Two Applicable Results in Conformal Geometric Algebra

HONGBO LI

Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing, China

- Topics and Results
- Polynomial Parametrization of 3D Möbius Group
- Total Meet Product in 3D Conformal Geometry

Conclusion

1. Topics and Results

Algebraic and Geometric Aspects of Conformal Geometric Algebra (CGA):

- 1. Polynomial parametrization of conformal transformations;
- 2. Incidence geometry of spheres and planes;
- 3. Geometry of Euclidean displacements;
- 4. Symbolic algebra of null vectors.

Home Page
Title Page
44 >>
Page <mark>2</mark> of <mark>32</mark>
Go Back
Full Screen
Close
Quit

Topics

Parametrization of 3D conformal transformations

Vahlen matrices:

$$\mathbf{x} \longmapsto (\mathbf{A}\mathbf{x} + \mathbf{B})(\mathbf{C}\mathbf{x} + \mathbf{D})^{-1}, \quad \forall \mathbf{x} \in \mathbb{R}^3,$$

where Vahlen matrix $\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$ is a 2 × 2 matrix over $CL(\mathbb{R}^3)$ such that

1. A, B, C, D are either versors or zero;

2. $AB^{\dagger}, BD^{\dagger}, DC^{\dagger}, CA^{\dagger}$ are vectors;

3. $\Delta = \mathbf{A}\mathbf{D}^{\dagger} - \mathbf{B}\mathbf{C}^{\dagger}$ is a nonzero scalar.

Difficulty: parametrizing the versors.

Home	e Page
Title	Page
••	>>
◀	
Page 🕻	3 of <mark>32</mark>
Go	Back
Full S	Screen
Clo	ose
0	uit

Topics

Exponential map: Versor representation

 $\mathbf{x} \longmapsto \mathbf{V} \mathbf{x} \hat{\mathbf{V}}^{-1}, \quad \forall \, \mathbf{x} \in \mathbb{R}^3,$

and Lie algebra representation of rotors via the exponential map:

$$\mathbf{U} = \exp(\mathbf{u}) = 1 + \mathbf{u} + \frac{\mathbf{u}^2}{2!} + \cdots$$

Difficulty: evaluating the exponential map and its inverse.

Cayley transform: Versor representation and Lie algebra representation of rotors via rational linear map

> $\Lambda^{2}(\mathbb{R}^{4,1}) \longrightarrow CL(\mathbb{R}^{4,1})$ $\mathbf{B}_{2} \longmapsto (1 + \mathbf{B}_{2})(1 - \mathbf{B}_{2})^{-1}, \text{ where } 1 - \mathbf{B}_{2} \text{ is invertible.}$

Difficulty: computing the inverse of a multivector in $CL(\mathbb{R}^{4,1})$.

Topics	
Transformation	
Classifier	
Conclusion	

First applicable result

Polynomial Cayley transform: Versor representation and Lie algebra representation of rotors via a degree-4 polynomial map.

Inverse: square-root computing of real numbers.

Applicable to: motion planning, motion interpolating, etc.

Topics

Incidence geometry of planes and spheres of various dimensions

Second applicable result

A very simple algebraic operation called *total meet product*, that can be used as a classifier of all kinds of incidence relations of spheres and planes of various dimensions in \mathbb{R}^n .

The above two applicable results are included in

H. Li, *Invariant Algebras and Geometric Reasoning*, World Scientific, Singapore, 2008. (approx. 500 pages)

Home Page
Title Page

Topics

The geometry of null geometric algebra

Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \in \mathbb{R}^{n+1,1}$ be null vectors. What is the *n*D Euclidean geometric meaning (via the conformal model) of

 $\mathbf{a}_1\mathbf{a}_2\cdots\mathbf{a}_r?$

What about $\langle \mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_r \rangle_{r-2k}$?

Definition.

Let \mathcal{V}^n be an inner-product space spanned by null vectors. The *null Clifford space* over \mathcal{V}^n , still denoted by $\mathcal{G}(\mathcal{V}^n)$, is the set of K-linear combinations of null monomials and single-graded null monomials. The *null Geometric Algebra* (NGA) over \mathcal{V}^n , still denoted by $\mathcal{G}(\mathcal{V}^n)$, refers to the null Clifford space equipped with the geometric product. Topics Transformation Classifier Conclusion

Home Page

Title Page

Page 8 of 32

Go Back

Full Screen

Close

Quit

44

◀

First fundamental theorem in NGA

Chained difference representations of null monomials:

Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \in \mathbb{R}^{n+1,1}$ be null vectors such that $\mathbf{a}_i \cdot \mathbf{a}_1 \neq 0$ for $i \neq 0$. Then

$$\langle \mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_r \rangle_{r-2l} = - \langle \overrightarrow{\mathbf{a}_2 \mathbf{a}_3} \overrightarrow{\mathbf{a}_3 \mathbf{a}_4} \cdots \overrightarrow{\mathbf{a}_{r-1} \mathbf{a}_r} \rangle_{r-2l} + \langle \overrightarrow{\mathbf{a}_2 \mathbf{a}_3} \overrightarrow{\mathbf{a}_3 \mathbf{a}_4} \cdots \overrightarrow{\mathbf{a}_{r-1} \mathbf{a}_r} \rangle_{r-2l-2} \wedge \mathbf{a}_1 \wedge \mathbf{a}_r,$$

$$\mathbf{a}_{1}\mathbf{a}_{2}\cdots\mathbf{a}_{r} = \overrightarrow{\mathbf{a}_{2}\mathbf{a}_{3}} \overrightarrow{\mathbf{a}_{3}\mathbf{a}_{4}}\cdots\overrightarrow{\mathbf{a}_{r-1}\mathbf{a}_{r}} \mathbf{a}_{1}\mathbf{a}_{r}$$
$$= \mathbf{a}_{1}\mathbf{a}_{r} \overrightarrow{\mathbf{a}_{2}\mathbf{a}_{3}} \overrightarrow{\mathbf{a}_{3}\mathbf{a}_{4}}\cdots\overrightarrow{\mathbf{a}_{r-1}\mathbf{a}_{r}},$$

where

$$\overrightarrow{\mathbf{a}_i \mathbf{a}_j} = \mathbf{b}_j - \mathbf{b}_i$$

and \mathbf{b}_i is the Euclidean point in $\mathbb{R}^n = (\mathbf{a}_1 \wedge \mathbf{a}_r)^{\sim}$ represented by null vector $\mathbf{a}_i \in \mathbb{R}^{n+1,1}$.

Topics	
Transformation	
Classifier	
Conclusion	

Second fundamental theorem in NGA

Modular chained difference representations of null monomials:

Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r \in \mathbb{R}^{n+1,1}$ be null vectors such that $\mathbf{a}_i \cdot \mathbf{a}_1 \neq 0$ for $i \neq 0$. Then

$$\langle \mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_r \rangle_{r-2l} = - \langle \overrightarrow{\mathbf{a}_2 \mathbf{a}_3} \overrightarrow{\mathbf{a}_3 \mathbf{a}_4} \cdots \overrightarrow{\mathbf{a}_{r-1} \mathbf{a}_r} \rangle_{r-2l} + \langle \overrightarrow{\mathbf{a}_2 \mathbf{a}_3} \overrightarrow{\mathbf{a}_3 \mathbf{a}_4} \cdots \overrightarrow{\mathbf{a}_{r-1} \mathbf{a}_r} \rangle_{r-2l-2} \wedge \mathbf{a}_1 \wedge \mathbf{w} \mod \mathbf{a}_1 \Lambda^{r-2l-1}(\mathbb{R}^n),$$

$$\mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_r = \overrightarrow{\mathbf{a}_2 \mathbf{a}_3} \overrightarrow{\mathbf{a}_3 \mathbf{a}_4} \cdots \overrightarrow{\mathbf{a}_{r-1} \mathbf{a}_r} \mathbf{a}_1 \mathbf{w} \mod \mathbf{a}_1 \Lambda(\mathbb{R}^n),$$

where

$$\overrightarrow{\mathbf{a}_i \mathbf{a}_j} = \mathbf{b}_j - \mathbf{b}_i$$

 \mathbf{b}_i is the Euclidean point in $\mathbb{R}^n = (\mathbf{a}_1 \wedge \mathbf{w})^{\sim}$ represented by null vector $\mathbf{a}_i \in \mathbb{R}^{n+1,1}$, and \mathbf{w} is a generic null vector in $\mathbb{R}^{n+1,1}$.

Topics Transformation Classifier Conclusion

Home Page

Title Page

Page 10 of 32

Go Back

Full Screen

Close

Quit

44

Clifford difference ring

Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be atomic vectors of \mathcal{V}^n . Then all difference polynomials of the \mathbf{a}_i form a ring of $CL(\mathcal{V}^n)$ under the addition and the geometric product, called the *Clifford difference ring* generated by the \mathbf{a}_i .

Why study this ring?

a single expansion leads to an exponential growth of the expression size:

monomial $(\mathbf{a}_1 - \mathbf{b}_1)(\mathbf{a}_2 - \mathbf{b}_2) \cdots (\mathbf{a}_r - \mathbf{b}_r) = 2^r$ terms when expanded multilinearly.

Topics

Third applicable result

Null geometric algebra: graph-theoretical method, PBD (permutational balanced difference) polynomial representation, etc.

Clifford difference ring: tabular representation, tensor product structure, etc.

Home	Home Page	
Title	Page	
••	••	
•		
Page 1	2 of <mark>32</mark>	
Gol	Go Back	
Full S	Screen	
-		
Clo	ose	
Q	Quit	

Topics

Algebra of advanced invariants

Null Bracket Algebra (NBA): generated by the scalar parts and the dual of the pseudoscalar parts of null monomials.

Algebra of advanced covariants:

Null Grassmann-Cayley algebra (NGC), generated by single-graded null monomials, and equipped with the outer product and the meet product.

Fourth applicable result: NBA and NGC.

The above two results are included in:

H. Li, *Symbolic Computational Geometry with Advanced Invariant Algebras*, under revision. (approx. 450 pages)

Topics

Classifier Conclusion

Transformation

2. Polynomial Parametrization of 3D Möbius Group

Terminology:

Versor: The geometric product of invertible vectors.

Rotor: The geometric product of an even number of invertible vectors.

Positive vector: a vector whose inner product with itself is positive.

Positive versor: The geometric product of positive vectors.

Positive rotor: The geometric product of an even number of positive vectors.

- Any conformal transformation in \mathbb{R}^n is induced by a positive versor in $CL(\mathbb{R}^{n+1,1})$ that is unique up to scale.
- Any orientation-preserving conformal transformation in \mathbb{R}^n is induced by a positive rotor in $CL(\mathbb{R}^{n+1,1})$ that is unique up to scale.

Home	e Page
Title	Page
••	••
•	
Page 1	4 of <mark>32</mark>
Go	Back
Full Screen	
CI	ose
G	Quit

Topics

Transformation Classifier

Conclusion

Theorem

For any $\mathbf{B}_2 \in \Lambda^2(\mathbb{R}^{4,1})$ such that $\mathbf{B}_2^2 \neq 1$, the following equality holds up to scale:

$$C(\mathbf{B}_2) = (1 + \mathbf{B}_2)^2 (1 - \mathbf{B}_2 \cdot \mathbf{B}_2 + \mathbf{B}_2 \wedge \mathbf{B}_2).$$

Cayley transform is a polynomial map of degree 4 in \mathbf{B}_2 , with values in the group of positive rotors of $\mathcal{G}(\mathbb{R}^{4,1})$.

Domain of definition: all bivectors in $\Lambda(\mathbb{R}^{4,1})$ except the Minkowski blades of unit magnitude.

Image space: all positive rotors (modulo scale) except those of the form $\mathbf{b}_1\mathbf{b}_2\mathbf{b}_3\mathbf{b}_4$, where the \mathbf{b}_i are pairwise orthogonal positive vectors in $\mathbb{R}^{4,1}$.

Topics

Classifier Conclusion

Transformation

Antipodal inversion

Algebraically: generated by $\mathbf{b}_1\mathbf{b}_2\mathbf{b}_3\mathbf{b}_4$, where the \mathbf{b}_i are pairwise orthogonal positive vectors in $\mathbb{R}^{4,1}$.

Geometrically: the composition of an inversion with respect to a sphere and the reflection with respect to the center of the sphere.

Inverse of Cayley transform

Definition.

A bivector is said to be *entangled*, or *coherent*, if in its completely orthogonal decomposition there are two components having equal square.

Property.

For a bivector $\mathbf{B}_2 \in \Lambda^2(\mathbb{R}^{4,1})$ to be entangled, it is both necessary and sufficient that

$$(\mathbf{B}_2 \cdot \mathbf{B}_2)^2 = (\mathbf{B}_2 \wedge \mathbf{B}_2)^2.$$

Theorem.

Let A be a positive rotor A that is in the range of Cayley transform up to scale. Then A has exactly one bivector preimage if and only if either

- it is in $\Lambda(\mathbf{C}_2)$ where \mathbf{C}_2 is a 2-blade of degenerate signature, or
- its bivector part is entangled.

Topics Transformation Classifier Conclusion

Home Page

Title Page

Page 17 of 32

Go Back

Full Screen

Close

Quit

44

Expression of inverse Cayley transform

If positive rotor A has a unique preimage, the preimage is

$$\frac{\langle \mathbf{A} \rangle_2}{\langle \mathbf{A} \rangle_4 + 2 \langle \mathbf{A} \rangle + |\langle \mathbf{A} \rangle \langle \mathbf{A} \rangle_4| / \langle \mathbf{A} \rangle}.$$

If A has more than one preimage, then it has two, and they are inverse to each other:

$$rac{\langle \mathbf{A}
angle_2}{\langle \mathbf{A}
angle_4 + \langle \mathbf{A}
angle \pm |\mathbf{A}|}.$$

Topics

Examples

All orientation-preserving similarity transformations in \mathbb{R}^3 can be induced by bivectors in $\Lambda^2(\mathbb{R}^{4,1})$ through Cayley transform and adjoint action.

Any orientation-preserving similarity transformation which is not a translation is induced by the Cayley transform of exactly two bivectors. A translation is induced by a unique bivector.

Example 1. In $CL(\mathbb{R}^{4,1})$, let

$$\mathbf{A} = e^{\mathbf{I}_2 \frac{\theta}{2}}$$

where $I_2 \in \Lambda(e^{\sim})$ is a Euclidean 2-blade of unit magnitude such that I_2^{\sim} represents the axis of rotation, and $-\theta$ is the angle of rotation. Then

$$\mathbf{B}_2 = \mathbf{I}_2 \tan \frac{\theta}{4}, \quad \mathbf{B}_2^{-1} = -\mathbf{I}_2 / \tan \frac{\theta}{4}$$

both generate A by Cayley transform.

The bivector representation of the rotation via the Cayley transform is a quarterangle representation.

Topics Transformation Classifier Conclusion

Home Page

Title Page

Page 19 of 32

Go Back

Full Screen

Close

Quit

44

Example 2. let

 $\mathbf{A} = 1 + \frac{\mathbf{et}}{2},$

where $\mathbf{t} \in \mathbf{e}^{\sim}$ is a positive vector. Then

 $\mathbf{B}_2 = \frac{\mathbf{et}}{4}$

generates A by Cayley transform.

Example 3. Let

$$\mathbf{A} = e^{\frac{\theta}{2}\mathbf{e}\wedge\mathbf{a}}$$

where $\theta \in \mathbb{R}$, and $\mathbf{a} \in \mathcal{N}_{\mathbf{e}}$ represents a point. Rotor A generates the dilation centering at a and with scale $e^{-\theta}$.

Denote $I_2 = e \wedge a$. Then

$$\mathbf{B}_2 = \mathbf{I}_2 \tanh \frac{\theta}{4}, \quad \mathbf{B}_2^{-1} = \mathbf{I}_2 / \tanh \frac{\theta}{4},$$

both generate A by Cayley transform.

Transformation
Classifier
Conclusion
Home Page
Title Page
• •
▲ ► Page 21 of 32
Page 21 of 32
Page 21 of 32 Go Back
 ▲ Page 21 of 32 Go Back Full Screen
 ▲ Page 21 of 32 Go Back Full Screen Close Quit

Comparisons

Exponential map: transcendental, infinitely many inverses, but maps the Lie algebra $\Lambda^2(\mathbb{R}^{4,1})$ onto the group of positive rotors modulo scale.

Linear approximation of exp: has good performance only nearby the identity.

Quadratic approximation of exp: The exterior exponential

$$e^{\wedge \mathbf{B}_2} = 1 + \mathbf{B}_2 + \frac{\mathbf{B}_2 \wedge \mathbf{B}_2}{2!}.$$

Injective.

Domain of definition: a set $\mathbb{R}^{10} - V^9$, where V^9 is a 9D algebraic variety.

Image space modulo scale: the remainder of the special orthogonal group SO(4, 1), which is a 10D Lie group with two connected components, after removal of a 9D closed subset.

Polynomial Cayley transform: Domain of definition: a set $\mathbb{R}^{10} - V^5$, where V^5 is a 5D algebraic variety.

Image space modulo scale: the remainder of the Lorentz group of $\mathbb{R}^{4,1}$, which is a 10D connected Lie group, after removal of a 4D open disk.

Topics Transformation Classifier Conclusion

Home Page

Title Page

Page 22 of 32

Go Back

Full Screen

Close

Quit

44

3. Total Meet Product in 3D Conformal Incidence Geometry

Let there be two lines 12 and 1'2' in space. There are the following four kinds of incidence relations between them:

- identical (collinear);
- parallel;
- intersecting;
- non-coplanar.

The total meet product between them is

$$\begin{aligned} (\mathbf{1} \wedge \mathbf{2}) \bar{\vee} (\mathbf{1}' \wedge \mathbf{2}') &= & 1 \otimes (\mathbf{1} \wedge \mathbf{2} \wedge \mathbf{1}' \wedge \mathbf{2}') \\ &+ \mathbf{1}' \otimes (\mathbf{1} \wedge \mathbf{2} \wedge \mathbf{2}') - \mathbf{2}' \otimes (\mathbf{1} \wedge \mathbf{2} \wedge \mathbf{1}') \\ &+ (\mathbf{1}' \wedge \mathbf{2}') \otimes (\mathbf{1} \wedge \mathbf{2}). \end{aligned}$$

Transformation Classifier Conclusion Home Page Title Page **▲** ◀ Page 23 of 32 Go Back Full Screen Close Quit

Topics

Classification by the total meet product

- The two lines are non-coplanar if and only if the (0,4)-graded part is nonzero: 1 ∧ 2 ∧ 1' ∧ 2' ≠ 0.
- If the (0,4)-graded part is zero, the two lines are coplanar. If the (1,3)-graded part is also zero, the two lines are identical.
- If the (0,4)-graded part is zero but the (1,3)-graded part is nonzero, the supporting plane of the two lines is

 $[\mathbf{1}']\mathbf{1}\wedge\mathbf{2}\wedge\mathbf{2}'-[\mathbf{2}']\mathbf{1}\wedge\mathbf{2}\wedge\mathbf{1}',$

the intersection is

$$1'[1\wedge 2\wedge 2']-2'[1\wedge 2\wedge 1'].$$

• The two lines are parallel if and only if the intersection is at infinity:

 $\partial(\mathbf{1}')[\mathbf{1}\wedge\mathbf{2}\wedge\mathbf{2}']=\partial(\mathbf{2}')[\mathbf{1}\wedge\mathbf{2}\wedge\mathbf{1}'].$

Topics
Transformation
Classifier
Conclusion

Definition of the total meet product

Let \mathcal{V}^n be an *n*D vector space over a base field \mathbb{K} of characteristic $\neq 2$. The *total meet product* of two multivectors in $\Lambda(\mathcal{V}^n)$ is a linear isomorphism in Grassmann algebra $\Lambda(\mathcal{V}^n) \otimes \Lambda(\mathcal{V}^n)$, defined for any *r*-blade \mathbf{A}_r and *s*-blade \mathbf{B}_s by

$$\mathbf{A}_r \,\bar{\vee} \,\mathbf{B}_s := \sum_{i=\max(0,r+s-n)}^s \sum_{(i,s-i)\vdash\mathbf{B}_s} \mathbf{B}_{s(1)} \otimes (\mathbf{A}_r \wedge \mathbf{B}_{s(2)}).$$

Topics

Applying to the conformal model for two circles in space

In $\Lambda(\mathbb{R}^{4,1})$, let $\mathbf{A}_3 = \mathbf{1} \wedge \mathbf{2} \wedge \mathbf{3}$ and $\mathbf{B}_3 = \mathbf{1}' \wedge \mathbf{2}' \wedge \mathbf{3}'$ be two circles each passing through three points. Then

$$egin{aligned} \mathbf{A}_3 ar{arphi} \left(\mathbf{1}' \wedge \mathbf{2}' \wedge \mathbf{3}'
ight) &= & \mathbf{1}' \otimes \mathbf{A}_3 \wedge \mathbf{2}' \wedge \mathbf{3}' - \mathbf{2}' \otimes \mathbf{A}_3 \wedge \mathbf{1}' \wedge \mathbf{3}' + \mathbf{3}' \otimes \mathbf{A}_3 \wedge \mathbf{1}' \wedge \mathbf{2}' \ &+ & \mathbf{1}' \wedge \mathbf{2}' \otimes \mathbf{A}_3 \wedge \mathbf{3}' - & \mathbf{1}' \wedge \mathbf{3}' \otimes \mathbf{A}_3 \wedge \mathbf{2}' + & \mathbf{2}' \wedge \mathbf{3}' \otimes \mathbf{A}_3 \wedge \mathbf{1}' \ &+ & \mathbf{1}' \wedge & \mathbf{2}' \wedge & \mathbf{3}' \otimes \mathbf{A}_3, \end{aligned}$$

where the outer product precedes the tensor product.

Knotting of two spheres or a sphere and a plane in \mathbb{R}^n

In \mathbb{R}^n , an *r*D sphere A and an *s*D sphere B, where $0 \le r, s \le n-1$, are said to be *knotted*, if

- they have no point in common,
- sphere B intersects the (r+1)D supporting plane A' of sphere A at a point inside sphere A and at the other point outside sphere A,
- sphere A intersects the (s + 1)D supporting plane B' of sphere B at a point inside sphere B and at the other point outside sphere B.

An rD plane A and an sD sphere B are said to be *knotted*, if the intersection of plane A and the supporting plane B' of sphere B is a point inside sphere B.

Topics
Transformation
Classifier
Conclusion

Incidence relations between two circles in space

Intersecting, tangent and separating of two spheres or a sphere and a plane

- Two spheres or planes of dimension between 0 and n − 1 in ℝⁿ are said to be *separated*, if they neither have any point in common nor are knotted.
- The *extension* of two spheres or planes of dimension r, s respectively, refers to the plane or sphere of lowest dimension that contains both of them.
- For $0 \le r, s \le n-1$, an rD sphere and an sD sphere in \mathbb{R}^n are said to be
 - *tD intersecting*, if their intersection is a *tD* sphere.
 - *tD tangent*, if they have a unique common point, called the *tangent point*, and they have a common *tD* tangent subspace at the tangent point.
 - *tD separated*, if they are separated, and their extension is a (t + 1)D sphere or plane.

For an rD sphere and an sD plane, their tD intersecting, tangent and separated relations can be defined similarly.

Topics Transformation Classifier Conclusion

Extension and intersection of two circles in space

From the total meet product of $A_3 = 1 \land 2 \land 3$ and $B_3 = 1' \land 2' \land 3'$, we get their (k-2)D extensions E_k where k = 5, 4, and (l-2)D intersections I_l where l = 1, 2:

$$\begin{split} \mathbf{E}_5 &= \ [\mathbf{1}']\mathbf{A}_3 \wedge \mathbf{2}' \wedge \mathbf{3}' - [\mathbf{2}']\mathbf{A}_3 \wedge \mathbf{1}' \wedge \mathbf{3}' + [\mathbf{3}']\mathbf{A}_3 \wedge \mathbf{1}' \wedge \mathbf{2}', \\ \mathbf{I}_1 &= \ [\mathbf{A}_3 \wedge \mathbf{2}' \wedge \mathbf{3}']\mathbf{1}' - [\mathbf{A}_3 \wedge \mathbf{1}' \wedge \mathbf{3}']\mathbf{2}' + [\mathbf{A}_3 \wedge \mathbf{1}' \wedge \mathbf{2}']\mathbf{3}', \\ \mathbf{E}_4 &= \ [\mathbf{1}' \wedge \mathbf{2}']\mathbf{A}_3 \wedge \mathbf{3}' - [\mathbf{1}' \wedge \mathbf{3}']\mathbf{A}_3 \wedge \mathbf{2}' + [\mathbf{2}' \wedge \mathbf{3}']\mathbf{A}_3 \wedge \mathbf{1}', \\ \mathbf{I}_2 &= \ [\mathbf{A}_3 \wedge \mathbf{3}']\mathbf{1}' \wedge \mathbf{2}' - [\mathbf{A}_3 \wedge \mathbf{2}']\mathbf{1}' \wedge \mathbf{3}' + [\mathbf{A}_3 \wedge \mathbf{1}']\mathbf{2}' \wedge \mathbf{3}'. \end{split}$$

Ноте	e Page
Title	Page
44	>>
•	▶
Page 3	0 of <u>32</u>
Go Back	
Eull S	Coroon
Clo	ose
Q	uit

- 1. The two circles are either knotted, or 0D tangent, or 2D planar separated, if and only if vector I_1 is either negative, or null, or positive.
- 2. When $I_1 = 0$, the two circles are coplanar or cospherical. They are coplanar and cospherical simultaneously if and only if they are identical, or equivalently, if and only if $I_1 = I_2 = 0$.
- 3. Assume that $I_1 = 0$ but $I_2 \neq 0$. Then Minkowski blade E_4 represents the common supporting plane or sphere of the two circles, depending on whether or not $e \in E_4$.
- 4. The two circles are either 0D intersecting, or 1D tangent, or 1D separated, if and only if blade I_2 is either Minkowski, or degenerate, or Euclidean.

The classifier may be useful in collision detection and neuron-based classification.

Topics

Classifier Conclusion

Transformation

4. Conclusion

- The formulas on 3D Cayley transform and the total meet product, provide universal and compact representations of geometric transformations and configurations, and should prove to be useful in computer applications.
- New algebras are developed by investigating and applying the geometric algebra of null vectors, and have proved to be highly valuable in symbolic manipulations of geometries.

Home Page	
Title Page	
•• ••	
▲ ►	
Page 32 of 32	
Go Back	
Eull Saraan	
Close	
Quit	

Topics