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Distributed representations

Example

“green color”

+ “triangular shape”

= “green triangle”

Idea

An opposite and an alternative of “traditional” data structures (lists, databases,
etc...).

Hinton (1986):
each concept is represented over a number of units (bytes)
each unit participates in the representation of some number of concepts
the size of a distributed representation is usually fixed
the units have either binary or a continuous-space values
data patterns are chosen as random vectors or matrices
in most distributed representations only the overall pattern of activated units has a
meaning (resemblance to a multi-superimposed photograph)
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Distributed representations

Atomic objects and complex statements

biteagent ~ Fido︸ ︷︷ ︸
chunk

+ biteobject ~ Pat︸ ︷︷ ︸
chunk

= “Fido bit Pat”

roles: biteagent , biteobject

fillers: Fido, Pat

name ~ Pat + sex ~ male + age ~ 66 = “PSmith”

roles: name, sex , age

fillers: Pat, male, 66

seeagent ~ John + seeobject ~ “Fido bit Pat” = “John saw Fido bit Pat”

Roles are always atomic objects but fillers may be complex statements.

Binding and chunking

~ binding
+ superposition (also called chunking)
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Distributed representations

Decoding

] decoding
x−1 (approximate/pseudo) inverse

Examples

“What is the name of PSmith?”

(name ~ Pat + sex ~ male + age ~ 66) ] name−1 = Pat + noise ≈ Pat

“What did Fido do?”

(biteagent ~ Fido + biteobject ~ Pat) ] Fido−1 = biteagent + noise ≈ biteagent

Clean-up memory

An auto-associative collection of elements and statements (excluding single
chunks) produced by the system.

Given a noisy extracted vector such structure must be able to:
either recall the most similar item stored ...
... or indicate, that no matching object had been found.

We need a measure of similarity (in most models: scalar product,
Hamming/Euclidean distance).
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Distributed representations

Requirements/Problems

~,+ - symmetric, preserving an equal “portion” of every component.

], inverse - easy/fast to compute.

Rules of composition and decomposition must be applicable to all elements of the
domain.

Fixed size of vectors irrespectively of the degree of complication.

Advantages

Noise tolerance, good error correction properties.

Storage efficiency.

The number of superimposed patterns is not fixed.
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Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

Data: n-bit binary vectors of great length (n ≈ 10000)

Both ~ and ] performed by XOR

+ majority rule addition (with additional random vectors to break the tie)

Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

Data: normalized n-byte vectors chosen from N(0, 1/n)

~ performed by circular convolution

+ “normalized” addition, e.g. (bite + biteagent ~ Fido + biteobject ~ Pat)/
√

3

Inverse: involution x∗i = x(−i)mod(n)

] circular correlation (i.e. circular convolution with an involution), e.g:(
(bite + biteagent ~ Fido + biteobject ~ Pat)/

√
3
)

~ bite∗agent

Similarity measure: dot product
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Data: normalized n-byte vectors chosen from N(0, 1/n)

~ performed by circular convolution

+ “normalized” addition, e.g. (bite + biteagent ~ Fido + biteobject ~ Pat)/
√

3

Inverse: involution x∗i = x(−i)mod(n)

] circular correlation (i.e. circular convolution with an involution), e.g:(
(bite + biteagent ~ Fido + biteobject ~ Pat)/

√
3
)

~ bite∗agent

Similarity measure: dot product
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Binary parametrization of the geometric product

Binary parametrization

Let {x1, . . . , xn} be a string of bits and {e1, . . . , en} be base vectors. Then

ex1...xn = ex1
1 . . . exn

n

where e0
k = 1.

Example:
1 = e0...0 e1 = e10...0 e235 = e011010...0

Geometric product as a projective XOR representation

Example:

e12e1 = e110...0e10...0 = e1e2e1 = −e2e1e1 = −e2 = −e010...0

= −e(110...0)⊕(10...0) = (−1)De(110...0)⊕(10...0)

More formally, for two arbitrary strings of bits we have:

eA1...AneB1...Bn = (−1)

∑
k<l

BkAl

e(A1...An)⊕(B1...Bn)
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Matrix representation

Pauli’s matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Cartan representation

b2k = σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
n−k

⊗σ2 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

,

b2k−1 = σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
n−k

⊗σ3 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

.
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Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100

= b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100

= b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100 = b3

= σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100 = b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100 = b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100 = b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100 = b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100 = b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Representation

PSmith = name ~ Pat + sex ~ male + age ~ 66

Pat = c00100 = b3 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1

male = c00111 = b3b4b5

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ (−iσ1)⊗ 1

66 = c11000 = b1b2 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)

= 1⊗ 1⊗ 1⊗ 1⊗ (−iσ1)

name = c00010 = b4 = σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2 ⊗ 1

sex = c11100 = b1b2b3

= (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ2)(σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3 ⊗ 1)

= σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ (−iσ1)

age = c10001 = b1b5 = (σ1 ⊗ σ1 ⊗ σ1 ⊗ σ1 ⊗ σ3)(σ1 ⊗ σ1 ⊗ σ3 ⊗ 1⊗ 1)

= 1⊗ 1⊗ (−iσ2)⊗ σ1 ⊗ σ3

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background GA Model Test results Future work References

Example
Encoding and Decoding

PSmith

PSmith = name ~ Pat + sex ~ male + age ~ 66

= c00010c00100 + c11100c00111 + c10001c11000

= −c00110 + c11011 + c01001

PSmith’s name = PSmith ] name−1 = PSmith ~ name

PSmith ~ name = (−c00110 + c11011 + c01001)c00010

= −c00100 − c11001 − c01011

= −Pat + noise = Pat′
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Example
Clean-up

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

〈Pat′|ePat〉 = Tr
(

(−c00100 − c11001 − c01011)c00100

)
= Tr

(
−1 + c11101 − c01111

)
= −32 6= 0

〈Pat′|emale〉 = 0

〈Pat′|e66〉 = 0

〈Pat′|ename〉 = 0

〈Pat′|esex 〉 = 0

〈Pat′|eage〉 = 0

〈Pat′|PSmith〉 = 0
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Signatures
Examples

PSmith, n = 5

PSmith, n = 6

PSmith, n = 7

Signatures:

LHS-signature

RHS-signature
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Signatures

Dimensions

2b
n
2
c signatures on one of the diagonals.

Each signature is of dimensions 2d
n
2
e × 2d

n
2
e.

Cartan representation

b2k = σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
at least b n

2
c

⊗σ2 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

,

b2k−1 = σ1 ⊗ · · · ⊗ σ1︸ ︷︷ ︸
at least b n

2
c

⊗σ3 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

.
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Recognition tests

Construction

Plate (HRR) construction, e.g. eat + eatagent ~ Mark + eatobject ~ theFish

Agent-Object construction, e.g. eatagent ~ Mark + eatobject ~ theFish

Vocabulary/Sentence set

Similar sentences, e.g:

Fido bit Pat.

Fido bit PSmith.

Pat fled from Fido.

PSmith fled from Fido.

Fido bit PSmith causing PSmith to flee from Fido.

Fido bit Pat causing Pat to flee from Fido.

John saw that Fido bit PSmith causing PSmith to flee from Fido.

John saw that Fido bit Pat causing Pat to flee from Fido.

etc...

Altogether 42 atomic objects and 19 sentences.
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Recognition tests

Agent-Object construction

Works better for:

simple sentences and simple answers

-

6

5 10 15
n

10

50

100

avg % of correct answers

a
a

a a a a a a a a a a

p
p

p p p p p p p p p pa Plate constructionp Agent-object construction

QUESTION: PSmith~name

ANSWER: Pat

NUMBER OF TRIALS: 1000
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nested sentences, from which a rather unique information is to be derived.
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Recognition tests

Plate (HRR) construction

Works better for nested sentences, from which a complex information needs to be
derived.

-

6

5 10 15
n

10

50

100

avg % of correct answers

a a a a a a a a a a a a
p p p p p p p p p p p p

a Plate constructionp Agent-object construction

QUESTION: (John saw that Fido bit Pat causing

Pat to flee from Fido)~seeobject

ANSWER: Fido bit Pat causing Pat to flee from Fido

NUMBER OF TRIALS: 1000
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Blade linearity

Problems

How often does the system produce identical blades representing atomic objects?

How often does the system produce identical sentence chunks from different
blades?

How do the two above problems affect the number of (pseudo-) correct answers?

Assumption: ideal conditions

No two chunks of a sentence at any time are identical (up to a constant).

〈A|C〉 6= 0 ≡ A and C share a common blade
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Blade linearity

One meaningful blade, L > 0 noisy blades

-

6

5 10 15
n

1

5

10

15

avg number of probings giving

a nonzero matrix trace

a
a

a a a a a a a a a a

p

p
p

p p p p p p p p p

a test resultsp
estimates

QUESTION: (Fido bit Pat)~biteobject

ANSWER: Pat

NUMBER OF TRIALS: 1000

MEANINGFUL/NOISY BLADES: 1 /1
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Blade linearity

K > 1 meaningful blades, L > 0 noisy blades

-

6

5 10 15
n

1

5

10

15

avg number of probings giving

a nonzero matrix trace

a
a

a a a a a a a a a

p

p
p

p p p p p p p p

a test resultsp
estimates

QUESTION: (Fido bit PSmith)~biteobject

ANSWER: PSmith= name ~ Pat + sex ~ male + age ~ 66

SIMILAR ANSWER: DogFido= name ~ Fido + sex ~ male + . . .

NUMBER OF TRIALS: 1000

MEANINGFUL/NOISY BLADES: 3/1
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What’s next?

Issues

Decide on construction (something between Plate and Agent-Object?).

Tests for greater n.

Scaling.
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