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Motivation

Blade factorization:Bk = b1 ∧ b2 ∧ . . . ∧ bk.
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Motivation

Blade factorization:Bk = b1 ∧ b2 ∧ . . . ∧ bk.

Applications of blade factorization:

• Conversion to other (LA-compatible) representations.

• As a building block of other algorithms.

The join: A ∪B is the union ofA andB.

Applications of thejoin:

• True union of subspaces.

• Computing themeet.

In my implementation thejoin is interwoven with factorization,
so factorization must be discussed first.
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Blade Representation

The algorithms in this talk are based on theadditive presentation.
Blades are represented as a sum of basis blades.

Example of basis for 3-D space:

{ 1
︸︷︷︸

grade 0

, e1, e2, e3
︸ ︷︷ ︸

grade 1

, e1 ∧ e2, e2 ∧ e3, e1 ∧ e3
︸ ︷︷ ︸

grade 2

, e1 ∧ e2 ∧ e3
︸ ︷︷ ︸

grade 3

}.
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Example of FastFactorization

Suppose our input blade is:

B = 1.0 e1∧e2∧e3−0.5 e1∧e3∧e4+0.25 e2∧e3∧e4−0.75 e1∧e2∧e4.

FastFactorization factorizes this to:

b1 = 1.0 e1 + 0.25 e4,

b2 = 1.0 e2 + 0.5 e4,

b3 = 1.0 e3 − 0.75 e4,

such thatB = b1 ∧ b2 ∧ b3.
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Example of FastFactorization

Suppose our input blade is:

B = 1.0 e1∧e2∧e3−0.5 e1∧e3∧e4+0.25 e2∧e3∧e4−0.75 e1∧e2∧e4.

FastFactorization factorizes this to:

b1 = 1.0 e1 + 0.25 e4,

b2 = 1.0 e2 + 0.5 e4,

b3 = 1.0 e3 − 0.75 e4,

such thatB = b1 ∧ b2 ∧ b3.

The coordinates of the factors are± the coordinates of the input
blade! How does this work?
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Basic Factorization Algorithm

Algorithm Factorization(B):
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1. Find the largest basis bladeF in the representation ofB.
I.e.,F = ei ∧ ej ∧ . . . ∧ ek.
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2. Project the basis vectors ofF ontoB.
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Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis bladeF in the representation ofB.
I.e.,F = ei ∧ ej ∧ . . . ∧ ek.

2. Project the basis vectors ofF ontoB.
Use orthogonal projection:bi = (eicB)cB−1.
Thebi will be independent.

3. Compute the scaleβ such thatB = β bi ∧ bj ∧ . . . ∧ bk.

This works but is a bit slow (in our implementation, 50× to
100× slower than a simple bilinear outer product).
→The projection is expensive!
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Orthogonal Projection Shortcut

B

a

a B

(a B) B-1
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Orthogonal Projection Shortcut

B

a

a B

(a B) B-1

Instead of doing a true projectionbi = (eicB)cB−1,
we do a ‘pseudo projection’ bi = (eicF)cB−1.

The pseudo projection is computationally cheap because it
amounts to simply selecting coordinates fromB.
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FastFactorization Algorithm

Algorithm FastFactorization(B):
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Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:
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Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:

1. Find the basis bladeF = f1 ∧ f2 ∧ . . . ∧ fk to which the
absolute largest coordinate ofB refers. Thefi are basis
vectors. Letβ be the coordinate that refers toF.
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absolute largest coordinate ofB refers. Thefi are basis
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FastFactorization Algorithm

Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:

1. Find the basis bladeF = f1 ∧ f2 ∧ . . . ∧ fk to which the
absolute largest coordinate ofB refers. Thefi are basis
vectors. Letβ be the coordinate that refers toF.

2. ComputeBs = B/β.

3. For eachfi compute:bi = (ficF
−1)cBs.

Because thek vectorsbi are linearly independent and all
contained inB, they must form a factorization ofBs.
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FastFactorization ‘Proof’

(The full proof in the paper).
Again, suppose our input blade is:

B = 1.0 e1∧e2∧e3−0.5 e1∧e3∧e4+0.25 e2∧e3∧e4−0.75 e1∧e2∧e4.

ThenF = e1 ∧ e2 ∧ e3, and the factors are:

b1 = 1.0 e1 + 0.25 e4,

b2 = 1.0 e2 + 0.5 e4,

b3 = 1.0 e3 − 0.75 e4.

The diagonal typesetting ofe1, e2, e3 should make it obvious
that thebi are linearly independent.
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FastFactorization Code Generation

We used code generation to implementFastFactorization.

One function was generated for each valid combination of basis
blade and grade.

Example of a generated function:

void factorE234grade3(const float *B, float **b) {
   b[2][0] = B[0];
   b[1][0] = -B[1];
   b[0][0] = B[2];
   b[0][1] = b[1][2] = b[2][3] = B[3];
   b[2][4] = B[6];
   b[1][4] = -B[8];
   b[0][4] = B[9];
   b[0][2] = b[0][3] = b[1][1] = b[1][3] = b[2][1] = b[2][2] = 0.0f;
}
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FastFactorization Implementation

The full FastFactorization implementation amounts to:

• Filter out trivial special cases (hand written).

• Find largest coordinate / basis blade (hand written).

• Call the appropriate factorization function (generated) via a
lookup table .
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FastFactorization Benchmarks

Benchmark: Factorize millions of random blades.

Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.

n 3 4 5 6

factorizations per second 15M 9.2M 5.2M 2.8M

relative to O.P. 5.1× 5.1× 3.4× 3.8×
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The Join (and the Meet)

The join A ∪B is the union ofA andB.

The join is a non-linear product, for example in general
A ∪ (B + C) 6= A ∪B + A ∪C.
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The Join (and the Meet)

The join A ∪B is the union ofA andB.

The join is a non-linear product, for example in general
A ∪ (B + C) 6= A ∪B + A ∪C.

Themeet A ∩B can be (most?) efficiently computed from the
join usingA ∩B = (Bc(A ∪B)−1)cA.
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The Join, Meet and Delta Product Illustrated

a
1

b
1

a
2

c
AUB

a
1

b
1
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2

c
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U

B
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1
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2
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A

BA = a1^a2^c

B = c^b1

a
1

b
1

a
2
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The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.
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Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).
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2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).
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Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
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Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
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Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF
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The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF

−1)cB.
(c) ComputeH = J ∧ unit(bi).
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The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF

−1)cB.
(c) ComputeH = J ∧ unit(bi).
(d) If (‖H‖ ≥ ε) setJ← unit(H).
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The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF

−1)cB.
(c) ComputeH = J ∧ unit(bi).
(d) If (‖H‖ ≥ ε) setJ← unit(H).

6. ReturnJ.
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Limitations of the FastJoin Algorithm

Limitations of theFastJoin algorithm:

• Grade stability.
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Limitations of the FastJoin Algorithm

Limitations of theFastJoin algorithm:

• Grade stability.

• Numerical stability.

TheStableFastJoin algorithm (next slide) solves both problems.

Thedelta product∆ (geometric symmetric difference) is used:

grade(A ∪B) =
grade(A) + grade(B) + grade(A∆B)

2
.
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The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).
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The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:
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The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:

7. Computegrade(A ∪B) using thedelta product.
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The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:

7. Computegrade(A ∪B) using thedelta product.

8. While(grade(J) < grade(A ∪B))

(a) For all validi, computebi = (ficF
−1)cB.

Setbm to thatbi which leads to the largest‖J ∧ bi‖.
(b) UpdateJ← J ∧ bm.
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The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:

7. Computegrade(A ∪B) using thedelta product.

8. While(grade(J) < grade(A ∪B))

(a) For all validi, computebi = (ficF
−1)cB.

Setbm to thatbi which leads to the largest‖J ∧ bi‖.
(b) UpdateJ← J ∧ bm.

9. ReturnJ.
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FastJoin Implementation

Code generation is used to generate the core ofFastJoin.
Example of a generated function (step 5b/5c of algorithm):

void factorAndOuterProductE35G3(const float *J, const float *B, float *H) {
   H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
   H[1] = J[6] * B[5] - J[5] * B[6];
   H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
   H[3] = J[9] * B[5] - J[5] * B[9];
   H[4] = J[9] * B[6] - J[6] * B[9];
   return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}
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Code generation is used to generate the core ofFastJoin.
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   H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
   H[3] = J[9] * B[5] - J[5] * B[9];
   H[4] = J[9] * B[6] - J[6] * B[9];
   return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}

Implementation of thedelta product is optimized using code
generation and lazy evaluation.
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FastJoin Implementation

Code generation is used to generate the core ofFastJoin.
Example of a generated function (step 5b/5c of algorithm):

void factorAndOuterProductE35G3(const float *J, const float *B, float *H) {
   H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
   H[1] = J[6] * B[5] - J[5] * B[6];
   H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
   H[3] = J[9] * B[5] - J[5] * B[9];
   H[4] = J[9] * B[6] - J[6] * B[9];
   return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}

Implementation of thedelta product is optimized using code
generation and lazy evaluation.

The approach is limited to 6-D due to code size!
Above 6-D a conventional (hand-written) approach can be used
(about 2× slower).
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FastJoin Benchmarks

Benchmark: Compute thejoin of millions of random blades.
Pairs of blades were generated such that they shared a common
factor of a random grade.

Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.
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FastJoin Benchmarks

Benchmark: Compute thejoin of millions of random blades.
Pairs of blades were generated such that they shared a common
factor of a random grade.

Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.

n 3 4 5 6

FastJoin (absolute) 7.4M 5.4M 3.1M 1.8M

FastJoin (relative) 9.8× 8.7× 5.8× 6.4×

StableFastJoin (absolute) 7.4M 5.2M 2.6M 1.6M

StableFastJoin (relative) 9.8× 9.1× 7.0× 6.8×

Gram-Schmidt (relative) 12× 12× 7.9× 8.0×
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The Meet

Themeet can be directedly computed by factorizing the dual of
thedelta product.
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The Meet

Themeet can be directedly computed by factorizing the dual of
thedelta product.

But:
-Expensive full evaluation ofdelta product is always required.
-Generated code is larger.
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Discussion / Summary

• Fastest possible factorization algorithm?
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