Geometric Analogue of Holographic Reduced Representations

Agnieszka Patyk

Ph.D. Supervisor: prof. Marek Czachor

Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Poland
Centrum Leo Apostel (CLEA), Vrije Universiteit Brussel, Belgium

Grimma, 17-19 August 2008

- Background
- Distributed representations
- Previous architectures
- GA model
- Binary parametrization of the geometric product
- Cartan representation
- Example
- Signatures
- Test results
- Recognition tests
- Blade linearity
- Future work
- Computer program CartanGA

Distributed representations

Example

Distributed representations

Example

+ "triangular shape"

$=$ "green triangle"

Distributed representations

Example

+ "triangular shape"

$=$ "green triangle"

Idea

Distributed representations

Example

+ "triangular shape"

$=$ "green triangle"

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).

Distributed representations

Example

+ "triangular shape"

$=$ "green triangle"

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):

Distributed representations

Example

+ "triangular shape"

$=$ "green triangle"

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
- each concept is represented over a number of units (bytes)

Distributed representations

Example

+ "triangular shape"

$=$ "green triangle"

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
- each concept is represented over a number of units (bytes)
- each unit participates in the representation of some number of concepts

Distributed representations

Example

+ "triangular shape"

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
- each concept is represented over a number of units (bytes)
- each unit participates in the representation of some number of concepts
- the size of a distributed representation is usually fixed

Distributed representations

Example

+ "triangular shape"

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
- each concept is represented over a number of units (bytes)
- each unit participates in the representation of some number of concepts
- the size of a distributed representation is usually fixed
- the units have either binary or a continuous-space values

Distributed representations

Example

+ "triangular shape"

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
- each concept is represented over a number of units (bytes)
- each unit participates in the representation of some number of concepts
- the size of a distributed representation is usually fixed
- the units have either binary or a continuous-space values
- data patterns are chosen as random vectors or matrices

Distributed representations

Example

$$
=\text { "green triangle" }
$$

Idea

- An opposite and an alternative of "traditional" data structures (lists, databases, etc...).
- Hinton (1986):
- each concept is represented over a number of units (bytes)
- each unit participates in the representation of some number of concepts
- the size of a distributed representation is usually fixed
- the units have either binary or a continuous-space values
- data patterns are chosen as random vectors or matrices
- in most distributed representations only the overall pattern of activated units has a meaning (resemblance to a multi-superimposed photograph)

Distributed representations

Atomic objects and complex statements

Distributed representations

Atomic objects and complex statements

```
bite agent }\circledast\mathrm{ Fido + bite object }\circledast\mathrm{ Pat = "Fido bit Pat"
    chunk chunk
- roles: bite \(_{\text {agent }}\), bite \(_{\text {object }}\)
- fillers: Fido, Pat
```


Distributed representations

```
Atomic objects and complex statements
bite \(_{\text {agent }} \circledast\) Fido + bite \(_{\text {object }} \circledast\) Pat \(=\) "Fido bit Pat"
    chunk
        chunk
    - roles: bite agent , bite \({ }_{\text {object }}\)
    - fillers: Fido, Pat
name \(\circledast\) Pat + sex \(\circledast\) male + age \(\circledast 66=\) "PSmith"
    - roles: name, sex, age
    - fillers: Pat, male, 66
```


Distributed representations

```
Atomic objects and complex statements
bite agent }\circledast\mathrm{ Fido + bite (object }\circledast\mathrm{ Pat = "Fido bit Pat"
    chunk
        chunk
    - roles: bite }\mp@subsup{\mathrm{ agent , bite object}}{}{
    - fillers: Fido, Pat
name }\circledast\mathrm{ Pat + sex }\circledast\mathrm{ male + age }\circledast66="PSmith"
    - roles: name, sex, age
    - fillers: Pat, male, }6
see agent }\circledast\mathrm{ John + see object }\circledast\mathrm{ "Fido bit Pat" = "John saw Fido bit Pat"
    - Roles are always atomic objects but fillers may be complex statements.
```


Distributed representations

Atomic objects and complex statements

```
bite egent }\circledast\mathrm{ Fido + bite object }\circledast\mathrm{ Pat = "Fido bit Pat"
    chunk
                chunk
    - roles: bite }\mp@subsup{\mathrm{ agent , bite object}}{}{
    - fillers: Fido, Pat
name }\circledast\mathrm{ Pat + sex }\circledast\mathrm{ male + age }\circledast66="PSmith"
    - roles: name, sex, age
    - fillers: Pat, male, }6
see agent }\circledast\mathrm{ John + see object }\circledast\mathrm{ "Fido bit Pat" = "John saw Fido bit Pat"
    - Roles are always atomic objects but fillers may be complex statements.
```


Binding and chunking

\circledast binding

+ superposition (also called chunking)

Distributed representations

Decoding

Distributed representations

Decoding

$\#$ decoding
x^{-1} (approximate/pseudo) inverse

Distributed representations

Decoding

\sharp decoding
x^{-1} (approximate/pseudo) inverse

Examples

Distributed representations

Decoding

\sharp decoding
x^{-1} (approximate/pseudo) inverse

Examples

"What is the name of PSmith?"

- (name \circledast Pat + sex \circledast male + age $\circledast 66) \sharp n a m e^{-1}=$ Pat + noise \approx Pat

Distributed representations

Decoding

\sharp decoding
x^{-1} (approximate/pseudo) inverse

Examples

"What is the name of PSmith?"

- (name \circledast Pat + sex \circledast male + age $\circledast 66) \sharp n a m e^{-1}=$ Pat + noise \approx Pat
"What did Fido do?"
- $\left(\right.$ bite $_{\text {agent }} \circledast$ Fido + bite $_{\text {object }} \circledast$ Pat $) \sharp$ Fido $^{-1}=$ bite $_{\text {agent }}+$ noise \approx bite $_{\text {agent }}$

Distributed representations

Decoding

$\#$ decoding
x^{-1} (approximate/pseudo) inverse

Examples

"What is the name of PSmith?"

- $($ name \circledast Pat + sex \circledast male + age $\circledast 66) \sharp$ name $e^{-1}=P a t+$ noise \approx Pat "What did Fido do?"
- $\left(\right.$ bite $_{\text {agent }} \circledast$ Fido + bite $_{\text {object }} \circledast$ Pat $) \sharp$ Fido $^{-1}=$ bite $_{\text {agent }}+$ noise \approx bite $_{\text {agent }}$

Clean-up memory

- An auto-associative collection of elements and statements (excluding single chunks) produced by the system.
- Given a noisy extracted vector such structure must be able to:
- either recall the most similar item stored
- ... or indicate, that no matching object had been found.
- We need a measure of similarity (in most models: scalar product, Hamming/Euclidean distance).

Distributed representations

Requirements/Problems

Distributed representations

Requirements/Problems

- $\circledast,+$ - symmetric, preserving an equal "portion" of every component.

Distributed representations

Requirements/Problems

- $\circledast,+$ - symmetric, preserving an equal "portion" of every component.
- \#, inverse - easy/fast to compute.

Distributed representations

Requirements/Problems

- $\circledast,+$ - symmetric, preserving an equal "portion" of every component.
- \#, inverse - easy/fast to compute.
- Rules of composition and decomposition must be applicable to all elements of the domain.

Distributed representations

Requirements/Problems

- $\circledast,+$ - symmetric, preserving an equal "portion" of every component.
- \#, inverse - easy/fast to compute.
- Rules of composition and decomposition must be applicable to all elements of the domain.
- Fixed size of vectors irrespectively of the degree of complication.

Distributed representations

Requirements/Problems

- $\circledast,+$ - symmetric, preserving an equal "portion" of every component.
- \#, inverse - easy/fast to compute.
- Rules of composition and decomposition must be applicable to all elements of the domain.
- Fixed size of vectors irrespectively of the degree of complication.

Advantages

- Noise tolerance, good error correction properties.
- Storage efficiency.
- The number of superimposed patterns is not fixed.

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized n-byte vectors chosen from $N(0,1 / n)$

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized n-byte vectors chosen from $N(0,1 / n)$
- \circledast performed by circular convolution

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized n-byte vectors chosen from $N(0,1 / n)$
- \circledast performed by circular convolution
- + "normalized" addition, e.g. (bite + bite $_{\text {agent }} \circledast$ Fido + bite $_{\text {object }} \circledast$ Pat $) / \sqrt{3}$

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized n-byte vectors chosen from $N(0,1 / n)$
- \circledast performed by circular convolution
- + "normalized" addition, e.g. (bite + bite $_{\text {agent }} \circledast$ Fido + bite $_{\text {object }} \circledast$ Pat $) / \sqrt{3}$
- Inverse: involution $x_{i}^{*}=x_{(-i) \bmod (n)}$

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized n-byte vectors chosen from $N(0,1 / n)$
- \circledast performed by circular convolution
- + "normalized" addition, e.g. (bite + bite $_{\text {agent }} \circledast$ Fido + bite $\left._{\text {object }} \circledast P a t\right) / \sqrt{3}$
- Inverse: involution $x_{i}^{*}=x_{(-i) \bmod (n)}$
- $\#$ circular correlation (i.e. circular convolution with an involution), e.g:
$\left(\left(\right.\right.$ bite + bite $_{\text {agent }} \circledast$ Fido + bite $_{\text {object }} \circledast$ Pat $\left.) / \sqrt{3}\right) \circledast$ bite $_{\text {agent }}^{*}$

Previous Architectures

Binary Spatter Code (Pentii Kanerva, 1997)

- Data: n-bit binary vectors of great length ($n \approx 10000$)
- Both \circledast and \sharp performed by XOR
- + majority rule addition (with additional random vectors to break the tie)
- Similarity measure: Hamming distance

Holographic Reduced Representation (Tony Plate, 1994, 2003)

- Data: normalized n-byte vectors chosen from $N(0,1 / n)$
- \circledast performed by circular convolution
- + "normalized" addition, e.g. (bite + bite $_{\text {agent }} \circledast$ Fido + bite $\left._{\text {object }} \circledast P a t\right) / \sqrt{3}$
- Inverse: involution $x_{i}^{*}=x_{(-i) \bmod (n)}$
- $\#$ circular correlation (i.e. circular convolution with an involution), e.g:
$\left(\left(\right.\right.$ bite + bite $_{\text {agent }} \circledast$ Fido + bite $_{\text {object }} \circledast$ Pat $\left.) / \sqrt{3}\right) \circledast$ bite $_{\text {agent }}^{*}$
- Similarity measure: dot product

Binary parametrization of the geometric product

Binary parametrization

Binary parametrization of the geometric product

Binary parametrization

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a string of bits and $\left\{e_{1}, \ldots, e_{n}\right\}$ be base vectors. Then

$$
e_{x_{1} \ldots x_{n}}=e_{1}^{x_{1}} \ldots e_{n}^{x_{n}}
$$

where $e_{k}^{0}=1$.

Binary parametrization of the geometric product

Binary parametrization

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a string of bits and $\left\{e_{1}, \ldots, e_{n}\right\}$ be base vectors. Then

$$
e_{x_{1} \ldots x_{n}}=e_{1}^{x_{1}} \ldots e_{n}^{x_{n}}
$$

where $e_{k}^{0}=\mathbf{1}$.
Example:

$$
1=e_{0 \ldots 0} \quad e_{1}=e_{10 \ldots 0} \quad e_{235}=e_{011010 \ldots 0}
$$

Binary parametrization of the geometric product

Binary parametrization

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a string of bits and $\left\{e_{1}, \ldots, e_{n}\right\}$ be base vectors. Then

$$
e_{x_{1} \ldots x_{n}}=e_{1}^{x_{1}} \ldots e_{n}^{x_{n}}
$$

where $e_{k}^{0}=1$.
Example:

$$
1=e_{0 \ldots 0} \quad e_{1}=e_{10 \ldots 0} \quad e_{235}=e_{011010 \ldots 0}
$$

Geometric product as a projective XOR representation

Binary parametrization of the geometric product

Binary parametrization

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a string of bits and $\left\{e_{1}, \ldots, e_{n}\right\}$ be base vectors. Then

$$
e_{x_{1} \ldots x_{n}}=e_{1}^{x_{1}} \ldots e_{n}^{x_{n}}
$$

where $e_{k}^{0}=1$.
Example:

$$
1=e_{0 \ldots 0} \quad e_{1}=e_{10 \ldots 0} \quad e_{235}=e_{011010 \ldots 0}
$$

Geometric product as a projective XOR representation

Example:

$$
\begin{aligned}
e_{12} e_{1} & =e_{110 \ldots 0} e_{10 \ldots 0}=e_{1} e_{2} e_{1}=-e_{2} e_{1} e_{1}=-e_{2}=-e_{010 \ldots 0} \\
& =-e_{(110 \ldots 0) \oplus(10 \ldots 0)}=(-1)^{D} e_{(110 \ldots 0) \oplus(10 \ldots 0)}
\end{aligned}
$$

Binary parametrization of the geometric product

Binary parametrization

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a string of bits and $\left\{e_{1}, \ldots, e_{n}\right\}$ be base vectors. Then

$$
e_{x_{1} \ldots x_{n}}=e_{1}^{x_{1}} \ldots e_{n}^{x_{n}}
$$

where $e_{k}^{0}=1$.
Example:

$$
1=e_{0 \ldots 0} \quad e_{1}=e_{10 \ldots 0} \quad e_{235}=e_{011010 \ldots 0}
$$

Geometric product as a projective XOR representation

Example:

$$
\begin{aligned}
e_{12} e_{1} & =e_{110 \ldots 0} e_{10 \ldots 0}=e_{1} e_{2} e_{1}=-e_{2} e_{1} e_{1}=-e_{2}=-e_{010 \ldots 0} \\
& =-e_{(110 \ldots 0) \oplus(10 \ldots 0)}=(-1)^{D} e_{(110 \ldots 0) \oplus(10 \ldots 0)}
\end{aligned}
$$

More formally, for two arbitrary strings of bits we have:

$$
e_{A_{1} \ldots A_{n}} e_{B_{1} \ldots B_{n}}=(-1)^{\sum_{k<1} B_{k} A_{l}} e_{\left(A_{1} \ldots A_{n}\right) \oplus\left(B_{1} \ldots B_{n}\right)}
$$

Matrix representation

Pauli's matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Matrix representation

Pauli's matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Cartan representation

$$
\begin{aligned}
b_{2 k} & =\underbrace{\sigma_{1} \otimes \cdots \otimes \sigma_{1}}_{n-k} \otimes \sigma_{2} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1} \\
b_{2 k-1} & =\underbrace{\sigma_{1} \otimes \cdots \otimes \sigma_{1}}_{n-k} \otimes \sigma_{3} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1} .
\end{aligned}
$$

Example

Representation

PSmith $=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

Example

Representation

PSmith $=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

$$
\text { Pat }=c_{00100}
$$

Example

Representation

PSmith $=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

$$
\text { Pat }=c_{00100}=b_{3}
$$

Example

Representation

PSmith $=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

$$
\text { Pat }=c_{00100}=b_{3}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1
$$

Representation

PSmith $=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

$$
\begin{aligned}
\text { Pat } & =c_{00100}=b_{3}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \\
\text { male } & =c_{00111}=b_{3} b_{4} b_{5} \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes 1\right) \\
& =\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes\left(-i \sigma_{1}\right) \otimes 1
\end{aligned}
$$

$P S$ mith $=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

$$
\begin{aligned}
\text { Pat } & =c_{00100}=b_{3}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \\
\text { male } & =c_{00111}=b_{3} b_{4} b_{5} \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes 1\right) \\
& =\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes\left(-i \sigma_{1}\right) \otimes 1 \\
66 & =c_{11000}=b_{1} b_{2}=\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2}\right) \\
& =1 \otimes 1 \otimes 1 \otimes 1 \otimes\left(-i \sigma_{1}\right)
\end{aligned}
$$

$P S$ mith $=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

$$
\begin{aligned}
\text { Pat } & =c_{00100}=b_{3}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \\
\text { male } & =c_{00111}=b_{3} b_{4} b_{5} \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes 1\right) \\
& =\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes\left(-i \sigma_{1}\right) \otimes 1 \\
66 & =c_{11000}=b_{1} b_{2}=\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2}\right) \\
& =1 \otimes 1 \otimes 1 \otimes 1 \otimes\left(-i \sigma_{1}\right) \\
\text { name } & =c_{00010}=b_{4}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1
\end{aligned}
$$

$P S m i t h=$ name $\circledast P$ at + sex \circledast male + age $\circledast 66$

$$
\begin{aligned}
\text { Pat } & =c_{00100}=b_{3}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \\
\text { male } & =c_{00111}=b_{3} b_{4} b_{5} \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes 1\right) \\
& =\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes\left(-i \sigma_{1}\right) \otimes 1 \\
66 & =c_{11000}=b_{1} b_{2}=\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2}\right) \\
& =1 \otimes 1 \otimes 1 \otimes 1 \otimes\left(-i \sigma_{1}\right) \\
\text { name } & =c_{00010}=b_{4}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1 \\
\text { sex } & =c_{11100}=b_{1} b_{2} b_{3} \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1\right) \\
& =\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes\left(-i \sigma_{1}\right)
\end{aligned}
$$

$P S m i t h=$ name $\circledast P$ at + sex \circledast male + age $\circledast 66$

$$
\begin{aligned}
\text { Pat } & =c_{00100}=b_{3}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \\
\text { male } & =c_{00111}=b_{3} b_{4} b_{5} \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes 1\right) \\
& =\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes\left(-i \sigma_{1}\right) \otimes 1 \\
66 & =c_{11000}=b_{1} b_{2}=\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2}\right) \\
& =1 \otimes 1 \otimes 1 \otimes 1 \otimes\left(-i \sigma_{1}\right) \\
\text { name } & =c_{00010}=b_{4}=\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2} \otimes 1 \\
\text { sex } & =c_{11100}=b_{1} b_{2} b_{3} \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{2}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1\right) \\
& =\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes\left(-i \sigma_{1}\right) \\
\text { age } & =c_{10001}=b_{1} b_{5}=\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3}\right)\left(\sigma_{1} \otimes \sigma_{1} \otimes \sigma_{3} \otimes 1 \otimes 1\right) \\
& =1 \otimes 1 \otimes\left(-i \sigma_{2}\right) \otimes \sigma_{1} \otimes \sigma_{3}
\end{aligned}
$$

Example

Encoding and Decoding

PSmith

Example

Encoding and Decoding

PSmith

$P S m i t h=$ name \circledast Pat + sex \circledast male + age $\circledast 66$

Example

Encoding and Decoding

PSmith

$$
\begin{aligned}
\text { PSmith } & =\text { name } \circledast \text { Pat }+ \text { sex } \circledast \text { male }+ \text { age } \circledast 66 \\
& =c_{00010} c_{00100}+c_{11100} c_{00111}+c_{10001} c_{11000}
\end{aligned}
$$

Example

Encoding and Decoding

PSmith

$$
\begin{aligned}
\text { PSmith } & =\text { name } \circledast \text { Pat }+ \text { sex } \circledast \text { male }+ \text { age } \circledast 66 \\
& =c_{00010} c_{00100}+c_{11100} c_{00111}+c_{10001} c_{11000} \\
& =-c_{00110}+c_{11011}+c_{01001}
\end{aligned}
$$

Example

Encoding and Decoding

PSmith

$$
\begin{aligned}
\text { PSmith } & =\text { name } \circledast P a t+\text { sex } \circledast \text { male }+ \text { age } \circledast 66 \\
& =c_{00010} c_{00100}+c_{11100} c_{00111}+c_{10001} c_{11000} \\
& =-c_{00110}+c_{11011}+c_{01001}
\end{aligned}
$$

PSmith's name $=$ PSmith \sharp name ${ }^{-1}=$ PSmith \circledast name

Example

Encoding and Decoding

PSmith

$$
\begin{aligned}
\text { PSmith } & =\text { name } \circledast P a t+\text { sex } \circledast \text { male }+ \text { age } \circledast 66 \\
& =c_{00010} c_{00100}+c_{11100} c_{00111}+c_{10001} c_{11000} \\
& =-c_{00110}+c_{11011}+c_{01001}
\end{aligned}
$$

PSmith's name $=$ PSmith \sharp name ${ }^{-1}=$ PSmith \circledast name

$$
\text { PSmith } \circledast \text { name }=\left(-c_{00110}+c_{11011}+c_{01001}\right) c_{00010}
$$

Example

Encoding and Decoding

PSmith

$$
\begin{aligned}
\text { PSmith } & =\text { name } \circledast P a t+\text { sex } \circledast \text { male }+ \text { age } \circledast 66 \\
& =c_{00010} c_{00100}+c_{11100} c_{00111}+c_{10001} c_{11000} \\
& =-c_{00110}+c_{11011}+c_{01001}
\end{aligned}
$$

PSmith's name $=$ PSmith \sharp name ${ }^{-1}=$ PSmith \circledast name

$$
\begin{aligned}
\text { PSmith } \circledast \text { name } & =\left(-c_{00110}+c_{11011}+c_{01001}\right) c_{00010} \\
& =-c_{00100}-c_{11001}-c_{01011}
\end{aligned}
$$

Example

Encoding and Decoding

PSmith

$$
\begin{aligned}
\text { PSmith } & =\text { name } \circledast P a t+\text { sex } \circledast \text { male }+ \text { age } \circledast 66 \\
& =c_{00010} c_{00100}+c_{11100} c_{00111}+c_{10001} c_{11000} \\
& =-c_{00110}+c_{11011}+c_{01001}
\end{aligned}
$$

PSmith's name $=P$ Smith \sharp name ${ }^{-1}=$ PSmith \circledast name

$$
\begin{aligned}
\text { PSmith } \circledast \text { name } & =\left(-c_{00110}+c_{11011}+c_{01001}\right) c_{00010} \\
& =-c_{00100}-c_{11001}-c_{01011} \\
& =- \text { Pat }+ \text { noise }=\text { Pat }^{\prime}
\end{aligned}
$$

Example

Clean-up

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

$$
\begin{aligned}
\left\langle P a t^{\prime} \mid e_{P a t}\right\rangle & =\operatorname{Tr}\left(\left(-c_{00100}-c_{11001}-c_{01011}\right) c_{00100}\right) \\
& =\operatorname{Tr}\left(-1+c_{11101}-c_{01111}\right) \\
& =-32 \neq 0
\end{aligned}
$$

Example

Clean-up

Scalar product

Scalar (inner) product is performed by the means of matrix trace.

$$
\begin{aligned}
\left\langle P a t^{\prime} \mid e_{P_{a t}}\right\rangle & =\operatorname{Tr}\left(\left(-c_{00100}-c_{11001}-c_{01011}\right) c_{00100}\right) \\
& =\operatorname{Tr}\left(-\mathbf{1}+c_{11101}-c_{01111}\right) \\
& =-32 \neq 0 \\
\left\langle P a t^{\prime} \mid e_{\text {male }}\right\rangle & =0 \\
\left\langle P a t^{\prime} \mid e_{66}\right\rangle & =0 \\
\left\langle P a t^{\prime} \mid e_{\text {name }}\right\rangle & =0 \\
\left\langle P a t^{\prime} \mid e_{\text {sex }}\right\rangle & =0 \\
\left\langle P a t^{\prime} \mid e_{a g e}\right\rangle & =0 \\
\left\langle P a t^{\prime} \mid P S m i t h\right\rangle & =0
\end{aligned}
$$

Signatures

Examples

Signatures

Examples

Signatures

Examples

Signatures

Dimensions

Signatures

Dimensions

- $2^{\left\lfloor\frac{n}{2}\right\rfloor}$ signatures on one of the diagonals.
- Each signature is of dimensions $2^{\left\lceil\frac{n}{2}\right\rceil} \times 2^{\left\lceil\frac{n}{2}\right\rceil}$.

Signatures

Dimensions

- $2^{\left\lfloor\frac{n}{2}\right\rfloor}$ signatures on one of the diagonals.
- Each signature is of dimensions $2^{\left\lceil\frac{n}{2}\right\rceil} \times 2^{\left\lceil\frac{n}{2}\right\rceil}$.

Cartan representation

$$
\begin{aligned}
b_{2 k} & =\underbrace{\sigma_{1} \otimes \cdots \otimes \sigma_{1}}_{\text {at least }\left\lfloor\frac{n}{2}\right\rfloor} \otimes \sigma_{2} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1}, \\
b_{2 k-1} & =\underbrace{\sigma_{1} \otimes \cdots \otimes \sigma_{1}}_{\text {at least }\left\lfloor\frac{n}{2}\right\rfloor} \otimes \sigma_{3} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{k-1} .
\end{aligned}
$$

Recognition tests

Construction

Construction

- Plate (HRR) construction, e.g. eat + eat $_{\text {agent }} \circledast$ Mark + eat $_{\text {object }} \circledast$ theFish

Construction

- Plate (HRR) construction, e.g. eat + eat agent \circledast Mark + eat $t_{\text {object }} \circledast$ theFish
- Agent-Object construction, e.g. eat $t_{\text {agent }} \circledast$ Mark + eat object \circledast theFish

Construction

- Plate (HRR) construction, e.g. eat + eat agent \circledast Mark + eat $t_{\text {object }} \circledast$ theFish
- Agent-Object construction, e.g. eat $t_{\text {agent }} \circledast$ Mark + eat object \circledast theFish

Vocabulary/Sentence set

Similar sentences, e.g:

- Fido bit Pat.
- Fido bit PSmith.
- Pat fled from Fido.
- PSmith fled from Fido.
- Fido bit PSmith causing PSmith to flee from Fido.
- Fido bit Pat causing Pat to flee from Fido.
- John saw that Fido bit PSmith causing PSmith to flee from Fido.
- John saw that Fido bit Pat causing Pat to flee from Fido.
- etc...

Altogether 42 atomic objects and 19 sentences.

Recognition tests

Agent-Object construction

Works better for:

- simple sentences and simple answers

Recognition tests

Agent-Object construction

Works better for:

- simple sentences and simple answers

Recognition tests

Agent-Object construction

Works better for:

- simple sentences and simple answers,
- nested sentences, from which a rather unique information is to be derived.

Recognition tests

Agent-Object construction

Works better for:

- simple sentences and simple answers,
- nested sentences, from which a rather unique information is to be derived.

Recognition tests

Plate (HRR) construction

Works better for nested sentences, from which a complex information needs to be derived.

Blade linearity

Blade linearity

Problems

Blade linearity

Problems

- How often does the system produce identical blades representing atomic objects?

Problems

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?

Problems

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Problems

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Assumption: ideal conditions

Problems

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Assumption: ideal conditions

No two chunks of a sentence at any time are identical (up to a constant).

Problems

- How often does the system produce identical blades representing atomic objects?
- How often does the system produce identical sentence chunks from different blades?
- How do the two above problems affect the number of (pseudo-) correct answers?

Assumption: ideal conditions

No two chunks of a sentence at any time are identical (up to a constant).

$$
\langle A \mid C\rangle \neq 0 \equiv A \text { and } C \text { share a common blade }
$$

Blade linearity

One meaningful blade, $L>0$ noisy blades

avg number of probings giving
a nonzero matrix trace

Blade linearity

$K>1$ meaningful blades, $L>0$ noisy blades

avg number of probings giving
a nonzero matrix trace*

What's next?

Issues

What's next?

Issues

- Decide on construction (something between Plate and Agent-Object?).

What's next?

Issues

- Decide on construction (something between Plate and Agent-Object?).
- Tests for greater n.

What's next?

Issues

- Decide on construction (something between Plate and Agent-Object?).
- Tests for greater n.
- Scaling.
- M. Czachor, D. Aerts and B. De Moor. On geometric-algebra representation of binary spatter codes. preprint arXiv:cs/0610075 [cs.AI]. 2006.
- M. Czachor, D. Aerts and B. De Moor. Geometric Analogue of Holographic Reduced Representation. preprint arXiv:0710.2611. 2007.
- G. E. Hinton, J. L. McClelland and D. E. Rumelhart. Distributed representations. Parallel distributed processing: Explorations in the microstructure of cognition. vol. 1, 77109. The MIT Press, Cambridge, MA, 1986.
- P. Kanerva. Binary spatter codes of ordered k-tuples. Artificial Neural Networks ICANN Proceedings, Lecture Notes in Computer Science vol. 1112, pp. 869-873, C. von der Malsburg et al. (Eds.). Springer, Berlin, 1996.
- P. Kanerva. Fully distributed representation. Proc. 1997 Real World Computing Symposium (RWC97, Tokyo), pp. 358-365. Real World Computing Partnership, Tsukuba-City, Japan, 1997.
- T. Plate. Holographic Reduced Representation: Distributed Representation for Cognitive Structures. CSLI Publications, Stanford, 2003.

