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Two Applicable Results in Conformal
Geometric Algebra
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Key Laboratory of Mathematics Mechanization,
Chinese Academy of Sciences, Beijing, China
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1. Topics and Results

Algebraic and Geometric Aspects of Conformal Geometric Algebra (CGA):

1. Polynomial parametrization of conformal transformations;

2. Incidence geometry of spheres and planes;

3. Geometry of Euclidean displacements;

4. Symbolic algebra of null vectors.
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Parametrization of 3D conformal transformations

Vahlen matrices:

x 7−→ (Ax + B)(Cx + D)−1, ∀x ∈ R3,

where Vahlen matrix

(
A B

C D

)
is a 2× 2 matrix over CL(R3) such that

1. A,B,C,D are either versors or zero;

2. AB†,BD†,DC†,CA† are vectors;

3. ∆ = AD† −BC† is a nonzero scalar.

Difficulty: parametrizing the versors.
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Exponential map: Versor representation

x 7−→ VxV̂−1, ∀x ∈ R3,

and Lie algebra representation of rotors via the exponential map:

U = exp(u) = 1 + u +
u2

2!
+ · · ·

Difficulty: evaluating the exponential map and its inverse.

Cayley transform: Versor representation and Lie algebra representation of ro-
tors via rational linear map

Λ2(R4,1) −→ CL(R4,1)

B2 7−→ (1 + B2)(1−B2)
−1, where 1−B2 is invertible.

Difficulty: computing the inverse of a multivector in CL(R4,1).
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First applicable result

Polynomial Cayley transform: Versor representation and Lie algebra repre-
sentation of rotors via a degree-4 polynomial map.

Inverse: square-root computing of real numbers.

Applicable to: motion planning, motion interpolating, etc.
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Incidence geometry of planes and spheres of various dimensions

2 Hongbo Li

interpolating and fitting in the linear space of the Lie algebra of 3D conformal
transformations.

The second advance is on designing a classifier for the incidence relationship
of two circles in space. Given two different circles A,B in space, there are nine
different incidence relations between them:
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Fig. 1. Incidence relations between two circles A, B in space.

1. Knotted: A,B do not touch each other, and any one penetrates once and
only once the interior of the 2D disk surrounded by the other; see Figure
1(1).

2. 0D planar tangent: A,B have one point in common, and are neither coplanar
nor cospherical; see Figure 1(2).

3. 2D planar separated: A,B can be separated by a plane in space, and are
neither coplanar nor cospherical; see Figure 1(3).

4. 0D planar intersecting: A,B are coplanar and intersect at two points; see
Figure 1(4).

5. 1D planar tangent: A,B are coplanar and tangent to each other; see Figure
1(5).

6. 1D planar separated: A,B are coplanar but are separated by a line in the
plane; see Figure 1(6).

7. 0D spherical intersecting: A,B are cospherical and intersect at two points;
see Figure 1(4’).
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Second applicable result

A very simple algebraic operation called total meet product, that can be used as
a classifier of all kinds of incidence relations of spheres and planes of various
dimensions in Rn.

The above two applicable results are included in

H. Li, Invariant Algebras and Geometric Reasoning, World Scientific, Singa-
pore, 2008. (approx. 500 pages)
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The geometry of null geometric algebra

Let a1, a2, . . . , ar ∈ Rn+1,1 be null vectors. What is the nD Euclidean geometric
meaning (via the conformal model) of

a1a2 · · · ar?

What about 〈a1a2 · · · ar〉r−2k?

Definition.

Let Vn be an inner-product space spanned by null vectors. The null Clifford
space over Vn, still denoted by G(Vn), is the set of K-linear combinations of
null monomials and single-graded null monomials. The null Geometric Alge-
bra (NGA) over Vn, still denoted by G(Vn), refers to the null Clifford space
equipped with the geometric product.
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First fundamental theorem in NGA

Chained difference representations of null monomials:

Let a1, a2, . . . , ar ∈ Rn+1,1 be null vectors such that ai · a1 6= 0 for i 6= 0. Then

〈a1a2 · · · ar〉r−2l = − 〈−−→a2a3
−−→a3a4 · · · −−−−→ar−1ar〉r−2l

+ 〈−−→a2a3
−−→a3a4 · · · −−−−→ar−1ar〉r−2l−2 ∧ a1 ∧ ar,

a1a2 · · · ar = −−→a2a3
−−→a3a4 · · · −−−−→ar−1ar a1ar

= a1ar
−−→a2a3

−−→a3a4 · · · −−−−→ar−1ar,

where
−−→aiaj = bj − bi,

and bi is the the Euclidean point in Rn = (a1 ∧ ar)
∼ represented by null vector

ai ∈ Rn+1,1.
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Second fundamental theorem in NGA

Modular chained difference representations of null monomials:

Let a1, a2, . . . , ar ∈ Rn+1,1 be null vectors such that ai · a1 6= 0 for i 6= 0. Then

〈a1a2 · · · ar〉r−2l = − 〈−−→a2a3
−−→a3a4 · · · −−−−→ar−1ar〉r−2l

+ 〈−−→a2a3
−−→a3a4 · · · −−−−→ar−1ar〉r−2l−2 ∧ a1 ∧w mod a1Λ

r−2l−1(Rn),

a1a2 · · · ar = −−→a2a3
−−→a3a4 · · · −−−−→ar−1ar a1w mod a1Λ(Rn),

where
−−→aiaj = bj − bi,

bi is the the Euclidean point in Rn = (a1 ∧ w)∼ represented by null vector
ai ∈ Rn+1,1, and w is a generic null vector in Rn+1,1.
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Clifford difference ring

Let a1, . . . , am be atomic vectors of Vn. Then all difference polynomials of the
ai form a ring of CL(Vn) under the addition and the geometric product, called
the Clifford difference ring generated by the ai.

Why study this ring?

a single expansion leads to an exponential growth of the expression size:

monomial (a1−b1)(a2−b2) · · · (ar−br) = 2r terms when expanded multilinearly.
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Third applicable result

Null geometric algebra: graph-theoretical method, PBD (permutational bal-
anced difference) polynomial representation, etc.

Clifford difference ring: tabular representation, tensor product structure, etc.
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Algebra of advanced invariants

Null Bracket Algebra (NBA): generated by the scalar parts and the dual of the
pseudoscalar parts of null monomials.

Algebra of advanced covariants:
Null Grassmann-Cayley algebra (NGC), generated by single-graded null mono-
mials, and equipped with the outer product and the meet product.

Fourth applicable result: NBA and NGC.

The above two results are included in:

H. Li, Symbolic Computational Geometry with Advanced Invariant Algebras,
under revision. (approx. 450 pages)
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2. Polynomial Parametrization of 3D Möbius
Group

Terminology:

Versor: The geometric product of invertible vectors.

Rotor: The geometric product of an even number of invertible vectors.

Positive vector: a vector whose inner product with itself is positive.

Positive versor: The geometric product of positive vectors.

Positive rotor: The geometric product of an even number of positive vectors.

• Any conformal transformation in Rn is induced by a positive versor in
CL(Rn+1,1) that is unique up to scale.

• Any orientation-preserving conformal transformation in Rn is induced by a
positive rotor in CL(Rn+1,1) that is unique up to scale.
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Theorem

For any B2 ∈ Λ2(R4,1) such that B2
2 6= 1, the following equality holds up to

scale:
C(B2) = (1 + B2)

2(1−B2 ·B2 + B2 ∧B2).

Cayley transform is a polynomial map of degree 4 in B2, with values in the
group of positive rotors of G(R4,1).

Domain of definition: all bivectors in Λ(R4,1) except the Minkowski blades of
unit magnitude.

Image space: all positive rotors (modulo scale) except those of the form
b1b2b3b4, where the bi are pairwise orthogonal positive vectors in R4,1.
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Antipodal inversion

Algebraically: generated by b1b2b3b4, where the bi are pairwise orthogonal
positive vectors in R4,1.

Geometrically: the composition of an inversion with respect to a sphere and
the reflection with respect to the center of the sphere.

1 1’

2

2’

c

3

3’

c2

3
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2’ 1’
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Inverse of Cayley transform

Definition.
A bivector is said to be entangled, or coherent, if in its completely orthogonal
decomposition there are two components having equal square.

Property.
For a bivector B2 ∈ Λ2(R4,1) to be entangled, it is both necessary and sufficient
that

(B2 ·B2)
2 = (B2 ∧B2)

2.

Theorem.
Let A be a positive rotor A that is in the range of Cayley transform up to scale.
Then A has exactly one bivector preimage if and only if either

• it is in Λ(C2) where C2 is a 2-blade of degenerate signature, or

• its bivector part is entangled.
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Expression of inverse Cayley transform

If positive rotor A has a unique preimage, the preimage is

〈A〉2
〈A〉4 + 2〈A〉+ |〈A〉〈A〉4|/〈A〉

.

If A has more than one preimage, then it has two, and they are inverse to each
other:

〈A〉2
〈A〉4 + 〈A〉 ± |A|

.
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Examples

All orientation-preserving similarity transformations in R3 can be induced by
bivectors in Λ2(R4,1) through Cayley transform and adjoint action.

Any orientation-preserving similarity transformation which is not a translation
is induced by the Cayley transform of exactly two bivectors. A translation is
induced by a unique bivector.

Example 1. In CL(R4,1), let
A = eI2

θ
2 ,

where I2 ∈ Λ(e∼) is a Euclidean 2-blade of unit magnitude such that I∼2 repre-
sents the axis of rotation, and −θ is the angle of rotation. Then

B2 = I2 tan
θ

4
, B−1

2 = −I2/ tan
θ

4
,

both generate A by Cayley transform.

The bivector representation of the rotation via the Cayley transform is a quarter-
angle representation.
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Two Applicable Results in Conformal Geometric Algebra 7
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Fig. 2. Quarter-angle representation of a 2D rotation via Cayley transform.

Example 4. Let A = e
θ
2 e∧a be a rotor realizing a dilation (or scaling), where

θ ∈ R and a ∈ Ne represents a point. Rotor A generates the dilation centering
at a and with scale e−θ. Denote I2 = e ∧ a. Then

B2 =
eI2

θ
2 − e−I2

θ
2

eI2
θ
2 + e−I2

θ
2 + 2

= I2 tanh
θ

4
, B−1

2 = I2/ tanh
θ

4
, (12)

both generate A by Cayley transform. So Cayley transform provides a quarter-
scale bivector representation of the dilation.

Any orientation-preserving similarity transformation in space that is not a
translation is induced by the Cayley transform of exactly two bivectors. A trans-
lation is induced by a unique bivector. When choosing between the two bivector
preimages B2 and B−1

2 of a rotor, since |B2||B−1
2 | = 1, one of |B2| and |B−1

2 | is
greater than or equal to 1. By (9),

|B2 −B−1
2 | = 2

|A|
|〈A〉2| ≥ 2. (13)

So for two rotors that are close to each other, we can always choose their bivector
preimages to be close to each other. If their magnitudes are greater than 1, we
can choose their inverses so that the magnitudes become smaller than 1.

Then what is the use of having two bivector preimages for the same rotor?
Bear in mind that Cayley transform is not an isometry. Take the two preimages
in (10) as an example. The map θ 7→ eI2θ is an isometric immersion, while the
two maps

θ 7→ I2 tan
θ

4
and θ 7→ −I2/ tan

θ

4
(14)

have Jacobians 1/(4 cos2 θ/4) and 1/(4 sin2 θ/4) respectively. When (4k− 1)π ≤
θ ≤ (4k +1)π, the Jacobians are respectively between 1/4 and 1/2, and between
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Example 2. let

A = 1 +
et

2
,

where t ∈ e∼ is a positive vector. Then

B2 =
et

4

generates A by Cayley transform.

Example 3. Let
A = e

θ
2e∧a,

where θ ∈ R, and a ∈ Ne represents a point. Rotor A generates the dilation
centering at a and with scale e−θ.

Denote I2 = e ∧ a. Then

B2 = I2 tanh
θ

4
, B−1

2 = I2/ tanh
θ

4
,

both generate A by Cayley transform.
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Comparisons

Exponential map: transcendental, infinitely many inverses, but maps the Lie
algebra Λ2(R4,1) onto the group of positive rotors modulo scale.

Linear approximation of exp: has good performance only nearby the identity.

Quadratic approximation of exp: The exterior exponential

e∧B2 = 1 + B2 +
B2 ∧B2

2!
.

Injective.

Domain of definition: a set R10 − V 9, where V 9 is a 9D algebraic variety.

Image space modulo scale: the remainder of the special orthogonal group
SO(4, 1), which is a 10D Lie group with two connected components, after
removal of a 9D closed subset.

Polynomial Cayley transform: Domain of definition: a set R10 − V 5, where
V 5 is a 5D algebraic variety.

Image space modulo scale: the remainder of the Lorentz group of R4,1,
which is a 10D connected Lie group, after removal of a 4D open disk.
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3. Total Meet Product in 3D Conformal Inci-
dence Geometry

Let there be two lines 12 and 1′2′ in space. There are the following four kinds
of incidence relations between them:

• identical (collinear);

• parallel;

• intersecting;

• non-coplanar.

The total meet product between them is

(1 ∧ 2)∨̄(1′ ∧ 2′) = 1⊗ (1 ∧ 2 ∧ 1′ ∧ 2′)

+ 1′ ⊗ (1 ∧ 2 ∧ 2′)− 2′ ⊗ (1 ∧ 2 ∧ 1′)

+ (1′ ∧ 2′)⊗ (1 ∧ 2).
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Classification by the total meet product

• The two lines are non-coplanar if and only if the (0, 4)-graded part is
nonzero: 1 ∧ 2 ∧ 1′ ∧ 2′ 6= 0.

• If the (0, 4)-graded part is zero, the two lines are coplanar. If the (1, 3)-
graded part is also zero, the two lines are identical.

• If the (0, 4)-graded part is zero but the (1, 3)-graded part is nonzero, the
supporting plane of the two lines is

[1′]1 ∧ 2 ∧ 2′ − [2′]1 ∧ 2 ∧ 1′,

the intersection is

1′[1 ∧ 2 ∧ 2′]− 2′[1 ∧ 2 ∧ 1′].

• The two lines are parallel if and only if the intersection is at infinity:

∂(1′)[1 ∧ 2 ∧ 2′] = ∂(2′)[1 ∧ 2 ∧ 1′].
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Definition of the total meet product

Let Vn be an nD vector space over a base field K of characteristic 6= 2. The total
meet product of two multivectors in Λ(Vn) is a linear isomorphism in Grass-
mann algebra Λ(Vn)⊗ Λ(Vn), defined for any r-blade Ar and s-blade Bs by

Ar ∨̄Bs :=
s∑

i=max(0,r+s−n)

∑
(i,s−i)`Bs

Bs(1) ⊗ (Ar ∧Bs(2)).
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Applying to the conformal model for two circles in space

In Λ(R4,1), let A3 = 1∧2∧3 and B3 = 1′∧2′∧3′ be two circles each passing
through three points. Then

A3∨̄ (1′ ∧ 2′ ∧ 3′) = 1′ ⊗A3 ∧ 2′ ∧ 3′ − 2′ ⊗A3 ∧ 1′ ∧ 3′ + 3′ ⊗A3 ∧ 1′ ∧ 2′

+1′ ∧ 2′ ⊗A3 ∧ 3′ − 1′ ∧ 3′ ⊗A3 ∧ 2′ + 2′ ∧ 3′ ⊗A3 ∧ 1′

+1′ ∧ 2′ ∧ 3′ ⊗A3,

where the outer product precedes the tensor product.
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Knotting of two spheres or a sphere and a plane in Rn

In Rn, an rD sphere A and an sD sphere B, where 0 ≤ r, s ≤ n− 1, are said to
be knotted, if

• they have no point in common,

• sphere B intersects the (r + 1)D supporting plane A′ of sphere A at a point
inside sphere A and at the other point outside sphere A,

• sphere A intersects the (s + 1)D supporting plane B′ of sphere B at a point
inside sphere B and at the other point outside sphere B.

An rD plane A and an sD sphere B are said to be knotted, if the intersection of
plane A and the supporting plane B′ of sphere B is a point inside sphere B.

A

B
B

A
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Incidence relations between two circles in space

2 Hongbo Li

interpolating and fitting in the linear space of the Lie algebra of 3D conformal
transformations.

The second advance is on designing a classifier for the incidence relationship
of two circles in space. Given two different circles A,B in space, there are nine
different incidence relations between them:

A

B

(1)
A x

B

(2)

A
B

(3)

A B

x

y
(4)

A x B

(5)

A B

(6)

A
yB

x

(4’)

A

x

B

(5’)

A

B

(6’)

Fig. 1. Incidence relations between two circles A, B in space.

1. Knotted: A,B do not touch each other, and any one penetrates once and
only once the interior of the 2D disk surrounded by the other; see Figure
1(1).

2. 0D planar tangent: A,B have one point in common, and are neither coplanar
nor cospherical; see Figure 1(2).

3. 2D planar separated: A,B can be separated by a plane in space, and are
neither coplanar nor cospherical; see Figure 1(3).

4. 0D planar intersecting: A,B are coplanar and intersect at two points; see
Figure 1(4).

5. 1D planar tangent: A,B are coplanar and tangent to each other; see Figure
1(5).

6. 1D planar separated: A,B are coplanar but are separated by a line in the
plane; see Figure 1(6).

7. 0D spherical intersecting: A,B are cospherical and intersect at two points;
see Figure 1(4’).
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Intersecting, tangent and separating of two spheres or a sphere and a plane

• Two spheres or planes of dimension between 0 and n − 1 in Rn are said to
be separated, if they neither have any point in common nor are knotted.

• The extension of two spheres or planes of dimension r, s respectively, refers
to the plane or sphere of lowest dimension that contains both of them.

• For 0 ≤ r, s ≤ n− 1, an rD sphere and an sD sphere in Rn are said to be

– tD intersecting, if their intersection is a tD sphere.

– tD tangent, if they have a unique common point, called the tangent point,
and they have a common tD tangent subspace at the tangent point.

– tD separated, if they are separated, and their extension is a (t + 1)D
sphere or plane.

For an rD sphere and an sD plane, their tD intersecting, tangent and separated
relations can be defined similarly.
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Extension and intersection of two circles in space

From the total meet product of A3 = 1 ∧ 2 ∧ 3 and B3 = 1′ ∧ 2′ ∧ 3′, we get
their (k−2)D extensions Ek where k = 5, 4, and (l−2)D intersections Il where
l = 1, 2:

E5 = [1′]A3 ∧ 2′ ∧ 3′ − [2′]A3 ∧ 1′ ∧ 3′ + [3′]A3 ∧ 1′ ∧ 2′,

I1 = [A3 ∧ 2′ ∧ 3′]1′ − [A3 ∧ 1′ ∧ 3′]2′ + [A3 ∧ 1′ ∧ 2′]3′,

E4 = [1′ ∧ 2′]A3 ∧ 3′ − [1′ ∧ 3′]A3 ∧ 2′ + [2′ ∧ 3′]A3 ∧ 1′,

I2 = [A3 ∧ 3′]1′ ∧ 2′ − [A3 ∧ 2′]1′ ∧ 3′ + [A3 ∧ 1′]2′ ∧ 3′.
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1. The two circles are either knotted, or 0D tangent, or 2D planar separated, if
and only if vector I1 is either negative, or null, or positive.

2. When I1 = 0, the two circles are coplanar or cospherical. They are coplanar
and cospherical simultaneously if and only if they are identical, or equiva-
lently, if and only if I1 = I2 = 0.

3. Assume that I1 = 0 but I2 6= 0. Then Minkowski blade E4 represents
the common supporting plane or sphere of the two circles, depending on
whether or not e ∈ E4.

4. The two circles are either 0D intersecting, or 1D tangent, or 1D separated,
if and only if blade I2 is either Minkowski, or degenerate, or Euclidean.

The classifier may be useful in collision detection and neuron-based classifica-
tion.
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4. Conclusion

• The formulas on 3D Cayley transform and the total meet product, pro-
vide universal and compact representations of geometric transformations
and configurations, and should prove to be useful in computer applications.

• New algebras are developed by investigating and applying the geometric
algebra of null vectors, and have proved to be highly valuable in symbolic
manipulations of geometries.
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