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each unit participates in the representation of some number of concepts
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@ An opposite and an alternative of “traditional” data structures (lists, databases,
etc...).

o Hinton (1986):

each concept is represented over a number of units (bytes)

each unit participates in the representation of some number of concepts

the size of a distributed representation is usually fixed

the units have either binary or a continuous-space values

data patterns are chosen as random vectors or matrices

in most distributed representations only the overall pattern of activated units has a
meaning (resemblance to a multi-superimposed photograph)
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o Roles are always atomic objects but fillers may be complex statements.

| A\

Binding and chunking

® binding
+ superposition (also called chunking)

A\
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f decoding
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Examples
“What is the name of PSmith?”

o (name ® Pat + sex ® male + age ® 66) § name™! = Pat -+ noise ~ Pat
“What did Fido do?”

o (biteagent ® Fido + bitegpjecs ® Pat) f Fido—1 = bitesgent + noise & biteagent
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“What is the name of PSmith?”

o (name ® Pat + sex ® male + age ® 66) § name™! = Pat -+ noise ~ Pat
“What did Fido do?”

o (biteagent ® Fido + bitegpjecs ® Pat) f Fido—! = bitesgent + noise & biteagent

v

Clean-up memory

@ An auto-associative collection of elements and statements (excluding single
chunks) produced by the system.

o Given a noisy extracted vector such structure must be able to:
o either recall the most similar item stored ...
e ... or indicate, that no matching object had been found.
@ We need a measure of similarity (in most models: scalar product,
Hamming/Euclidean distance).

4
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Requirements/Problems

® ®,+ - symmetric, preserving an equal “portion” of every component.

@ ff, inverse - easy/fast to compute.

o Rules of composition and decomposition must be applicable to all elements of the
domain.

o Fixed size of vectors irrespectively of the degree of complication.

v

o Noise tolerance, good error correction properties.

o Storage efficiency.

@ The number of superimposed patterns is not fixed.
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o Data: n-bit binary vectors of great length (n ~ 10000)
o Both ® and #§ performed by XOR

@ + majority rule addition (with additional random vectors to break the tie)

Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

o Data: normalized n-byte vectors chosen from N(0,1/n)

o @ performed by circular convolution
@ + “normalized” addition, e.g. (bite + bitesgent ® Fido + biteopject ® Pat)/\/§
e Inverse: involution X = X(_i)mod(n)
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AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Background

O000e

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

o Data: n-bit binary vectors of great length (n ~ 10000)
o Both ® and #§ performed by XOR

@ + majority rule addition (with additional random vectors to break the tie)

Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

o Data: normalized n-byte vectors chosen from N(0,1/n)

o @ performed by circular convolution

@ + “normalized” addition, e.g. (bite + bitesgent ® Fido + biteopject ® Pat)/\/§
e Inverse: involution X = X(_i)mod(n)

@ f circular correlation (i.e. circular convolution with an involution), e.g:

((bite + bitesgent ® Fido + biteopject ® Pat) /\/§> ® bitelgant

o Similarity measure: dot product
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where e,? =1.
Example:
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v

Geometric product as a projective XOR representation
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Let {xi,...,xn} be a string of bits and {e1,...,en} be base vectors. Then
Ctonsiy = G 000 G

where e,? =1.
Example:
1=-ep...0 €1 = €10...0 €235 = €011010...0

v

Geometric product as a projective XOR representation

Example:

€12€1 =  €110...0€10...0 = €1€2€] = —€2€1€1 = —€2 = —€010...0

= —eqo...0)@(10..0) = (—1)Peqio.0)m(10...0)
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Blnary parametrization of the geometrlc product

Binary parametrization

Let {xi,...,xn} be a string of bits and {e1,...,en} be base vectors. Then
Ctonsiy = G 000 G

where e,? =1.
Example:
1=-ep...0 €1 = €10...0 €235 = €011010...0

v

Geometric product as a projective XOR representation

Example:

€12€1 = €110...0€10...0 = €1€2€61 = —€2€1€1 = —€2 = —€010...0
= —eqw..0@(10...0) = (—1)Peqio0...0)@(10...0)

More formally, for two arbitrary strings of bits we have:

€A;...A,€B;..B, = (=1)k< €(Ay...An)®(Bi...By)
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Pauli's matrices

Cartan representation

by = 01® QoI -1,
—_—— ————

n—k k—1
by—1 = 01® - Q®o1R®03RV1RQ---Q1.
N —— —_———

n—k k—1
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Representation

PSmith = name ® Pat + sex ® male + age ® 66

Pat = cooi00=b3=01R01®01R03®1

male = coo111 = b3bsbs
= (1®01QR01®03R1)(01Q®01®01Q®1)(01R®o1®o3R®1IR1)
= 01R01®03® (—io1)®1
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coo111 = bzbabs
(01®01®01®03R1)(01®01R01®2R1)(01 Q01 ®o3R@1®1)
01®01®03® (—io1)®1

cr1000 = biby = (01 ® 01 ® 01 ® 01 ® 03)(01 @ 01 @ 01 ® 01 ® 02)

= 19191®1® (—io1)

male

66
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PSmith = name ® Pat + sex ® male + age ® 66

Pat = cooi00=b3=01R01®01R03®1
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(01®01®01®03R1)(01®01R01®2R1)(01 Q01 ®o3R@1®1)
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male

66 = cii000 =bibr = (01 ®01®01®01®03)(01Q01Q01Q 01 02)
= 1®1Q1Q1® (—io1)
name = 600010:b4:0'1®0'1®0'1®0'2®1
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PSmith = name ® Pat + sex ® male + age ® 66

Pat = cooi00=b3=01R01®01R03®1

Coo111 = b3babs
(01®01®01®03R1)(01®01R01®2R1)(01 Q01 ®o3R@1®1)
01®01®03® (—io1)®1

male

66 = cii000 =bibr = (01 ®01®01®01®03)(01Q01Q01Q 01 02)
= 118181 (—ioy)
name = coo010 =bs=01R®01Q01R®02Q1
sex = ci1100 = bibab3

(1®01®01®01R®03)(01 Q01 Q01 RQ01R®02)(01®01 ®o1 ®o3® 1
= 01018031 (—io1)
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Representation

PSmith = name ® Pat + sex ® male + age ® 66

Pat = cooi00=b3=01R01®01R03®1

Coo111 = b3babs
(01®01®01®03R1)(01®01R01®2R1)(01 Q01 ®o3R@1®1)
01®01®03® (—io1)®1
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66 = cii000 =bibr = (01 ®01®01®01®03)(01Q01Q01Q 01 02)
= 19191®1® (—io1)
name = coo010 =bs=01R®01Q01R®02Q1
sex = ci1100 = bibab3
= ((1®01®01®01®03)(01®01®01R®01®02)(01Q01 Qo1 R0z 1
= 01018031 (—io1)
age = cio001 = bibs = (01 Q01 ®01Q01®03)(01 Q01 ®o3R1LR®1)

= 1®1Q(—icn)®o1 ®o3
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PSmith = name ® Pat + sex ® male + age ® 66

= €00010€00100 + €11100C€00111 + €10001 €11000
= —Cpo110 + €11011 + C01001

PSmith's name = PSmith § name—! = PSmith ® name

PSmith ® name = (—coo110 + €11011 + €01001)C00010
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Example
Encoding and Decoding

PSmith = name ® Pat + sex ® male + age ® 66

= €00010€00100 + €11100C€00111 + €10001 €11000
= —Cpo110 + €11011 + C01001

PSmith's name = PSmith § name—! = PSmith ® name

PSmith ® name = (—coo110 + €11011 + €01001)C00010

= —Cpo100 — €11001 — €01011
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000@000

Example
Encoding and Decoding

PSmith = name ® Pat + sex ® male + age ® 66

= €00010€00100 + €11100C€00111 + €10001 €11000
= —Cpo110 + €11011 + C01001

PSmith ® name = (—coo110 + €11011 + €01001)C00010

—Cp0100 — €11001 — €01011
= —Pat + noise = Pat’
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Scalar (inner) product is performed by the means of matrix trace.
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Example
Clean-up

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

(Pat'|epa) = Tr((—Coomo — c11001 — C01011)Coo1oo>

Tr(—l + ci1101 — C01111>
—32#£0
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Example
Clean-up

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

(Pat'|epa) = Tr((—Coomo — c11001 — C01011)Coo1oo>

= Tr(—l + ci1101 — C01111>
—32£0

<Pat/|emale
(Pat’|egs
(Pat’|ename
(Pat’|esex
(Pat’|eage
(Pat’|PSmith

T — - — < —
o O O ©O o o
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Signatures

Examples

PSmith, n =15

PSmith, n =16

Signatures:

LHS-signature
RHS-signature
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@ Each signature is of dimensions 2131 x 231,
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Signatures

Dimensions

o 2l3] signatures on one of the diagonals.

@ Each signature is of dimensions 2131 x 231,

Cartan representation

\

by = 01® - -®01®nNlE --®1,
—_——— —_———

at least |5 ] k=1
by_1 = 01® - ®01R®BRII---®1.
e —_— —_———

at least | 7 | k—1

A\
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o Plate (HRR) construction, e.g. eat + eatagent ® Mark + eatopjecy ® theFish

AGACSE 2008 Agnieszka Patyk, patyk@mif.pg.gda.pl



Test results Future wor

@000000

Recognition tests

o Plate (HRR) construction, e.g. eat + eatagent ® Mark + eatopjecy ® theFish

o Agent-Object construction, e.g. eatagenr ® Mark + eatopject ® theFish
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Recognition tests

o Plate (HRR) construction, e.g. eat + eatagent ® Mark + eatopjecy ® theFish
o Agent-Object construction, e.g. eatagenr ® Mark + eatopject ® theFish

Vocabulary/Sentence set

Similar sentences, e.g:
o Fido bit Pat.
o Fido bit PSmith.
o Pat fled from Fido.
o PSmith fled from Fido.
o Fido bit PSmith causing PSmith to flee from Fido.

o Fido bit Pat causing Pat to flee from Fido.
o John saw that Fido bit PSmith causing PSmith to flee from Fido.
@ John saw that Fido bit Pat causing Pat to flee from Fido.

@ etc...

Altogether 42 atomic objects and 19 sentences.

N
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0®@00000

Recognition tests

Agent-Object construction
Works better for:

@ simple sentences and simple answers

© Plate construction

* Agent-object construction

QUESTION: PSmith@® name

ANSWER: Pat

NUMBER OF TRIALS: 1000

avg % of correct answers
A
100 + o ©
]
)
T o
50
o
0T o
t ——— ———
5 10
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Agent-Object construction

Works better for:
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o simple sentences and simple answers,

@ nested sentences, from which a rather unique information is to be derived.
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Recognition tests

Agent-Object construct

Works better for:

o simple sentences and simple answers,

@ nested sentences, from which a rather unique information is to be derived.

avg % of correct answers
A

100 + 6 o © o

-L © Plate construction

b : * Agent-object construction

QUESTION: (John saw that Fido bit Pat causing

o ° Pat to flee from Fido) ®seeagent
T ANSWER: John
T NUMBER OF TRIALS: 1000
T o
10+
. o
B S S S
5 10 15

AGACSE 200! Agnieszka Pat
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000@000

Recognition tests

Plate (HRR) construction

Works better for nested sentences, from which a complex information needs to be
derived.
0
avg % of ckrrect answers o Plate construction
* Agent-object construction
100 +
4 o
o
b o o o ® o o
50 + ° 5 o o ©
“+ : o :
.o QUESTION: (John saw that Fido bit Pat causing
T C Pat to flee from Fido)@seeobject
T ANSWER: Fido bit Pat causing Pat to flee from Fido
10T NUMBER OF TRIALS: 1000
t t t t t t t t t t t t > n
5 10 15

AGACSE 200! Agnieszka Pat

patyk@mif.pg.gda.pl



Test results
[e]e]e]e] O

Blade linearity

AGACSE 200!

patyk@mif.pg.gda.pl



Test results Future

[e]e]e]e] O

Blade linearity

Problems

AGACSE 200 Agnieszka Pat

patyk@mif.pg.gda.pl



Test results

0000@00

Blade linearity

Problems

o How often does the system produce identical blades representing atomic objects?




Test results Future wor

0000@00

Blade linearity

Problems

o How often does the system produce identical blades representing atomic objects?

o How often does the system produce identical sentence chunks from different
blades?
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Blade linearity

Problems

o How often does the system produce identical blades representing atomic objects?

o How often does the system produce identical sentence chunks from different
blades?

@ How do the two above problems affect the number of (pseudo-) correct answers?
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Blade linearity

o How often does the system produce identical blades representing atomic objects?

o How often does the system produce identical sentence chunks from different
blades?

@ How do the two above problems affect the number of (pseudo-) correct answers?
v

Assumption: ideal conditions

\
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0000@00

Blade linearity

o How often does the system produce identical blades representing atomic objects?

o How often does the system produce identical sentence chunks from different
blades?

@ How do the two above problems affect the number of (pseudo-) correct answers?
v

Assumption: ideal conditions

No two chunks of a sentence at any time are identical (up to a constant).

\
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0000@00

Blade linearity

o How often does the system produce identical blades representing atomic objects?

o How often does the system produce identical sentence chunks from different
blades?

@ How do the two above problems affect the number of (pseudo-) correct answers?
v

Assumption: ideal conditions

No two chunks of a sentence at any time are identical (up to a constant).

(A|C) # 0= A and C share a common blade

\
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Blade linearity

ne meaningful blade, L > 0 noisy blades

avg number of probings giving
a nonzero matrix trace

T O test results

15 + * estimates

QUESTION: (Fido bit Pat)®bfteobjecr

10 T .
40 ANSWER: Pat
o
+ NUMBER OF TRIALS: 1000
T MEANINGFUL/NOISY BLADES: 1 /1
5 + o
1 <]
1 ®
°© )
1+ ] ] ® [} ®
4 4 4 4 4 4 4 4 4 4 4 4
t t t t t t t t t t t t > n
5 10 15

v
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000000

K > 1 meaningful blades, L > 0 noisy blades

avg number of probings giving
a nonzero matrix trace®

O test results

° estimates

QUESTION: (Fido bit PSmith) ® bite,pject

ANSWER: PSmith= name @ Pat + sex & male + age ® 66
SIMILAR ANSWER: DogFido= name ® Fido + sex ® male + . . .
NUMBER OF TRIALS: 1000

MEANINGFUL/NOISY BLADES: 3/1

15 T
T o
10 T
5 +
1+
+ +
5
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o Decide on construction (something between Plate and Agent-Object?).
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o Decide on construction (something between Plate and Agent-Object?).

o Tests for greater n.
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Future work

What's next?

o Decide on construction (something between Plate and Agent-Object?).

o Tests for greater n.

@ Scaling.
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