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Geometric Calculus
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Multivector Functions

Multivectors, blades, reverse, scalar product

@ Multivector M € Gp,q = Clp,q,p + g = n, has k-vector parts (0 < k < n) scalar,

vector, bi-vector, ..., pseudoscalar
M =Y Mpea = (M)+ (M) + (M)z+...+(M)n, (1)
A
blade index A € {0,1,2,3,12,23,31,123, ... ,12...n}, M4 € R.
@ Reverse of M € Gp 4
n k(k—1)
M= 3 (-1)" 7 (M) (2)

k=0
replaces complex conjugation/quaternion conjugation
@ The scalar product of two multivectors M, N € G, , is defined as

M« N = (MN) = (MN)g (3)

For M,N € Gy, = Gpoweget M« N =3 , MaN,.

E. Hitzer Department of Applied Physics University of Fukui Japan

GA Fourier & Wavelet Transform:



Geometric Calculus
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Multivector Functions

Modulus, blade subspace, pseudoscalar

@ The modulus |M]| of a multivector M € G, = G, is defined as
_ n
IM?=M+«M =" Mj. )
A=1
@ Forn = 2(mod 4), n = 3(mod 4) pseudoscalar i, = e1ez...ep
i2 =—1. (5)
@ A blade B describes a vector subspace
Ve = {x € R x A B =0}.

Its dual blade
B* = Bi;!
describes the complimentary vector subspace VBL.
@ pseudoscalar i, commutes for n = 3(mod 4)

inM = Min, VM € Gppo.
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Geometric Calculus
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Multivector Functions

Multivector functions

@ Multivector valued function f : RP? — Gy q = Clp 4, p+ q = n, has 2" blade

components
= fa(@ea. (6)
A=1

@ We define the inner product of R™ — Cl,, o functions f, g by

9= [ @ m)d"m—ZeAeB/ fa@)gp(@) &=, (7)

@ and the L2(R"; Cl,,,0)-norm

¥l (£, 1)) =/ |f () |?d" . ®)
R’H
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Geometric Calculus
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Multivector Functions

Vector Differential & Vector Derivative

@ \Vector differential of f defined (any const. a € RP>9)

a.vf(m):giﬂ%w’ (9)

€

NB: a - V scalar.
@ Vector derivative V can be expanded as

- d
V= O, Op=e, V=—1, 10
kglek k k= €k Dy, (10)

@ both coordinate independent!
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Geometric Calculus
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Multivector Functions

Geometric Calculus Examples

MV Functions

fi=x
fa=a?
f3 = |=|
fa=z (A, 0<k<n
fs =logr
r=x— xg
r=|r|
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Geometric Calculus
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Multivector Functions

Geometric Calculus Examples

MV Functions V-Differentials

fi=x a-Vfi=a
f2 = a-Vfs=2a =
f3 == a~Vf3=%
f4:m'<A>k » 0<k<n a~Vf4:a-(A)k
fs =logr a Vs = ar,ér
r=x—x
r=|r|
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Geometric Calculus
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Multivector Functions

Geometric Calculus Examples

MV Functions V-Differentials

fi=x a-Vfi=a Vfi=3, (n=3)
f2 = a-Vfs=2a = Vf2 =2a
f3 = || a Vfy =L Vs = /||
fa=z (A, 0<k<n a-Vii=a- (A Vs = k(A
f5 =logr a-Vfs = 0;27' Vs =r—1=r/r2
r=x— xo
r=|r|
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Geometric Calculus
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Multivector Functions

Geometric Calculus Examples

MV Functions V-Differentials
a-Vfi=a

hi=e V=3, (n=3)
f2 = a-Vfs=2a = Vf2 =2a
fz = || a Vfy =L Vs =z/|z|
fa=m (A, 0<k<n a-Vii=a-(A) Vfa=k(A)k
f5 =logr a-Vfs = 0;27' Vs =r1=r/r?
r=x— x
r=|r|
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2) Hitzer, Vector Differential Calculus, 2002.
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Geometric Calculus
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Multivector Functions

Rules for Vector Differential & Derivative

Derivative from differential (regard @ = const., a = variable)

Vf=Va(a-Vf) (11)
V(f9) = (VHg+Vig=(VHg+ D erf(Org) (12)
k=1

Vector differential / derivative of f(x) = g(A(x)), A\(z) ER:

a-Vf:{a-V)\(:z:)}%, Vf:(V)\)g—i. (13)

Example: For a = ey, (1 < k < n) er V== (0N
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Classical scalar complex Fourier Transformations

Definition (1D Cassical FT)

For an integrable function f € L2(R) N L!(R), the Fourier transform of f is the function
]'—{f} R—C= (GOJ

F{fHw) = /R f(z) e~ da, (1)

i imaginary unit: i2 = —1.

Inverse FT

- -1 w) "% dw
£@) = FUANN = = [ FIHw) e do (15)
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Examples of continuous and discrete 1D FT [Images: Wikipedia]

continuous

2sinan

discrete
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GA FTs
[ Jelele]

Definition and properties of GA FTs

Geometric Algebra Fourier Transformation (GA FT)

complex — geometric

@ complex unit : — Geometric roots of —1, e.g. pseudoscalars i, n = 2, 3(mod 4).
@ complex f — multivector function f € L?(R", G,,)

Definition (with pseudoscalars in dims. ,3, ,7, ,11,..)

The GA Fourier transform F{f}: R™ — G, = Cly,0, n = 2,3(mod 4) is given by
Fifiw) = [ f@e s (16)

for multivector functions f: R™ — G,. NB: Also possible for Clg,,, n = 1,2(mod 4).

Possible applications: dimension specific transformations for actual data and signals,
with desired subspace structure.

Inversion of these GA FTs

f(w) = FHF{f}(w)] = @ T (17)
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GA FTs
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Definition and properties of GA FTs

Overview of complex, Clifford, quaternion, spacetime FTs

@ Complex Fourier Transformation (FT)

Felf}w / fl@)e " da (18)

o Clifford Geometric Algebra (GA) FT in G3 (i — i3)

Fed$)@) = [ 1@ 57 a'i (19
0 GAFT NGy 0, G (i — in)
FedfHw) = [ f@)e @ da (20)
o QFTInH (i — 4,7)
Falfhw) = fw) = [ e (@) e i @)

@ SFT in spacetime algebra G3 1 (¢ — e¢, j — i3)

Fsralfiw =fw) = [ @@ i (22)
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GA FTs
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Definition and properties of GA FTs

Properties of the GA FT in G,,,n = 3 (mod 4)

General properties: Linearity, shift, modulation (w-shift), scaling, convolution,
Plancherel theorem and Parseval theorem

1l = I P (29)

(2m)

Table: Unique properties of GA FT Multiv. Funct. f € L2(R™,G,), a € R", m € N.

Property Multiv. Funct. GAFT

Vec. diff. (a- V)" f(x) iW (a-w)™F{fHw)
(a-2)™ f(x) ip' (@ V)™ F{fHw)

Moments of = &™ f () lm VI F{f}w)
f(z)z™ iy f{f}(w) Vm

Vec. deriv. V™ f () im mf{f}(

dual moments fl®)vm lm F{fHw)

NB: Standard complex FT only gives coordinate moments and partial derivative

properties.

E. Hitzer

Department of Applied Physics University of Fukui Japan

GA Fourier & Wavelet Transformations



GA FTs
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Definition and properties of GA FTs

Properties of the GA FT in G,,,n = 2 (mod 4)

Property Multiv. Funct. CFT
Left lin. af(x)+p g(x) aF{fHw)+ BF{g}(w)
x-Shift f(z—a) F{fHw)e inwa
w-Shift flzx) einWo® F{fHw — wo)
Scaling f(az) LF{fHE)
Convolution (f*g)(x) f{f}( w) F{goaa}(w)
+F{fHw) F{geven}(w)
Vec. diff. (a V)™ f(x) (a W)™ F{f}(w)im
(a-z)™ f(x) (@ Vo)™ F{fHw) i7
Moments of x  a™ f(x) Vi F{fHw) iy
J (@) z™ FLAH(=1)"w) VI it
Vec. deriv. V™ f () W FAfHw) i
VT D) Wi
Plancherel Jan f1() f2(x) d® 2,,)71 Jrr f{fl}(w)}—{h}(w) d"w
sc. Parseval £ 2ﬁ)n/2 IF{fHI
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GA FTs

000000000
Definition and properties of GA FTs

Applications

Sampling

Representation of shape

Uncertainty

LSl filters (smoothing, edge detection)
Signal analysis

Image processing

Fast (multi)vector pattern matching
Visual flow analysis

(Multi)vector field analysis
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GA FTs

®00000000
Definition and properties of GA FTs

Relation with complex FT, Discrete GA FT, Fast GA FT

@ Example of multivector signal decomposition

= 1[fo+ fizaia] + [f1 + faziz]er + [fo + fariz]ea + [f3 + fizizles  (24)

corresponds to 4 complex signals.
@ Implementation of GA FT by 4 complex FTs
Feu {f} = Flfo+ frz3iz] + Flf1 + fezis]ler + F|f2 + fariz]ea + F|fs + fizis]es
(29)
@ This form of the GA FT leads to the discrete GA FT using 4 discrete complex FTs.
@ 4 fast FTs (FFT) can be used to implement fast GA FT.
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GA FTs
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Definition and properties of GA FTs

Application: Fourier Descriptor Repr. of Shape (B. Rosenhahn et al [6])

@ Set of 3D sample points is projected along e1, e2, e3: f}, n,. 1 =1,2,3.
@ Use of rotors for 2D discrete rotor FT (—N1,2 < ni,2,k1,2 < N12, N’ =2N + 1)

k1, 27 . ko,
Ry "= exp(ﬁklrueﬂg), R "= (26)
1
@ Sample points f! ive surface phase vectors
ple p ni,ne 9 p
1 e~ —
[ — l k1,n1 pka,ng
Pry ke = N’ N/ Z fnl,anl,l R2,l € (27)
1772 pyn2

@ Surface estimation
3 3 e~ —~——
ky,®1 pko,® k1,21 pko,®
F(®1,®2) =Y f{(®1,P2)e; =) > RYYTIRIY2pl o RIVPIRITT? (28)
=1 =1 kq,ko
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GA FTs
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Definition and properties of GA FTs

Application: Fourier Descriptor Repr. of Shape (B. Rosenhahn et al [6])

€ —Signal 3 Descriptors

2—Parametric Surface P T
e, —Signal 2

2D-DFT T 2D-IDFT
0.4,

21 Descriptors

(76, 0)\
F(§.00= | £(0,9,) |
\rio, 9,/
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GA FTs
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Definition and properties of GA FTs

GA FT of Convolution

Convolution

The GA FT of the convolution of f(z) and g(x)

(Fro)(@) = | fw)g(e—y) d*y, (29)
equals for n = 3(mod 4) the product of the GA FTs of f(x) and g(x):
F{fxgHw) = F{f}Hw)F{g}(w). (30)

Convolution for n = 2(mod 4)

For n = 2(mod 4) we get due to non-commutativity of the pseudoscalar i,, € G,
in M # M iy, for M € Gy,. (31)

that
FLf * gH(w) = F{fH—w)F{goda}(w) + F{f}Hw)F{geven H(w) (32)
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GA FTs
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Definition and properties of GA FTs

GA FT of Correlation

Correlation

The GA FT of the correlation of f(x) and g(x)

(r*9)@) = [ fwal=+v)dy (39

equals for n = 3(mod 4) the product of the GA FTs of f/(x) = f(—) and g():
F{f4g}(w) = F{f Hw) F{g}(w). (34)

Correlation for n = 2(mod 4)

For n = 2(mod 4) we get due to non-commutativity of the pseudoscalar i,, € G,
in M # M iy, for M € Gy,. (35)

that
F{fhg}(w) = F{f H=w)F{goaa}(w) + F{f }Hw) F{geven }(w) (36)
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GA FTs
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Definition and properties of GA FTs

Application: Vector Pattern Analysis (J. Ebling, G. Scheuermann [7, 8])

3 x 3 x 3 rotation pattern and discrete GA FT
black: vector components, red: bivector components (shown by normal vectors)

< - A
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Geometric Calculus GA FTs

Quaternion FT Spacetime FT GA Wavelets Conclusion
000000 0000 [e]eYole} 0o 0000
000000800 0000000000 (e]e] 000

Definition and properties of GA FTs

Application: Vector Pattern Matching (J. Ebling, G. Scheuermann [7, 8])

Convolution of 3 x 3 x 3 = 33 (red), 53 (yellow), 83 (green) rotation patterns with gas
furnace chamber flow field.
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GA FTs

0O000000e0
Definition and properties of GA FTs

Uncertainty Principle in Physics (Image: Wikipedia)

Optical Measurement Heisenberg Uncertainty Princ.

Standard deviations Az, Ap of position z,
momentum p measurements

h

f ... wave function.

J — Az,

F{f} — Ap.

E. Hitzer Department of Applied Physics University of Fukui Japan

GA Fourier & Wavelet Transformations



GA FTs
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Definition and properties of GA FTs

Application of GAFT: Uncertainty Principles

Directional Uncertainty Principle [Hitzer&Mawardi, Proc. ICCA7]

@ Multivect. funct. f € L2(R™,G,,), n = 2,3 (mod 4)
@ GAFT F{f}(w). arbitrary const. vectors a, b € R™

1 (a-b)?
(a-2)°|f(x)]” d"= ; / (b w)? |F{fHw)Pd"w > ~——
||f||2/ @£ Jen 4
Equality (minimal bound) for optimal multivector functions
f(@) = Co e™* &, (37)
Cy € Gy, arbitrary const. multivector, 0 < k € R.
Uncertainty principle (direction independent)
For f € L2(R™,G,), n = 2,3 (mod 4) we obtain from the dir. UP that
= [ @ @P e s [ W AP T8
17112 Jrn @m)"I£1? Jrn T4
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Quaternion FT
[ JeYole}

Basic facts about Quaternions and definition of QFT

Quaternions

@ Gauss, Rodrigues and Hamilton’s 4D quaternion algebra H over R with 3
imaginary units:

ij=—ji=k, jk=—kj=14, ki=—ik=j, i° =32 =k? =ijk=—1.

(39)
@ Quaternion
q=¢qr +qi+q;j+ak €M, qr q,q,q €R (40)
@ has quaternion conjugate (reversion in Cl;o)
Gd=qr — qit— q;3 — qrk, (41)
@ Leads to normof ¢ € H
ol =vai=\/@2+@++a,  Ipal=Ipllal. (42)
@ Scalar part
1 -
Sc(q) = ar = 5(11 +q). (43)
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Quaternion FT
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Basic facts about Quaternions and definition of QFT

+ Split of quaternions [Hitzer, AACA 2007]

Convenient split of quaternions

1 ..
g=q++q-, qtr= i(qiqu)A (44)

Explicitly in real components g, g;, q;, g € R using (39):

. 1+k 1+k ,
e+ ={er e+ F o)} —— = —F Ao+ +3ly Faw)}h (45)
Consequence: modulus identity
lal* = lg—1? + lg+1*. (46)

Property: Scalar part of mixed split product

Given two quaternions p, ¢ and applying the =+ split we get zero for the scalar part of
the mixed products
Sc(p+q-) =0,  Sc(p-g+) =0. (47)
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Quaternion FT
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Basic facts about Quaternions and definition of QFT

Definition of quaternion FT (QFT)
FalfHw) = fw) = [ emioresf(@)ednaerdie, (48)
R2
Linearity leads to

Fo{fHw) = Fo{f- + f+}Hw) = Fo{f-}w) + Fo{f+ }(w). (49)

Remark: Other variations exist (see later).

Simple complex forms for QFT of f4

The QFT of f1 split parts of quaternion function f € L?(R?, H) have simple complex
forms

fr= /2 freTi@eaFor01) g2y = /2 ertEwiFeawa) ¢, g2g (50)
R R

Free of coordinates:

fo= , ffe_j :1:-(.‘)d2$7 f+ _ /R2 f+e_j :D-(Z/Iell.«s’)dZ;B7 (51)
R

the reflection Ue, w changes component w; — —ws.
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Quaternion FT
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Properties of QFT and applications

Applications of QFT, discrete and fast versions

@ partial differential systems

@ colour image processing

o filtering

@ disparity estimation (two images differ by local translations)
@ texture segmentation

@ wide ranging higher dimensional generalizations
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Quaternion FT

0@00000000

Properties of QFT and applications

Discrete and fast QFT: Pei, Ding, Chang (2001) [13]

Discrete QFT

M—-1 N—-1 . .
Fogrr{fiw) =Y Y e tmt/Mf(g)emdmawa/N, (52)
x1=02x2=0

Fast QFT

The simple complex forms

Fefotfe = [ fei®Odey [ peimtaWis, ()
R2 R2

show that the QFT can be implemented with 2 complex M x N 2D discrete FTs. This
requires
2MN logy MN (54)

real number multiplications.
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Quaternion FT

00@0000000

Properties of QFT and applications

Application to image processing

Application: Image transformations

The QFT of a quaternion function f € L?(R?; H) with a GL(R?) transformation A
(stretches, reflections, rotations) of its vector argument « is

FAZ)(w) = |det A { f- (A Tw) + fi(Ue, A TUe,w) } (55)

where A—1 is the adjoint of the inverse of A.
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Quaternion FT
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Properties of QFT and applications

Properties of QFT

Standard properties: Linearity, shift, modulation, dilation, Plancherel theorem and
Parseval theorem (signal energy)

171 = o IF LA (59)

Table: Special QFT properties. Quat. Funct. f € L?(R?; H), with 2, u € R?, m, n € Ny.

Property Quat. Funct. QFT

Part. deriv. L [(@) (i)™ f(w) (o)
Moments of z,y  z™y™ f(x) " Q‘Z:ngn f( Wi
Powers* of %, 5 " f () " " f(u) g7

* Easy with correct order!

=+ split and QFT commute:
Folf+} = Fo{f}+
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Quaternion FT
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Properties of QFT and applications

Properties of QFT

Integration of parts

With the vector differential a - V = a101 + a2, with arbitrary constant a € R?,
g,h € LQ(RQ,H)

/ g(x)[a-Vh(z)]dx = {/ g(m)h(m)dw} T —/ [a-Vg(x)]h(x)d2x. (57)
R2 R a-x=—00 R2

Modulus identities

Due to |q|? = |g—|? + |q+|? we get for f : R? — H the following identities
[f@) = |- (@) +|f+ (@)%, (58)
|Fo{FH @) = [Fo{f-} @) + |Fo { f+ Hw)*. (59)
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Quaternion FT
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Properties of QFT and applications

Properties of QFT

QFT of vector differentials

Using the split f = f— + f+ we get the QFTs of the split parts. Let b € R2 be an
arbitrary constant vector.

Fo{b- Vi-}Hw) = b wF{f-}w)j = ib: wFe{f-}w), (60)

Fo{b- Vi Hw) = (b-Ue,w) Fo{f+ Hw) J =i (b Ue,w) Fo{f+ Hw),  (61)
Fo{Ue,b- V) [+ Hw) = b wFo{f+}Hw)J, (62)
Fo{Ueyb- V) f1}Hw) = 2b- w Fo{f+}(w). (63)

E. Hitzer
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Quaternion FT
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Properties of QFT and applications

h(z) = g(z)e
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Quaternion FT

0000000800

Properties of QFT and applications

Application of QFT to texture segmentation (T. Bllow, thesis [4])

Add nolse GF = Gaussian
Filter

Convolution with CF complex
S

Demodulation

e -0 |7

Thresholding 1.0
segeulelmt non

. . possible

segmentation ok

Department of Applied Physics University of Fukui Japan
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Quaternion FT
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Properties of QFT and applications

Application of QFT to disparity estimation (T. Bllow, thesis [4])

QFT method overcomes dlrectlonal Ilmltatlons of complex methods.

The first two frames of the tree-sequence. il

[] 5 10 15 20 25 30 35

The integrated displacement field,

Department of Applied Physics University of Fukui Japan
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ric Calculus Quaternion FT e Conclusion

Properties of QFT and applicatio

Uncertainty Principles for QFT (componentwise and directional)

Right sided quaternion Fourier transform (QFT) in H

FrAf}w) = [ | f@) ez einendie (64)
R2
Componentwise (k = 1, 2) uncertainty [Mawardi&Hitzer, 2008]
1 / 2 2 52 1 / 2 2 52 1
— zi|f(e)|*d“e ———— wi|flw)|*dw > =. (65)
T2 S " N G Joa R @ w2 g

Equality holds if and only if f is a Gaussian quaternion function.

Directional QFT Uncertainty Principle [Hitzer, 2008]

For two arbitrary constant vectors a, b € R? (selecting two directions), and
f € L?(R?,H), |=|'/2f € L?>(R?,H), b’ = —b1e; + bzea we obtain

[ (@ 2Pir@Pes [ (6 wiF i)
JR2 R2

_ (@m)?

> == (@02l + (- 8D 1401, (66)
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Spacetime FT
e0

GA of spacetime and definition of SFT

Motion in time: Video sequences, flow fields, ...

GA of spacetime (STA)

{et,e1,e2,e3}, e
221, iy= B= 1, im= 2, =1, (68)
e; =—1, iz=ejeze3, i3=—1, iyt =etereses, i5 =—1,

with time vector e, 3D space volume i3, hyper volume of spacetime ;.

Isomorphism: Volume-time subalgebra to Quaternions
{11et7i37i8t} S {17i7j7k} (69)

NB: Does not work for G2,1 or Gg4,1, but works for conformal model of spacetime Gs 2.

Split — Spacetime Split (e} = esiy,' = —esist = —eteriz = i3)

fe = 5(f +eufed) (70)

Time direction e; determines complimentary 3D space i3 as well!
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GA of spacetime and definition of SFT

QFT — Spacetime Fourier transform (SFT): f — Fspr{f}

Fspr{fHu) = f(u) = / em s f(m) e BT Uty (71)

R3,1
with
@ spacetime vectors « = te; + & € R3!, ¥ = ze; + yes + ze3 € R3
spacetime volume d*x = dtdxdydz
spacetime frequency vectors u = se; + i € R31, @ = ue; + ves + wes € R3
maps 16D spacetime algebra functions f : R3! — Gz 1 = Cl3 1

<
to 16D spacetime spectrum functions f : R31 — Cl3;
@ Part [ f(x)e % Ud3% ... GAFT of Gs.
@ Reversion replaced by principal involution (reversion and e; — —e).
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Applications of SFT

Application: Multivector Wave Packets in Space and Time

SFT = Sum of Propagating

f= }ﬁ +f_= / fre B (@a—ts)ghy foe(Fatts)gly  (72)
R3,1

RrR3,1

Directional 4D Spacetime Uncertainty for Multivector Wave Packets

For two arbitrary constant spacetime vectors a, b € R3:! (selecting two directions), and
f € L2(R31,G3,1), || /2f € L2(R31,G3,1) we obtain

[, (et —a-@Plp@Pde [ | G —b-9PIF(H@)Pd
R3,1 R3:1

, et

(acbe = - B2/ 1" + (acbe + @ B2)+11*]
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Applications of SFT

Spacetime signal transformations

Application: Space & Time Signal Transformations

The SFT of a spacetime function f € L?(R31; G3 1) with a GL(R3'!) transformation A
(stretches, reflections, rotations, acceleration, boost) of its spacetime vector argument
xis

Fspr{f(Ax)}(w) = |det A=Y { f, (Ue, AT Ue,w) + f_(ATw)},  (73)

where A—1 is the adjoint of the inverse of A.
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GA wavelet basics and GA wavelet transformation

GA Wavelet Basics [Mawardi&Hitzer, 2007]

Transformation group SIM (3)

We apply 3D (elements of G = SIM (3)) translations, scaling and rotations to a mother
wavelet ¢ : R3 — G3 = Cl3 o

U(@) — ¥,06(®) = (g (E—2)) (74)

Wavelet admissibility (condition on )

[ Se)w) 75)

R3 |w|?

is an invertible multivector constant and finite at a.e. w € R3, GA FT ) = F{v}.
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GA wavelet basics and GA wavelet transformation

GA Wavelet Transformation

Definition (GA wavelet transformation)

Ty : L2(R3%Cls o) — L2(G;Clay)
;o= Tur@eb)= [ i@, gy de (76

W € L2(R3; Cl3,0) ... GA mother wavelet, f ... image, multivector field, data, etc.

Properties: Locality (different from global FTs), left linearity; translation, dilation,
rotation covariance.

Inversion of GA wavelet transform

Any f € L?(R3;Cl3,0) can be decomposed as ((11;1 ... admissibility)

ﬂ@:AﬂMWhQWQMEWW%v )

with left Haar measure on G = SIM(3):  d\(a, 6,b) = du(a, 8)d3b
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GA wavelet basics and GA wavelet transformation

Applications (expected) of GA wavelets

E. Hitzer Department of Applied Physics University of Fukui Japan

multi-dimensional image/signal processing
JPEG

local spherical harmonics (lighting)
geological exploration

seismology

local multivector pattern matching

and the like
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GA wavelet basics and GA wavelet transformation

Notation: Inner products and norms

We define the inner product of f,g: G — Cl3 by
(f,9) = /g f(a,6,b)g(a,8,b) d\(a,0,b), (78)

and the L2(G; Cl3,0)-norm

17112 = / 1 (a,6,b)d. (79)
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GA wavelets and uncertainty limits, example of GA Gabor wavelets

GA Wavelet Uncertainty

Generalized GA wavelet uncertainty principle

Let ¢ be a Clifford algebra wavelet that satisfies the admissibility condition. Then for
every f € L2(R3; Cls,0), the following inequality holds

1Ty £(a,0,8)172(g.015 o) Co * (@Frwh)L2(m3;c150)

3
> 280 [0y« (1, Dizgescts ] (80)
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GA wavelets and uncertainty limits, example of GA Gabor wavelets

Uncertainty principle for scalar admissibility constant

For scalar admissibility constant C';, we get

Uncertainty principle for GA wavelet

Let ¢ be a Clifford algebra wavelet with scalar admissibility constant. Then for every
f € L2(R3; Cl3 0), the following inequality holds

(2 )

(81)

||bT7,Z)f(aa 97 b)” 2(g Cl3 0) ||wf||L2(R3 Clg 0) &

NB1: This shows indeed, that the previous inequality (80) represents a multivector
generalization of the uncertainty principle of inequality (81) for Clifford wavelets with
scalar admissibility constant.

NB2: Compare with (direction independent) uncertainty principle for GA FT.
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GA wavelets and uncertainty limits, example of GA Gabor wavelets

GA Gabor Wavelets

Example: GA Gabor Wavelets

wc(m) — g(m) ei3Wo-T _ e—%(o‘fug-&-o'%ug-‘—o'%wg)
constant
2 2 2
. 1 *l(%+%+zﬁ3§)
3D Gaussian: g(x) = e 2\ei o5 3],

(2m) 3 010203

Uncertainty principle for GA Gabor wavelet

Let 1»° be an admissible GA Gabor wavelet. Assume f € L2(R3;Cl3,0), then the
following inequality holds

> 30y C 5 (82)

16T e (e, 0,b) )

2 £112
IZ2(gic15,0) 19511 22R3,015,0)
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Conclusion

Conclusion

@ Geometric calculus allows to construct a variety of GA Fourier transformations.
Especially quaternion Fourier transformations are well studied.

We studied the space time Fourier transformation giving rise to a multivector wave
packet decomposition.

Discrete and fast versions exist.
Uncertainty limits established (principle bounds to accuracy).
A diverse range of applications exists.

For the future the application of local GA wavelets may overcome the limitations of
global GA Fourier transformations.
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News about Clifford Geometric Algebra

Electronic newsletter:

http://sinai.mech.fukui-u.ac.jp/GA-Net/index.html

GA-Net Updates (blog)

Immediate access to latest GA news:

http://gaupdate.wordpress.com/
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