Background	GA Model		References

Geometric Analogue of Holographic Reduced Representations

Agnieszka Patyk

Ph.D. Supervisor: prof. Marek Czachor

Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Poland and Centrum Leo Apostel (CLEA), Vrije Universiteit Brussel, Belgium

Grimma, 17-19 August 2008

< □ > < 同 >

Background 00000	GA Model 0000000	Test results 0000000	References
Outline			

- Background
 - Distributed representations
 - Previous architectures
- GA model
 - · Binary parametrization of the geometric product
 - Cartan representation
 - Example
 - Signatures
- Test results
 - Recognition tests
 - Blade linearity
- Future work
- Computer program CartanGA

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Background	GA Model		References
00000	0000000	0000000	
Distribute	d representations		

Example

イロト イラト イヨト オヨト ヨ のへで Agnieszka Patyk, patyk@mif.pg.gda.pl

э

• An opposite and an alternative of "traditional" data structures (lists, databases, etc...).

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
 - each concept is represented over a number of units (bytes)

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
 - each concept is represented over a number of units (bytes)
 - · each unit participates in the representation of some number of concepts

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
 - each concept is represented over a number of units (bytes)
 - each unit participates in the representation of some number of concepts
 - the size of a distributed representation is usually fixed

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
 - each concept is represented over a number of units (bytes)
 - each unit participates in the representation of some number of concepts
 - the size of a distributed representation is usually fixed
 - the units have either binary or a continuous-space values

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
 - each concept is represented over a number of units (bytes)
 - each unit participates in the representation of some number of concepts
 - the size of a distributed representation is usually fixed
 - the units have either binary or a continuous-space values
 - · data patterns are chosen as random vectors or matrices

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
 - each concept is represented over a number of units (bytes)
 - · each unit participates in the representation of some number of concepts
 - the size of a distributed representation is usually fixed
 - the units have either binary or a continuous-space values
 - · data patterns are chosen as random vectors or matrices
 - in most distributed representations only the overall pattern of activated units has a meaning (resemblance to a multi-superimposed photograph)

Background 00000	GA Model 0000000	Test results 0000000	References
Distributed	representations		

Background O●OOO	GA Model 0000000	Test results 0000000	Future work	References
Distributed re	epresentations			

bite_{agent} * Fido + bite_{object} * Pat = "Fido bit Pat" chunk

chunk

- roles: *bite_{agent}*, *bite_{object}*
- fillers: Fido, Pat

Background 0●000	GA Model 0000000	Test results 0000000	References
Distributed	representations		

bite_{agent} * Fido + bite_{object} * Pat = "Fido bit Pat"

chunk

- chunk
- roles: bite_{agent}, bite_{object}
- fillers: Fido, Pat

 $name \circledast Pat + sex \circledast male + age \circledast 66 = "PSmith"$

- roles: name, sex, age
- fillers: Pat, male, 66

Image: Image:

Background ○○○○○	GA Model 0000000	Test results 0000000	References
Distributed I	representations		

bite_{agent} * Fido + bite_{object} * Pat = "Fido bit Pat"

chunk

chunk

- roles: bite_{agent}, bite_{object}
- fillers: Fido, Pat

 $name \circledast Pat + sex \circledast male + age \circledast 66 = "PSmith"$

- roles: name, sex, age
- fillers: Pat, male, 66

see_{agent} \circledast John + see_{object} \circledast "Fido bit Pat" = "John saw Fido bit Pat"

Roles are always atomic objects but fillers may be complex statements.

Background ○○○○○	GA Model 0000000	Test results 0000000	References
Distributed I	representations		

bite_{agent} * Fido + bite_{object} * Pat = "Fido bit Pat"

chunk

chunk

- roles: bite_{agent}, bite_{object}
- fillers: Fido, Pat

 $name \circledast Pat + sex \circledast male + age \circledast 66 = "PSmith"$

- roles: name, sex, age
- fillers: Pat, male, 66

see_{agent} \circledast John + see_{object} \circledast "Fido bit Pat" = "John saw Fido bit Pat"

Roles are always atomic objects but fillers may be complex statements.

Binding and chunking

❀ binding

+ superposition (also called *chunking*)

Background	GA Model		References
00000	0000000	0000000	
Distribute	d representations		

Background	GA Model		References
00000	0000000	000000	
Distributed	representations		

decoding

 x^{-1} (approximate/pseudo) inverse

3

Background	GA Model		References
00000	0000000	0000000	
Distributed	representations		

 \sharp decoding x^{-1} (approximate/pseudo) inverse

Examples

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < ○ ♀ ○
 Agnieszka Patyk, patyk@mif.pg.gda.pl

Background	GA Model	Test results	References
Distributed rep		000000	

 \sharp decoding x^{-1} (approximate/pseudo) inverse

Examples

"What is the name of PSmith?"

• (name \circledast Pat + sex \circledast male + age \circledast 66) \sharp name⁻¹ = Pat + noise \approx Pat

< ロ > < 同 > < 三 > < 三 >

Background	GA Model		References
00000	0000000	0000000	
Distributed	representations		

 \sharp decoding x^{-1} (approximate/pseudo) inverse

Examples

"What is the name of PSmith?"

- (name \circledast Pat + sex \circledast male + age \circledast 66) \ddagger name⁻¹ = Pat + noise \approx Pat
- "What did Fido do?"
 - (bite_{agent} \circledast Fido + bite_{object} \circledast Pat) \ddagger Fido⁻¹ = bite_{agent} + noise \approx bite_{agent}

A D > A D > A

Background	GA Model	Test results	References
Distributed rep		000000	

 \sharp decoding x^{-1} (approximate/pseudo) inverse

Examples

"What is the name of PSmith?"

• (name \circledast Pat + sex \circledast male + age \circledast 66) \ddagger name⁻¹ = Pat + noise \approx Pat

"What did Fido do?"

• $(bite_{agent} \circledast Fido + bite_{object} \circledast Pat)$ $\sharp Fido^{-1} = bite_{agent} + noise \approx bite_{agent}$

Clean-up memory

- An auto-associative collection of elements and statements (excluding single chunks) produced by the system.
- Given a noisy extracted vector such structure must be able to:
 - either recall the most similar item stored ...
 - ... or indicate, that no matching object had been found.
- We need a measure of similarity (in most models: scalar product, Hamming/Euclidean distance).

Background	GA Model		References
00000	0000000	0000000	
Distributed	representations		

Background	GA Model		References
00000	0000000	0000000	
Distributed rep	resentations		

 $\bullet \ \circledast, +$ - symmetric, preserving an equal "portion" of every component.

Background	GA Model	Test results	References
Distributed r	epresentations		

- $\bullet \ \circledast, +$ symmetric, preserving an equal "portion" of every component.
- \$\\$, inverse easy/fast to compute.

A D > A D > A

Background	GA Model		References
00000	0000000	0000000	
Distributed	representations		

- \circledast , + symmetric, preserving an equal "portion" of every component.
- \$\\$, inverse easy/fast to compute.
- Rules of composition and decomposition must be applicable to all elements of the domain.

Image: Image:

Background	GA Model		References
00000	0000000	0000000	
Distributed	representations		

- \circledast , + symmetric, preserving an equal "portion" of every component.
- \$\\$, inverse easy/fast to compute.
- Rules of composition and decomposition must be applicable to all elements of the domain.
- Fixed size of vectors irrespectively of the degree of complication.

< □ > < 同 >

Background	GA Model		References
00000	0000000	000000	
Distributed	representations		

- $\circledast, +$ symmetric, preserving an equal "portion" of every component.
- \$\\$, inverse easy/fast to compute.
- Rules of composition and decomposition must be applicable to all elements of the domain.
- Fixed size of vectors irrespectively of the degree of complication.

Advantages

- Noise tolerance, good error correction properties.
- Storage efficiency.
- The number of superimposed patterns is not fixed.

Image: Image:

Background	GA Model	Test results	References
Previous Ar	chitectures		

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References
Previous Ar	chitectures			

• Data: *n*-bit binary vectors of great length ($n \approx 10000$)

Background 0000●	GA Model 0000000	Test results 0000000	References
Previous Arc	hitectures		

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR

Background 0000●	GA Model 0000000	Test results 0000000	References
Previous Ar	chitectures		

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \ddagger performed by XOR
- + majority rule addition (with additional random vectors to break the tie)

< □ > < 同 >

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References	
Previous Architectures					

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \ddagger performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References	
Previous Architectures					

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \ddagger performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

< □ > < 同 >

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References
Previous Ar	chitectures			

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \ddagger performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

• Data: normalized *n*-byte vectors chosen from N(0, 1/n)

< D > < A >

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References
Previous Ar	chitectures			

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \ddagger performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized *n*-byte vectors chosen from N(0, 1/n)
- erformed by circular convolution

< D > < A >

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References
Previous Ar	chitectures			

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \ddagger performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized *n*-byte vectors chosen from N(0, 1/n)
- erformed by circular convolution
- + "normalized" addition, e.g. (bite + bite_{agent} \circledast Fido + bite_{object} \circledast Pat)/ $\sqrt{3}$

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References
Previous Ar	chitectures			

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \ddagger performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized *n*-byte vectors chosen from N(0, 1/n)
- erformed by circular convolution
- + "normalized" addition, e.g. (*bite* + *bite*_{agent} \circledast *Fido* + *bite*_{object} \circledast *Pat*)/ $\sqrt{3}$
- Inverse: involution $x_i^* = x_{(-i)mod(n)}$

Background 0000●	GA Model 0000000	Test results 0000000	Future work	References
Previous Ar	chitectures			

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both ⊛ and ♯ performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized *n*-byte vectors chosen from N(0, 1/n)
- performed by circular convolution
- + "normalized" addition, e.g. (bite + bite_{agent} \circledast Fido + bite_{object} \circledast Pat)/ $\sqrt{3}$
- Inverse: involution $x_i^* = x_{(-i)mod(n)}$
- # circular correlation (i.e. circular convolution with an involution), e.g:
 ((bite + bite_{agent} ⊛ Fido + bite_{object} ⊛ Pat)/√3) ⊛ bite^{*}_{agent}

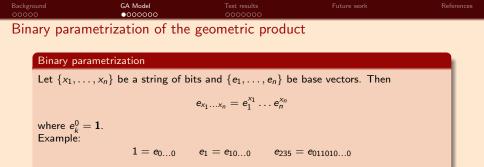
Background 0000●	GA Model 0000000	Test results 0000000	Future work	References
Previous Ar	chitectures			

- Data: *n*-bit binary vectors of great length ($n \approx 10000$)
- Both ⊛ and ♯ performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized *n*-byte vectors chosen from N(0, 1/n)
- + "normalized" addition, e.g. (bite + bite_{agent} \circledast Fido + bite_{object} \circledast Pat)/ $\sqrt{3}$
- Inverse: involution $x_i^* = x_{(-i)mod(n)}$
- # circular correlation (i.e. circular convolution with an involution), e.g:
 ((bite + bite_{agent} ⊛ Fido + bite_{object} ⊛ Pat)/√3) ⊛ bite^{*}_{agent}
- Similarity measure: dot product

	GA Model			References
00000	●000000	0000000		
Binary parametr	ization of the g	eometric produc ⁻	t	



Let $\{x_1, \ldots, x_n\}$ be a string of bits and $\{e_1, \ldots, e_n\}$ be base vectors. Then

$$e_{x_1\ldots x_n}=e_1^{x_1}\ldots e_n^{x_n}$$

where $e_k^0 = \mathbf{1}$.

(日) (同) (三) (三)

Let $\{x_1, \ldots, x_n\}$ be a string of bits and $\{e_1, \ldots, e_n\}$ be base vectors. Then

$$e_{x_1\ldots x_n}=e_1^{x_1}\ldots e_n^{x_n}$$

where $e_k^0 = 1$. Example:

$$1 = e_{0...0}$$
 $e_1 = e_{10...0}$ $e_{235} = e_{011010...0}$

Geometric product as a projective XOR representation

Let $\{x_1, \ldots, x_n\}$ be a string of bits and $\{e_1, \ldots, e_n\}$ be base vectors. Then

$$e_{x_1\ldots x_n}=e_1^{x_1}\ldots e_n^{x_n}$$

where $e_k^0 = 1$. Example:

$$1 = e_{0...0}$$
 $e_1 = e_{10...0}$ $e_{235} = e_{011010...0}$

Geometric product as a projective XOR representation

Example:

$$e_{12}e_1 = e_{110...0}e_{10...0} = e_1e_2e_1 = -e_2e_1e_1 = -e_2 = -e_{010...0}$$

= $-e_{(110...0)\oplus(10...0)} = (-1)^D e_{(110...0)\oplus(10...0)}$

Let $\{x_1, \ldots, x_n\}$ be a string of bits and $\{e_1, \ldots, e_n\}$ be base vectors. Then

$$e_{x_1\ldots x_n}=e_1^{x_1}\ldots e_n^{x_n}$$

where $e_k^0 = 1$. Example:

$$1 = e_{0...0}$$
 $e_1 = e_{10...0}$ $e_{235} = e_{011010...0}$

Geometric product as a projective XOR representation

Example:

$$e_{12}e_1 = e_{110...0}e_{10...0} = e_1e_2e_1 = -e_2e_1e_1 = -e_2 = -e_{010...0}$$

= $-e_{(110...0)\oplus(10...0)} = (-1)^D e_{(110...0)\oplus(10...0)}$

More formally, for two arbitrary strings of bits we have:

$$e_{A_1\ldots A_n}e_{B_1\ldots B_n}=(-1)^{\sum\limits_{k< l}B_kA_l}e_{(A_1\ldots A_n)\oplus (B_1\ldots B_n)}$$

Background 00000	GA Model O●OOOOO	Test results 0000000	References
Matrix repre	esentation		

Pauli's matrices

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

▲□▶ ▲圖▶ ★ 臣▶ ★ 臣▶ ― 臣 … のへぐ

Background 00000	GA Model O●OOOOO	Test results 0000000	Future work	References
Matrix repr	esentation			

Pauli's matrices

$$\sigma_1=\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight), \quad \sigma_2=\left(egin{array}{cc} 0 & -i \ i & 0 \end{array}
ight), \quad \sigma_3=\left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight).$$

Cartan representation

$$b_{2k} = \underbrace{\sigma_1 \otimes \cdots \otimes \sigma_1}_{n-k} \otimes \sigma_2 \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1},$$

$$b_{2k-1} = \underbrace{\sigma_1 \otimes \cdots \otimes \sigma_1}_{n-k} \otimes \sigma_3 \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1}.$$

э.

イロン イロン イヨン イヨン

Background	GA Model		References
00000	000000	0000000	
Example			
Representation			

Background	GA Model		References
00000	000000	0000000	
Example			
Representation			

 $Pat = c_{00100}$

Background	GA Model		References
00000	000000	0000000	
Example			
Representation			

 $Pat = c_{00100} = b_3$

Background	GA Model		References
00000	000000	0000000	
Example			
Representation			

 $Pat = c_{00100} = b_3 = \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1$

Background	GA Model		References
00000	000000	0000000	
Example			
Representation			

$$Pat = c_{00100} = b_3 = \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1$$

male =
$$c_{00111} = b_3 b_4 b_5$$

- $= (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1 \otimes 1)$
- $= \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes (-i\sigma_1) \otimes 1$

Image: A mathematical states and a mathem

Background	GA Model		References
00000	000000	0000000	
Example			
Representation			

$$Pat = c_{00100} = b_3 = \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1$$

male =
$$c_{00111} = b_3 b_4 b_5$$

 $= (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1 \otimes 1)$

$$= \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes (-i\sigma_1) \otimes 1$$

$$\begin{array}{lll} 66 & = & c_{11000} = b_1 b_2 = (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2) \\ & = & 1 \otimes 1 \otimes 1 \otimes 1 \otimes (-i\sigma_1) \end{array}$$

Image: A mathematical states and a mathem

	GA Model		References
00000	000000	0000000	
Example			
Representation			

$$Pat = c_{00100} = b_3 = \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1$$

male =
$$c_{00111} = b_3 b_4 b_5$$

 $= (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1 \otimes 1)$

$$= \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes (-i\sigma_1) \otimes 1$$

$$66 = c_{11000} = b_1 b_2 = (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2)$$

$$= 1 \otimes 1 \otimes 1 \otimes 1 \otimes (-i\sigma_1)$$

name =
$$c_{00010} = b_4 = \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2 \otimes 1$$

Image: A mathematical states and a mathem

	GA Model		References
00000	000000	0000000	
Example			
Representation			

$$Pat = c_{00100} = b_3 = \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1$$

$$male = c_{00111} = b_3 b_4 b_3$$

 $= (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2 \otimes 1)(\sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1 \otimes 1)$

$$= \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes (-i\sigma_1) \otimes 1$$

$$66 = c_{11000} = b_1 b_2 = (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2)$$

$$= 1 \otimes 1 \otimes 1 \otimes 1 \otimes (-i\sigma_1)$$

name =
$$c_{00010} = b_4 = \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2 \otimes 1$$

$$sex = c_{11100} = b_1 b_2 b_3$$

 $= (\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_2)(\sigma_1 \otimes \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1)$

$$= \sigma_1 \otimes \sigma_1 \otimes \sigma_3 \otimes 1 \otimes (-i\sigma_1)$$

Background	GA Model		References
00000	000000	0000000	
Example			
Representation			

(日) (四) (王) (王) (王)

Background	GA Model		References
00000	000000	0000000	
Example Encoding and Decoding			

PSmith			

	GA Model		References
00000	000000	0000000	i .
Example Encoding and Decoding			

PSmith		
	PSmith = name ⊛ Pat + sex ⊛ male +	- <i>age</i> ⊛ 66

	GA Model		References
00000	000000	0000000	
Example Encoding and Decoding			

PSmith		
PSr	nith =	$name \circledast Pat + sex \circledast male + age \circledast 66$
	=	$c_{00010}c_{00100} + c_{11100}c_{00111} + c_{10001}c_{11000}$

Background	GA Model		References
00000	000000	0000000	
Example Encoding and Decoding			

PSmith			
	PSmith	=	name ⊛ Pat + sex ⊛ male + age ⊛ 66
			c ₀₀₀₁₀ c ₀₀₁₀₀ + c ₁₁₁₀₀ c ₀₀₁₁₁ + c ₁₀₀₀₁ c ₁₁₀₀₀
		=	$-c_{00110} + c_{11011} + c_{01001}$

Background	GA Model		References
00000	000000	0000000	
Example Encoding and Decoding			

PSmith			
	PSmith	_	name ⊛ Pat + sex ⊛ male + age ⊛ 66
	1 Sinth		c ₀₀₀₁₀ c ₀₀₁₀₀ + c ₁₁₁₀₀ c ₀₀₁₁₁ + c ₁₀₀₀₁ c ₁₁₀₀₀
		=	$-c_{00110} + c_{11011} + c_{01001}$

PSmith's name = $PSmith \ \sharp \ name^{-1} = PSmith \ \circledast \ name$

メロト メポト メヨト メヨト 二日

Background 00000	GA Model 000●000	Test results 0000000	References
Example Encoding and Decoding			

PSmith			
	DSmith	_	name \circledast Pat + sex \circledast male + age \circledast 66
	1 Shinth		$c_{00010}c_{00100} + c_{11100}c_{00111} + c_{10001}c_{11000}$
			$-c_{00110} + c_{11011} + c_{01001}$

PSmith's name = $PSmith \ \sharp \ name^{-1} = PSmith \circledast name$

 $PSmith \circledast name = (-c_{00110} + c_{11011} + c_{01001})c_{00010}$

Background 00000	GA Model 000●000	Test results 0000000	References
Example Encoding and Decoding			

PSmith			
D	Cura it h		nome @ Pat and @ male and @ 66
Ρ.	Smith	=	$name \circledast Pat + sex \circledast male + age \circledast 66$
		=	$c_{00010}c_{00100} + c_{11100}c_{00111} + c_{10001}c_{11000}$
		=	$-c_{00110} + c_{11011} + c_{01001}$
		_	

PSmith's name = $PSmith \ \sharp \ name^{-1} = PSmith \ \circledast \ name$

 $PSmith \circledast name = (-c_{00110} + c_{11011} + c_{01001})c_{00010}$ $= -c_{00100} - c_{11001} - c_{01011}$

AGACSE 2008

Background 00000	GA Model 000●000	Test results 0000000	References
Example Encoding and Decoding			

PSmith			
	DSmith	_	name ⊛ Pat + sex ⊛ male + age ⊛ 66
	FSIIILII	_	$Halle \circledast Fal + sex \circledast Hale + age \circledast 00$
		=	$c_{00010}c_{00100} + c_{11100}c_{00111} + c_{10001}c_{11000}$
		=	$-c_{00110} + c_{11011} + c_{01001}$
		_	

PSmith's name = $PSmith \ \sharp \ name^{-1} = PSmith \ \circledast \ name$

 $PSmith \circledast name = (-c_{00110} + c_{11011} + c_{01001})c_{00010}$ $= -c_{00100} - c_{11001} - c_{01011}$ = -Pat + noise = Pat'

	GA Model		References
00000	0000000	000000	
Example Clean-up			

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

	GA Model		References
00000	0000000	0000000	
Example Clean-up			

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

$$\langle Pat' | e_{Pat} \rangle = Tr \Big((-c_{00100} - c_{11001} - c_{01011}) c_{00100} \Big)$$

= $Tr \Big(-1 + c_{11101} - c_{01111} \Big)$
= $-32 \neq 0$

Image: A math a math

	GA Model		References
00000	0000000	0000000	
Example Clean-up			

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

$$\langle Pat'|e_{Pat} \rangle = Tr((-c_{00100} - c_{11001} - c_{01011})c_{00100})$$

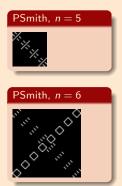
$$= Tr(-1 + c_{11101} - c_{01111})$$

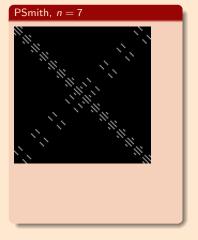
$$= -32 \neq 0$$

$$\langle Pat'|e_{male} \rangle = 0$$

$$\langle Pat'|e_{66} \rangle = 0$$

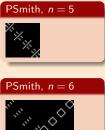
$$\langle Pat'|e_{66} \rangle = 0$$


$$\langle Pat'|e_{sex} \rangle = 0$$


$$\langle Pat'|e_{ge} \rangle = 0$$

A D > A D > A

Background 00000	GA Model 00000●0	Test results 0000000	Future work	References
Signatures				


Background 00000	GA Model 00000●0	Test results 0000000	Future work	References
Signatures Examples				

э

Background 00000	GA Model 00000●0	Test results 0000000	Future work	References
Signatures Examples				

000⁶⁰////

PSmith, n = 7Signatures: LHS-RHS LHS-signature **RHS-signature**

Background	GA Model		References
00000	000000	0000000	
Signatures			

Dimensions

Background	GA Model		References
00000	000000	000000	
Signatures			

Dimensions

- $2^{\lfloor \frac{n}{2} \rfloor}$ signatures on one of the diagonals.
- Each signature is of dimensions $2^{\lceil \frac{n}{2} \rceil} \times 2^{\lceil \frac{n}{2} \rceil}$.

Background 00000	GA Model 000000●	Test results 0000000	References
Signatures			

Dimensions

- $2^{\lfloor \frac{n}{2} \rfloor}$ signatures on one of the diagonals.
- Each signature is of dimensions $2^{\lceil \frac{n}{2} \rceil} \times 2^{\lceil \frac{n}{2} \rceil}$.

Cartan representation

$$b_{2k} = \underbrace{\sigma_1 \otimes \cdots \otimes \sigma_1}_{at \ least \ \lfloor \frac{n}{2} \rfloor} \otimes \sigma_2 \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1},$$

$$b_{2k-1} = \underbrace{\sigma_1 \otimes \cdots \otimes \sigma_1}_{at \ least \ \lfloor \frac{n}{2} \rfloor} \otimes \sigma_3 \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1}.$$

(日) (四) (王) (王) (王)

Background	GA Model	Test results	References
00000	0000000	000000	
Recognition te	sts		

	GA Model	Test results	References
00000	000000	•000000	
Recognition tests	S		

• Plate (HRR) construction, e.g. $eat + eat_{agent} \otimes Mark + eat_{object} \otimes theFish$

Background 00000	GA Model 0000000	Test results ●000000	Future work	References
Recognition test	S			

- Plate (HRR) construction, e.g. $eat + eat_{agent} \circledast Mark + eat_{object} \circledast theFish$
- Agent-Object construction, e.g. *eat_{agent}*
 Mark + *eat_{object}*
 theFish

Image: A mathematical states and a mathem

Background 00000	GA Model 0000000	Test results ●000000	Future work	References
Recognition test	s			

- Plate (HRR) construction, e.g. $eat + eat_{agent} \circledast Mark + eat_{object} \circledast theFish$

Vocabulary/Sentence set

Similar sentences, e.g:

- Fido bit Pat.
- Fido bit PSmith.
- Pat fled from Fido.
- PSmith fled from Fido.
- Fido bit PSmith causing PSmith to flee from Fido.
- Fido bit Pat causing Pat to flee from Fido.
- John saw that Fido bit PSmith causing PSmith to flee from Fido.
- John saw that Fido bit Pat causing Pat to flee from Fido.
- etc...

Altogether 42 atomic objects and 19 sentences.

< □ > < 同 >

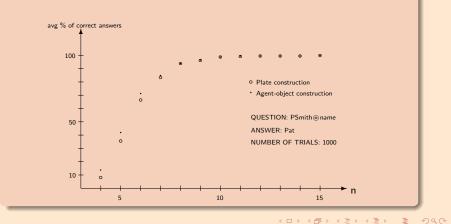
Background 00000	GA Model 0000000	Test results 0●00000	Future work	References
Recognition test	S			

Agent-Object construction

Works better for:

• simple sentences and simple answers

э


イロン イヨン イヨン イヨン

Background 00000	GA Model 0000000	Test results 0●00000	Future work	References
Recognition test	S			

Agent-Object construction

Works better for:

• simple sentences and simple answers

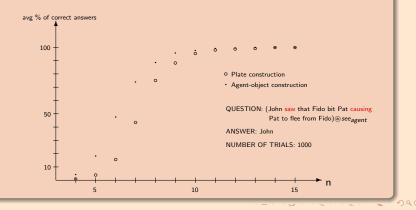
Background	GA Model	Test results	References
00000	0000000	000000	
Percegnition	tosts		

Recognition tests

Agent-Object construction

Works better for:

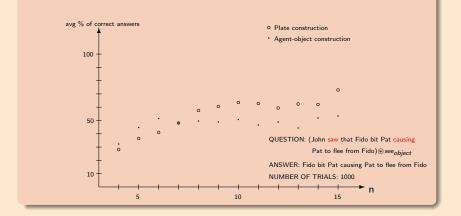
- simple sentences and simple answers,
- nested sentences, from which a rather unique information is to be derived.


Background 00000	GA Model 0000000	Test results 00●0000	Future work	References
Recognition	tests			

Recognition tests

Agent-Object construction

Works better for:


- simple sentences and simple answers,
- nested sentences, from which a rather unique information is to be derived.

Background 00000	GA Model 0000000	Test results 000●000	Future work	References
Recognition	i tests			

Plate (HRR) construction

Works better for nested sentences, from which a complex information needs to be derived.

Background 00000	GA Model 0000000	Test results 0000●00	Future work	References
Blade linearity				

Background 00000	GA Model 0000000	Test results 0000●00	Future work	References
Blade linearity				

< ロ > < 団 > < 言 > < 言 > ミ の < で

Background	GA Model	Test results	References
00000	0000000	0000000	i .
Blade linearity			

• How often does the system produce identical blades representing atomic objects?

Background 00000	GA Model 0000000	Test results 0000●00	Future work	References
Blade linearity				

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?

Background 00000	GA Model 0000000	Test results 0000●00	Future work	References
Blade linearity				

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Background 00000	GA Model 0000000	Test results 0000●00	Future work	References
Blade linearity				

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Assumption: ideal conditions

Image: Image:

Background 00000	GA Model 0000000	Test results 0000●00	Future work	References
Blade linearity				

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Assumption: ideal conditions

No two chunks of a sentence at any time are identical (up to a constant).

< □ > < 同 >

Background 00000	GA Model 0000000	Test results 0000●00	Future work	References
Blade linearity				

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Assumption: ideal conditions

No two chunks of a sentence at any time are identical (up to a constant).

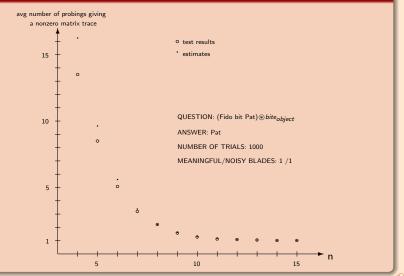
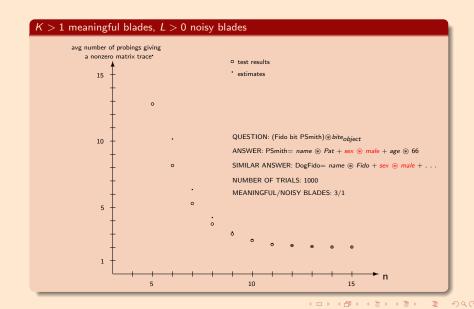

 $\langle A|C \rangle \neq 0 \equiv A$ and C share a common blade

Image: Image:



Blade linearity

Agnieszka Patyk, patyk@mif.pg.gda.pl

Background 00000	GA Model 0000000	Test results 0000000	Future work	References
What's next?				

▲ □ ▶ ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 の Q ○
Agnieszka Patyk, patyk@mif.pg.gda.pl

Background 00000	GA Model 0000000	Test results 0000000	Future work	References
What's next?				

• Decide on construction (something between Plate and Agent-Object?).

3 ×

A D > A D > A

Background 00000	GA Model 0000000	Test results 0000000	Future work	References
What's next?				

- Decide on construction (something between Plate and Agent-Object?).
- Tests for greater *n*.

ヨート

Background 00000	GA Model 0000000	Test results 0000000	Future work	References
What's next?				

- Decide on construction (something between Plate and Agent-Object?).
- Tests for greater *n*.
- Scaling.

・ロト ・日下・ ・ ヨト

Background	GA Model	Test results	References
References	000000	000000	
References			

- M. Czachor, D. Aerts and B. De Moor. On geometric-algebra representation of binary spatter codes. preprint arXiv:cs/0610075 [cs.AI]. 2006.
- M. Czachor, D. Aerts and B. De Moor. *Geometric Analogue of Holographic Reduced Representation*. preprint arXiv:0710.2611. 2007.
- G. E. Hinton, J. L. McClelland and D. E. Rumelhart. *Distributed representations.* Parallel distributed processing: Explorations in the microstructure of cognition. vol. 1, 77109. The MIT Press, Cambridge, MA, 1986.
- P. Kanerva. *Binary spatter codes of ordered k-tuples*. Artificial Neural Networks ICANN Proceedings, Lecture Notes in Computer Science vol. 1112, pp. 869-873, C. von der Malsburg et al. (Eds.). Springer, Berlin, 1996.
- P. Kanerva. *Fully distributed representation*. Proc. 1997 Real World Computing Symposium (RWC97, Tokyo), pp. 358-365. Real World Computing Partnership, Tsukuba-City, Japan, 1997.
- T. Plate. Holographic Reduced Representation: Distributed Representation for Cognitive Structures. CSLI Publications, Stanford, 2003.

(日) (同) (三) (三)