using a DL TBox, and this
formalization is exploited to obtain complete answers when querying data stored
in an ABox. The current availability of professional and comprehensive ontologies
for the bio-medical domain such as SNOMED CT, NCI, and Galen allows an easy
and inexpensive adoption of this approach in bio-medical applications such as
querying electronic medical records [1]. In such applications, it is typical that an
“off-the-shelf” ontology such as SNOMED CT is used together with ABoxes that
derive from the actual application. Since ontologies such as SNOMED CT are
huge, containing more than 400.000 concept names and embracing various areas
such as anatomy, diseases, medication, and even social context and geographic
location, it is usually the case that many symbols (concept or role names) defined
in the ontology are excluded from the signature Σ used to formulate ABoxes in
the given application. Such an excluded symbol S may be linked to the symbols
in Σ via the TBox and thus still be relevant for querying Σ-ABoxes, but it may
also be completely unrelated to Σ and thus never contribute to deriving certain
answers to queries posed against Σ-ABoxes. Clearly, symbols of the latter kind
are not relevant for formulating queries in the considered application.

The aim of this paper is (i) to propose a notion of ABox relevance of a
symbol that describes when a symbol S is relevant for ABoxes formulated in
a given signature Σ, with a given background TBox T in place; and (ii) to
study the computational complexity of deciding ABox relevance. This decision
problem is of interest for a variety of reasons. First, knowing which symbols are
relevant for ABox querying is useful for the construction of meaningful queries
because non-relevant symbols can be discarded. When working with TBoxes that
have more than 400.000 concept names such as SNOMED CT, support of this
type is clearly indispensable. Second, the set of relevant symbols can be used
to guide module extraction [2–4]. Recall that module extraction is the problem
of extracting a subset M from a TBox T so that M can be used instead of T
in a particular application. In most cases, the extraction of M is guided by a
signature Σ that is of interest for the application and about which the module
should “say the same” as the original TBox. If the targeted application is query



answering, it is natural to use as the signature Σ the set of symbols that are
relevant for ABoxes formulated in the desired ABox signature. With the right
notion of ‘module’ at hand, the extracted module can then be used instead of the
original TBox for query answering. Note that our notion of relevance is based
on an ABox signature instead of on a concrete ABox. The rationale behind this
is that, in typical applications, the ABox changes frequently which makes it
unrealistic to assume that the set of relevant symbols is re-computed after every
ABox modification, not to speak of the rather costly module extraction.

The notion of ABox relevance depends on the query language used. In this
paper, we study instance queries as the simplest kind of query commonly used,
and conjunctive queries due to their recent popularity in the DL community [5–
13]. After introducing preliminaries in Section 2, we present our notion of ABox
relevance along with some basic observations in Section 3. We then analyze the
complexity of deciding relevance in the EL family of DLs in Section 4, showing
that it ranges from polynomial to ExpTime-complete. Results on the ALC fam-
ily of DLs are given in Section 6, showing in particular that ABox relevance is
decidable in ALC and ALCI, but relevance regarding instance queries is unde-
cidable in ALCF and relevance regarding conjunctive queries is undecidable in
ALCFI. Some longer proofs have been moved to the appendix.

2 Preliminaries

We consider various DLs throughout the paper and use standard notation for
syntax, semantics, and DL names, see [14]. In particular, we use NC and NR to
denote the sets of concept names and role names, C,D to denote (potentially)
composite concepts, A,B for concept names, r, s for role names, and a, b for
individual names. When we speak of a TBox, we mean a set of concept inclu-
sions (CIs) C v D. An ABox is a set of concept assertions A(a) and ¬A(a)
and role assertions r(a, b). To distinguish this kind of ABox from ABoxes that
admit composite concepts in concept assertions, we sometimes use the term lit-
eral ABox. We use Ind(A) to denote the set of individual names used in the
ABox A. As usual in the context of query answering, we adopt the unique name
assumption (UNA).

We study two query languages: (i) the set IQ of instance queries, which
take the form A(v); and (ii) the set CQ of conjunctive queries (CQs), which
take the form ∃v.ϕ(v,u) where ϕ is a conjunction of atoms of the form A(t)
and r(t, t′) with t, t′ terms, i.e., variables or individual names. Note that we
disallow composite concepts in instance queries and conjunctive queries, which is
a realistic assumption for many applications. Also note that instance queries can
only be used to query concept names, but not role names. This is the traditional
definition, which is due to the fact that role assertions in an ABox can only be
implied by an ABox if they are explicitly contained in it (and thus querying is
trivial). Given a TBox T , an ABox A, and a (conjunctive or instance) query
q with k answer variables v1, . . . , vk, we write T ,A |= q[a1, . . . , ak] if the tuple
(a1, . . . , ak) of individual names is a certain answer to q w.r.t. A and T (defined



in the usual way). We use certT ,A(q) to denote the set of all certain answers to q
w.r.t. A and T .

We use the term symbol to refer to a concept name or role name, signature
to refer to a set of symbols, and sig(q) to denote the set of symbols used in the
query q. Given a signature Σ, a Σ-ABox (resp. Σ-concept) is an ABox (resp.
concept) using symbols from Σ only.

3 The ABox Relevance Problem

The following definition describes the set of symbols ΣLT that can meaningfully
be used in a query posed against ABoxes that are formulated in the signature Σ,
with the TBox T in the background.

Definition 1. Let T be a TBox, Σ a signature, and L ∈ {IQ, CQ} a query
language. A symbol S is L-relevant for Σ given T if there exists a Σ-ABox and
L-query q such that A is consistent w.r.t. T , S ∈ sig(q), and certT ,A(q) 6= ∅.
The L-extension of Σ given T is the following signature:

ΣLT := Σ ∪ {S ∈ NC ∪ NR | S is L-relevant for T and Σ}.

For example, the concept name A is both IQ- and CQ-relevant for Σ = {r} given
T = {∃r.> v A}, as witnessed by the query q = A(v) and Σ-ABox {r(a, b)}
since certT ,A(q) = {a}. Note that ΣIQT can never include any role names since
role names cannot occur in an instance query. We are interested in deciding L-
relevance for L ∈ {IQ, CQ}: given a TBox T , a signature Σ and a symbol S,
decide whether S ∈ ΣLT . Clearly, this problem can be used to compute the
signature ΣLT .

It should not be surprising that, in general, we need not have ΣIQT = ΣCQT .
For example, if T = {A v ∃r.B} and Σ = {A}, then B /∈ ΣIQT , but B ∈ ΣCQT .
For the former, it suffices to note that certT ,A(B(v)) = ∅ for all Σ-ABoxes A.
For the latter, note that certT ,A(∃v.B(v)) = {()} when A = {A(a)} (and where
() is the empty tuple representing a positive answer to the Boolean query).
The following lemma, which is independent of the DL in which TBoxes are
formulated, shows that we can always concentrate on CQs of such a simple
form. It is an easy consequence of the fact that, since composite concepts are
disallowed, CQs are purely positive, existential, and conjunctive.

Lemma 1. A ∈ NC (resp. r ∈ NR) is CQ-relevant for Σ given T iff there is an
ABox A with certT ,A(∃v.A(v)) 6= ∅ (resp. certT ,A(∃v, v′.r(v, v′)) 6= ∅).

Lemma 1 allows us to consider only queries of the form ∃v.A(v) and ∃v, v′.r(v, v′)
when dealing with CQ-relevance. From now on, we do this without further notice.

Answering conjunctive queries is typically more difficult than answering in-
stance queries, both regarding the computational complexity and the required
algorithms [7, 9]. Thus, it may be a little surprising that, as stated by the fol-
lowing result, CQ-relevance can be polynomially reduced to IQ-relevance. The
converse is, in general, not known. In Section 4, we will see that it holds in the
EL family of DLs.



Theorem 1. In any DL with (qualified) existential restrictions, CQ-relevance
can be polynomially reduced to IQ-relevance.

Proof (sketch). Let T be a TBox, Σ a signature, B a concept name that does
not occur in T and Σ, and s a role name that does not occur in T and Σ. Then

1. A is CQ-relevant forΣ given T iff B is IQ-relevant forΣ∪{s} given the TBox
T ′ = T ∪ TB ∪ {A v B}, where TB = {∃r.B v B | r = s or r occurs in T };

2. r is CQ-relevant for Σ given T iff B is IQ-relevant for Σ ∪ {s} given the
TBox T ′ = T ∪ TB ∪ {∃r.> v B}, where TB is as above.

The proofs of Points 1 and 2 are similar and we concentrate on Point 1. First
suppose thatA is CQ-relevant forΣ given T . Then there is aΣ-ABoxA such that
T ,A |= ∃v.A(v). Choose an a0 ∈ Ind(A) and set A′ := A∪{s(a0, b) | b ∈ Ind(A)}.
Using the fact that T ,A |= ∃v.A(v) and the definition of A′ and T ′, it can be
shown that T ′,A′ |= B(a0). For the converse direction, suppose that B is IQ-
relevant for Σ ∪ {s} given T ′. Then there is a Σ ∪ {s}-ABox A′ such that
T ′,A′ |= B(a) for some a ∈ Ind(A′). Let A be obtained from A′ by removing
all assertions s(a, b). Using the fact that T ′,A′ |= B(a) and the definition of A′
and T ′, it can be shown that T ,A |= ∃v.A(v). ut

In some proofs, it will be convenient to drop the UNA. The following lemma
states that this can be done w.l.o.g. in ALCI (and all its fragments such as EL
and ALC) because the certain answers and thus also the notion of L-relevance
does not change. The lemma is easily proved using the fact that, in ALCI, we
can easily convert a model I for an ABox and a TBox that violates the UNA
into a model I ′ that satisfies the UNA by “duplicating points” and such that I
and I ′ are bisimilar.

Lemma 2. Let T be an ALCI-TBox, A an ABox, and q ∈ L. Then certT ,A(q)
is identical with and without UNA.

An analogous statement fails, e.g., for ALCF . To see this, take T = {> v
(≤ 1 r) t A} and Σ = {r}. Then A is IQ- and CQ-relevant with UNA due to
the ABox {r(a, b), r(a, b′)}, but it is not relevant without UNA.

4 The EL Family

We study ABox relevance in the EL family of lightweight DLs [15]. In particular,
we show that ABox relevance in plain EL can be decided in polynomial time,
whereas it is ExpTime-complete in ELI and EL⊥. It is interesting to contrast
these results with the complexity of subsumption and instance checking, which
can be decided in polynomial time in the case of EL and EL⊥ and are ExpTime-
complete in ELI.

Throughout this section, we assume that the UNA is not imposed. This can
be done w.l.o.g. due to Lemma 2. We start with a technical lemma that will
be useful for several proofs later on. The lemma applies to ABoxes which are
potentially infinite and positive, i.e. in which all concept assertions are of the
form A(a) with A a concept name.



Lemma 3. For every ELI⊥-TBox T and positive, potentially infinite ABox A
consistent w.r.t. T , there is a model IT ,A of T and A such that the following
conditions are satisfied:

1. for any a ∈ Ind(A) and ELI⊥-concept C, aIT ,A ∈ CIT ,A iff T ,A |= C(a);
2. for any k-ary conjunctive query q and (a1, . . . , ak) ∈ NkI , IT ,A |= q[a1, . . . , ak]

iff (a1, . . . , ak) ∈ certT ,A(q).

Proof. Let T be an ELI⊥-TBox and A an ABox such that A is consistent w.r.t.
T . For a ∈ Ind(A), a path for A and T is a finite sequence a r1 C1 r2C2 · · · rn Cn,
n ≥ 0, where the Ci are concepts from T (probably occurring as a subconcept)
and the ri are roles such that the following conditions are satisfied:

– a ∈ Ind(A)I ,
– T ,A |= ∃r1.C1(a) of n ≥ 1
– for 1 ≤ i < n, T |= Ci v ∃ri+1.Ci+1.

We use paths(T ,A) to denote the set of all paths forA and T . If p ∈ paths(T ,A)\
Ind(A), then tail(p) denotes the last concept Cn in p. The canonical model IT ,A
of T and A is defined as follows:

∆IT ,A := paths(T ,A)
AIT ,A := {a ∈ Ind(A) | T ,A |= A(a)} ∪

{p ∈ paths(T ,A) \ Ind(A) | T |= tail(p) v A}
rIT ,A := {(p, q) ∈ paths(T ,A)× paths(T ,A) | q = p · r C for some concept C}
aIT ,A := a for all a ∈ Ind(T ,A)

It is standard to verify that IT ,A satisfies the stated properties. ut

Since DLs of the EL family do not offer negation, it may be deemed unnatural to
define ABox relevance based on literal ABoxes, which admit negation. However,
as the following lemma demonstrates, there is actually no difference between
defining ABox relevance based on literal ABoxes and positive ABoxes. This
holds for both IQ- and CQ-relevance and allows us henceforth to restrict our
attention to positive ABoxes when working with ELI⊥ and its fragments.

Lemma 4. For every ELI⊥ TBox T , literal ABox A consistent w.r.t. T , and
conjunctive query q, we have certT ,A(q) = certT ,A−(q), where A− is the restric-
tion of A to assertions of the form A(a) and r(a, b).

Proof. Since “⊇” is trivial, we concentrate on “⊆”. Suppose (a1, . . . , ak) /∈
certT ,A−(q). Then there is a model I of T and A− such that I 6|= q[a1, . . . , ak].
By Point 2 of Lemma 3, IT ,A− 6|= q[a1, . . . , ak]. To prove that (a1, . . . , ak) /∈
certT ,A−(q), it thus suffices to show that IT ,A satisfies all negative concept as-
sertions in A. Let ¬A(a) ∈ A. Since A is consistent w.r.t. T , T ,A 6|= A(a). By
Point 1 of Lemma 3, aIT ,A− /∈ AIT ,A− and we are done. ut

We now state the announced converse of Theorem 1.



Theorem 2. In ELI⊥, IQ-relevance can be polynomially reduced to CQ-rele-
vance.

Proof. We claim that A is IQ-relevant for Σ given T iff B is CQ-relevant for
Σ ∪ {X} given the TBox T ′ = T ∪ {A uX v B}, where B and X are concept
names that do not occur in T .

For the “if” direction, assume that B is CQ-relevant for Σ ∪ {X} given T ′
and let A′ be a positive Σ ∪ {X}-ABox such that T ′,A′ |= ∃v.B(v). By Point 2
of Lemma 3, IT ′,A′ |= ∃v.B(v). We want to show that there is an a ∈ Ind(A′)
with aIT ′,A′ ∈ BIT ′,A′ . Assume to the contrary that there is no such a. Let I
be obtained from IT ′,A′ by setting

XI := {aIT ′,A′ | a ∈ Ind(A′)}
BI := BIT ′,A′ ∩XI

It is easy to see that I is still a model of T ′ and A′. By our assumption that there
is no a ∈ Ind(A′) with aIT ′,A′ ∈ BIT ′,A′ , we have BI = ∅, in contradiction to
T ′,A′ |= ∃v.B(v). Thus, the desired a ∈ Ind(A′) exists. By Point 1 of Lemma 3,
aIT ′,A′ ∈ BIT ′,A′ implies that T ′,A′ |= B(a). By definition of T ′, this implies
T ′,A′ |= A(a). Again by definition of T ′, this clearly implies T ,A |= A(a),
where A is obtained from A′ by dropping all concept assertions of the form
X(b). Since A is a Σ-ABox and consistent w.r.t. T (since A′ is consistent w.r.t.
T ’), it witnesses that A is IQ-relevant for Σ given T .

For the “only if” direction, assume that A is IQ-relevant for Σ given T and
let A be a positive Σ-ABox such that T ,A |= A(a) for some a ∈ Ind(A). Set
A′ := A ∪ {X(a)}. It is easy to see that T ′,A′ |= ∃v.B(v) and thus B is CQ-
relevant for Σ ∪ {X} given T ′. ut

Theorem 2 allow us to choose freely between IQ and CQ when proving lower and
upper bounds for relevance in the EL family of DLs. Note that, by the example
given in Section 2, these two notions do not coincide even in EL.

Theorem 3. In EL, IQ-relevance and CQ-relevance can be decided in PTime.

Proof. We consider IQ-relevance. Let T be an EL-TBox and Σ a signature.
Define the total Σ-ABox as AΣ := {A(aΣ) | A ∈ Σ} ∪ {r(aΣ , aΣ) | r ∈ Σ}.

Claim. For all concept names A, A is IQ-relevant for Σ given T iff T ,AΣ |=
A(aΣ);

Since the instance problem can be solved in polynomial time in EL [15], Theo-
rem 3 is an immediate consequence of the claim.

The “if” direction of the above claim is trivial. For the “only if” direction,
let A be IQ-relevant for Σ given T . By Lemma 4, there is a positive Σ-ABox A
such that T ,A |= A(a0) for some a0 ∈ Ind(A). Let I be a model of T and AΣ .
We have to show that aI0 ∈ AI . Modify I by setting bI := aIΣ for all individual
names b. It is easy to verify that I is a model of the positive ABox A and of T .
Since T ,A |= A(a0), we have aI0 ∈ AI as required. ut



Note that we need very little for the proof of Theorem 3 to go through: it suffices
that AΣ is consistent with every TBox and that the DL in question is monotone.
It follows that for all DLs of this sort, deciding IQ- and CQ-relevance has the
same complexity as subsumption/instance checking (whose complexity coincides
for almost every DL). The upper bound is obtained as in the proof of Theorem 3,
based on instance checking. For the lower bound, note that C is subsumed by
D w.r.t. T iff B is IQ-/CQ-relevant for T ∪ {A v C,D v B} and the signature
{A}, where A,B /∈ sig(C,D, T ). We thus obtain the following result for the DL
ELI, in which subsumption and instance checking are ExpTime-complete [16].

Theorem 4. In ELI, IQ-relevance and CQ-relevance are ExpTime-complete.

The simplest extension of EL in which the total ABox AΣ is not consistent w.r.t.
every TBox is EL⊥. Here, deciding relevance is significantly harder than deciding
subsumption/instance checking (which can be decided in polynomial time). We
start by proving an NP lower bound for a very simple fragment of EL⊥: let L
be the DL that admits only CIs of the form AuA′ v B and AuB v ⊥, with A,
A′, and B concept names. This is a fragment of EL⊥, but also of those variants
of DL-Lite that admit conjunction on the left-hand side of CIs [8].

Theorem 5. In L, IQ-relevance and CQ-relevance are NP-hard.

Proof. Reduction from SAT. Let ϕ be a propositional formula in NNF using
variables v0, . . . , vn and sub(ϕ) the set of subformulas of ϕ. Define a TBox T as
the union of the following:

– Avi
uA¬vi

v ⊥ for all i ≤ n;
– Aϑ uAχ v Aψ for all ψ = ϑ ∧ χ ∈ sub(ϕ);
– Aϑ v Aψ, Aχ v Aψ for all ψ = ϑ ∨ χ ∈ sub(ϕ).

Let Σ = {Avi
, A¬vi

| i ≤ n}. It can be verified that Aϕ is IQ-relevant for Σ
given T iff ϕ is satisfiable. ut

For full EL⊥, Theorem 5 can be improved to an ExpTime lower bound. The idea
is to make use of an existing ExpTime lower bound for deciding conservative
extensions in EL/EL⊥ established in [17]. To implement this, we first establish
a technical proposition. Its proof is similar to Lemma 22 (i) in [17] and given in
Appendix A.

Proposition 1. If a concept name B is IQ-relevant for a signature Σ given an
EL⊥-TBox T , then there is a Σ-concept C such that C is satisfiable w.r.t. T
and T |= C v B.

We now prove the lower bound.

Theorem 6. In EL⊥, IQ-relevance and CQ-relevance are ExpTime-hard.

Proof. We consider IQ-relevance. The following result can be established by
carefully analyzing the reduction underlying Theorem 36 in [17]: given an EL⊥-
TBox T , a signature Σ, and a concept name B, it is ExpTime-hard to decide
if there exist a Σ-concept C such that C is satisfiable w.r.t. T and T |= C v B.
Thus it suffices to show that the following conditions are equivalent, for any
EL⊥-TBox T , signature Σ, and concept name B:



1. there exists a Σ-concept C such that C is satisfiable w.r.t. T and T |= C v
B;

2. there exists a Σ-ABox A such that (T ,A) is consistent and (T ,A) |= B(a)
for some a ∈ Ind(A).

The implication from Point 1 to Point 2 is trivial and the reverse direction is
established by Proposition 1. ut

To prove a matching upper bound for Theorem 6, we first establish a proposition
that constrains the shape of ABoxes to be considered when deciding relevance
in EL⊥. Here and in what follows, an ABox A is tree-shaped if

1. the directed graph (Ind(A), {(a, b) | r(a, b) ∈ A for some r ∈ NR}) is a tree
and

2. for all a, b ∈ Ind(A), there is at most one role name r such that r(a, b) ∈ A.

The following is a simple consequence of Proposition 1.

Proposition 2. A concept name A is IQ-relevant for a signature Σ given an
EL⊥-TBox T iff there is a tree-shaped ABox A such that A is consistent w.r.t. T
and T ,A |= A(a0), with a0 the root of A.

For the upper bound, we use non-deterministic bottom-up automata on finite,
ranked trees. Such an automaton is a tuple A = (Q,F , Qf , Θ), where Q is a
finite set of states, F is a ranked alphabet, Qf ⊆ Q is a set of final states, and Θ
is a set of transition rules of the form f(q1, . . . , qn)→ q, where n ≥ 0, f ∈ F is
of rank n, and q1, . . . , qn, q ∈ Q. Note that transition rules for symbols of rank
0 replace initial states.

Automata work on finite, node-labeled, ordered trees T = (V,E, `), where V
is a finite set of nodes, E ⊆ V × V is a set of edges, and ` is a node-labeling
function the maps each node v ∈ V with i successors to a symbol `(v) ∈ F of
rank i. We assume an implicit total order on the successors of each node. A run
of the automaton A on T is a map ρ : V → Q such that

– ρ(ε) ∈ Qf , with ε ∈ V the root of T ;
– for all v ∈ V with `(v) = f and where v has (ordered) successors v1, . . . , vn,
n ≥ 0, we have that f(ρ(v1), . . . , ρ(vn))→ ρ(v) is a rule in ∆.

An automaton A accepts a tree T if there is a run of A on T . We use L(A) to
denote the set of all trees accepted by A. It can be computed in polynomial time
whether L(A) = ∅.

Let T be an EL⊥-TBox, Σ a signature, and A0 a concept name such that
it is to be decided whether A0 is IQ-relevant for Σ given T . W.l.o.g., we may
assume that A0 occurs in T . We use sub(T ) to denote the set of all subconcepts
of concepts occurring in T and set Γ := Σ ∪ sub(T ). A Σ-type is a finite set t
of concept names that occur in Σ and such that u t is satisfiable w.r.t. T . A
Γ -type is a subset t of Γ such that u t is satisfiable w.r.t. T . Given a Γ -type
t, we use clT (t) to denote the set {C ∈ Γ | T |= u t v C}. We use ex(T ) to
denote the number of concepts of the form ∃r.C that occur in T (possibly as a
subconcept). Define an automaton A = (Q,F , Qf , ∆) as follows:



– F = {〈t, r1, . . . , rn〉 | t a Σ-type, i < ex(T )} with 〈t, r1, . . . , rn〉 of rank n;
– Q is the set of Γ -types;
– Qf = {q ∈ Q | A0 ∈ q};
– ∆ consists of all rules f(q1, . . . , qn)→ q with f = 〈t, r1, . . . , rn〉 such that

q = clT (t ∪ {∃r.C ∈ sub(T ) | r = ri and C ∈ qi for some i with 1 ≤ i ≤ n}.

A proof of the following lemma is given in Appendix A.

Lemma 5. L(A) 6= ∅ iff A0 is IQ-relevant for Σ given T .

Since A is single-exponentially large in |T | and the emptiness problem can be
decided in polynomial time in the size of the automaton, we obtain a single-
exponential-time procedure for deciding relevance in EL⊥.

Theorem 7. In EL⊥, IQ-relevance and CQ-relevance are ExpTime-complete.

5 Expressive DLs

We establish some first results for ABox relevance in ALC and its extensions.
For ALCI, we prove decidability of IQ- (and thus also CQ-) relevance, and a
NExpTimeNP upper bound; forALCF , we prove undecidability of IQ-relevance;
and for ALCFI, we prove undecidability of CQ-relevance.

5.1 Relevance in ALC and ALCI

The NExpTimeNP upper bound is based on the following theorem, which places
an upper bound on the size of ABoxes that we need to consider.

Theorem 8. Let T be an ALCI-TBox. If A ∈ NC is IQ-relevant for T w.r.t.
propositional ABoxes, then there is a literal Σ-ABox A such that A is consistent
w.r.t. T , T ,A |= A(a) for some a ∈ Ind(A), and |Ind(A)| ≤ 2|T |+|Σ|.

Proof. We do not make the UNA. We consider only the case A ∈ NC, as the case
r ∈ NR is analogous. Assume that A is IQ-relevant for Σ given T . Then there
is a literal Σ-ABox A such that A is consistent w.r.t. T and T ,A |= A(a0) for
some a0 ∈ Ind(A). Let I be a model of A and T , and let J be the filtration
of I w.r.t. Γ = cl(T ) ∪ {A,¬A | A ∈ Σ}, i.e., define an equivalence relation
∼ ⊆ ∆I ×∆I by setting d ∼ e iff

{C | C ∈ Γ ∧ d ∈ CI} = {C | C ∈ Γ ∧ e ∈ CI}

and set
∆J := {[d] | d ∈ ∆I}
AJ := {[d] | d ∈ AI}
rJ := {([d], [e]) | ∃d′ ∈ [d], e′ ∈ [e] : (d′, e′) ∈ rI}
aJ := [aI ]



Clearly, |∆J | ≤ 2|T |+|Σ|. It is routine to prove that J is a model of T . Define
an ABox

AJ = {A(a[d]) | A ∈ Σ ∧ [d] ∈ AJ } ∪
{¬A(a[d]) | A ∈ Σ ∧ [d] ∈ (¬A)J } ∪
{r(a[d], a[e]) | r ∈ Σ ∧ ([d], [e]) ∈ rJ }.

Clearly, J is a model of AJ . Thus, AJ is consistent w.r.t. T . It remains to show
that T ,AJ |= A(a[aI0 ]). Let J ′ be a model of AJ and T . Define a model I ′ from
J ′ by setting aI

′
= (a[aI ])J

′
for all a ∈ Ind(A). It is readily checked that I ′ is

a model of A and T , and thus a0 ∈ AI
′
, implying aJ

′

[aI0 ]
∈ AJ ′ as required. ut

It is interesting to note that the bound from Theorem 9 is tight. To see this, let

T := { A v ¬P0 u · · · u ¬Pn−1

∃r.(P0 u · · · u Pi) v ¬Pi
∃r.(P0 u · · · u Pi−1 u ¬Pi) v Pi

∃r.((¬P0 t · · · t ¬Pi−1) u Pi) v Pi
∃r.((¬P0 t · · · t ¬Pi−1) u ¬Pi) v ¬Pi

P0 u · · · u Pn−1 v X }

and Σ = {A, r}. Then X is relevant for T and Σ, but the smallest witness ABox
is an r-chain of length 2n whose last element is an instance of A. Note that an
ABox that has the form of a cycle of length < 2n is inconsistent w.r.t. T . We
now use Theorem 9 to prove membership in NExpTimeNP.

Theorem 9. In ALCI, IQ-relevance and CQ-relevance are in NExpTimeNP.

Proof. We show the result for IQ-relevance; the upper bound for CQ-relevance
follows by Theorem 2. Consider the following nondeterministic algorithm:

Step 1: Guess a Σ-ABox A such that |Ind(A)| = 2|T |+|Σ|.
Step 2: Use an oracle to verify that A is consistent with T . Reject if not.
Step 3: For each a ∈ Ind(A), use an oracle to check whether A ∪ {¬A(a)} is
consistent with T . Accept if for some a ∈ Ind(A) the ABox A ∪ {¬A(a)} is in-
consistent with T . Otherwise reject.

If the algorithm accepts, then we have found a Σ-ABox A consistent with T
which implies some assertion A(a), i.e. A is IQ-relevant for Σ given T . Con-
versely, if A is IQ-relevant, then by Theorem 9, there must be some Σ-ABox A
with at most 2|T |+|Σ| individuals which is consistent with T and such that
T ,A |= A(a) for some a ∈ Ind(A). We create a new Σ-ABox from A as follows:
A′ = A∪{>(bi) | 1 ≤ i ≤ 2|T |+|Σ|− |Ind(A)|}. By construction, A′ has precisely
2|T |+|Σ| individuals, is consistent with T , and is such that A′, T |= A(a). If A′
is guessed in Step 1, the algorithm accepts.

We remark that in Steps 2 and 3 of the algorithm, we test the consistency
of literal ABoxes that are exponentially larger than the TBox T . Because of
this, the standard precompletion approach to deciding ABox consistency w.r.t.



a TBox requires only nondeterministic polynomial time (rather than the usual
deterministic single-exponential time). This means that we can use an NP-oracle
in Steps 2 and 3, yielding membership in NExpTimeNP. ut

We conjecture that IQ- and CQ-relevance are actually NExpTimeNP-complete,
but leave the lower bound open for now.

5.2 IQ-relevance in ALCF

We show that the simple addition of functional roles to ALC leads to undecid-
ability of IQ-relevance, using a reduction of the following tiling problem. An
instance is given by a triple (T, H, V ) with T a non-empty, finite set of tile types
including an initial tile Tinit to be placed on the lower left corner and a final tile
Tfinal to be placed on the upper right corner, H ⊆ T × T a horizontal match-
ing relation, and V ⊆ T × T a vertical matching relation. A tiling for (T, H, V )
is a map f : {0, . . . , n} × {0, . . . ,m} → T such that n,m ≥ 0, f(0, 0) = Tinit,
f(n,m) = Tfinal, (f(i, j), f(i+1, j)) ∈ H for all i < n, and (f(i, j), f(i, j+1)) ∈ v
for all i < m. It is undecidable whether a tiling problem has a tiling.

For the reduction, let (T, H, V ) be an instance of the tiling problem with
T = {T1, . . . , Tp}. We construct a signature Σ and a TBox T such that (T, H, V )
has a solution iff a selected concept name A is IQ-relevant for Σ given T . More
precisely, the ABoxA witnessing IQ-relevance has the form of an n×m-rectangle
together with a tiling for (T, H, V ). W.l.o.g., we concentrate on solutions where
Tfinal occurs nowhere else than in the upper right corner. The ABox signature is

Σ = {T1, . . . , Tp, x, y}

where T1, . . . , Tp are used as concept names and x and y are functional role
names representing horizontal and vertical adjacency of points in the rectangle.
In T , we additionally use the concept names U,R,A, Y, Z,C, where U and R
mark the upper and right border of the rectangle, A is the concept name used in
the instance query, and Y , Z, and C are used for technical purposes explained
below. More precisely, T is defined as the union of the following CIs, for all
(Ti, Tj) ∈ H and (Ti, T`) ∈ V :

Tfinal v Y u U uR
∃x.(Tj u Y u U) u Ti v U u Y
∃y.(T` u Y uR) u Ti v R u Y

(∃x.∃y.Z u ∃y.∃x.Z) t (∃x.∃y.¬Z u ∃y.∃x.¬Z) v C
∃x.(Tj u Y u ∃y.Y ) u ∃y.(T` u Y u ∃x.Y ) u C u Ti v Y

Y u Tinit v A

U v ∀y.⊥
R v ∀x.⊥

∃y.¬R v ¬R
∃x.¬U v ¬U
t

1≤s<t≤p
Ts u Tt v ⊥



Observe that the concept name A used in the instance query occurs only once in
the TBox, on the right-hand side of a CI. Taken together, the upper part of T
ensures the existence of a tiled n×m-rectangle in a witness ABox. The concept
name Y is entailed at every individual name in such an ABox that is part of
the rectangle. Observe that the CIs for Y enforce the horizontal and vertical
matching conditions. The CI for C enforces confluence, i.e., C is entailed at an
individual name a if there is an individual b that is both an x-y-successor and
a y-x-successor of a. This is so because, intuitively, Z is universally quantified:
if confluence fails, we can interpret C in a way such that neither of the two
disjuncts in the pre-condition of the CI for C is satisfied. The following is proved
in Appendix A.

Lemma 6. There is a tiling for (T, H, V ) iff there exists a Σ-ABox A that is
consistent with T and such that T ,A |= A(a) for some a.

Undecidability of IQ-relevance follows directly from Lemma 6.

Theorem 10. In ALCF , IQ-relevance is undecidable.

CQ-relevance in ALCFI

We prove undecidability by reducing the same tiling problem as in the previous
section, using a very similar reduction. Let (T, H, V ) be an instance of the tiling
problem with T = {T1, . . . , Tp}. As before, we construct a signature Σ and a
TBox T such that (T, H, V ) has a solution iff a selected concept name A is CQ-
relevant for Σ given T , i.e., if certT ,A(∃v.A(v)) 6= ∅ for some Σ-ABox A. We
now assume that the roles x and y are functional and inverse functional. The
signature Σ is as in the previous section, and also the TBox is identical except
that we replace the CI with C on the right-hand side with the following one,
where B ranges over all Boolean combinations of the concept names Z1, Z2, i.e.,
over all concepts L1 u L2 where Li is a literal over Zi, for i ∈ {1, 2}:

∃x.∃y.B u ∃y.∃x.B v C

The following lemma is proved in Appendix A.

Lemma 7. There is a tiling for (T, H, V ) iff there exists a Σ-ABox A that is
consistent with T and such that T ,A |= ∃v.A(v).

We get the desired result.

Theorem 11. In ALCFI, CQ-relevance is undecidable.

6 Related Work

Several notions of relevance have been previously proposed in the philosophy and
artificial intelligence literatures, but they are rather different in nature from the
notion of relevance we study in this paper. For example, in the area of relevant



logic [18], it is an inference, rather than a symbol, which is said to be relevant,
and in the work of Levy et al. [19] it is a premise of a proof which may or may
not be relevant to the deduction of a given formula. Relevance of a signature
(hence symbol) can be found in Lakemeyer’s study of relevance [20], in which he
defines relevance of a signature to a formula given a theory as well as relevance
of two signatures to each other given a theory. However, Lakemeyer’s notions
of relevance are defined only for propositional logic, and even in the case of
propositional theories, do not appear to bear any relationship to ABox relevance
as studied in this paper.

7 Conclusion

We have introduced a new notion of relevance that describes when a symbol
can be used meaningfully in queries that are posed to ABoxes formulated in a
given signature, with a given background TBox in place. We have established a
relatively complete picture regarding the complexity of deciding IQ- and CQ-
relevance in the EL family of lightweight DLs, and some first results for DLs of
the ALC family. Some important open questions have been pointed out in the
paper, most notably the exact complexity of relevance in ALC and ALCI, and
the decidability of CQ-relevance in ALCF . Another open issue is the formulation
of a notion of relevance for queries that may contain composite concepts. This
is not trivial due to the possibility of using tautological concepts in the query.
Finally, we are currently investigating whether the set of relevant symbols as
defined in this paper can be used to obtain more efficient algorithms for module
extraction.
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A Missing Proofs

Proof of Proposition 1. Let A be IQ-relevant for Σ given T . We start by estab-
lishing the following technical claim.

Claim. If Γ is an (infinite) set of EL⊥ concepts that is closed under conjunction
and satisfiable w.r.t. a TBox T , then there is a model I of T and a dI ∈ ∆I
such that for all concepts D, dI ∈ DI iff T |= C v D for some C ∈ Γ .

To prove the claim, choose an individual name b and let B be the infinite ABox
{D(b) | D ∈ Γ}. By Lemma 3, there is a model IT ,B of T and I such that for
any EL⊥ concept D, we have bIT ,B ∈ DIT ,B iff T ,A |= D(b). By definition of B,
closure of Γ under conjunction and compactness, we further have T ,A |= D(b)
iff T |= C v D for some C ∈ Γ . This establishes the claim since we can choose
I = IT ,B and dI = bIT ,A .

Now choose an ABox A and individual name a0 ∈ Ind(A) such that T ,A |=
B(a0). Assume to the contrary of what is to be shown that there does not exist
a Σ-concept C which is satisfiable w.r.t. T and such that T |= C v B. For
each individual name a in A, let ta denote the set of Σ-concepts C such that
T ,A |= C(a) and let Ia be a model as in the above claim with Γ = ta. By our
assumption and the choice of Ia, we have dIa0

/∈ BIa0 .
We may assume that the Ia are mutually disjoint. Take the following union

I of the models Ia:

– ∆I =
⋃
a∈Ind(A)∆

Ia ;
– AI =

⋃
a∈Ind(A)A

Ia , for A ∈ NC;
– rI =

⋃
a∈Ind(A) r

Ia ∪ {(dIa
, dIb

) | r(a, b) ∈ A}, for r ∈ NR;
– aI = dIa , for a ∈ Ind(A).

For all EL-concepts C, a ∈ Ind(A), and d ∈ ∆Ia , we have

(∗) d ∈ CIa iff d ∈ CI .

The proof is by induction on the structure of C. The only interesting case is
C = ∃r.D and the direction from right to left. Assume d ∈ CI ∩ ∆Ia . For
d 6= dIa , d ∈ CIa follows immediately by IH. Assume d = dIa . Take d′ with
(d, d′) ∈ rI and d′ ∈ DI . Again, if d′ ∈ ∆Ia , then the claim follows immediately
from the IH. Now assume d′ 6∈ ∆Ia . Then d′ = b for some b with r(a, b) ∈ A.
By IH, d′ ∈ DIb . Hence T |= E v D for some E ∈ tb. Then T ,A |= E(b), Since
r(a, b) ∈ A, we obtain T ,A |= ∃r.D(a). Therefore, ∃r.D ∈ ta. Thus, the choice
of Ia yields dIa ∈ CIa as required.

By (∗) and since the Ia are models for T , I is also a model of T . Moreover,
I by definition satisfies all role assertions in A and all concept assertions are
satisfied by (∗) and since A(a) ∈ A implies A ∈ ta and thus dI ∈ AI . Since
dIa0

/∈ BIa0 , (∗) also yields aI0 /∈ BI . Summing up, we have shown that T ,A 6|=
B(a0), which is a contradiction. ut



Proof of Lemma 5. For the “if” direction, assume that A0 is relevant for Σ given
T . By Proposition 2, there is a tree-shaped and consistent ABox A with root
a0 such that T ,A |= A0(a0). Define a mapping ρ that maps each a ∈ Ind(A) to
the Γ -type ρ(a) := {C ∈ Γ | T ,A |= C(a)}. We now inductively choose a subset
R ⊆ Ind(A) as follows:

– Initially, set R := {a0};
– if a ∈ R is not a leaf in A and no successors of a in A are yet in R, then

choose for each ∃r.C ∈ ρ(a) an a′ ∈ Ind(A) with r(a, a′) ∈ A and C ∈ ρ(a′)
if such an a′ exists, and add a′ to R.

For each node in A, fix a total order on the successors that are in R (call this an
“R-successor”). For a ∈ Ind(A), we use σA(a) to denote the set {A | A(a) ∈ A}.
Define a tree T = (V,E, `) as follows:

– V = R;
– E = {(a, b) ∈ V × V | r(a, b) ∈ A} and the order of successor in T agrees

with the chosen order on R-successors in A;
– `(a) = 〈σA(a), r1, . . . , rn〉 where ri is the (unique!) role such that ri(a, ai) ∈
A, with ai the i-th R-successor of a .

Let ρ′ be the restriction of ρ to R. We show that r′ is a run of A on T . First, note
that T ,A |= A0(a0) implies A0 ∈ ρ′(a0), and thus ρ′(a0) ∈ Qf (observe that
a0 is the root of T ). It thus remains to show that for all a ∈ V with successors
a1, . . . , an that are connected in A via r1, . . . , rn, respectively, we have ρ′(a) = Ω,
where

Ω = clT (σA(a) ∪ {∃r.C ∈ sub(T ) | r = ri and C ∈ ρ′(ai) for some 1 ≤ i ≤ n}).

The “⊇” direction is immediate by the definitions of ρ′, σA, and clT and the
semantics. For the “⊆” direction, assume that C0 ∈ Γ \ Ω. Let b1, . . . , bm be
the successors of a in A (including those not in R) and for 1 ≤ i ≤ m, let Ai
be the restriction of A to bi and all individual names that are reachable from
it in A. The proof of the following property is by a relatively straightforward
model-theoretic construction based on canonical models. Details are left to the
reader.

(∗) for all C ∈ Γ and b ∈ Ind(Ai), we have T ,A |= C(b) iff T ,Ai |= C(b).

To continue our argument, take the interpretations IT ,A and IT ,A1 , . . . , IT ,Am .
Assume w.l.o.g. that their domains are pairwise disjoint. Define a new interpre-
tation J as follows:

– ∆J = ∆IT ,A ]∆IT ,A1 ] · · · ]∆IT ,Am ] {a};
– AJ = AIT ,A ∪AIT ,A1 ∪· · ·∪AIT ,Am ∪S, where S = {a} if A ∈ Ω and S = ∅

otherwise;
– rJ = rIT ,A ∪ rIT ,A1 ∪ · · · ∪ rIT ,Am ∪ {(d, a) | (d, aIT ,A) ∈ rIT ,A} ∪

{(a, bIT ,Ai
i ) | 1 ≤ i ≤ m and r(a, bi) ∈ A};

– aJ = a;



– for all b ∈ Ind(A) \ {a}, bJ = bIT ,Ai if b ∈ Ind(Ai) and bJ = bIT ,A if
b /∈ Ind(A1) ∪ · · · ∪ Ind(Am).

Observe that the interpretation of individual names is well defined since A is
tree-shaped, which implies that the sets Ind(Ai) are pairwise disjoint.

Claim. For all i with 1 ≤ i ≤ m and all C ∈ Γ , we have:

1. d ∈ CJ iff d ∈ CIT ,Ai for all d ∈ ∆IT ,Ai ;
2. a ∈ CJ iff C ∈ Ω;
3. d ∈ CJ iff d ∈ CIT ,A for all d ∈ ∆IT ,A .

All points are proved by induction on the structure of C. For Point 1, this is
straightforward. For Point 2, the induction start is immediate by definition of
J . The induction step is trivial when C is a conjunction. Thus, let C = ∃r.D.
If a ∈ CJ , then there is a d ∈ DJ with (a, d) ∈ rJ . By definition of J , we
have d = b

IT ,Ai
i for some i with 1 ≤ i ≤ m and r(a, bi) ∈ A. By Point 1 of the

claim and Point 1 of Lemma 3 and (∗), T ,A |= D(bi). By definition of R, there
is a j with 1 ≤ j ≤ n, rj = r, and T ,A |= D(aj). It follows that ∃r.D ∈ Ω
as required. For the converse direction, let ∃r.D ∈ Ω. Then there is an i with
1 ≤ i ≤ n, ri = r, and T ,A |= D(ai). By (∗), Point 1 of Lemma 3, and Point 1
of the claim, we have aJi ∈ DJ . By definition of rJ , we have (a, ai) ∈ rJ , thus
a ∈ (∃r.D)J as required. In the induction proof of Point 3, only the “only if”
direction of the case C = ∃r.D is non-trivial. Let (d, e) ∈ rJ and e ∈ DJ . If
e 6= a, we only need to apply the induction hypothesis and use the semantics.
Now assume that e = a. By Point 2, we get D ∈ Ω, thus T ,A |= D(a). It
follows that aIT ,A ∈ DIT ,A . Since (d, a) ∈ rJ , we have (d, aIT ,A) ∈ rIT ,A . Thus,
d ∈ (∃r.D)IT ,A by the semantics.

Since IT ,A and the IT ,Ai
are models of T andΩ is closed under T -consequence,

the claim implies that J is a model of T . Using the definition of J , it is not
hard to verify that J is also a model of A. Since C0 /∈ Ω, we have aJ /∈ CJ0 by
Point 2 of the claim. It follows that T ,A 6|= C0(a). By definition of ρ′, we obtain
C0 /∈ ρ′(a) as required.

For the “only if” direction, let T = (V,E, `) be a tree accepted by A, and ρ
be a run of A on T . Define an ABox

A := {A(av) | v ∈ V and `(v) = 〈t, r1, . . . , rn〉 with A ∈ t} ∪
{r(av, avi) | vi is i-th successor of v and `(v) = 〈t, r1, . . . , rn〉 with ri = r}.

We want to show that A witnesses the IQ-relevance of A0 given T . We begin
by proving the consistency of A with respect to T . Let us define Ψ as the set of
concepts C which are satisfiable w.r.t. T and such that ∃r.C ∈ Γ for some role
r. For each C ∈ Ψ , we let JC be the canonical model of the ABox {B(b)} and
TBox T ∪ {B ≡ C}, and let xC be the element in ∆JC with bJC = xC . Suppose
w.l.o.g. that the universes of the JC are all disjoint. We use the interpretations



JC to construct a new interpretation I as follows:

∆I = V ∪
⋃
C∈Ψ

∆JC

AI = {v ∈ V |A ∈ ρ(v)} ∪
⋃
C∈Ψ

AJC

rI = {(v, w) ∈ E |w is i-th successor of v and `(v) = 〈t, r1, ..., rn〉 where ri = r}

∪ {(v, xC) | v ∈ V and ∃r.C ∈ ρ(v)} ∪
⋃
C∈Ψ

rJC

aIv = v

It is easy to see that I is a model of A. In order to show that it is also a model
of T , we will require the following two properties:

1. C ∈ ρ(v)⇒ v ∈ CI
2. v ∈ CI &C ∈ Γ ⇒ C ∈ ρ(v)

If C is an atomic concept, then (1) follows directly from the definition of AI .
If C is of the form ∃r.D, then we use the fact that v is connected via r to the
individual xD which belongs to DJC , hence DI . If C = C1 u C2, then both
C1 ∈ ρ(v) and C2 ∈ ρ(v) (by definition of the rule set Θ), so the statement
follows by structural induction.

For statement (2), the proof is by induction on the co-depth of v. The base
case is when v is a leaf node. The case where C = A is trivial, and the case
where C is a conjunction is easily dealt with by structural induction, so the only
interesting case is when C is of the form ∃r.D. In this case, v must have some
r-successor which is in DI , and since v has no successors in V , the r-successor
must be xE for some E such that ∃r.E ∈ ρ(v). Now since xE ∈ DI , it is easy
to see that xE ∈ DJE , too. Using properties of canonical models (Lemma 3),
we find that D(b) is entailed by {B(b)} and T ∪ {B ≡ E}, which means that
T |= E v D. But in that case, we must have ∃r.D ∈ ρ(v), as desired. Now let us
consider the case where v is a non-leaf node with label 〈t, r1, ..., rn〉, and suppose
that we have already shown statement (2) to hold for all of v’s successors. Again,
we restrict our attention to the interesting case where C = ∃r.D. If v’s only r-
successors satisfying D are outside V , then we can proceed as in the base case.
Instead suppose that ri = r, the i-th successor of v is w, and w ∈ DI . Then by
the induction hypothesis, we must have D ∈ ρ(w). It follows from the definition
of the rule set Θ that ∃r.D belongs to ρ(v).

Now let us suppose that CtD ∈ T and y ∈ CI . The case where y ∈ ∆JE for
some E ∈ Ψ is straightforward, so we concentrate on the case where y ∈ V . In
this case, we know from statement (2) that C ∈ ρ(y), which means that D must
also belong to ρ(y). It follows then from statement (1) that y ∈ DI , as desired.
We have thus shown that I is a model of A and T , so A is consistent with T .

We now prove that some A0 assertion is entailed by A and T . We start by
establishing the following claim.



Claim. For all v ∈ V and C ∈ ρ(v), we have T ,A |= C(av).

The proof is by induction on the co-depth of v. If v is a leaf and C ∈ ρ(v),
then the definition of ∆ and A yields that C ∈ clT (σA(av)). A straightforward
semantic argument shows that this implies T ,A |= C(av). Now let v be a non-
leaf with `(v) = 〈t, r1, . . . , rn〉 and successors v1, . . . , vn. Moreover, let C ∈ ρ(v).
Then

C ∈ clT (σA(av) ∪ {∃r.D ∈ sub(T ) | r = ri and D ∈ r(avi
) for some 1 ≤ i ≤ n}).

By IH, we know that D ∈ ρ(avi
) implies T ,A |= D(avi

). Thus, we can use the
semantics to show that T ,A |= C(av). This finishes the proof of the claim.

By definition of Qf and of runs, we have A0 ∈ r(ε) with ε the root of T . The
claim thus yields that T ,A |= A0(vε). ut

Proof of Lemma 6.
Forward direction: Straightforward. Consider some n×m solution to the tiling
problem. Create individuals ai,j for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1, and
consider the ABox A composed of the following assertions:

– x(ai,j , ai+1,j) for 0 ≤ i < n− 1 and 0 ≤ j ≤ m− 1
– y(ai,j , ai,j+1) for 0 ≤ j < m− 1 and 0 ≤ i ≤ n− 1
– Tk(ai,j) where Tk is the tile associated with the position (i, j)

It can be easily verified that A is consistent with T and satisfies T ,A |= A(a0,0).

Backward direction: Let A be a Σ-ABox consistent with T and such that T ,A |=
A(aA) for some aA ∈ Ind(A). We exhibit a grid structure in A that gives rise to
a tiling for (T, H, V ). We start by identifying a diagonal that starts at aA and
ends at an instance of Tfinal.

Claim 1. There is a set

G := {r1(ai0,j0 , ai1,j1), . . . , rk−1(aik−1,jk−1 , aik,jk), Tfinal(aik,jk)} ⊆ A

such that

– i0 = 0, j0 = 0, and a0,0 = aA;
– for 1 ≤ ` < k, we either have (i) r` = x, i`+1 = i` + 1, and j`+1 = j` or

(ii) r` = y, j`+1 = j` + 1, and i`+1 = i`.

Proof of claim. Assume there is no such sequence and let I be a model ofA and T .
Since neither existential restrictions nor concept names Ti occur on the right-
hand side of CIs in T , we can w.l.o.g. assume that I is minimal, i.e., the following
conditions are satisfied, for all a ∈ Ind(A), role names r, and i ∈ {1, . . . , p}:

1. ∆I = Ind(A);
2. aI = a;
3. (a, a′) ∈ rI implies r(a, a′) ∈ A;
4. a ∈ T Ih implies Th(a) ∈ A.



We can convert I into a new model J of A and T that interprets Y as false at all
points reachable from aA in I (equivalently, in A) and setting AJ = AI \ {aA},
which is a contradiction to T ,A |= A(aA). (end of proof of claim).

Let n be the number of occurrences of the role x in the ABox G from Claim 1
and m the number of occurrences of y. We next show

Claim 2. We have that

(a) T ,A |= Tinit(a0,0);
(b) T ,A |= ¬R(ai,j) whenever i < n; otherwise, T ,A |= R(ai,j);
(c) T ,A |= ¬U(ai,j) whenever j < m; otherwise, T ,A |= R(ai,j);
(d) T ,A |= Y (a) for all a ∈ Ind(G);
(e) for all ai,j ∈ Ind(G), there is a (unique) Th with T ,A |= Th(ai,j), henceforth

denoted Ti,j ;
(f) (Ti,j , Ti+1,j) ∈ H for all ai,j , ai+1,j ∈ Ind(G) and (Ti,j , Ti,j+1) ∈ V for all

ai,j , ai,j+1 ∈ Ind(G).

Proof of claim. Point (a) is an easy consequence of the fact that a0,0 = aA
and T ,A |= A(aA). For (b), first note that there is a unique ` ≤ k such that
is = n for all s ∈ {`, . . . , k} and ip < n for all s ∈ {0, . . . , ` − 1}. We have
x(ai`−1,j`−1 , ai`,j`) ∈ G, thus the CI R v ∀x.⊥ yields T ,A |= ¬R(ai`−1,j`−1).
To show that T ,A |= ¬R(ais,js) for all s < ` − 1, it suffices to use the CIs
R v ∀x.⊥ and ∃y.¬R v ¬R.1 To show that T ,A |= R(ais,js) for all s ≥ ` − 1,
it suffices to note that (i) Tfinal(aik,jk) ∈ G implies T ,A |= R(aik,jk); (ii) that
y(ais,js , ais+1,js+1) ∈ G for ` ≤ s < k; and (iii) that we can apply the CI ∃y.¬R v
¬R. The proof of (c) is similar. We prove (d)-(f) together, showing by induction
on ` that (d)-(f) are satisfied for all initial parts

G` := {r1(ai0,j0 , ai1,j1), . . . , r`−1(ai`−1,j`−1 , ai`,j`)}

of G, with ` ≤ k. For the base case, ai0,j0 = aA and T ,A |= A(a0) clearly
imply T ,A |= Y (ai0,j0), thus (d) is satisfied. Point (e) follows from (a) and the
disjointness of tiles expressed in T . Point (f) is vacuously true since there is
only a single individual in G0. For the induction step, assume that G`−1 satisfies
(d)-(f). By (b) and (c), we can distinguish four cases:

– T ,A |= ¬U(ai`−1,j`−1) and T ,A |= ¬R(ai`−1,j`−1).
Since G`−1 satisfies (d), we have T ,A |= Y (ai`−1,j`−1). Thus, by definition
of T and since T ,A |= ¬U(ai`−1,j`−1) and T ,A |= ¬R(ai`−1,j`−1), we must
have T ,A |= D(i`−1, j`−1) with

D = ∃x.(Tj u Y u ∃y.Y ) u ∃y.(T` u Y u ∃x.Y ) u C u Ti

for some (Ti, Tj) ∈ H and (Ti, T`) ∈ V . Using the functionality of x and y,
it is now easy to show that G` satisfies (d)-(f).

1 It is easy to work out a detailed, model-theoretic proof of this and similar claims
below. We leave details to the reader.



– T ,A |= ¬U(ai`−1,j`−1) and T ,A |= R(ai`−1,j`−1).
Since T ,A |= R(ai`−1,j`−1), T ensures that there is no x-successor of ai`−1,j`−1

in I. Moreover, T ,A |= Y (ai`−1,j`−1). Thus, by definition of T and since
T ,A |= ¬U(ai`−1,j`−1) and T ,A |= R(ai`−1,j`−1), we must have T ,A |=
D(i`−1, j`−1) with

D = ∃y.(T` u Y uR) u Ti
for some (Ti, T`) ∈ V . We must have i` = i`−1, j` = j`−1 + 1, and r`−1 = y.
Using the functionality of y, it is now easy to show that G` satisfies (d)-(f).

– T ,A |= U(ai`−1,j`−1) and T ,A |= ¬R(ai`−1,j`−1).
Analogous to the previous case.

– T ,A |= U(ai`−1,j`−1) and T ,A |= R(ai`−1,j`−1).
Then the definition of T ensures that we have x(ai`−1,j`−1 , ai`,j`) /∈ A and
y(ai`−1,j`−1 , ai`,j`) /∈ A. It follows that `− 1 = k, in contradiction to ` ≤ k.

(end of proof of claim).
Next, we extend G to a full grid such that Conditions (a)-(e) from Claim 2 are
still satisfied. Once this is achieved, it is trivial to read off a solution for the
tiling problem. The construction of the grid consists of exhaustive application of
the following two steps:

1. if x(ai,j , ai+1,j), y(ai+1,j , ai+1,j+1) ∈ G with i < n and ai,j+1 /∈ Ind(G), then
identify an ai,j+1 ∈ Ind(A) such that y(ai,j , ai,j+1), x(ai,j+1, ai+1,j+1) ∈ A
and add the latter two assertions to G.

2. if y(ai,j , ai,j+1), x(ai,j+1, ai+1,j+1) ∈ G with i < n and ai+1,j /∈ Ind(G), then
identify an ai+1,j ∈ Ind(A) such that y(ai,j , ai+1,j), x(ai+1,j , ai+1,j+1) ∈ A
and add the latter two assertions to G.

It is not hard to see that exhaustive application of these rules yields a full grid,
i.e., for the final G we have (i) Ind(G) = {ai,j | i ≤ n, j ≤ m}, (ii) x(ai,j , ai′,j′) ∈ G
iff i′ = i + 1 and j = j′, and (iii) y(ai,j , ai′,j′) ∈ G iff i = i′ and j′ = j + 1. A
solution to the tiling problem can be read off from this grid due to Conditions (e)
and (f).

Since the two steps of the construction are completely analogous, we only
deal with Case 1 in detail. Thus let x(ai,j , ai+1,j), y(ai+1,j , ai+1,j+1) ∈ G with
ai,j+1 /∈ Ind(G). Clearly, i < n and j < m. By (b) and (c), we thus have
T ,A |= ¬R(ai,j) and T ,A |= ¬U(ai,j). Since T ,A |= Y (ai`−1,j`−1) by (d), the
definition of T yields T ,A |= D(ai`−1,j`−1) with

D = ∃x.(Tj u Y u ∃y.Y ) u ∃y.(T` u Y u ∃x.Y ) u C u Ti

for some (Ti, Tj) ∈ H and (Ti, T`) ∈ V . Since there are no existential restrictions
on the right-hand side of CIs in T and by the functionality of x and y, there are
ai,j+1, b ∈ Ind(A) such that y(ai,j , ai,j+1), x(ai,j+1, b) ∈ A, ai,j+1, b ∈ Y I , and
Ti,j+1 = T`. With this choice, (a) and (d)-(f) are clearly satisfied. To establish
the properties stated in Step 1 above, we have to show that b = ai+1,j+1. From
this, the satisfaction of (b) and (c) before we apply the construction step, and
the CIs

R v ∀x.⊥ ∃y.¬R v ¬R ∃x.¬U v ¬U U v ∀y.⊥



it then follows that (b) and (c) are still satisfied after the step.

Suppose to the contrary of what remains to be shown that b 6= ai+1,j+1. Since
T ,A |= ¬R(ai,j), T ,A |= ¬U(ai,j), and T ,A |= Y (ai`−1,j`−1), the definition of
T yields T ,A |= C(ai,j). Take a model I of T and A, and set ZI = (ZI∪{bI})\
{aIi+1,j+1}. Now interpret C, Y , U , and R minimally such that all axioms in T
are still satified, i.e., set

CI = (∃x.∃y.Z u ∃y.∃x.Z)I ∪ (∃x.∃y.¬Z u ∃y.∃x.¬Z)I

Y I = (∃x.(Tj u Y u ∃y.Y ) u ∃y.(T` u Y u ∃x.Y ) u C u Ti)I ∪
T Ifinal ∪ (∃x.(Tj u Y u U) u Ti)I ∪ (∃y.(T` u Y uR) u Ti)I

UI = (Tfinal)I ∪ (∃x.(Tj u Y u U) u Ti)I

RI = (Tfinal)I ∪ (∃y.(T` u Y uR) u Ti)I

It is not hard to verify that I is still a model of T and A. By definition of
ZI and CI and by functionality of x and y, we have ai,j /∈ CI . It follows that
T ,A 6|= C(ai,j), which is a contradiction. ut

Proof of Lemma 7.

Forward direction: Straightforward, see previous proof.

Backward direction: Let A be a Σ-ABox consistent with T and such that T ,A |=
∃v.A(v). Call a model I of A and T minimal if the following conditions are
satisfied, for all a ∈ Ind(A), role names r, and i ∈ {1, . . . , p}:

1. ∆I = Ind(A);
2. aI = a;
3. (a, a′) ∈ rI implies r(a, a′) ∈ A;
4. a ∈ T Ih implies Th(a) ∈ A.

Since neither existential restrictions nor concept names Ti occur on the right-
hand side of CIs in T , it is not hard to verify that there is a minimal model I
of A and T . We additionally assume w.l.o.g., that

– I is Y,C-minimal : if J is obtained from I by deleting elements of Y I and
CI while keeping the extension of all other symbols unchanged, then J is
not a model of A and T .

– I is A-minimal : there is no minimal model J of T andA such that AJ ( AI .

Let aA ∈ AI . We now exhibit a grid structure in A that gives rise to a tiling for
(T, H, V ). We start by identifying a diagonal that starts at aA and ends at an
instance of Tfinal.

Claim 1. There is a set

G := {r1(ai0,j0 , ai1,j1), . . . , rk−1(aik−1,jk−1 , aik,jk), Tfinal(aik,jk)} ⊆ A

such that



– i0 = 0, j0 = 0, and a0,0 = aA;
– for 1 ≤ ` < k, we either have (i) r` = x, i`+1 = i` + 1, and j`+1 = j` or

(ii) r` = y, j`+1 = j` + 1, and i`+1 = i`.

Proof of claim. If there is no such sequence, we can convert I into a new model
J of A and T by interpreting Y as false at all points reachable from aA in
I (equivalently: A) and setting AJ = AI \ {aA}, which is a contradiction to
A-minimality of I. (end of proof of claim).

Let n be the number of occurrences of the role x in the ABox G from Claim 1
and m the number of occurrences of y. We next show

Claim 2. We have that

(a) a0,0 ∈ T Iinit.
(b) ai,j ∈ RI implies i = n;
(c) ai,j ∈ UI implies j = m;
(d) a ∈ Y I for all a ∈ Ind(G);
(e) for all ai,j ∈ Ind(G), there is a (unique) Th with ai,j ∈ T Ih , henceforth denoted

Ti,j ;
(f) (Ti,j , Ti+1,j) ∈ H for all ai,j , ai+1,j ∈ Ind(G) and (Ti,j , Ti,j+1) ∈ V for all

ai,j , ai,j+1 ∈ Ind(G).

Proof of claim. Point (a) is an easy consequence of the fact that a0,0 = aA,
aA ∈ AI , and I is A-minimal. For (b), first note that there is a unique ` ≤ k
such that is = n for all s ∈ {`, . . . , k} and ip < n for all s ∈ {0, . . . , ` − 1}. We
have y(ai`−1,j`−1 , ai`,j`) ∈ G, thus the CI R v ∀x.⊥ yields ai`−1,j`−1 /∈ RI . To
show that ais,js /∈ RI for all s < `−1, it suffices to use the CIs ∃x.¬R v ¬R and
∃y.¬R v ¬R. The proof of (c) is similar. We prove (d)-(f) together, showing by
induction on ` that (d)-(f) are satisfied for all initial parts

G` := {r1(ai0,j0 , ai1,j1), . . . , r`−1(ai`−1,j`−1 , ai`,j`)}

of G, with ` ≤ k. For the base case, ai0,j0 = aA ∈ AI and A-minimality of I
clearly imply ai0,j0 ∈ Y I , thus (d) is satisfied. Point (e) follows from (a) and
the disjointness of tiles expressed in T . Point (f) is vacuously true since there is
only a single individual in G0. For the induction step, assume that G`−1 satisfies
(d)-(f). We distinguish four cases:

– ai`−1,j`−1 ∈ (¬U u ¬R)I .
Since G`−1 satisfies (d), we have ai`−1,j`−1 ∈ Y I and, by definition of T ,
Y,C-minimality of I together with ai`−1,j`−1 ∈ (¬U u ¬R)I ensure that

ai`−1,j`−1 ∈ (∃x.(Tj u Y u ∃y.Y ) u ∃y.(T` u Y u ∃x.Y ) u C u Ti)I

for some (Ti, Tj) ∈ H and (Ti, T`) ∈ V . Using the functionality of x and y,
it is now easy to show that G` satisfies (d)-(f).



– ai`−1,j`−1 ∈ (¬U uR)I .
Since ai`−1,j`−1 ∈ RI , T ensures that there is no x-successor of ai`−1,j`−1 in I.
Moreover, ai`−1,j`−1 ∈ Y I . From Y,C-minimality of I and the definition of
T , we get

ai`−1,j`−1 ∈ (∃y.(T` u Y uR) u Ti)I

for some (Ti, T`) ∈ V . We must have i` = i`−1, j` = j`−1 + 1, and r`−1 = y.
Using the functionality of y, it is now easy to show that G` satisfies (d)-(f).

– ai`−1,j`−1 ∈ (U u ¬R)I .
Analogous to the previous case.

– ai`−1,j`−1 ∈ (U uR)I .
Then there is neither an x-successor nor a y-successor of ai`−1,j`−1 ∈ (UuR)I .
It follows that `− 1 = k, in contradiction to ` ≤ k.

(end of proof of claim).
Next, we extend G to a full grid such that Conditions (a)-(e) from Claim 2 are
still satisfied. Once this is achieved, it is trivial to read off a solution for the
tiling problem. The construction of the grid consists of exhaustive application of
the following two steps:

1. if x(ai,j , ai+1,j), y(ai+1,j , ai+1,j+1) ∈ G with i < n and ai,j+1 /∈ Ind(G), then
identify an ai,j+1 ∈ Ind(A) such that y(ai,j , ai,j+1), x(ai,j+1, ai+1,j+1) ∈ A
and add the latter two assertions to G.

2. if y(ai,j , ai,j+1), x(ai,j+1, ai+1,j+1) ∈ G with i < n and ai+1,j /∈ Ind(G), then
identify an ai+1,j ∈ Ind(A) such that y(ai,j , ai+1,j), x(ai+1,j , ai+1,j+1) ∈ A
and add the latter two assertions to G.

It is not hard to see that exhaustive application of these rules yields a full grid,
i.e., for the final G we have (i) Ind(G) = {ai,j | i ≤ n, j ≤ m}, (ii) x(ai,j , ai′,j′) ∈ G
iff i′ = i + 1 and j = j′, and (iii) y(ai,j , ai′,j′) ∈ G iff i = i′ and j′ = j + 1. A
solution to the tiling problem can be read off from this grid due to Conditions (e)
and (f).

Since the two steps of the construction are completely analogous, we only
deal with Case 1 in detail. Thus let x(ai,j , ai+1,j), y(ai+1,j , ai+1,j+1) ∈ G with
ai,j+1 /∈ Ind(G). Clearly, i < n and j < m. By (b) and (c), we thus have
ai,j /∈ (R t U)I . Since ai,j ∈ Y I by (d) and I is Y,C-minimal, we get that

ai,j ∈ (∃x.(Tj u Y u ∃y.Y ) u ∃y.(T` u Y u ∃x.Y ) u C u Ti)I

for some (Ti, Tj) ∈ H and (Ti, T`) ∈ V . Thus and since I is minimal, we can
choose ai,j+1, b ∈ Ind(A) such that y(ai,j , ai,j+1), x(ai,j+1, b) ∈ A, ai,j+1, b ∈
Y I , and Ti,j+1 = T`. With this choice, (a) and (d)-(f) are clearly satisfied. To
establish the properties stated in Step 1 above, we have to show that b = ai+1,j+1.
From this, the satisfaction of (b) and (c) before the construction step, and the
CIs

R v ∀x.⊥ ∃y.¬R v ¬R ∃x.¬U v ¬U U v ∀y.⊥

it follows that (b) and (c) are still satisfied after the step.



Suppose to the contrary of what remains to be shown that b 6= ai+1,j+1. Since
ai,j ∈ Y I , we have ai,j ∈ CI . Due to Y,C-minimality and by definition of T and
functionality of x and y, we have b, ai+1,j+1 ∈ BI for some Boolean combination
B of Z1, Z2. Let B′, B′′, B′′′ be such combinations that are distinct from each
other and from B. Since A is finite and x and y are inverse functional, we find
a unique maximal and finite sequence b0, . . . , br ∈ Ind(A) such that

(i) b0 = ai+1,j+1 for some i ≤ r;
(ii) for all i < r, there is a c ∈ Ind(A) such that (c, bi) ∈ (y ◦ x)I and (c, bi+1) ∈

(x ◦ y)I ;
(iii) all bi are distinct individuals.

We can uniquely extend the sequence to a new sequence b−r′ , b−r′+1, . . . , b0, . . . , br
such that the Conditions (i) to (iii) are still satisfied, with i in (ii) now ranging
from −r′ to r − 1.

Define a new interpretation J starting with I by reinterpreting the concept
names Z1, Z2 such that

– bi ∈ B′ if i is even and −r′ ≤ i < r;
– bi ∈ B if i is odd and −r′ ≤ i < r;
– br ∈ B′′.

Moreover, we remove ai,j from CI and shrink Y I such that ai,j /∈ Y J , x(a, b) ∈
A with b /∈ Y J implies a /∈ Y J , and y(a, b) ∈ A with b /∈ Y J implies a /∈ Y J .
In particular, this will result in a0,0 = aA /∈ Y J . Define AJ = AI \ {aA}. It can
be verified that J is a model of A and T , contradicting A-minimality of I. ut


