Factorization, Join (and Meet) of Blades

Efficient algorithms for factorization of blades and and computing the join of blades.

Daniel Fontijne
University of Amsterdam fontijne@science.uva.nl

Motivation

Blade factorization: $\mathbf{B}_{k}=\mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$.

Motivation

Blade factorization: $\mathbf{B}_{k}=\mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$.
Applications of blade factorization:

- Conversion to other (LA-compatible) representations.
- As a building block of other algorithms.

Motivation

Blade factorization: $\mathbf{B}_{k}=\mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$.
Applications of blade factorization:

- Conversion to other (LA-compatible) representations.
- As a building block of other algorithms.

The join: $\mathbf{A} \cup \mathbf{B}$ is the union of \mathbf{A} and \mathbf{B}.

Motivation

Blade factorization: $\mathbf{B}_{k}=\mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$.
Applications of blade factorization:

- Conversion to other (LA-compatible) representations.
- As a building block of other algorithms.

The join: $\mathbf{A} \cup \mathbf{B}$ is the union of \mathbf{A} and \mathbf{B}.
Applications of the join:

- True union of subspaces.
- Computing the meet.

In my implementation the join is interwoven with factorization, so factorization must be discussed first.

Blade Representation

The algorithms in this talk are based on the additive presentation. Blades are represented as a sum of basis blades.

Example of basis for 3-D space:
$\{\underbrace{1}_{\text {grade } 0}, \underbrace{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}}_{\text {grade 1 }}, \underbrace{\mathbf{e}_{1} \wedge \mathbf{e}_{2}, \mathbf{e}_{2} \wedge \mathbf{e}_{3}, \mathbf{e}_{1} \wedge \mathbf{e}_{3}}_{\text {grade } 2}, \underbrace{\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}}_{\text {grade } 3}\}$.

Example of FastFactorization

UNIVERSITEIT
VAN

Suppose our input blade is:
$\mathbf{B}=1.0 \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}-0.5 \mathbf{e}_{1} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}+0.25 \mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}-0.75 \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{4}$.
FastFactorization factorizes this to:

$$
\begin{aligned}
& \mathbf{b}_{1}=1.0 \mathbf{e}_{1} \\
& \mathbf{b}_{2}=1.0 .25 \mathbf{e}_{4}, \\
& \mathbf{b}_{3}=
\end{aligned}
$$

such that $\mathbf{B}=\mathrm{b}_{1} \wedge \mathrm{~b}_{2} \wedge \mathrm{~b}_{3}$.

Example of FastFactorization

Suppose our input blade is:
$\mathbf{B}=1.0 \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}-0.5 \mathbf{e}_{1} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}+0.25 \mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}-0.75 \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{4}$.
FastFactorization factorizes this to:

$$
\begin{aligned}
& \mathbf{b}_{1}=1.0 \mathbf{e}_{1} \\
& \mathbf{b}_{2}= \\
& \mathbf{b}_{3}= \\
& \mathbf{b}_{3}
\end{aligned}
$$

such that $\mathbf{B}=\mathrm{b}_{1} \wedge \mathrm{~b}_{2} \wedge \mathrm{~b}_{3}$.
The coordinates of the factors are \pm the coordinates of the input blade! How does this work?

Basic Factorization Algorithm

UNIVERSITEIT
VAN
Amsterdam

Algorithm Factorization(B):

Basic Factorization Algorithm

UNIVERSITEIT
VAN

Algorithm Factorization(B):

1. Find the largest basis blade \mathbf{F} in the representation of \mathbf{B}.
I.e., $\mathbf{F}=\mathbf{e}_{i} \wedge \mathbf{e}_{j} \wedge \ldots \wedge \mathbf{e}_{k}$.

Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis blade \mathbf{F} in the representation of \mathbf{B}.
I.e., $\mathbf{F}=\mathbf{e}_{i} \wedge \mathbf{e}_{j} \wedge \ldots \wedge \mathbf{e}_{k}$.
2. Project the basis vectors of \mathbf{F} onto \mathbf{B}.

Use orthogonal projection: $\left.\left.\mathbf{b}_{i}=\left(\mathbf{e}_{i}\right\rfloor \mathbf{B}\right)\right\rfloor \mathbf{B}^{-1}$. The b_{i} will be independent.

Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis blade \mathbf{F} in the representation of \mathbf{B}.
I.e., $\mathbf{F}=\mathbf{e}_{i} \wedge \mathbf{e}_{j} \wedge \ldots \wedge \mathbf{e}_{k}$.
2. Project the basis vectors of \mathbf{F} onto \mathbf{B}.

Use orthogonal projection: $\left.\left.\mathbf{b}_{i}=\left(\mathbf{e}_{i}\right\rfloor \mathbf{B}\right)\right\rfloor \mathbf{B}^{-1}$. The b_{i} will be independent.
3. Compute the scale β such that $\mathbf{B}=\beta \mathbf{b}_{i} \wedge \mathbf{b}_{j} \wedge \ldots \wedge \mathbf{b}_{k}$.

Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis blade \mathbf{F} in the representation of \mathbf{B}.
I.e., $\mathbf{F}=\mathbf{e}_{i} \wedge \mathbf{e}_{j} \wedge \ldots \wedge \mathbf{e}_{k}$.
2. Project the basis vectors of \mathbf{F} onto \mathbf{B}.

Use orthogonal projection: $\left.\left.\mathbf{b}_{i}=\left(\mathbf{e}_{i}\right\rfloor \mathbf{B}\right)\right\rfloor \mathbf{B}^{-1}$. The b_{i} will be independent.
3. Compute the scale β such that $\mathbf{B}=\beta \mathbf{b}_{i} \wedge \mathbf{b}_{j} \wedge \ldots \wedge \mathbf{b}_{k}$.

This works but is a bit slow (in our implementation, $50 \times$ to $100 \times$ slower than a simple bilinear outer product).
\rightarrow The projection is expensive!

Orthogonal Projection Shortcut

Universiteit
VAN
AMSTERDAM

Orthogonal Projection Shortcut

UNIVERSITEIT
VAN

Instead of doing a true projection $\left.\left.\mathbf{b}_{i}=\left(\mathbf{e}_{i}\right\rfloor \mathbf{B}\right)\right\rfloor \mathbf{B}^{-1}$, we do a 'pseudo projection' $\left.\left.\quad \mathbf{b}_{i}=\left(\mathbf{e}_{i}\right\rfloor \mathbf{F}\right)\right\rfloor \mathbf{B}^{-1}$.

The pseudo projection is computationally cheap because it amounts to simply selecting coordinates from \mathbf{B}.

FastFactorization Algorithm

Algorithm FastFactorization(B):

FastFactorization Algorithm

UNIVERSITEIT
VAN

Algorithm FastFactorization(B):
Let \mathbf{B} be a k-blade, with $1<k<n$.
The algorithm computes a factorization
$\mathbf{B}=\beta \mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$, where β is a scalar:

FastFactorization Algorithm

Algorithm FastFactorization(B):
Let \mathbf{B} be a k-blade, with $1<k<n$.
The algorithm computes a factorization
$\mathbf{B}=\beta \mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$, where β is a scalar:

1. Find the basis blade $\mathbf{F}=\mathbf{f}_{1} \wedge \mathbf{f}_{2} \wedge \ldots \wedge \mathbf{f}_{k}$ to which the absolute largest coordinate of \mathbf{B} refers. The \mathbf{f}_{i} are basis vectors. Let β be the coordinate that refers to \mathbf{F}.

FastFactorization Algorithm

Algorithm FastFactorization(B):
Let \mathbf{B} be a k-blade, with $1<k<n$.
The algorithm computes a factorization
$\mathbf{B}=\beta \mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$, where β is a scalar:

1. Find the basis blade $\mathbf{F}=\mathbf{f}_{1} \wedge \mathbf{f}_{2} \wedge \ldots \wedge \mathbf{f}_{k}$ to which the absolute largest coordinate of \mathbf{B} refers. The \mathbf{f}_{i} are basis vectors. Let β be the coordinate that refers to \mathbf{F}.
2. Compute $\mathbf{B}_{s}=\mathbf{B} / \beta$.

FastFactorization Algorithm

Algorithm FastFactorization(B):
Let \mathbf{B} be a k-blade, with $1<k<n$.
The algorithm computes a factorization
$\mathbf{B}=\beta \mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$, where β is a scalar:

1. Find the basis blade $\mathbf{F}=\mathbf{f}_{1} \wedge \mathbf{f}_{2} \wedge \ldots \wedge \mathbf{f}_{k}$ to which the absolute largest coordinate of \mathbf{B} refers. The \mathbf{f}_{i} are basis vectors. Let β be the coordinate that refers to \mathbf{F}.
2. Compute $\mathbf{B}_{s}=\mathbf{B} / \beta$.
3. For each \mathbf{f}_{i} compute: $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor \mathbf{B}_{s}$.

FastFactorization Algorithm

Algorithm FastFactorization(B):
Let \mathbf{B} be a k-blade, with $1<k<n$.
The algorithm computes a factorization
$\mathbf{B}=\beta \mathbf{b}_{1} \wedge \mathbf{b}_{2} \wedge \ldots \wedge \mathbf{b}_{k}$, where β is a scalar:

1. Find the basis blade $\mathbf{F}=\mathbf{f}_{1} \wedge \mathbf{f}_{2} \wedge \ldots \wedge \mathbf{f}_{k}$ to which the absolute largest coordinate of \mathbf{B} refers. The \mathbf{f}_{i} are basis vectors. Let β be the coordinate that refers to \mathbf{F}.
2. Compute $\mathbf{B}_{s}=\mathbf{B} / \beta$.
3. For each \mathbf{f}_{i} compute: $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor \mathbf{B}_{s}$.

Because the k vectors \mathbf{b}_{i} are linearly independent and all contained in \mathbf{B}, they must form a factorization of \mathbf{B}_{s}.

FastFactorization 'Proof'

(The full proof in the paper).
Again, suppose our input blade is:
$\mathbf{B}=1.0 \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}-0.5 \mathbf{e}_{1} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}+0.25 \mathbf{e}_{2} \wedge \mathbf{e}_{3} \wedge \mathbf{e}_{4}-0.75 \mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{4}$.
Then $\mathbf{F}=\mathbf{e}_{1} \wedge \mathbf{e}_{2} \wedge \mathbf{e}_{3}$, and the factors are:

$$
\begin{array}{llll}
\mathbf{b}_{1} & =1.0 \mathbf{e}_{1} & +0.25 \mathbf{e}_{4}, \\
\mathbf{b}_{2} & = & 1.0 \mathbf{e}_{2} & +0.5 \mathbf{e}_{4}, \\
\mathbf{b}_{3} & = & 1.0 \mathbf{e}_{3} & -0.75 \mathbf{e}_{4} .
\end{array}
$$

The diagonal typesetting of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ should make it obvious that the \mathbf{b}_{i} are linearly independent.

FastFactorization Code Generation

We used code generation to implement FastFactorization.
One function was generated for each valid combination of basis blade and grade.

Example of a generated function:

```
void factorE234grade3(const float *B, float **b) \{
    \(\mathrm{b}[2][0]=\mathrm{B}[0]\);
    \(\mathrm{b}[1][0]=-\mathrm{B}[1]\);
    \(\mathrm{b}[0][0]=\mathrm{B}[2]\);
    \(\mathrm{b}[0][1]=\mathrm{b}[1][2]=\mathrm{b}[2][3]=\mathrm{B}[3]\);
    \(\mathrm{b}[2][4]=\mathrm{B}[6]\);
    \(\mathrm{b}[1][4]=-\mathrm{B}[8] ;\)
    \(\mathrm{b}[0][4]=\mathrm{B}[9] ;\)
    \(\mathrm{b}[0][2]=\mathrm{b}[0][3]=\mathrm{b}[1][1]=\mathrm{b}[1][3]=\mathrm{b}[2][1]=\mathrm{b}[2][2]=0.0 \mathrm{f} ;\)
\}
```


FastFactorization Implementation

The full FastFactorization implementation amounts to:

- Filter out trivial special cases (hand written).
- Find largest coordinate / basis blade (hand written).
- Call the appropriate factorization function (generated) via a lookup table .

FastFactorization Benchmarks

Benchmark: Factorize millions of random blades.
Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.

n	3	4	5	6
factorizations per second	15 M	9.2 M	5.2 M	2.8 M
relative to O.P.	$5.1 \times$	$5.1 \times$	$3.4 \times$	$3.8 \times$

The Join (and the Meet)

UNIVERSITEIT
VAN
AMSTERDAM

The join $\mathbf{A} \cup \mathbf{B}$ is the union of \mathbf{A} and \mathbf{B}.
The join is a non-linear product, for example in general $\mathbf{A} \cup(\mathbf{B}+\mathbf{C}) \neq \mathbf{A} \cup \mathbf{B}+\mathbf{A} \cup \mathbf{C}$.

The Join (and the Meet)

The join $\mathbf{A} \cup \mathbf{B}$ is the union of \mathbf{A} and \mathbf{B}.
The join is a non-linear product, for example in general $\mathbf{A} \cup(\mathbf{B}+\mathbf{C}) \neq \mathbf{A} \cup \mathbf{B}+\mathbf{A} \cup \mathbf{C}$.

The meet $\mathbf{A} \cap \mathbf{B}$ can be (most?) efficiently computed from the join using $\left.\left.\mathbf{A} \cap \mathbf{B}=(\mathbf{B}\rfloor(\mathbf{A} \cup \mathbf{B})^{-1}\right)\right\rfloor \mathbf{A}$.

The Join, Meet and Delta Product Illustrated

$$
\begin{aligned}
& \mathrm{A}=\mathrm{a}_{1} \wedge \mathrm{a}_{2} \wedge \mathrm{c} \\
& \mathrm{~B}=\mathrm{c} \wedge \mathrm{~b}_{1}
\end{aligned}
$$

$$
A \cup B \stackrel{a_{1}, a_{2}}{a_{2}}
$$

$$
\frac{a_{1}, a_{2}}{A C}, b_{1}
$$

$a_{1} a_{2} \square b_{1}$
 $A \Delta B$

The FastJoin Algorithm

UNIVERSITEIT
VAN
AMSTERDAM

Algorithm FastJoin $(\mathbf{A}, \mathbf{B}, \epsilon)$:

1. Filter out trivial cases.

The FastJoin Algorithm

UNIVERSITEIT
VAN
AMSTERDAM

Algorithm FastJoin(A, B, ϵ):

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.

The FastJoin Algorithm

UNIVERSITEIT
VAN

Algorithm FastJoin(A, B, ϵ):

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.

The FastJoin Algorithm

Algorithm FastJoin(A, B, ϵ):

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.
4. Find the largest basis blade term \mathbf{F} in \mathbf{B}.

The FastJoin Algorithm

Algorithm FastJoin(A, B, ϵ):

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.
4. Find the largest basis blade term \mathbf{F} in \mathbf{B}.
5. While grade $(\mathbf{J}) \neq n$ and not all basis vectors \mathbf{f}_{i} in \mathbf{F} have been tried:

The FastJoin Algorithm

Algorithm FastJoin(A, B, ϵ):

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.
4. Find the largest basis blade term \mathbf{F} in \mathbf{B}.
5. While grade $(\mathbf{J}) \neq n$ and not all basis vectors \mathbf{f}_{i} in \mathbf{F} have been tried:
(a) Take basis vector \mathbf{f}_{i} in \mathbf{F} which has not been tried yet.

The FastJoin Algorithm

Algorithm FastJoin(A, B, ϵ):

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.
4. Find the largest basis blade term \mathbf{F} in \mathbf{B}.
5. While grade $(\mathbf{J}) \neq n$ and not all basis vectors \mathbf{f}_{i} in \mathbf{F} have been tried:
(a) Take basis vector \mathbf{f}_{i} in \mathbf{F} which has not been tried yet.
(b) Compute $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor$ B.

The FastJoin Algorithm

Algorithm FastJoin(A, B, ϵ):

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.
4. Find the largest basis blade term \mathbf{F} in \mathbf{B}.
5. While grade $(\mathbf{J}) \neq n$ and not all basis vectors \mathbf{f}_{i} in \mathbf{F} have been tried:
(a) Take basis vector \mathbf{f}_{i} in \mathbf{F} which has not been tried yet.
(b) Compute $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor \mathbf{B}$.
(c) Compute $\mathbf{H}=\mathbf{J} \wedge \operatorname{unit}\left(\mathbf{b}_{i}\right)$.

The FastJoin Algorithm

Algorithm FastJoin $(\mathbf{A}, \mathbf{B}, \epsilon)$:

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.
4. Find the largest basis blade term \mathbf{F} in \mathbf{B}.
5. While grade $(\mathbf{J}) \neq n$ and not all basis vectors \mathbf{f}_{i} in \mathbf{F} have been tried:
(a) Take basis vector \mathbf{f}_{i} in \mathbf{F} which has not been tried yet.
(b) Compute $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor \mathbf{B}$.
(c) Compute $\mathbf{H}=\mathbf{J} \wedge \operatorname{unit}\left(\mathbf{b}_{i}\right)$.
(d) If $(\|\mathbf{H}\| \geq \epsilon)$ set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{H})$.

The FastJoin Algorithm

Algorithm FastJoin $(\mathbf{A}, \mathbf{B}, \epsilon)$:

1. Filter out trivial cases.
2. Swap \mathbf{A} and \mathbf{B} such that grade $(\mathbf{A}) \geq \operatorname{grade}(\mathbf{B})$.
3. Set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{A})$.
4. Find the largest basis blade term \mathbf{F} in \mathbf{B}.
5. While grade $(\mathbf{J}) \neq n$ and not all basis vectors \mathbf{f}_{i} in \mathbf{F} have been tried:
(a) Take basis vector \mathbf{f}_{i} in \mathbf{F} which has not been tried yet.
(b) Compute $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor \mathbf{B}$.
(c) Compute $\mathbf{H}=\mathbf{J} \wedge \operatorname{unit}\left(\mathbf{b}_{i}\right)$.
(d) If $(\|\mathbf{H}\| \geq \epsilon)$ set $\mathbf{J} \leftarrow \operatorname{unit}(\mathbf{H})$.
6. Return J.

Limitations of the FastJoin Algorithm

Limitations of the FastJoin algorithm:

- Grade stability.

Limitations of the FastJoin Algorithm

Universiteit
VAN
AMSTERDAM

Limitations of the FastJoin algorithm:

- Grade stability.
- Numerical stability.

Limitations of the FastJoin Algorithm

Limitations of the FastJoin algorithm:

- Grade stability.
- Numerical stability.

The StableFastJoin algorithm (next slide) solves both problems.

Limitations of the FastJoin Algorithm

Limitations of the FastJoin algorithm:

- Grade stability.
- Numerical stability.

The StableFastJoin algorithm (next slide) solves both problems.

The delta product Δ (geometric symmetric difference) is used:

$$
\operatorname{grade}(\mathbf{A} \cup \mathbf{B})=\frac{\operatorname{grade}(\mathbf{A})+\operatorname{grade}(\mathbf{B})+\operatorname{grade}(\mathbf{A} \Delta \mathbf{B})}{2} .
$$

The StableFastJoin Algorithm

UnIVERSITEIT
VAN

Algorithm StableFastJoin $(\mathbf{A}, \mathbf{B}, \epsilon, \delta)$:
Start with steps 1-5 of $\operatorname{FastJoin}(\mathbf{A}, \mathbf{B}, \epsilon)$.

The StableFastJoin Algorithm

UNIVERSITEIT
VAN

Algorithm StableFastJoin(A, B, $\epsilon, \delta)$:
Start with steps 1-5 of $\operatorname{FastJoin}(\mathbf{A}, \mathbf{B}, \epsilon)$.
6. If $(\operatorname{grade}(\mathbf{J})=n)$
or $(\operatorname{grade}(\mathbf{J})=\operatorname{grade}(\mathbf{A})+\operatorname{grade}(\mathbf{B}))$, return J. Otherwise:

The StableFastJoin Algorithm

Algorithm StableFastJoin(A, B, $\epsilon, \delta)$:
Start with steps 1-5 of FastJoin (A, B, ϵ).
6. If $(\operatorname{grade}(\mathbf{J})=n)$
or $(\operatorname{grade}(\mathbf{J})=\operatorname{grade}(\mathbf{A})+\operatorname{grade}(\mathbf{B}))$, return J. Otherwise:
7. Compute grade $(\mathbf{A} \cup \mathbf{B})$ using the delta product.

The StableFastJoin Algorithm

Algorithm StableFastJoin($\mathbf{A}, \mathbf{B}, \epsilon, \delta)$:
Start with steps 1-5 of FastJoin(A, B, ϵ).
6. If $(\operatorname{grade}(\mathbf{J})=n)$
or $(\operatorname{grade}(\mathbf{J})=\operatorname{grade}(\mathbf{A})+\operatorname{grade}(\mathbf{B}))$, return J. Otherwise:
7. Compute grade $(\mathbf{A} \cup \mathbf{B})$ using the delta product.
8. While $(\operatorname{grade}(\mathbf{J})<\operatorname{grade}(\mathbf{A} \cup \mathbf{B}))$
(a) For all valid i, compute $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor \mathbf{B}$.

Set \mathbf{b}_{m} to that \mathbf{b}_{i} which leads to the largest $\left\|\mathbf{J} \wedge \mathbf{b}_{i}\right\|$.
(b) Update $\mathbf{J} \leftarrow \mathbf{J} \wedge \mathbf{b}_{m}$.

The StableFastJoin Algorithm

Algorithm StableFastJoin(A, B $, \epsilon, \delta)$:
Start with steps 1-5 of FastJoin(A, B, ϵ).
6. If $(\operatorname{grade}(\mathbf{J})=n)$
or $(\operatorname{grade}(\mathbf{J})=\operatorname{grade}(\mathbf{A})+\operatorname{grade}(\mathbf{B}))$, return J. Otherwise:
7. Compute grade $(\mathbf{A} \cup \mathbf{B})$ using the delta product.
8. While $(\operatorname{grade}(\mathbf{J})<\operatorname{grade}(\mathbf{A} \cup \mathbf{B}))$
(a) For all valid i, compute $\left.\left.\mathbf{b}_{i}=\left(\mathbf{f}_{i}\right\rfloor \mathbf{F}^{-1}\right)\right\rfloor \mathbf{B}$.

Set \mathbf{b}_{m} to that \mathbf{b}_{i} which leads to the largest $\left\|\mathbf{J} \wedge \mathbf{b}_{i}\right\|$.
(b) Update $\mathbf{J} \leftarrow \mathbf{J} \wedge \mathbf{b}_{m}$.
9. Return J.

FastJoin Implementation

Universiteit
VAN

Code generation is used to generate the core of FastJoin. Example of a generated function (step $5 \mathrm{~b} / 5 \mathrm{c}$ of algorithm):

```
void factorAndOuterProductE35G3(const float *], const float *B, float *H) {
    H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
    H[1] = J[6] * B[5] - J[5] * B[6];
    H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
    H[3] = J[9] * B[5] - J[5] * B[9];
    H[4] = J[9] * B[6] - J[6] * B[9];
    return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}
```


FastJoin Implementation

Universiteit
VAN
AMSTERDAM

Code generation is used to generate the core of FastJoin. Example of a generated function (step 5b/5c of algorithm):

```
void factorAndOuterProductE35G3(const float *], const float *B, float *H) {
    H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
    H[1] = J[6] * B[5] - J[5] * B[6];
    H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
    H[3] = J[9] * B[5] - J[5] * B[9];
    H[4] = J[9] * B[6] - J[6] * B[9];
    return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}
```

Implementation of the delta product is optimized using code generation and lazy evaluation.

FastJoin Implementation

Code generation is used to generate the core of FastJoin. Example of a generated function (step $5 \mathrm{~b} / 5 \mathrm{c}$ of algorithm):

```
void factorAndOuterProductE35G3(const float *], const float *B, float *H) {
    H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
    H[1] = J[6] * B[5] - J[5] * B[6];
    H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
    H[3] = J[9] * B[5] - J[5] * B[9];
    H[4] = J[9] * B[6] - J[6] * B[9];
    return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}
```

Implementation of the delta product is optimized using code generation and lazy evaluation.

The approach is limited to 6-D due to code size!
Above 6-D a conventional (hand-written) approach can be used (about $2 \times$ slower).

FastJoin Benchmarks

Benchmark: Compute the join of millions of random blades. Pairs of blades were generated such that they shared a common factor of a random grade.

Used one CPU on a Core2Duo 1.83Ghz. Compiled using VS2005.

FastJoin Benchmarks

Benchmark: Compute the join of millions of random blades. Pairs of blades were generated such that they shared a common factor of a random grade.

Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.

n	3	4	5	6
FastJoin (absolute)	7.4 M	5.4 M	3.1 M	1.8 M
FastJoin (relative)	$9.8 \times$	$8.7 \times$	$5.8 \times$	$6.4 \times$
StableFastJoin (absolute)	7.4 M	5.2 M	2.6 M	1.6 M
StableFastJoin (relative)	$9.8 \times$	$9.1 \times$	$7.0 \times$	$6.8 \times$
Gram-Schmidt (relative)	$12 \times$	$12 \times$	$7.9 \times$	$8.0 \times$

The Meet

The meet can be directedly computed by factorizing the dual of the delta product.

The Meet

UNIVERSITEIT
VAN
AMSTERDAM

The meet can be directedly computed by factorizing the dual of the delta product.

But:
-Expensive full evaluation of delta product is always required. -Generated code is larger.

Discussion / Summary

Universiteit
VAN
Amsterdam

- Fastest possible factorization algorithm?

Discussion / Summary

Universiteit
VAN
Amsterdam

- Fastest possible factorization algorithm?
- The join $10 \times$ faster and still numerically stable. Still some possibility for improvement.

Discussion / Summary

Universiteit
VAN
Amsterdam

- Fastest possible factorization algorithm?
- The join $10 \times$ faster and still numerically stable. Still some possibility for improvement.

