New Tools ror Computational Geometry
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Motivation: Euclidean geometry supplies essential conceptual
underpinnings for physics, engineering and design

Objective: Formulate Euclidean geometry to

e facilitate geometric modeling and analysis
e optimize computational efficiency

e specifically for rigid body mechanics
A fundamental problem in the Design of Mathematics

“The whole is simpler than its parts!” — J. Willard Gibbs

AGACSE. Leipzig, August 2008



Universal Geometric Algebra

Real Vector Space: V' = {a,b,c,...} dimension r+s = n

Geometric product: a* =zxlal’ nondegenerate signature {r, s}

generates Real GA: G™=G(V"™) = {A, G,M.. } = {Multivectors}

Inner product: a-b= %(ab +ba)  Outer product: aAb= %(ab —ba)

= lab=a-b+anb a/\AkE%(aAk+(—l)kAka)
k-blade: a, na, A...Ana, = <a1a2 ...a, >k =A, —  k-vector
k
a-(al/\a2/\.../\ak):Z(—l)j“a-aj(al/\.../\sz/\.../\ak)
j=1

Graded algebra: G = in” = {A = znxA)k}

k=0 k=0

Reverse: (a, Ady A...AG) =a AccnGy AG, A= i<[l>k = i‘(—l)k(k‘”/2 (A),
k=0 k=0

Unit pseudoscalar:  I=(I)  II=(-1 anl=0

Dual: A" = Al Thm: a-A =a-(AD=(a A A)I



Group Theory with Geometric Algebra

versor (of order k): |G=n,...n,n,, G '=n"'n,"..n," n>#0

i

Pin and Spin groups:
Pin(r, s)={G :GG™" =1} > Spin(r, s) ={even G}
Orthogonal group: O(r, s) = {(_?(a) =eGaG™' = Ga'} parity: £=x1
: : o = scale factor
Advantage over matrix representations:

e Coordinate-free
* Simple composition laws:  G,G, =G, G,G, =G,
e Reducible to multiplication and reflection by vectors:
e Reflection in a hyperplane in V ; with normal n,: G,(a)= —n.an,”
= Cartan-Dieudonné Thm (Lipschitz, 1880): G =G, ---G,G,
= Nearly all groups [Doran et. al. (1993)“Lie Groups as Spin Groups”]
For example:  All the classical groups!
In particular:  Conformal group: C(r, s) = O(r+1, s+1)
Hence define:  Conformal GA: G



Euclidean GA

Homogeneous (conformal) model of Euclidean 3-space in G*' = G(V*")

e [dentify Euclidean points with vectors in the null cone:

N*! = {x eV x*= O} (4 degrees of freedom)
* Choose a point at infinity ¢ = x_, and normalize all points

to the hyperplane {x ce-x=—1, e’ = O} , SO

E=N'={xeV*": x’=0, x-e=-1} (3 degrees of freedom)

Euclidean metric defined as follows:

Chord (displacement vector) between two points: d,, = x, —x, (# a point)
Euclidean distance: d,,> =(x, —x,)’ =-2x, - x
(X, —x,) =X =2%, X, + X,

The invariance group of this metric is the Euclidean group E(3) ={G},
a subgroup of the conformal group C(3, 0) =~ O4, 1)
defined by the constraint: G(e)=GeG ' = e

2




Geometric Objects in 3D Euclidean Geometry:

Circle C determined by three points: C =x, A X, A X,

Line L is a circle through infinity: L=x nrx,re

Sphere § determined by four points: S=x, Ax, Ax; Ax, =CAx,
Plane P determined by three points: P =x, Ax, Ax;Ae=x, AL

¢ Note the distinction between a geometric object (defined algebraically)
and the set of points it determines (as in Euclid):

Linez{xlx/\Lzo} Plane = {xlx/\P:O}
e Intersection: Point x lies on object O if and only if xAO =0
or: xvO=x-T'0)=T'"xA0)=0
Dual forms for geometric objects and intersection with points:
P=1n: xXAP=xAr(In)=(x-nI=0 = |x-n=0
L=1B: xAL=xA(IB)=(x-B)I=0 = x-B=0
Every line is the intersection of two planes:
PVvP =P -I'P)=P n,=(n)n,=In, An,)=1B

(Similar expressions for intersections of lines, planes, circles & spheres)




Invariant Euclidean Geometry

Algebraic axioms < Synthetic descriptions < Geometric figures

Basic geometric objects (vectors):

Points: {x| ¥’ =0, x-e=-1} ¢’=0, e=x_ nD / 3D /2D
Planes: { pl p°>0, p-e= O} hyperplanes / planes /lines
Spheres: { sl s*=p>>0, s-e= _1} hyperspheres/spheres/circles

radius p, center cz—%sesz—%(Z&s—es}sz s+%p2

Two points determine a plane: | p,; =X, —X;| (L bisector)

. 1 X| @b >e X,
Point x on plane:| x-p,, =0 | = x-x2=x-x1=§|x2—xll Xe
- - : _ _ | )
Two points determine a sphere: | s,, =x, +x, =¢,, + FPe
Point x on sphere: x-s,,=0 = |p, -¢c,, =0 X Xy
2 _ _ 2 _

= lx—cy I'==2x-¢c;;=p,°  lx—cy=p, X 521

. . 2 2
Euclidean metric:  lx,—x; I"'=p,” 20 Do

Xl *“\:: —————————— >e x2

Triangle: P+ Py + P13 =0

. 2 2 2 T
Cosine law: P, + Py +2P, - Py = Pi3 % X,



Projective Geometry

Projective transformations = nonsingular linear transformations:
f:x > x'=1(x) with f(e)=o0e

Problem: In general, this does not preserve the null property of points:
£ 2 =0 b [£F = ) £ =x-TE (0 £0

Solution (A. Lasenby): Extend the notion of points to include planes
as points at oo, thus composing a plane (of directions) at oo:

Interior points: {x | x*=0, x-e= 0}

Boundary points: {nl n=1 n-e= O} = {unit chords}
Symmetric transformations: h=G'hG G=RT, f =Gh

Fixed point: h(e,)=¢,
h(x)=x+A(e, - x)e,

x”=h(x)
]

h(e,) = (1+A)e,

Affine transformations: =T h

—da




Inversive Geometry

* Relation of point to sphere: s=¢, — % p’e

s*=p’ se=s-e,=—1 2x-¢,=(x—¢,)’
—25-x=—2(eo—%pze)-xz—ZeO-x—p2=|x—eoI2—p2
s-x >0 1ff x inside sphere
= s-x=0 iff x on sphere
s-x <0 1iff x outside sphere
e Inversion in a sphere: | s(x)=—sxs =ox’ = o’x?=x"=0
ox' =—(—xs+2s-x)s" =x— 25-2x S
P, Y
6_1_25-)6__260-)6_(36—60) X' =p’x!
_ 2 2 2
P P P
2 2 4
, xX—e xX—e , (x—e,)
x'—e, = 0 _{ O)e = (X-e) = = - 2
o 2 o (x—e,)
* Line through sphere center:  X=xAeg, Ae=xAsne
= x =-2x¢=(x-¢) = x’zpzx_lzp—zx
X

e Inversion of infinity: p’s(e)=—ses = —¢,ee, = 2e,



Rigid Body Representation

Body frame: ¢, = x, —x = (chords from a fixed body point x)

Orthonormalize: e;-¢, =0,
Embed the frame in a single algebraic object:
Flag (Selig) or Soma (Engels)
= point + line + plane (with common point)
F=x+L+P=x+10
L=xAx,Ae=xA(x,—x)rne=xre Ane=In,n,
P=xAx Axy,ne=xAe ANe,ne=e, ANL=1In,

Q=n,+n,n, =+n,)n,

n;-n, =5jk

x-0=0 & xA(L+P)=xA(10)=0

Q°=0 Absolute conic!

(A. Lasenby) y

Generalize by replacing planes with spheres!




Rigid displacement of a Body = Congruence

F=x+L+P — F’=D(F)=D(x)+ D(L)+ D(P)
F=x+10 —  F'=D(F)=D(x)+1D(Q)
Decomposition into translation & rotation:. D=7 R

— ad—X

Rotation defined by: R (x)=x Translation given by:
T :x = x'=Dx)=T (x)=TxT,

a

Tazeéeazl'l'%ea with  2a-e=ae+ea=0

TaxTa_1 = (1+%ea)x(l+%ae) = x+x-(a/\e)—%aea

xX'—x=a +%(x+ a)’ e = n |= bisecting plane!

Q —> Q'=DQ)=R.(Q)= RXQRX_1 One eqn. for body

n, =R.(n,)=RnR" Three eqns.
e, =R (¢,)=Re,R" Canfind R from ¢, &e, (NFCM)
F'=DF)=T ,R(F)=T (x)+IR (Q)=x"+1Q’



Relation of the conformal model to alternative models of Euclidean Geometry

Vector space model of Euclidean 3-space: E° =V’ = {x}

G =G(V’)={a+a+ib+ifi} i = I = pseudoscalar
Advantages:

e Smoothly integrated with vector algebra:
ab=a-b+aanb=a-b+iaxb

e Quaternion (spinor) forms for rotors and rotations:
Rotation: R(x)= RxR™' (no matrices!)
Rotor: R=a+ip=e" (See NFCM)
Composition: R,R, =R,
Matrix elements: o, =€, -0, = <R6k R_IGJ. >

e ={complex quaternions}

Drawback: The model is inhomogeneous! (x = 0 distinguished)

= Inhomogeneous rigid displacements: G(x)=7,R(X)=R(xX)+a



Covariant Euclidean Geometry: relates conformal and vector space models
Conformal Split: G*' =G’ ®G"!
determined by choosing one point ¢, as origin,

so each point lies on the bundle of all lines through the origin
G’ =G,’ =G(V,’) is the geometric algebra of that bundle;
each point is then designated by a vector x in V,” = {x}

. . 3 . . 4
The generating basis vectors for G~ are trivectors in G ° G,

{Gk =€, AeAE :ek(e/\eo):ekE:Eek}

]
[=0,0,0,=(afl)(el)(efl)=eaeaek /——"U:
%)

Invariant pseudoscalar: I1=1i I =-1 o,

Warning: Outer products in G differ from outer products in G*'!
Additive Split: G*' =G(V’@V")=G,’®G"

Vector basis generating G, : {61,62,63}

This is not algebraically associated with lines or a point origin,
and its pseudoscalar I, = e e,e, 1s not invariant.



Conformal splits for points and simplexes

X
e Point: x=(X+%X2€+€O)E:E(X—%Xze—eo):XE+%X2€—€0 X
& X=xAe, Ae=xAE E=e¢,ne

eline: L=xAane=xrae+(a—x)E=(de+ E)n

tangent: n=-a—x Pliicker
moment: XAQA=XA (a — X) = dn coordinates

directance: d=(xAa)n"' =(xXAn)n"' =x—(x-n"')n

(L = line vector = spear)

e Plane: P=xAranbre=xnrnanbe+(a—x)A(b—X)E
tangent: (a—x)A(b—Xx)=xAa+aAb+bAax=in

moment: xAaAb=xA[(a—x)A(b—X)] 0
=XA(in)=i(x-n)

dual form: P=i(x-ne+nk)=in

n=ux,—x =(X, —Xl)E+%(X22 -x,’)e

:(Xz_xl)E+%(X2+X1)'(X2 —X,)e=nE+c-ne



Translations and rotations from reflections

* Reflection in a (hyper)plane: | n(x)=—nxn=x’ X
=x—2x-nn n / .
e.n:O, n2:1, E:eo/\e
c-n=0 = |Splitt n=nE+c-ne ¢ <’
= x-n=n-(xX-c¢) x'=x—-2(x—c¢)-nn 0

* Translation from parallel planes n and m:
G=mn=MnE +0)nE + oe)
=1+Jae=T, a=2ns
* Rotation by planes n and m intersecting at a point c:
G=mn=mE+m-ce)(nE+n-ce)
=mn+emAn)-c=R+e(Rxec)=T.'RT.

R=mn R
m\/n = (Rotor as a directed arc)




2D Minkowski space V"' and its algebra G"' = G(V"")

Null vector basis: {e, e,| e2=¢,°=0, e-e,=-1 }

Orthonormal basis: {ei = %(?Le TA'e), A#0, e, = il}

G"' basis: {1, ¢, ¢,, E} E=e,ne=ee, E =
e,e=E—1 Ee=—-eE=e¢, eE=—FEe,=¢,

Matrix representation: | G"' = M, (R)|= {real 2x2 matrices}

. 10 1 10 1 1 O 1 O
Basis: €+—[1 0} e—[_l ()} E:[O —1} 1:[0 1}
A B
C D

M :%[A(1+E)+B(e+ +e)+Cle, —e )+ D(1-E)|=[M] = [

G*' =G’ ®G" =M, (G?)| ={c-quaternion-valued 2X2 matrices}

M, (G’) Advantages: * Relation to literature on robotics and screws
Disadvantages: ¢ Implicit assumption of conformal split (origin choice)
* covariance Versus invariance
e Suppresses geometric meaning of matrix elements
e Redundancy in matrix elements




SE(3) = Special Euclidean group
= {rigid displacements D} = {twistors D}

= subgroup of the conformal group C(3,0) ~ O(4, 1)
defined by:

e Die)=DeD'=¢ < De=eD

1
. =S
Screw form: Twistor D = e>

Py D_lzls:e_%s = S:_§:<S>

,  (even parity)

= S=im+en Se=eS & S-e=0
S is called a rwist (or screw if n||m)

The screw axis (direction m) is called the axode

se(3) = Lie algebra of SE(3)
= an algebra of bivectors: S, =im, +en,
closed under §, XS, = %(SlS2 -5,5,)

=i(m, Xm,)+e(n, Xm,—n, Xm,)




Screw theory follows automatically!

Screws: S, =im, +en,

Product:  §,S,=5,-S5,+S, XS, +5, AS,

Transform: S; =U(S,)=US,.U"' = Ad,, S, {U}=SE@3)

S/, =U(S,S,) Product preserving
=U(S, S, +8, XS, +8, AS)U"
Invariants: U(e)=e¢ U(i)=1i
SIAS, =US, AS,)=8 AS,=ie(m,-n,+m, -n,)
S;-87=8-8,=-m-m,  (Killing Form)
Covariant: S/ XS, =U(S, XS, U™

Coscrew (Ball’s reciprocal screw):  S," =(S,ie, ), = %(Skie0 +ie,S,)

=ine-e,—e,m =—in, —e,m,

Invariant: S5-8,=8-8, = <S1 N Szieo> =m,-n,+n -m,
Pitch: . 158 Chem - In| _ linear d1s.p1acement (nAm=0)
288 Im| angular displacement



Rigid Displacement: Reference

x, = De D™ D'=D Pose
Translation defined by:
x=De, D" =Te, T~ =¢,+n
—q14+ 1
=1+ ~ e
Defines conformal split: D=RT  x=RxR"
Rigid Body Kinematics: x,(¢)= De D™ D= D(t)
N | ~ _ S
D=7VD V=-V=(V), D' =-5D"V
x, =V-x, e=FEe
o 1. e 1. 1. 1. 1. .
R= 210)R T—zne—zxe—zxeT—zxeT X=xAE
D=RT + RT = (—i® + Rex R)RT = %VD

= |V=x=i®m+ev v=RxR™' (Note: v=X for R(t)=1)




Rigid Body Dynamics

Comomentum: P =MV =il®+ mve, =il — pe,
(a coscrew)
Coforce (wrench): W =il'—{e, p=f»f
Equation of motion: P =W I=I(W+oxI(®w)=T
Kinetic energy: KE%V-P:%V°MV:%(O)'1+V'I))

Power: K=V-W=w-T+v-f
Change of base point: ¢, > ¢/ =¢,—r, =T, eT,
Chasles’ Thm: V +— V' =V+ewXxr
Poinsot’s Thm: W +» W’ =W —irxf=i(C+rxf)—e¢f
P > P =P-irxp=i(l+rxp)—pe,

These theorems are related by the kinetic energy invariant:
2K=V'"-P'=(V4+emwmxr)-(P—irxp)
=0-lI-rxp)+(v+oxr)-p=w-l1+v-p=V-P

Proof of Chasles: p’ = DT, =T'D T’ = RToR_l — 1+ %re

D':T"D+T'D=%erT’D+%VDTO :%(el"+V)D’ F=@Xr




Matrix form for Screw Mechanics

Screw transform: Base point shift: r=X, —X,

Vol _|l x| V|_| %»—IX® V,=V,—erxm
® 0 1 ||o ® <
=e(V, +OXr)—io

VQ =XV,
Coscrew transform:

[f}:[l 0}[f}:[ f } - W, =W, —irxf
I, -rx 1| I, I +rxf =i(T,+rxf)—e,f

A A A

W, =X Wp

Recall the drawbacks of the matrix representation.



Linked Rigid Bodies

Reference Pose
X, X,=¢,ta+b+c

X, = e, +a+b+RlcR1_1
=e,ta+b+c,

x,=e,+a+R,(b+RcR ™R,
=¢,ta+b,+c,

Revolute joints

{R1 , R, R3} General Pose
) x=e,+R,Ja+R,(b+RcR R, "IR,
=e,+a,+b,, +csy,
Kinematics x=xAE=RJa+R,(b+RcR ™R, 'IR,
, =a.+b, +c¢
Rk _ —%l‘O)kRk 3 32 321

R, =—Liw..R .
32 2 P33 X=MW; Xa,+,, Xb32 T 03, XCyy,

®, =0, +R,0,R;
®,, =0, +R0,R;' +R.R,®,R,'R]'



