New Tools for Computational Geometry
 - the Rejuvenation of Screw Theory •

David Hestenes
Arizona State University

Motivation: Euclidean geometry supplies essential conceptual underpinnings for physics, engineering and design

Objective: Formulate Euclidean geometry to

- facilitate geometric modeling and analysis
- optimize computational efficiency
- specifically for rigid body mechanics

A fundamental problem in the Design of Mathematics
"The whole is simpler than its parts!" - J. Willard Gibbs

Universal Geometric Algebra

Real Vector Space: $\mathbb{V}^{r, s}=\{a, b, c, \ldots\} \quad$ dimension $r+s=n$
Geometric product: $a^{2}= \pm|a|^{2} \quad$ nondegenerate signature $\{r, s\}$
generates Real GA: $\mathbb{G}^{r, s}=\mathbb{G}\left(\mathbb{V}^{r, s}\right)=\{A, G, M \ldots\}=\{$ Multivectors $\}$
Inner product: $a \cdot b \equiv \frac{1}{2}(a b+b a) \quad$ Outer product: $a \wedge b \equiv \frac{1}{2}(a b-b a)$

$$
\Rightarrow \quad a b=a \cdot b+a \wedge b \quad a \wedge A_{k} \equiv \frac{1}{2}\left(a A_{k}+(-1)^{k} A_{k} a\right)
$$

$\underline{k \text {-blade: }} a_{1} \wedge a_{2} \wedge \ldots \wedge a_{k}=\left\langle a_{1} a_{2} \ldots a_{k}\right\rangle_{k} \equiv A_{k} \quad \Rightarrow \quad \underline{k}$-vector

$$
a \cdot\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{k}\right)=\sum_{j=1}^{k}(-1)^{j+1} a \cdot a_{j}\left(a_{1} \wedge \ldots \wedge \breve{a}_{j} \wedge \ldots \wedge a_{k}\right)
$$

Graded algebra: $\mathbb{G}^{r, s}=\sum_{k=0}^{n} \mathbb{G}_{k}^{r, s}=\left\{A=\sum_{k=0}^{n}\langle A\rangle_{k}\right\}$
Reverse: $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{k}\right) \sim a_{k} \wedge \ldots \wedge a_{2} \wedge a_{1} \quad \tilde{A}=\sum_{k=0}^{n}\langle\tilde{A}\rangle_{k}=\sum_{k=0}^{n}(-1)^{k(k-1) / 2}\langle A\rangle_{k}$
Unit pseudoscalar: $\quad \mathrm{I}=\langle\mathrm{I}\rangle_{n} \quad \tilde{\mathrm{I}}=(-1)^{s} \quad a \wedge \mathrm{I}=0$
Dual: $A^{*} \equiv A \mathrm{I}$
Thm: $\quad a \cdot A^{*}=a \cdot(A \mathrm{I})=(a \wedge A) \mathrm{I}$

Group Theory with Geometric Algebra

versor (of order k): $G=n_{k} \ldots n_{2} n_{1} \quad G^{-1}=n_{1}^{-1} n_{2}{ }^{-1} \ldots n_{k}^{-1} \quad n_{i}^{2} \neq 0$
Pin and Spin groups:
$\operatorname{Pin}(r, s)=\left\{G: G G^{-1}=1\right\} \supset \operatorname{Spin}(r, s)=\{\operatorname{even} G\}$
Orthogonal group: $\mathrm{O}(r, s)=\left\{\underline{G}(a)=\varepsilon G a G^{-1}=\sigma a^{\prime}\right\}$
parity: $\varepsilon= \pm 1$
Advantage over matrix representations:

- Coordinate-free
- Simple composition laws: $\quad G_{2} G_{1}=G_{3} \quad \underline{G}_{2} \underline{G}_{1}=\underline{G}_{3}$
- Reducible to multiplication and reflection by vectors:
- Reflection in a hyperplane in $\mathbb{V}_{\mathrm{r}, \mathrm{s}}$ with normal $n_{i}: \underline{G}_{i}(a)=-n_{i} a n_{i}^{-1}$
\Rightarrow Cartan-Dieudonné Thm (Lipschitz, 1880): $\quad \underline{G}=\underline{G}_{k} \cdots \underline{G}_{2} \underline{G}_{1}$
\Rightarrow Nearly all groups [Doran et. al. (1993)"Lie Groups as Spin Groups"]
For example: All the classical groups!
In particular: Conformal group: $\mathrm{C}(r, s) \cong \mathrm{O}(r+1, s+1)$
Hence define: Conformal GA: $\mathbb{G}^{r+1, s+1}$

Euclidean GA

Homogeneous (conformal) model of Euclidean 3-space in $\mathbb{G}^{4,1}=\mathbb{G}\left(\mathbb{V}^{4,1}\right)$

- Identify Euclidean points with vectors in the null cone:

$$
\mathbb{N}^{4,1} \equiv\left\{x \in \mathbb{V}^{4,1}: \quad x^{2}=0\right\} \quad(4 \text { degrees of freedom })
$$

- Choose a point at infinity $e=x_{\infty}$, and normalize all points
to the hyperplane $\left\{x: e \cdot x=-1, e^{2}=0\right\}$, so
$\mathbb{E}^{3} \cong \mathbb{N}_{e}^{4,1} \equiv\left\{x \in \mathbb{V}^{4,1}: \quad x^{2}=0, \quad x \cdot e=-1\right\} \quad(3$ degrees of freedom)
Euclidean metric defined as follows:
Chord (displacement vector) between two points: $d_{21}=x_{2}-x_{1} \quad(\neq$ a point)
Euclidean distance: $\quad d_{21}{ }^{2}=\left(x_{2}-x_{1}\right)^{2}=-2 x_{2} \cdot x_{1}$

$$
\left(x_{2}-x_{1}\right)^{2}=\chi_{2}^{2}-2 x_{2} \cdot x_{1}+\chi_{1}^{2}
$$

The invariance group of this metric is the Euclidean group $\mathrm{E}(3)=\{\underline{G}\}$,
a subgroup of the conformal group $\mathrm{C}(3,0) \cong \mathrm{O}(4,1)$
defined by the constraint:

$$
\underline{G}(e)=G e G^{-1}=e
$$

Geometric Objects in 3D Euclidean Geometry:

Circle C determined by three points: $C=x_{1} \wedge x_{2} \wedge x_{3}$
Line L is a circle through infinity: $L=x_{1} \wedge x_{2} \wedge e$
Sphere S determined by four points: $S=x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}=C \wedge x_{4}$
Plane P determined by three points: $\quad P=x_{1} \wedge x_{2} \wedge x_{3} \wedge e=x_{4} \wedge L$

- Note the distinction between a geometric object (defined algebraically) and the set of points it determines (as in Euclid):

$$
\underline{\mathbb{L i n e}} \equiv\{x \mid x \wedge L=0\} \quad \underline{\text { Plane }} \equiv\{x \mid x \wedge P=0\}
$$

- Intersection: Point x lies on object O if and only if $x \wedge O=0$

$$
\text { or: } \quad x \vee O \equiv x \cdot\left(\mathrm{I}^{-1} O\right)=\mathrm{I}^{-1}(\mathrm{x} \wedge O)=0
$$

Dual forms for geometric objects and intersection with points:

$$
\begin{array}{llll|}
\hline P=\mathrm{I} n: & x \wedge P=x \wedge(\mathrm{I} n)=(x \cdot n) \mathrm{I}=0 & \Rightarrow & x \cdot n=0 \\
L=\mathrm{I} B: & x \wedge L=x \wedge(\mathrm{I} B)=(x \cdot B) \mathrm{I}=0 & \Rightarrow & x \cdot B=0
\end{array}
$$

Every line is the intersection of two planes:

$$
P_{1} \vee P_{2} \equiv P_{1} \cdot\left(\mathrm{I}^{-1} P_{2}\right)=P_{1} \cdot n_{2}=\left(\mathrm{I} n_{1}\right) \cdot n_{2}=\mathrm{I}\left(n_{1} \wedge n_{2}\right)=\mathrm{I} B
$$

(Similar expressions for intersections of lines, planes, circles \& spheres)

Invariant Euclidean Geometry

Algebraic axioms \Leftrightarrow Synthetic descriptions \Leftrightarrow Geometric figures
Basic geometric objects (vectors):
Points: $\left\{x \mid x^{2}=0, x \cdot e=-1\right\} \quad e^{2}=0, e=x_{\infty} \quad n D / 3 D / 2 D$
Planes: $\left\{p \mid p^{2}>0, p \cdot e=0\right\} \quad$ hyperplanes / planes /lines
Spheres: $\left\{s \mid s^{2}=\rho^{2}>0, s \cdot e=-1\right\} \quad$ hyperspheres/spheres/circles radius ρ, center $c=-\frac{1}{2}$ ses $=-\frac{1}{2}(2 e \cdot s-e s) s=s+\frac{1}{2} \rho^{2}$
Two points determine a plane: $p_{21}=x_{2}-x_{1}$ (\perp bisector)
Point x on plane: $x \cdot p_{21}=0 \Rightarrow x \cdot x_{2}=x \cdot x_{1}=\frac{1}{2}\left|x_{2}-x_{1}\right|$
Two points determine a sphere: $s_{21}=x_{2}+x_{1}=c_{21}+\frac{1}{2} \rho_{21}{ }^{2} e$
Point x on sphere: $x \cdot s_{21}=0 \Rightarrow p_{21} \cdot c_{21}=0$

$$
\Rightarrow\left|x-c_{21}\right|^{2}=-2 x \cdot c_{21}=\rho_{21}^{2} \quad\left|x-c_{21}\right|=\rho_{21}
$$

Euclidean metric: $\quad\left|x_{i}-x_{j}\right|^{2}=p_{i j}{ }^{2} \geq 0$
Triangle: $\quad p_{21}+p_{32}+p_{13}=0$
Cosine law: $p_{21}{ }^{2}+p_{32}{ }^{2}+2 p_{21} \cdot p_{32}=p_{13}{ }^{2}$

Projective Geometry

Projective transformations $=$ nonsingular linear transformations:

$$
\underline{\mathrm{f}}: x \mapsto x^{\prime}=\underline{\mathrm{f}}(x) \quad \text { with } \quad \underline{\mathrm{f}}(e)=\sigma e
$$

Problem: In general, this does not preserve the null property of points:

$$
\underline{\mathrm{f}}: x^{2}=0 \mapsto[\underline{\mathrm{f}}(x)]^{2}=\underline{\mathrm{f}}(x) \cdot \underline{\mathrm{f}}(x)=x \cdot \mathrm{f} \underline{\mathrm{f}}(x) \stackrel{?}{\neq 0} 0
$$

Solution (A. Lasenby): Extend the notion of points to include planes as points at ∞, thus composing a plane (of directions) at ∞ :
Interior points: $\quad\left\{x \mid x^{2}=0, \quad x \cdot e=0\right\}$
Boundary points: $\left\{n \mid n^{2}=1, \quad n \cdot e=0\right\}=\{$ unit chords $\}$
Symmetric transformations: $\quad \underline{\mathrm{h}}=\underline{\mathrm{G}}^{-1} \underline{\mathrm{~h}} \underline{\mathrm{G}} \quad \underline{\mathrm{G}}=\underline{\mathrm{R}}_{a} \quad \underline{\mathrm{f}}=\underline{\mathrm{G}} \underline{\mathrm{h}}$
Fixed point: $\quad \underline{\mathrm{h}}\left(e_{0}\right)=e_{0}$

$$
\begin{aligned}
& \underline{\mathrm{h}}(x)=x+\lambda\left(e_{1} \cdot x\right) e_{1} \\
& \underline{\mathrm{~h}}\left(e_{1}\right)=(1+\lambda) e_{1}
\end{aligned}
$$

$\underline{\text { Affine transformations: }} \underline{\mathrm{f}}=\underline{\mathrm{T}}_{a} \underline{\mathrm{~h}}$

Inversive Geometry

- Relation of point to sphere: $s=e_{0}-\frac{1}{2} \rho^{2} e$

$$
\begin{aligned}
& \begin{array}{l}
s^{2}=\rho^{2} \quad s \cdot e=s \cdot e_{0}=-1 \quad-2 x \cdot e_{0}=\left(x-e_{0}\right)^{2} \\
-2 s \cdot x=-2\left(e_{0}-\frac{1}{2} \rho^{2} e\right) \cdot x=-2 e_{0} \cdot x-\rho^{2}=\left|x-e_{0}\right|^{2}-\rho^{2} \\
\Rightarrow \quad s \cdot x>0 \text { iff } x \text { inside sphere } \\
s \cdot x=0 \text { iff } x \text { on sphere } \\
s \cdot x<0 \text { iff } x \text { outside sphere }
\end{array}
\end{aligned}
$$

- Inversion in a sphere:

$$
\underline{s}(x)=-s x s^{-1}=\sigma x^{\prime}
$$

$$
\Rightarrow \quad \sigma^{2} x^{\prime 2}=x^{2}=0
$$

$$
\begin{aligned}
& \sigma x^{\prime}=-(-x s+2 s \cdot x) s^{-1}=x-\frac{2 s \cdot x}{\rho^{2}} s \\
& \sigma=1-\frac{2 s \cdot x}{\rho^{2}}=-\frac{2 e_{0} \cdot x}{\rho^{2}}=\frac{\left(x-e_{0}\right)^{2}}{\rho^{2}} \\
& x^{\prime}-e_{0}=\frac{x-e_{0}}{\sigma}-\frac{\left(x-e_{0}\right)^{2}}{2} e \Rightarrow \quad\left(x^{\prime}-e_{0}\right)^{2}=\frac{\left(x-e_{0}\right)^{2}}{\sigma^{2}}=\frac{\rho^{\prime}}{\left(x-e_{0}\right)^{2}}
\end{aligned}
$$

- Line through sphere center: $\quad \mathbf{x} \equiv x \wedge e_{0} \wedge e=x \wedge s \wedge e$

$$
\Rightarrow \quad \mathbf{x}^{2}=-2 x \cdot e_{0}=\left(x-e_{0}\right)^{2} \quad \Rightarrow \quad \mathbf{x}^{\prime}=\rho^{2} \mathbf{x}^{-1}=\frac{\rho^{2}}{\mathbf{x}^{2}} \mathbf{x}
$$

- Inversion of infinity: $\rho^{2} \underline{s}(e)=-$ ses $=-e_{0} e e_{0}=2 e_{0}$

Rigid Body Representation

Body frame: $e_{k}=x_{k}-x=($ chords from a fixed body point $x)$ Orthonormalize: $e_{j} \cdot e_{k}=\delta_{j k}$
Embed the frame in a single algebraic object:
Flag (Selig) or Soma (Engels)
$=$ point + line + plane (with common point)
$F=x+L+P=x+\mathrm{I} Q$

$L=x \wedge x_{1} \wedge e=x \wedge\left(x_{1}-x\right) \wedge e=x \wedge e_{1} \wedge e=\mathrm{I} n_{2} n_{3}$
$P=x \wedge x_{1} \wedge x_{2} \wedge e=x \wedge e_{1} \wedge e_{2} \wedge e=e_{2} \wedge L=\mathrm{I} n_{3}$
$Q=n_{3}+n_{2} n_{3}=\left(1+n_{2}\right) n_{3}$
$n_{j} \cdot n_{k}=\delta_{j k}$

$$
\begin{aligned}
& x \cdot Q=0 \Leftrightarrow x \wedge(L+P)=x \wedge(\mathrm{I} Q)=0 \\
& Q^{2}=0
\end{aligned} \quad \text { Absolute conic! }
$$

(A. Lasenby)

Generalize by replacing planes with spheres!

Rigid displacement of a Body $=$ Congruence

$$
\begin{array}{lll}
F=x+L+P & \rightarrow & F^{\prime}=\underline{D}(F)=\underline{D}(x)+\underline{D}(L)+\underline{D}(P) \\
F=x+\mathrm{I} Q & \rightarrow & F^{\prime}=\underline{D}(F)=\underline{D}(x)+\underline{\mathrm{I}} \underline{D}(Q)
\end{array}
$$

Decomposition into translation \& rotation: $\quad \underline{D}=\underline{T}_{a} \underline{R}_{x}$
Rotation defined by: $\underline{R}_{x}(x)=x \quad$ Translation given by:

$$
\begin{gathered}
\underline{T}_{a}: x \mapsto \quad x^{\prime}=\underline{D}(x)=\underline{T}_{a}(x)=T_{a} x T_{a}^{-1} \\
T_{a}=e^{\frac{1}{2} e a}=1+\frac{1}{2} e a \quad \text { with } \quad 2 a \cdot e=a e+e a=0 \\
T_{a} x T_{a}^{-1}=\left(1+\frac{1}{2} e a\right) x\left(1+\frac{1}{2} a e\right)=x+x \cdot(a \wedge e)-\frac{1}{2} a e a \\
x^{\prime}-x=a+\frac{1}{2}(x+a)^{2} e=n=\text { bisecting plane! } \\
Q \rightarrow Q^{\prime}=\underline{D}(Q)=\underline{R}_{x}(Q)=R_{x} Q R_{x}^{-1} \quad \text { One eqn. for body } \\
n_{k}^{\prime}=\underline{R}_{x}\left(n_{k}\right)=R n_{k} R^{-1} \quad \text { Three eqns. } \\
e_{k}^{\prime}=\underline{R}_{x}\left(e_{k}\right)=R e_{k} R^{-1} \quad \text { Can find } R \text { from } e_{k}^{\prime} \& e_{k} \quad(\mathrm{NFCM}) \\
F^{\prime}=\underline{D}(F)=\underline{T}_{a} \underline{R}_{x}(F)=\underline{T}_{a}(x)+\underline{\mathrm{R}}_{x}(Q)=x^{\prime}+\mathrm{I} Q^{\prime}
\end{gathered}
$$

Relation of the conformal model to alternative models of Euclidean Geometry

Vector space model of Euclidean 3-space: $\mathbb{E}^{3} \cong \mathbb{V}^{3}=\{\mathbf{x}\}$

$$
\mathbb{G}^{3}=\mathbb{G}\left(\mathbb{V}^{3}\right)=\{\alpha+\mathbf{a}+i \mathbf{b}+i \beta\} \quad i=\mathrm{I}=\text { pseudoscalar }
$$

Advantages:

- Smoothly integrated with vector algebra:

$$
\mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b}=\mathbf{a} \cdot \mathbf{b}+i \mathbf{a} \times \mathbf{b}
$$

- Quaternion (spinor) forms for rotors and rotations:
$\begin{array}{llr}\text { Rotation: } & \underline{R}(\mathbf{x})=R \mathbf{x} R^{-1} & \text { (no matrices!) } \\ \text { Rotor: } & R=\alpha+i \boldsymbol{\beta}=e^{-\frac{1}{2} i \mathbf{a}} & \text { (See NFCM) }\end{array}$
Composition: $\quad R_{2} R_{1}=R_{3}$
Matrix elements: $\alpha_{k j}=\mathbf{e}_{k} \cdot \sigma_{j}=\left\langle R \boldsymbol{\sigma}_{k} R^{-1} \boldsymbol{\sigma}_{j}\right\rangle$
- $\cong\{$ complex quaternions $\}$

Drawback: The model is inhomogeneous! ($\mathbf{x}=\mathbf{0}$ distinguished)
\Rightarrow Inhomogeneous rigid displacements: $\underline{G}(\mathbf{x})=\underline{T}_{\mathrm{a}} \underline{R}(\mathbf{x})=\underline{R}(\mathbf{x})+\mathbf{a}$

Covariant Euclidean Geometry: relates conformal and vector space models Conformal Split: $\mathbb{G}^{4,1}=\mathbb{G}^{3} \otimes \mathbb{G}^{1,1}$
determined by choosing one point e_{0} as origin,
so each point lies on the bundle of all lines through the origin $\mathbb{G}^{3}=\mathbb{G}_{0}{ }^{3}=\mathbb{G}\left(\mathbb{V}_{0}{ }^{3}\right)$ is the geometric algebra of that bundle;
each point is then designated by a vector \mathbf{x} in $\mathbb{V}_{0}{ }^{3}=\{\mathbf{x}\}$
The generating basis vectors for \mathbb{G}^{3} are trivectors in $\mathbb{G}^{4,1}$:

$$
\begin{gathered}
\qquad\left\{\sigma_{k}=e_{k} \wedge e \wedge e_{0}=e_{k}\left(e \wedge e_{0}\right)=e_{k} E=E e_{k}\right\} \\
i=\sigma_{1} \sigma_{2} \sigma_{3}=\left(e_{1} E\right)\left(e_{2} E\right)\left(e_{3} E\right)=e_{1} e_{2} e_{3} E \\
\text { Invariant pseudoscalar: } \quad \mathrm{I}=i \quad i^{2}=-1
\end{gathered}
$$

Warning: Outer products in \mathbb{G}^{3} differ from outer products in $\mathbb{G}^{4,1}$!
Additive Split: $\mathbb{G}^{4,1}=\mathbb{G}\left(\mathbb{V}^{3} \oplus \mathbb{V}^{1,1}\right) \equiv \mathbb{G}_{+}{ }^{3} \oplus \mathbb{G}^{1,1}$
Vector basis generating $\mathbb{G}_{+}^{3}:\left\{e_{1}, e_{2}, e_{3}\right\}$
This is not algebraically associated with lines or a point origin, and its pseudoscalar $\mathrm{I}_{3}=e_{1} e_{2} e_{3}$ is not invariant.

Conformal splits for points and simplexes

- Point: $x=\left(\mathbf{x}+\frac{1}{2} \mathbf{x}^{2} e+e_{0}\right) E=E\left(\mathbf{x}-\frac{1}{2} \mathbf{x}^{2} e-e_{0}\right)=\mathbf{x} E+\frac{1}{2} \mathbf{x}^{2} e-e_{0}$

$$
\Leftrightarrow \quad \mathbf{x}=x \wedge e_{0} \wedge e=x \wedge E \quad E=e_{0} \wedge e
$$

- Line: $L=x \wedge a \wedge e=\mathbf{x} \wedge \mathbf{a} e+(\mathbf{a}-\mathbf{x}) E=(\mathbf{d} e+E) \mathbf{n}$ tangent: $\quad \mathbf{n}=\mathbf{a}-\mathbf{x}$

Plücker
moment: $\quad \mathbf{x} \wedge \mathbf{a}=\mathbf{x} \wedge(\mathbf{a}-\mathbf{x})=\mathbf{d n} \quad$ coordinates directance: $\mathbf{d}=(\mathbf{x} \wedge \mathbf{a}) \mathbf{n}^{-1}=(\mathbf{x} \wedge \mathbf{n}) \mathbf{n}^{-1}=\mathbf{x}-\left(\mathbf{x} \cdot \mathbf{n}^{-1}\right) \mathbf{n}$

$$
(L=\text { line vector }=\underline{\text { spear }})
$$

- Plane: $\quad P=x \wedge a \wedge b \wedge e=\mathbf{x} \wedge \mathbf{a} \wedge \mathbf{b} e+(\mathbf{a}-\mathbf{x}) \wedge(\mathbf{b}-\mathbf{x}) E$ tangent: $\quad(\mathbf{a}-\mathbf{x}) \wedge(\mathbf{b}-\mathbf{x})=\mathbf{x} \wedge \mathbf{a}+\mathbf{a} \wedge \mathbf{b}+\mathbf{b} \wedge \mathbf{x}=i \mathbf{n}$ moment: $\mathbf{x} \wedge \mathbf{a} \wedge \mathbf{b}=\mathbf{x} \wedge[(\mathbf{a}-\mathbf{x}) \wedge(\mathbf{b}-\mathbf{x})]$

$$
=\mathbf{x} \wedge(i \mathbf{n})=i(\mathbf{x} \cdot \mathbf{n})
$$

dual form: $P=i(\mathbf{x} \cdot \mathbf{n} e+\mathbf{n} E)=i n$

$$
\begin{aligned}
n & =x_{2}-x_{1}=\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) E+\frac{1}{2}\left(\mathbf{x}_{2}^{2}-\mathbf{x}_{1}^{2}\right) e \\
& =\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) E+\frac{1}{2}\left(\mathbf{x}_{2}+\mathbf{x}_{1}\right) \cdot\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) e=\mathbf{n} E+\mathbf{c} \cdot \mathbf{n} e
\end{aligned}
$$

Translations and rotations from reflections

- Reflection in a (hyper)plane: $\underline{n}(x)=-n x n=x^{\prime}$

$$
\begin{aligned}
& e \cdot n=0, \quad n^{2}=1, \quad E=e_{0} \wedge e \\
& c \cdot n=0 \quad \Rightarrow \quad \text { Split: } n=\mathbf{n} E+\mathbf{c} \cdot \mathbf{n} e \\
& \Rightarrow \quad x \cdot n=\mathbf{n} \cdot(\mathbf{x}-\mathbf{c}) \quad \mathbf{x}^{\prime}=\mathbf{x}-2(\mathbf{x}-\mathbf{c}) \cdot \mathbf{n n}
\end{aligned}
$$

- Translation from parallel planes n and m :

$$
\begin{aligned}
G & =m n=(\mathbf{n} E+0)(\mathbf{n} E+\delta e) \\
& =1+\frac{1}{2} \mathbf{a} e=T_{\mathbf{a}} \quad \mathbf{a}=2 \mathbf{n} \delta
\end{aligned}
$$

- Rotation by planes n and m intersecting at a point c :

$$
\begin{aligned}
G & =m n=(\mathbf{m} E+\mathbf{m} \cdot \mathbf{c} e)(\mathbf{n} E+\mathbf{n} \cdot \mathbf{c} e) \\
& =\mathbf{m n}+e(\mathbf{m} \wedge \mathbf{n}) \cdot \mathbf{c}=R+e(R \times \mathbf{c})=T_{\mathbf{c}}^{-1} R T_{\mathbf{c}} \\
R & =\mathbf{m n}
\end{aligned}
$$

2D Minkowski space $\mathbb{V}^{1,1}$ and its algebra $\mathbb{G}^{1,1}=\mathbb{G}\left(\mathbb{V}^{1,1}\right)$

Null vector basis: $\left\{e, e_{0} \mid e^{2}=e_{0}^{2}=0, e \cdot e_{0}=-1\right\}$
Orthonormal basis: $\left\{e_{ \pm}=\frac{1}{\sqrt{2}}\left(\lambda e \mp \lambda^{-1} e_{0}\right), \lambda \neq 0, e_{ \pm}^{2}= \pm 1\right\}$
$\mathbb{G}^{1,1}$ basis: $\left\{1, e, e_{0}, E\right\} \quad E=e_{0} \wedge e=e_{-} e_{+} \quad E^{2}=1$

$$
e_{0} e=E-1 \quad E e=-e E=e, \quad e_{0} E=-E e_{0}=e_{0}
$$

Matrix representation: $\mathbb{G}^{1,1} \simeq \mathbb{M}_{2}(\mathbb{R})=\{$ real 2×2 matrices $\}$
Basis: $\quad e_{+} \simeq\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad e_{-} \simeq\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \quad E \simeq\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \quad 1 \simeq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$M=\frac{1}{2}\left[A(1+E)+B\left(e_{+}+e_{-}\right)+C\left(e_{+}-e_{-}\right)+D(1-E)\right] \simeq[\mathrm{M}]=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$
$\mathbb{G}^{4,1}=\mathbb{G}^{3} \otimes \mathbb{G}^{1,1} \simeq \mathbb{M}_{2}\left(\mathbb{G}^{3}\right)=\{$ c-quaternion-valued 2×2 matrices $\}$
$\mathbb{M}_{2}\left(\mathbb{G}^{3}\right)$ Advantages: • Relation to literature on robotics and screws Disadvantages: • Implicit assumption of conformal split (origin choice) - covariance versus invariance

- Suppresses geometric meaning of matrix elements
- Redundancy in matrix elements

SE(3) = Special Euclidean group
$=\{$ rigid displacements $\underline{D}\} \underset{\overline{2}}{\cong}\{$ twistors $D\}$
$=$ subgroup of the conformal group $\mathrm{C}(3,0) \cong \mathrm{O}(4,1)$ defined by:

- $\underline{D}(e)=D e D^{-1}=e \quad \Leftrightarrow \quad D e=e D$

Screw form: Twistor $D=e^{\frac{1}{2} S}$

- $D^{-1}=\tilde{D}=e^{-\frac{1}{2} S} \quad \Leftrightarrow \quad S=-\tilde{S}=\langle S\rangle_{2} \quad$ (even parity)
$\Rightarrow S=\mathbf{m}+e \mathbf{n} \quad S e=e S \Leftrightarrow S \cdot e=0$
S is called a twist (or screw if $\mathbf{n} \| \mathbf{m}$)
The screw axis (direction $\hat{\mathbf{m}}$) is called the axode
$s e(3)=\underline{\text { Lie algebra }}$ of $\operatorname{SE}(3)$
$=$ an algebra of bivectors: $\quad S_{k}=i \mathbf{m}_{k}+e \mathbf{n}_{k}$
closed under $S_{1} \times S_{2}=\frac{1}{2}\left(S_{1} S_{2}-S_{2} S_{1}\right)$

$$
=i\left(\mathbf{m}_{2} \times \mathbf{m}_{1}\right)+e\left(\mathbf{n}_{2} \times \mathbf{m}_{1}-\mathbf{n}_{1} \times \mathbf{m}_{2}\right)
$$

Screw theory follows automatically!
Screws: $\quad S_{k}=i \mathbf{m}_{k}+e \mathbf{n}_{k}$
Product: $\quad S_{1} S_{2}=S_{1} \cdot S_{2}+S_{1} \times S_{2}+S_{1} \wedge S_{2}$
Transform: $S_{k}^{\prime}=\underline{U}\left(S_{k}\right)=U S_{k} U^{-1}=A d_{U} S_{k}$

$$
\{\underline{U}\}=\operatorname{SE}(3)
$$

$$
\begin{aligned}
S_{1}^{\prime} S_{2}^{\prime} & =\underline{U}\left(S_{1} S_{2}\right) \quad \text { Product preserving } \\
& =U\left(S_{1} \cdot S_{2}+S_{1} \times S_{2}+S_{1} \wedge S_{2}\right) U^{-1}
\end{aligned}
$$

Invariants: $\quad \underline{U}(e)=e \quad \underline{U}(i)=i$

$$
S_{1}^{\prime} \wedge S_{2}^{\prime}=\underline{U}\left(S_{1} \wedge S_{2}\right)=S_{1} \wedge S_{2}=i e\left(\mathbf{m}_{1} \cdot \mathbf{n}_{2}+\mathbf{m}_{2} \cdot \mathbf{n}_{1}\right)
$$

$$
S_{1}^{\prime} \cdot S_{2}^{\prime}=S_{1} \cdot S_{2}=-\mathbf{m}_{1} \cdot \mathbf{m}_{2} \quad(\text { Killing Form })
$$

Covariant: $\quad S_{1}^{\prime} \times S_{2}^{\prime}=U\left(S_{1} \times S_{2}\right) U^{-1}$
Coscrew (Ball's reciprocal screw): $\quad S_{k}^{*} \equiv\left\langle S_{k} i e_{0}\right\rangle_{2}=\frac{1}{2}\left(S_{k} i e_{0}+i e_{0} S_{k}\right)$

$$
=i \mathbf{n}_{k} e \cdot e_{0}-e_{0} \mathbf{m}_{k}=-i \mathbf{n}_{k}-e_{0} \mathbf{m}_{k}
$$

Invariant: $\quad S_{1}{ }^{*} \cdot S_{2}=S_{1} \cdot S_{2}{ }^{*}=\left\langle S_{1} \wedge S_{2} i e_{0}\right\rangle=\mathbf{m}_{1} \cdot \mathbf{n}_{2}+\mathbf{n}_{1} \cdot \mathbf{m}_{2}$
Pitch: $\quad h=\frac{1}{2} \frac{S^{*} \cdot S}{S \cdot S}=\mathbf{n} \cdot \mathbf{m}^{-1} \doteq \frac{|\mathbf{n}|}{|\mathbf{m}|}=\frac{\text { linear displacement }}{\text { angular displacement }}(\mathbf{n} \wedge \mathbf{m}=0)$

Rigid Displacement:

$$
x_{k}=D e_{k} D^{-1} \quad D^{-1}=\tilde{D}
$$

Translation defined by:

$$
\begin{aligned}
& x=D e_{0} D^{-1}=T e_{0} T^{-1}=e_{0}+n \\
& T=1+\frac{1}{2} n e
\end{aligned}
$$

Defines conformal split: $\quad D=R T \quad x=R x R^{-1}$
Rigid Body Kinematics: $\quad x_{k}(t)=D e_{k} D^{-1} \quad D=D(t)$

$$
\begin{array}{lc}
\dot{D}=\frac{1}{2} V D & \tilde{V}=-V=\langle V\rangle_{2} \quad \dot{D}^{-1}=-\frac{1}{2} D^{-1} V \\
\dot{x}_{k}=V \cdot x_{k} & e=E e \\
\dot{R}=-\frac{1}{2} i \omega R \quad \dot{T}=\frac{1}{2} \dot{n} e=\frac{1}{2} \dot{x} e=\frac{1}{2} \dot{x} e T=\frac{1}{2} \dot{\mathbf{x}} e T & \dot{\mathbf{x}}=\dot{x} \wedge E \\
\dot{D}=\dot{R} T+R \dot{T}=\left(-i \omega+R e \dot{\mathbf{x}} R^{-1}\right) R T=\frac{1}{2} V D \\
\Rightarrow & V=-i \omega+e \mathbf{v} \quad \mathbf{v}=R \dot{\mathbf{x}} R^{-1} \quad(\text { Note: } \mathbf{v}=\dot{\mathbf{x}} \text { for } R(t)=1)
\end{array}
$$

Rigid Body Dynamics

Comomentum
 $$
P=\underline{M} V=i \underline{I} \boldsymbol{\omega}+m \mathbf{v} e_{0}=i \mathbf{l}-\mathbf{p} e_{0}
$$

(a coscrew)
Coforce (wrench): $W=i \Gamma-\mathbf{f} e_{0} \quad \dot{\mathbf{p}}=\mathbf{f}$
Equation of motion: $\dot{P}=W \quad \Rightarrow \quad \dot{\mathbf{i}}=\underline{I}(\dot{\omega})+\omega \times \underline{I}(\omega)=\Gamma$
Kinetic energy: $K \equiv \frac{1}{2} V \cdot P=\frac{1}{2} V \cdot \underline{M} V=\frac{1}{2}(\boldsymbol{\omega} \cdot \mathbf{l}+\mathbf{v} \cdot \mathbf{p})$

$$
\text { Power: } \quad \dot{K}=V \cdot W=\boldsymbol{\omega} \cdot \boldsymbol{\Gamma}+\mathbf{v} \cdot \mathbf{f}
$$

Change of base point: $\quad e_{0} \mapsto e_{0}^{\prime}=e_{0}-r_{0}=T_{0}^{-1} e_{0} T_{0}$
Chasles' Thm: $V \quad \mapsto \quad V^{\prime}=V+e \boldsymbol{\omega} \times \mathbf{r}$
Poinsot's Thm: $W \quad \mapsto \quad W^{\prime}=W-i \mathbf{r} \times \mathbf{f}=i(\Gamma+\mathbf{r} \times \mathbf{f})-e_{0} \mathbf{f}$

$$
P \quad \mapsto \quad P^{\prime}=P-i \mathbf{r} \times \mathbf{p}=i(\mathbf{l}+\mathbf{r} \times \mathbf{p})-\mathbf{p} e_{0}
$$

These theorems are related by the kinetic energy invariant:

$$
\begin{aligned}
& 2 K=V^{\prime} \cdot P^{\prime}=(V+e \boldsymbol{\omega} \times \mathbf{r}) \cdot(P-i \mathbf{r} \times \mathbf{p}) \\
& \quad=\boldsymbol{\omega} \cdot(\mathbf{l}-\mathbf{r} \times \mathbf{p})+(\mathbf{v}+\boldsymbol{\omega} \times \mathbf{r}) \cdot \mathbf{p}=\boldsymbol{\omega} \cdot \mathbf{l}+\mathbf{v} \cdot \mathbf{p}=V \cdot P
\end{aligned}
$$

Proof of Chasles: $D^{\prime}=D T_{0}=T^{\prime} D$

$$
T^{\prime}=R T_{0} R^{-1}=1+\frac{1}{2} \mathbf{r} e
$$

$$
\dot{D}^{\prime}=\dot{T}^{\prime} D+T^{\prime} \dot{D}=\frac{1}{2} e \dot{\mathbf{r}} T^{\prime} D+\frac{1}{2} V D T_{0}=\frac{1}{2}(e \dot{\mathbf{r}}+V) D^{\prime} \quad \dot{\mathbf{r}}=\omega \times \mathbf{r}
$$

Matrix form for Screw Mechanics

Screw transform: \quad Base point shift: $\mathbf{r}=\mathbf{x}_{P}-\mathbf{x}_{Q}$

$$
\left[\begin{array}{c}
\mathbf{v}_{Q} \\
\boldsymbol{\omega}
\end{array}\right]=\left[\begin{array}{cc}
1 & -\mathbf{r} \times \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{P} \\
\boldsymbol{\omega}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}_{P}-\mathbf{r} \times \boldsymbol{\omega} \\
\boldsymbol{\omega}
\end{array}\right] \quad \Leftrightarrow \quad \begin{array}{r}
V_{Q}
\end{array}=V_{P}-e \mathbf{r} \times \boldsymbol{\omega} .
$$

$$
\hat{V}_{Q}=\hat{X}_{S} \hat{V}_{P}
$$

Coscrew transform:

Recall the drawbacks of the matrix representation.

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{f} \\
\Gamma_{Q}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-\mathbf{r} \times & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{f} \\
\Gamma_{P}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{f} \\
\Gamma_{P}+\mathbf{r} \times \mathbf{f}
\end{array}\right] \quad \Leftrightarrow \quad \begin{aligned}
W_{Q} & =W_{P}-i \mathbf{r} \times \mathbf{f} \\
& =i\left(\boldsymbol{\Gamma}_{P}+\mathbf{r} \times \mathbf{f}\right)-e_{0} \mathbf{f}
\end{aligned}} \\
& \hat{W}_{Q}=\hat{X}_{C S} \hat{W}_{P}
\end{aligned}
$$

Linked Rigid Bodies

$$
\begin{aligned}
x_{1} & =e_{0}+a+b+R_{1} c R_{1}^{-1} \\
& =e_{0}+a+b+c_{1}
\end{aligned}
$$

$$
x_{2}=e_{0}+a+R_{2}\left(b+R_{1} c R_{1}^{-1}\right) R_{2}^{-1}
$$

Reference Pose

$$
x_{0}=e_{0}+a+b+c
$$

$$
=e_{0}+a+b_{2}+c_{21}
$$

$$
\begin{aligned}
& \left\{R_{1}, R_{2}, R_{3}\right\} \\
& \text { Kinematics } \\
& \dot{R}_{k}=-\frac{1}{2} i \boldsymbol{\omega}_{k} R_{k} \\
& \dot{R}_{32}=-\frac{1}{2} i \omega_{32} R_{32} \\
& \omega_{32}=\omega_{3}+R_{3} \omega_{2} R_{3}^{-1} \\
& \omega_{321}=\omega_{3}+R_{3} \omega_{2} R_{3}^{-1}+R_{3} R_{2} \omega_{1} R_{2}^{-1} R_{3}^{-1} \\
& x=e_{0}+R_{3}\left[a+R_{2}\left(b+R_{1} c R_{1}^{-1}\right) R_{2}^{-1}\right] R_{3}^{-1} \\
& =e_{0}+a_{3}+b_{32}+c_{321} \\
& \mathbf{x}=x \wedge E=R_{3}\left[\mathbf{a}+R_{2}\left(\mathbf{b}+R_{1} \mathbf{c} R_{1}^{-1}\right) R_{2}^{-1}\right] R_{3}^{-1} \\
& =\mathbf{a}_{3}+\mathbf{b}_{32}+\mathbf{c}_{321} \\
& \dot{\mathbf{x}}=\omega_{3} \times \mathbf{a}_{3}+\omega_{32} \times \mathbf{b}_{32}+\omega_{321} \times \mathbf{c}_{321}
\end{aligned}
$$

