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Multivector Functions

Multivectors, blades, reverse, scalar product

Multivector M ∈ Gp,q = Clp,q , p+ q = n, has k-vector parts (0 ≤ k ≤ n) scalar,
vector, bi-vector, . . . , pseudoscalar

M =
∑
A

MAeA = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n, (1)

blade index A ∈ {0, 1, 2, 3, 12, 23, 31, 123, . . . , 12 . . . n}, MA ∈ R.

Reverse of M ∈ Gp,q

M̃ =
n∑
k=0

(−1)
k(k−1)

2 〈M〉k. (2)

replaces complex conjugation/quaternion conjugation

The scalar product of two multivectors M, Ñ ∈ Gp,q is defined as

M ∗ Ñ = 〈MÑ〉 = 〈MÑ〉0 (3)

For M, Ñ ∈ Gn = Gn,0 we get M ∗ Ñ =
∑
AMANA.

E. Hitzer Department of Applied Physics University of Fukui Japan

GA Fourier & Wavelet Transformations



Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion

Multivector Functions

Modulus, blade subspace, pseudoscalar

The modulus |M | of a multivector M ∈ Gn = Gn,0 is defined as

|M |2 = M ∗ M̃ =
n∑

A=1

M2
A. (4)

For n = 2(mod 4), n = 3(mod 4) pseudoscalar in = e1e2 . . . en

i2n = −1. (5)

A blade B describes a vector subspace

VB = {x ∈ Rp,q |x ∧B = 0}.

Its dual blade
B∗ = Bi−1

n

describes the complimentary vector subspace V ⊥B .
pseudoscalar in commutes for n = 3(mod 4)

inM = M in, ∀M ∈ Gn,0.
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Multivector Functions

Multivector functions

Multivector valued function f : Rp,q → Gp,q = Clp,q , p+ q = n, has 2n blade
components

f(x) =
n∑

A=1

fA(x)eA. (6)

We define the inner product of Rn → Cln,0 functions f, g by

(f, g) =

∫
Rn

f(x)g̃(x) dnx =
∑
A,B

eAẽB

∫
Rn

fA(x)gB(x) dnx, (7)

and the L2(Rn;Cln,0)-norm

‖f‖2 = 〈(f, f)〉 =

∫
Rn
|f(x)|2dnx. (8)
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Multivector Functions

Vector Differential & Vector Derivative

Vector differential of f defined (any const. a ∈ Rp,q)

a · ∇f(x) = lim
ε→0

f(x+ εa)− f(x)

ε
, (9)

NB: a · ∇ scalar.

Vector derivative ∇ can be expanded as

∇ =
n∑
k=1

ek∂k, ∂k = ek · ∇ =
∂

∂xk
, (10)

both coordinate independent!
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Multivector Functions

Geometric Calculus Examples

MV Functions

f1 = x
f2 = x2

f3 = |x|
f4 = x · 〈A〉k , 0≤k≤n
f5 = log r
r = x− x0

r = |r|

V-Differentials

a · ∇f1 = a
a · ∇f2 = 2a · x
a · ∇f3 = a·x

|x|
a · ∇f4 = a · 〈A〉k
a · ∇f5 = a·r

r2

V-Derivatives

∇f1 = 3, (n = 3)
∇f2 = 2x
∇f3 = x/|x|
∇f4 = k〈A〉k
∇f5 = r−1 = r/r2.

References

1) Hestenes & Sobczyk, Clifford Algebra to Geometric Calculus, 1984.
2) Hitzer, Vector Differential Calculus, 2002.
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Multivector Functions

Rules for Vector Differential & Derivative

Derivative from differential (regard x = const., a = variable)

∇f = ∇a (a · ∇f) (11)

Sum rules, product rules exist. Modification by non-commutativity: ∇̇fġ 6= f∇̇ġ

∇(fg) = (∇̇ḟ)g + ∇̇fġ = (∇̇ḟ)g +
n∑
k=1

ekf(∂kg). (12)

Vector differential / derivative of f(x) = g(λ(x)), λ(x) ∈ R :

a · ∇f = {a · ∇λ(x)}
∂g

∂λ
, ∇f = (∇λ)

∂g

∂λ
. (13)

Example: For a = ek (1 ≤ k ≤ n) ek · ∇f = ∂kf = (∂kλ) ∂f
∂λ
.
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Classical scalar complex Fourier Transformations

Definition (1D Cassical FT)

For an integrable function f ∈ L2(R)∩L1(R), the Fourier transform of f is the function
F{f}: R→ C = G0,1

F{f}(ω) =

∫
R
f(x) e−iωx dx, (14)

i imaginary unit: i2 = −1.

Inverse FT

f(x) = F−1[F{f}(ω)] =
1

2π

∫
R
F{f}(ω) eiωx dω. (15)
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Examples of continuous and discrete 1D FT [Images: Wikipedia]
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Definition and properties of GA FTs

Geometric Algebra Fourier Transformation (GA FT)

complex→ geometric

complex unit i→ Geometric roots of −1, e.g. pseudoscalars in, n = 2, 3(mod 4).

complex f → multivector function f ∈ L2(Rn,Gn)

Definition (with pseudoscalars in dims. 2,3,6,7,10,11, ...)

The GA Fourier transform F{f}: Rn → Gn = Cln,0, n = 2, 3(mod 4) is given by

F{f}(ω) =

∫
Rn

f(x) e−inω·x dnx, (16)

for multivector functions f : Rn → Gn. NB: Also possible for Cl0,n, n = 1, 2(mod 4).

Possible applications: dimension specific transformations for actual data and signals,
with desired subspace structure.

Inversion of these GA FTs

f(x) = F−1[F{f}(ω)] =
1

(2π)n

∫
R3
F{f}(ω) einω·x dnω. (17)
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Definition and properties of GA FTs

Overview of complex, Clifford, quaternion, spacetime FTs

Complex Fourier Transformation (FT)
FC{f}(ω) =

∫
R
f(x) e−iωx dx (18)

Clifford Geometric Algebra (GA) FT in G3 (i→ i3)

FG3{f}(~ω) =

∫
R3
f(~x) e−i3~ω·~x d3~x (19)

GA FT in Gn,0,G0,n′ (i→ in)

FGn{f}(ω) =

∫
Rn

f(x) e−inω·x dnx (20)

QFT in H (i→ i, j)

FH{f}(u) = f̂(u) =

∫
R2
e−ixuf(x) e−jyvd2x (21)

SFT in spacetime algebra G3,1 (i→ et, j → i3)

FSTA{f}(u) =
�
f(u) =

∫
R3,1

e−et tsf(x) e−i3~x·~ud3~xdt (22)
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Definition and properties of GA FTs

Properties of the GA FT in Gn, n = 3 (mod 4)

General properties: Linearity, shift, modulation (ω-shift), scaling, convolution,
Plancherel theorem and Parseval theorem

‖f‖ =
1

(2π)n/2
‖F{f}‖. (23)

Table: Unique properties of GA FT Multiv. Funct. f ∈ L2(Rn, Gn), a ∈ Rn, m ∈ N.

Property Multiv. Funct. GA FT
Vec. diff. (a · ∇)mf(x) imn (a · ω)mF{f}(ω)

(a · x)m f(x) imn (a · ∇ω)m F{f}(ω)
Moments of x xmf(x) imn ∇mω F{f}(ω)

f(x)xm imn F{f}(ω)∇mω
Vec. deriv. ∇mf(x) imn ωmF{f}(ω)
dual moments f(x)∇m imn F{f}(ω)ωm

NB: Standard complex FT only gives coordinate moments and partial derivative
properties.
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Definition and properties of GA FTs

Properties of the GA FT in Gn, n = 2 (mod 4)

Property Multiv. Funct. CFT
Left lin. αf(x)+β g(x) αF{f}(ω)+ βF{g}(ω)
x-Shift f(x− a) F{f}(ω) e−inω·a

ω-Shift f(x) einω0·x F{f}(ω − ω0)
Scaling f(ax) 1

an
F{f}(ω

a
)

Convolution (f?g)(x) F{f}(−ω)F{godd}(ω)
+F{f}(ω)F{geven}(ω)

Vec. diff. (a · ∇)mf(x) (a · ω)mF{f}(ω) imn
(a · x)m f(x) (a · ∇ω)m F{f}(ω) imn

Moments of x xmf(x) ∇mω F{f}(ω) imn
f(x)xm F{f}((−1)mω) ∇mω imn

Vec. deriv. ∇mf(x) ωm F{f}(ω) imn
f(x)∇m F{f}((−1)mω) ωm imn

Plancherel
∫

Rn f1(x)f̃2(x) dnx 1
(2π)n

∫
Rn F{f1}(ω) ˜F{f2}(ω) dnω

sc. Parseval ‖f‖ 1
(2π)n/2

‖F{f}‖
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Definition and properties of GA FTs

Applications

Sampling

Representation of shape

Uncertainty

LSI filters (smoothing, edge detection)

Signal analysis

Image processing

Fast (multi)vector pattern matching

Visual flow analysis

(Multi)vector field analysis
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Definition and properties of GA FTs

Relation with complex FT, Discrete GA FT, Fast GA FT

Example of multivector signal decomposition

f = [f0 + f123i3] + [f1 + f23i3]e1 + [f2 + f31i3]e2 + [f3 + f12i3]e3 (24)

corresponds to 4 complex signals.

Implementation of GA FT by 4 complex FTs

FG3{f} = F [f0 + f123i3] +F [f1 + f23i3]e1 +F [f2 + f31i3]e2 +F [f3 + f12i3]e3

(25)

This form of the GA FT leads to the discrete GA FT using 4 discrete complex FTs.

4 fast FTs (FFT) can be used to implement fast GA FT.
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Definition and properties of GA FTs

Application: Fourier Descriptor Repr. of Shape (B. Rosenhahn et al [6])

Set of 3D sample points is projected along e1, e2, e3: f ln1,n2
, l = 1, 2, 3.

Use of rotors for 2D discrete rotor FT (−N1,2 ≤ n1,2, k1,2 ≤ N1,2, N ′ = 2N + 1)

Rk1,n1
1,l = exp(

2π

N ′1
k1n1eli3), Rk2,n2

2,l = . . . (26)

Sample points f ln1,n2
give surface phase vectors

plk1,k2 =
1

N ′1N
′
2

∑
n1,n2

f ln1,n2
R̃k1,n1

1,l R̃k2,n2
2,l el (27)

Surface estimation

F (Φ1,Φ2) =

3∑
l=1

f l(Φ1,Φ2)el =
3∑
l=1

∑
k1,k2

Rk1,Φ1
1,l Rk2,Φ2

2,l plk1,k2 R̃
k1,Φ1
1,l R̃k2,Φ2

2,l (28)
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Definition and properties of GA FTs

Application: Fourier Descriptor Repr. of Shape (B. Rosenhahn et al [6])
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Definition and properties of GA FTs

GA FT of Convolution

Convolution

The GA FT of the convolution of f(x) and g(x)

(f?g)(x) =

∫
R3
f(y)g(x− y) d3y, (29)

equals for n = 3(mod 4) the product of the GA FTs of f(x) and g(x):

F{f?g}(ω) = F{f}(ω)F{g}(ω). (30)

Convolution for n = 2(mod 4)

For n = 2(mod 4) we get due to non-commutativity of the pseudoscalar in ∈ Gn

inM 6= M in, for M ∈ Gn. (31)

that
F{f ? g}(ω) = F{f}(−ω)F{godd}(ω) + F{f}(ω)F{geven}(ω) (32)
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Definition and properties of GA FTs

GA FT of Correlation

Correlation

The GA FT of the correlation of f(x) and g(x)

(fFg)(x) =

∫
R3
f(y)g(x+ y) d3y, (33)

equals for n = 3(mod 4) the product of the GA FTs of f ′(x) = f(−x) and g(x):

F{fFg}(ω) = F{f ′}(ω)F{g}(ω). (34)

Correlation for n = 2(mod 4)

For n = 2(mod 4) we get due to non-commutativity of the pseudoscalar in ∈ Gn

inM 6= M in, for M ∈ Gn. (35)

that
F{fFg}(ω) = F{f ′}(−ω)F{godd}(ω) + F{f ′}(ω)F{geven}(ω) (36)
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Definition and properties of GA FTs

Application: Vector Pattern Analysis (J. Ebling, G. Scheuermann [7, 8])
3× 3× 3 rotation pattern and discrete GA FT
black: vector components, red: bivector components (shown by normal vectors)
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Definition and properties of GA FTs

Application: Vector Pattern Matching (J. Ebling, G. Scheuermann [7, 8])
Convolution of 3× 3× 3 = 33 (red), 53 (yellow), 83 (green) rotation patterns with gas
furnace chamber flow field.
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Definition and properties of GA FTs

Uncertainty Principle in Physics (Image: Wikipedia)

Optical Measurement Heisenberg Uncertainty Princ.

Standard deviations ∆x, ∆p of position x,
momentum p measurements

∆x∆p ≥
~
2
,

f . . . wave function.

f −→ ∆x,

F{f} −→ ∆p.
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Definition and properties of GA FTs

Application of GAFT: Uncertainty Principles

Directional Uncertainty Principle [Hitzer&Mawardi, Proc. ICCA7]

Multivect. funct. f ∈ L2(Rn,Gn), n = 2, 3 (mod 4)

GA FT F{f}(ω). arbitrary const. vectors a, b ∈ Rn

1

‖f‖2

∫
Rn

(a · x)2|f(x)|2 dnx
1

(2π)n‖f‖2

∫
Rn

(b · ω)2 |F{f}(ω)|2dnω ≥
(a · b)2

4

Equality (minimal bound) for optimal Gaussian multivector functions

f(x) = C0 e
−k x2

, (37)

C0 ∈ Gn arbitrary const. multivector, 0 < k ∈ R.

Uncertainty principle (direction independent)

For f ∈ L2(Rn,Gn), n = 2, 3 (mod 4) we obtain from the dir. UP that

1

‖f‖2

∫
Rn
x2 |f(x)|2 dnx

1

(2π)n‖f‖2

∫
Rn
ω2 |F{f}(ω)|2dnω ≥

n

4
. (38)
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Basic facts about Quaternions and definition of QFT

Quaternions

Gauss, Rodrigues and Hamilton’s 4D quaternion algebra H over R with 3
imaginary units:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1.
(39)

Quaternion
q = qr + qii+ qjj + qkk ∈ H, qr, qi, qj , qk ∈ R (40)

has quaternion conjugate (reversion in Cl+3,0)

q̃ = qr − qii− qjj − qkk, (41)

Leads to norm of q ∈ H

|q| =
√
qq̃ =

√
q2
r + q2

i + q2
j + q2

k, |pq| = |p||q|. (42)

Scalar part

Sc(q) = qr =
1

2
(q + q̃). (43)
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Basic facts about Quaternions and definition of QFT

± Split of quaternions [Hitzer, AACA 2007]

Convenient split of quaternions

q = q+ + q−, q± =
1

2
(q ± iqj). (44)

Explicitly in real components qr, qi, qj , qk ∈ R using (39):

q± = {qr ± qk + i(qi ∓ qj)}
1± k

2
=

1± k
2
{qr ± qk + j(qj ∓ qi)}. (45)

Consequence: modulus identity

|q|2 = |q−|2 + |q+|2. (46)

Property: Scalar part of mixed split product

Given two quaternions p, q and applying the ± split we get zero for the scalar part of
the mixed products

Sc(p+q−) = 0, Sc(p−q+) = 0. (47)
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Basic facts about Quaternions and definition of QFT

Definition of quaternion FT (QFT)

Fq{f}(ω) = f̂(ω) =

∫
R2
e−ix1ω1f(x) e−jx2ω2d2x. (48)

Linearity leads to

Fq{f}(ω) = Fq{f− + f+}(ω) = Fq{f−}(ω) + Fq{f+}(ω). (49)

Remark: Other variations exist (see later).

Simple complex forms for QFT of f±

The QFT of f± split parts of quaternion function f ∈ L2(R2,H) have simple complex
forms

f̂± =

∫
R2
f±e
−j(x2ω2∓x1ω1)d2x =

∫
R2
e−i(x1ω1∓x2ω2)f±d

2x . (50)

Free of coordinates:

f̂− =

∫
R2
f−e
−jx·ωd2x, f̂+ =

∫
R2
f+e
−jx·(Ue1ω)d2x, (51)

the reflection Ue1ω changes component ω1 → −ω1.
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Basic facts about Quaternions and definition of QFT

2D complex FT and QFT (Images: T. Bülow, thesis [4])
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Properties of QFT and applications

Applications of QFT, discrete and fast versions

partial differential systems

colour image processing

filtering

disparity estimation (two images differ by local translations)

texture segmentation

wide ranging higher dimensional generalizations

E. Hitzer Department of Applied Physics University of Fukui Japan

GA Fourier & Wavelet Transformations



Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion

Properties of QFT and applications

Discrete and fast QFT: Pei, Ding, Chang (2001) [13]

Discrete QFT

FDQFT {f}(ω) =

M−1∑
x1=0

N−1∑
x2=0

e−ix1ω1/Mf(x) e−jx2ω2/N . (52)

Fast QFT

The simple complex forms

f̂ = f̂− + f̂+, =

∫
R2
f−e
−jx·ωd2x,+

∫
R2
f+e
−jx·(Ue1ω)d2x, (53)

show that the QFT can be implemented with 2 complex M ×N 2D discrete FTs. This
requires

2MN log2MN (54)

real number multiplications.
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Properties of QFT and applications

Application to image processing

Application: Image transformations

The QFT of a quaternion function f ∈ L2(R2; H) with a GL(R2) transformation A
(stretches, reflections, rotations) of its vector argument x is

f̂(Ax)(u) = | detA−1| { f̂−(A−1u) + f̂+(Ue1A−1 Ue1u) } , (55)

where A−1 is the adjoint of the inverse of A.
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Properties of QFT and applications

Properties of QFT

Standard properties: Linearity, shift, modulation, dilation, Plancherel theorem and
Parseval theorem (signal energy)

‖f‖ =
1

2π
‖Fq{f}‖. (56)

Table: Special QFT properties. Quat. Funct. f ∈ L2(R2; H), with x, u ∈ R2, m, n ∈ N0.

Property Quat. Funct. QFT
Part. deriv. ∂m+n

∂xm∂yn
f(x) (iu)mf̂(u)(jv)n

Moments of x, y xmynf(x) im ∂m+n

∂um∂vn
f̂(u) jn

Powers∗ of i, j imf(x) jn imf̂(u) jn

∗ Easy with correct order!

± split and QFT commute:
Fq{f±} = Fq{f}±.
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Properties of QFT and applications

Properties of QFT

Integration of parts

With the vector differential a · ∇ = a1∂1 + a2∂2, with arbitrary constant a ∈ R2,
g, h ∈ L2(R2,H)∫
R2

g(x)[a ·∇h(x)]d2x =

[∫
R
g(x)h(x)dx

]a·x=∞

a·x=−∞
−
∫
R2

[a ·∇g(x)]h(x)d2x. (57)

Modulus identities

Due to |q|2 = |q−|2 + |q+|2 we get for f : R2 → H the following identities

|f(x)|2 = |f−(x)|2 + |f+(x)|2, (58)

|Fq{f}(ω)|2 = |Fq{f−}(ω)|2 + |Fq{f+}(ω)|2. (59)

E. Hitzer Department of Applied Physics University of Fukui Japan

GA Fourier & Wavelet Transformations



Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion

Properties of QFT and applications

Properties of QFT

QFT of vector differentials

Using the split f = f− + f+ we get the QFTs of the split parts. Let b ∈ R2 be an
arbitrary constant vector.

Fq{b · ∇f−}(ω) = b · ωFq{f−}(ω) j = i b · ωFq{f−}(ω), (60)

Fq{b · ∇f+}(ω) = (b · Ue1ω)Fq{f+}(ω) j = i (b · Ue2ω)Fq{f+}(ω), (61)

Fq{(Ue1b · ∇)f+}(ω) = b · ωFq{f+}(ω) j, (62)

Fq{(Ue2b · ∇)f+}(ω) = i b · ωFq{f+}(ω). (63)

E. Hitzer Department of Applied Physics University of Fukui Japan

GA Fourier & Wavelet Transformations



Geometric Calculus GA FTs Quaternion FT Spacetime FT GA Wavelets Conclusion

Properties of QFT and applications

Gaussian quaternion filter (GF)

h(x) = g(x) ei2πx1ω01ej2πx2ω02

2D Gaussian amplitude:

g(x) =
1

(2π)
3
2 σ1σ2

e
− 1

2

(
x21
σ2
1

+
x22
σ2
2

)
.
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Properties of QFT and applications

Application of QFT to texture segmentation (T. Bülow, thesis [4])
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Properties of QFT and applications

Application of QFT to disparity estimation (T. Bülow, thesis [4])

QFT method overcomes directional limitations of complex methods.
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Properties of QFT and applications

Uncertainty Principles for QFT (componentwise and directional)

Right sided quaternion Fourier transform (QFT) in H

Fr{f}(ω) =

∫
R2
f(x) e−ix1ω1 e−jx2ω2d2x (64)

Componentwise (k = 1, 2) uncertainty [Mawardi&Hitzer, 2008]

1

‖f‖2

∫
R2
x2
k|f(x)|2d2x

1

(2π)2‖f‖2

∫
R2
ω2
k|f(ω)|2d2ω ≥

1

4
. (65)

Equality holds if and only if f is a Gaussian quaternion function.

Directional QFT Uncertainty Principle [Hitzer, 2008]

For two arbitrary constant vectors a, b ∈ R2 (selecting two directions), and
f ∈ L2(R2,H), |x|1/2f ∈ L2(R2,H), b′ = −b1e1 + b2e2 we obtain∫

R2
(a · x)2|f(x)|2d2x

∫
R2

(b · ω)2|Fq{f}(ω)|2d2ω

≥
(2π)2

4

[
(a · b)2‖f−‖4 + (a · b′)2‖f+‖4

]
, (66)
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GA of spacetime and definition of SFT

Motion in time: Video sequences, flow fields, ...

GA of spacetime (STA)

{et, e1, e2, e3}, e2
1 = e2

2 = e2
3 = 1. (67)

e2
t = −1, i3 = e1e2e3, i23 = −1, ist = ete1e2e3, i2st = −1, (68)

with time vector et, 3D space volume i3, hyper volume of spacetime ist.

Isomorphism: Volume-time subalgebra to Quaternions

{1, et, i3, ist} ←→ {1, i, j,k} (69)

NB: Does not work for G2,1 or G4,1, but works for conformal model of spacetime G5,2.

Split→ Spacetime Split (e∗t = eti
−1
st = −etist = −eteti3 = i3)

f± =
1

2
(f ± etfe∗t ) (70)

Time direction et determines complimentary 3D space i3 as well!
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GA of spacetime and definition of SFT

QFT→ Spacetime Fourier transform (SFT): f → FSFT {f}

FSFT {f}(u) =
�
f(u) =

∫
R3,1

e−et tsf(x) e−i3~x·~ud4x . (71)

with

spacetime vectors x = tet + ~x ∈ R3,1, ~x = xe1 + ye2 + ze3 ∈ R3

spacetime volume d4x = dtdxdydz

spacetime frequency vectors u = set + ~u ∈ R3,1, ~u = ue1 + ve2 + we3 ∈ R3

maps 16D spacetime algebra functions f : R3,1 → G3,1 = Cl3,1

to 16D spacetime spectrum functions
�
f : R3,1 → Cl3,1

Part
∫
f(x) e−i3~x·~ud3~x ... GA FT of G3.

Reversion replaced by principal involution (reversion and et → −et).
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Applications of SFT

Application: Multivector Wave Packets in Space and Time

SFT = Sum of Right/Left Propagating Multivector Wave Packets

�
f =

�
f+ +

�
f− =

∫
R3,1

f+ e−i3( ~x·~u− ts )d4x+

∫
R3,1

f− e
−i3( ~x·~u+ ts )d4x. (72)

Directional 4D Spacetime Uncertainty for Multivector Wave Packets

For two arbitrary constant spacetime vectors a, b ∈ R3,1 (selecting two directions), and
f ∈ L2(R3,1,G3,1), |x|1/2f ∈ L2(R3,1,G3,1) we obtain∫

R3,1
(att− ~a · ~x)2|f(x)|2d4x

∫
R3,1

(btωt −~b · ~ω)2|F{f}(ω)|2d4ω

≥
(2π)4

4

[
(atbt − ~a ·~b)2‖f−‖4 + (atbt + ~a ·~b)2‖f+‖4

]
,
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Applications of SFT

Spacetime signal transformations

Application: Space & Time Signal Transformations

The SFT of a spacetime function f ∈ L2(R3,1; G3,1) with a GL(R3,1) transformation A
(stretches, reflections, rotations, acceleration, boost) of its spacetime vector argument
x is

FSFT {f(Ax)}(u) = | detA−1| {
�
f+(UetA−1 Uetu) +

�
f−(A−1u) } , (73)

where A−1 is the adjoint of the inverse of A.
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GA wavelet basics and GA wavelet transformation

GA Wavelet Basics [Mawardi&Hitzer, 2007]

Transformation group SIM(3)

We apply 3D (elements of G = SIM(3)) translations, scaling and rotations to a mother
wavelet ψ : R3 → G3 = Cl3,0

ψ(x) 7−→ ψa,θ,b(x) =
1

a3/2
ψ(r−1

θ
(
x− b
a

)) (74)

Wavelet admissibility (condition on ψ)

Cψ =

∫
R3

˜̂
ψ(ω)ψ̂(ω)

|ω|3
d3ω. (75)

is an invertible multivector constant and finite at a.e. ω ∈ R3, GA FT ψ̂ = F{ψ}.
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GA wavelet basics and GA wavelet transformation

GA Wavelet Transformation

Definition (GA wavelet transformation)

Tψ : L2(R3;Cl3,0) → L2(G;Cl3,0)

f → Tψf(a,θ, b) =

∫
R3
f(x) ˜ψa,θ,b(x) d3x, (76)

ψ ∈ L2(R3;Cl3,0) ... GA mother wavelet, f ... image, multivector field, data, etc.

Properties: Locality (different from global FTs), left linearity; translation, dilation,
rotation covariance.

Inversion of GA wavelet transform

Any f ∈ L2(R3;Cl3,0) can be decomposed as (C−1
ψ ... admissibility)

f(x) =

∫
G
Tψf(a, b,θ)ψa,θ,b C

−1
ψ dµd3b, (77)

with left Haar measure on G = SIM(3): dλ(a,θ, b) = dµ(a,θ)d3b
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GA wavelet basics and GA wavelet transformation

Applications (expected) of GA wavelets

multi-dimensional image/signal processing

JPEG

local spherical harmonics (lighting)

geological exploration

seismology

local multivector pattern matching

and the like
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GA wavelet basics and GA wavelet transformation

Notation: Inner products and norms

We define the inner product of f, g : G → Cl3,0 by

(f, g) =

∫
G
f(a,θ, b) ˜g(a,θ, b) dλ(a,θ, b), (78)

and the L2(G;Cl3,0)-norm

‖f‖2 = 〈(f, f)〉 =

∫
G
|f(a,θ, b)|2dλ. (79)
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GA wavelets and uncertainty limits, example of GA Gabor wavelets

GA Wavelet Uncertainty

Generalized GA wavelet uncertainty principle

Let ψ be a Clifford algebra wavelet that satisfies the admissibility condition. Then for
every f ∈ L2(R3;Cl3,0), the following inequality holds

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0)

Cψ ∗ (ω̃f̂ , ω̃f̂)L2(R3;Cl3,0)

≥
3(2π)3

4

[
Cψ ∗ (f, f)L2(R3;Cl3,0)

]2
. (80)
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GA wavelets and uncertainty limits, example of GA Gabor wavelets

Uncertainty principle for scalar admissibility constant

For scalar admissibility constant Cψ we get

Uncertainty principle for GA wavelet

Let ψ be a Clifford algebra wavelet with scalar admissibility constant. Then for every
f ∈ L2(R3;Cl3,0), the following inequality holds

‖bTψf(a,θ, b)‖2
L2(G;Cl3,0)

‖ωf̂‖2
L2(R3;Cl3,0)

≥ 3Cψ
(2π)3

4
‖f‖4

L2(R3;Cl3,0)
. (81)

NB1: This shows indeed, that the previous inequality (80) represents a multivector
generalization of the uncertainty principle of inequality (81) for Clifford wavelets with
scalar admissibility constant.
NB2: Compare with (direction independent) uncertainty principle for GA FT.
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GA wavelets and uncertainty limits, example of GA Gabor wavelets

GA Gabor Wavelets

Example: GA Gabor Wavelets

ψc(x) = g(x)

ei3ω0·x − e−
1
2 (σ2

1u
2
0+σ2

2u
2
0+σ2

3w
2
0)︸ ︷︷ ︸

constant



3D Gaussian: g(x) =
1

(2π)
3
2 σ1σ2σ3

e
− 1

2

(
x21
σ2
1

+
x22
σ2
2

+
x23
σ2
3

)
.

Uncertainty principle for GA Gabor wavelet

Let ψc be an admissible GA Gabor wavelet. Assume f ∈ L2(R3;Cl3,0), then the
following inequality holds

‖bTψcf(a,θ, b)‖2
L2(G;Cl3,0)

‖ωf̂‖2
L2(R3;Cl3,0)

≥ 3Cψc
(2π)3

4
‖f‖4. (82)
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Conclusion

Geometric calculus allows to construct a variety of GA Fourier transformations.

Especially quaternion Fourier transformations are well studied.

We studied the space time Fourier transformation giving rise to a multivector wave
packet decomposition.

Discrete and fast versions exist.

Uncertainty limits established (principle bounds to accuracy).

A diverse range of applications exists.

For the future the application of local GA wavelets may overcome the limitations of
global GA Fourier transformations.
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News about Clifford Geometric Algebra

GA-Net

Electronic newsletter:

http://sinai.mech.fukui-u.ac.jp/GA-Net/index.html

GA-Net Updates (blog)

Immediate access to latest GA news:

http://gaupdate.wordpress.com/

Soli Deo Gloria
J. S. Bach (Leipzig)
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