

Vector Field Processing with Clifford Convolution and Clifford Fourier Transform

Wieland Reich¹, Gerik Scheuermann¹

¹ Computer Science Institute, University of Leipzig

- The problem: CFD data and PIV measurements
- **The idea**: Transfer of image processing to vector fields
- **The solution**: Clifford Convolution
- **Practical results:** Vortex detection and separation lines
- Theoretical results: Clifford Fourier Transform
- **Other ideas**: IH-Fourier Series, Bi-quaternion Fourier Transform
- Conclusion and open questions

1. The Problem: CFD Data

The analysis of flow is relevant for engineers in the aerospace, automotive and mechanical engineering industry, e.g. for design of

- airplanes
- helicopters
- trains
- cars
- trucks
- turbines
- combustion chambers

Scheuermann Vector Field Processing with Clifford...

The problem: CFD Post-processing

- Direct visualization shows arrows, streamlines, streamsurfaces
- Advanced visualization detects features like vortices, separation

Scheuermann Vector Field Processing with Clifford...

The problem: PIV measurements

- 3D velocity field can be measured by particle image velocimetry
- Here: velocity measurement behind helicopter rotor

Scheuermann Vector Field Processing with Clifford...

- Goal: Detect the vortices in the measurement planes.
- Determine vortex parameters like center, extend, strength

Marked vortices found by our method

Vortex centers of different measurements

Scheuermann Vector Field Processing with Clifford...

2. The Idea: Image Processing on Vector Fields

- Robust feature detection in scalar fields uses image processing!
- Image processing uses filter operations.
- Filter operations for flow fields need vector field filter!
- Many filter in image processing are based on convolution.
- **Convolution for vector fields**?

Convolution integral

$$H * F(x) = \int_{H^{d}} H(y) F(x-y) dy$$

- Multiplication for vector fields?
- => Geometric Algebra!

- Scalar fields H and F: ordinary convolution in image processing
- Scalar field H and vector field F: scalar multiplication.
- Vector fields H, F: scalar convolution in each coordinate [Granlund and Knutsson, 1995]
- Vector fields H, F: scalar product [Heiberg, 2003]

Let IE^d be euclidean d-space.

Let G_d be the Geometric algebra for euclidean d-space.

Let $H, F: IE^d \to G_d$ be two multivector fields.

We define

$$H * F(x) = \int_{IE^{d}} H(y) F(x-y) |dy|$$

as (right) **Clifford convolution** [Ebling and S., 2003].

(There is a left Clifford convolution with commuted factors, too.)

- H, F scalar fields: ordinary convolution of image processing
- H scalar field, F vector field: scalar multiplication.
- H, F vector fields: Scalar component is Heiberg's scalar product.

Scalar Kernels

Scheuermann Vector Field Processing with Clifford...

Scheuermann Vector Field Processing with Clifford...

3D Vector Kernels

Scheuermann Vector Field Processing with Clifford...

Instead of convolution, look at spatial correlation:

$$H \times F(x) = \int_{IE^{d}} H(y) F(x+y) |dy|$$

The kernel H describes the local structure!

- Arbitrary combinations of convolutions possible:
 - Derivative operators (e.g. rotation, divergence)
 - Smoothing operators as regularization (e.g. Gaussians)
 - Correlation with any vector field of interest to the user

4. Practical results: Combustion chamber

Gas combustion chamber of a heating

Inlets for air

<image>

Blue: Streamlets with high similarity to rotation, red: streamlines with high velocity

Scheuermann Vector Field Processing with Clifford...

- Segmentation of the field:
- **Red**: strong rotation yellow: strong shear flow

green: saddle regions

• Blue: Isosurface of high velocity regions.

Scheuermann Vector Field Processing with Clifford...

Scheuermann Vector Field Processing with Clifford...

5. Theoretical results: Clifford Fourier Transform

- Generalized convolution => Generalized Fourier Transform?
- Convolution theorem?
- Derivative theorem?
- Fast Fourier Transform?

Theoretical results: Clifford Fourier Transform

Let $F: IE^d \to G_d$ be two multivector fields, d=2,3. We define as Clifford Fourier transform

$$\mathcal{F}\left\{F\right\}(u) := \int_{IE^d} F(x) \exp\left(-2\pi i_d x \cdot u\right) |dx|$$

and as inverse

$$\mathcal{F}^{-1}\left\{F\right\}\left(u\right):=\int_{IE^{d}}F\left(x\right)\exp\left(2\pi i_{d}x\cdot u\right)\left|dx\right|$$

Scheuermann Vector Field Processing with Clifford...

We get the well-known Fourier transform theorems in 3D:

Shift theorem:
$$\mathcal{F}[F(x-x')](u) = \mathcal{F}[F](u)e^{-2\pi I_3(x',u)}$$

Convolution theorem: $\mathcal{F}[H * F](u) = \mathcal{F}[H](u)\mathcal{F}[F](u)$

Derivative theorem:

$$\mathcal{F}[\nabla f](u) = 2\pi I_3 u \mathcal{F}[f](u)$$

 $\mathcal{F}[\Delta f](u) = -4\pi^2 u^2 \mathcal{F}[f](u)$

Scheuermann Vector Field Processing with Clifford...

We get less elegant versions of the theorems in 2D, due to the missing commutation of i_2 with vectors in G_2 .

Let $H: IE^2 \to G_2$ be a multivector field, $v: IE^2 \to IE^2 \subset G_2$ a vector field. **Shift theorem**: $\mathcal{F}\{v(x-x')\}(u) = \mathcal{F}\{v\}(u)\exp(-2\pi i_2 x \cdot u)$

Convolution theorem: $\mathcal{F}{H*v}(u) = \mathcal{F}{H}(u) \mathcal{F}{v}(u)$

Derivative theorem:

$$\mathcal{F}\{\nabla v\}(u) = -2\pi i_2 u \mathcal{F}\{v\}(u)$$

$$\mathcal{F}\left\{\Delta v\right\}(u) = 4\pi^2 u^2 \mathcal{F}\{v\}(u)$$

(For the spinor-valued part, one gets different signs. The right convolution has similar theorems. The Laplaceoperator has the same properties for spinors.)

Scheuermann Vector Field Processing with Clifford...

3D-CFT = 4 FT

• In 3D, we are calculating four independent usual complex FT:

$$F = F_0 1 + F_1 e_1 + F_2 e_2 + F_3 e_3 + F_{12} e_1 e_2 + F_{23} e_2 e_3 + F_{31} e_3 e_1 + F_{123} i_3$$

$$F \{F\}(u) = [F \{F_0 + F_{123} i_3\}(u)] 1 + [F \{F_1 + F_{23} i_3\}(u)] e_1 + [F \{F_2 + F_{31} i_3\}(u)] e_1 + [F \{F_2 + F_{31} i_3\}(u)] e_2 + [F \{F_3 + F_{12} i_3\}(u)] e_3$$

• For a vector field $v: IE^3 \rightarrow IE^3 \subset G_3$, this means three FT of the components.

- In 2D, we are calculating two independent usual complex FT: $F = F_0 + F_1 e_1 + F_2 e_2 + F_{12} i_2$ $F\{F\}(u) = 1[F\{F_0 + F_{12} i_2\}(u)] + e_1[F\{F_1 + F_2 i_2\}(u)]$
- For a vector field $v: IE^2 \rightarrow IE^2 \subset G_2$, this means one FT of a complex signal.

Bi-quaternion Fourier transform [Sangwine et al. 2008]:

Let $IH_{c} = \{q_{0}+q_{1}i+q_{2}j+q_{3}k | q_{k} = \Re(q_{k})+I\Im(q_{k}) \in \mathbb{C}\}$ be the bi-quaternions. Use the algebra isomorphism

$$I\!H_{\mathbb{C}} \!
ightarrow \! G_3$$
 , $i \!
ightarrow \! e_1 e_2$, $j \!
ightarrow \! e_2 e_3$, $k \!
ightarrow \! e_3 e_1$, $I \!
ightarrow \! i_3$

For an $\mu \in IH_{c}$ with $\mu^{2} = -1$ define the **right BiQFT**:

$$\mathcal{F}_{r}^{\mu} \{F\}(u) = \int_{IE^{3}} F(x) \exp(-2\pi \mu x \cdot u) |dx|$$

Scheuermann Vector Field Processing with Clifford...

For $\mu = I(=i_3)$, we get the 3D CFT:

$$\mathcal{F}_{r}^{\mu}\{F\}(u) = \int_{IE^{3}} F(x) \exp(-2\pi\mu x \cdot u) |dx| = \int_{IE^{3}} F(x) \exp(-2\pi i_{3}x \cdot u) |dx| = \mathcal{F}\{F(x)\}(u)$$

For a pure bivector $\mu = <\mu >_2$,

there are orthonormal bivectors μ , ν , ξ and an orthonormal linear map T with $T(1)=1, T(i)=\mu, T(j)=\nu, T(k)=\xi$ such that $\mathcal{F}_{r}^{i}=T^{-1}\mathcal{F}_{r}^{\mu}T$

• All BiQFT with pure bivector differ only by linear transformation!

UNIVERSITÄT LEIPZIG

BiQFT – Relation to CFT

For a vector field $v: IE^3 \to IE^3 \subset G_3$, $x \to \sum_{l=1}^3 v_l(x)e_l$, we have $v(x) = -v_3(x)Ii - v_1(x)Ij + v_2(x)Ik = (-v_3(x)Ii) + (-v_1(x)I + v_2(x)Ii)j$ and for $\mu = i(=e_1e_2)$, we get $\mathcal{F}_r^i\{v\}(u) = \int_{IE^3} (-v_3(x)i)\exp(-2\pi i x \cdot u)|dx|I + \int_{IE^3} (-v_1(x) + v_2(x)i)\exp(-2\pi i x \cdot u)|dx|I$

This means the first two components undergo a 2D-CFT and the third component is transformed as single real signal.

BiQFT is a better generalization of 2D-CFT to 3D than 3D-CFT.

UNIVERSITÄT LEIPZIG

Let $IH := \{q_0 + q_1 e_1 + q_2 e_2 + q_3 e_3 | q_l \in \mathbb{R}, e_3 := i_2\} \simeq G_2$ be the quarternions.

Let $F: IH \rightarrow IH$ be a function on the quarternions.

F is left IH-holomorphic [Gürlebeck, Harbetha, Sprößig, 2006], if

$$\overline{\partial} f = 0$$
 with $\overline{\partial} := \frac{\partial}{\partial q_0} + \sum_{k=1}^3 \frac{\partial}{\partial q_k} e_k$

Let $IB := \{q \in IH | |q| = 1\}$ be the unit sphere in IH.

There is an orthonormal basis of IH-holomorphic polynomials of

UNIVERSITÄT LEIPZIG

$$L^{2}(IB) \cap \ker(\overline{\partial}) = \bigoplus_{k=0}^{\infty} H_{k}^{+}$$

IH-holomorphic Fourier series

For a vector field

$$v: IE^3 \to IE^3 \subset G_3$$

We have to find a related function on IB.

We tried:

$$v(x) = f_{1}(x)e_{1}\overline{f_{1}(x)}$$

$$v(x) = f_{2}(x)e_{1} \qquad v(x) = e_{1}f_{3}(x)$$

$$f_{4}(x) := v_{1}(x)e_{1} + v_{2}(x)e_{2} + v_{3}(x)i_{2}$$

But in all cases, general linear vector fields are not IH-holomorphic, so we could not apply the Fourier series.

- Image processing of vector fields helps in flow data analysis.
- Geometric algebra allows a suitable convolution operator.
- Convolution, correlation, derivative operators are possible.
- There is a Clifford Fourier transform with the nice theorems.
- BiQFT can explain differences between 2D-CFT and 3D-CFT.

Clifford convolution:

- Good interpretation of bivector part in Clifford convolution? How can we use it?
- Convolution on unsteady vector fields? (Space-time GA?)
- Conformal Geometric Algebra extensions of the convolution?

Fourier transform:

- Good interpretation for the vector field frequencies?
- What is the right way for the nd-CFT?
 (Not all metrics work at the moment, i²=-1 necessary.)
- Is there a way to use the IH-holormorphic function approach?
- Comparison with other approaches, e.g. Batard?

Wavelet transforms? Wavelet-based filter?

Scheuermann Vector Field Processing with Clifford...

- J. Ebling, G. Scheuermann. Clifford Convolution and Pattern Matching on Vector Fields. Proceedings of IEEE Visualization 2003, IEEE CS, Los Alamitos, CA, USA, 2003, 193-200.
- J. Ebling, G. Scheuermann, B.G. van der Wall. Analysis and Visualization of 3-C PIV images from HART II Using Image Processing Methods. In EUROGRAPHICS – IEEE VGTC Symposium on Visualization 2005 Proceedings, IEEE CS, Los Alamitos, CA, USA, 2005, 161-168.
- J. Ebling, G. Scheuermann. Clifford Fourier Transform on Vector Fields. IEEE Transactions on Visualization and Computer Graphics 11(4):469-479, 2005.
- Gürlebeck, Habetha, Sprößig. Funktionentheorie in der Ebene und im Raum. Birkhäuser Verlag, Stuttgart, 2006.
- Sangwine, Le Bihan, Said. Fast Complexified Quaternion Fourier Transform. IEEE Transactions on Signal Processing 56(4):1522-1531, 2008.