
UNIVERSITEIT

VAN

AMSTERDAM

Factorization, Join (and Meet) of Blades

Efficient algorithms for factorization of blades and
and computing the join of blades.

Daniel Fontijne
University of Amsterdam
fontijne@science.uva.nl

Factorization, Join (and Meet) of Blades – p. 1/20

UNIVERSITEIT

VAN

AMSTERDAM

Motivation

Blade factorization:Bk = b1 ∧ b2 ∧ . . . ∧ bk.

Factorization, Join (and Meet) of Blades – p. 2/20

UNIVERSITEIT

VAN

AMSTERDAM

Motivation

Blade factorization:Bk = b1 ∧ b2 ∧ . . . ∧ bk.

Applications of blade factorization:

• Conversion to other (LA-compatible) representations.

• As a building block of other algorithms.

Factorization, Join (and Meet) of Blades – p. 2/20

UNIVERSITEIT

VAN

AMSTERDAM

Motivation

Blade factorization:Bk = b1 ∧ b2 ∧ . . . ∧ bk.

Applications of blade factorization:

• Conversion to other (LA-compatible) representations.

• As a building block of other algorithms.

The join: A ∪B is the union ofA andB.

Factorization, Join (and Meet) of Blades – p. 2/20

UNIVERSITEIT

VAN

AMSTERDAM

Motivation

Blade factorization:Bk = b1 ∧ b2 ∧ . . . ∧ bk.

Applications of blade factorization:

• Conversion to other (LA-compatible) representations.

• As a building block of other algorithms.

The join: A ∪B is the union ofA andB.

Applications of thejoin:

• True union of subspaces.

• Computing themeet.

In my implementation thejoin is interwoven with factorization,
so factorization must be discussed first.

Factorization, Join (and Meet) of Blades – p. 2/20

UNIVERSITEIT

VAN

AMSTERDAM

Blade Representation

The algorithms in this talk are based on theadditive presentation.
Blades are represented as a sum of basis blades.

Example of basis for 3-D space:

{ 1
︸︷︷︸

grade 0

, e1, e2, e3
︸ ︷︷ ︸

grade 1

, e1 ∧ e2, e2 ∧ e3, e1 ∧ e3
︸ ︷︷ ︸

grade 2

, e1 ∧ e2 ∧ e3
︸ ︷︷ ︸

grade 3

}.

Factorization, Join (and Meet) of Blades – p. 3/20

UNIVERSITEIT

VAN

AMSTERDAM

Example of FastFactorization

Suppose our input blade is:

B = 1.0 e1∧e2∧e3−0.5 e1∧e3∧e4+0.25 e2∧e3∧e4−0.75 e1∧e2∧e4.

FastFactorization factorizes this to:

b1 = 1.0 e1 + 0.25 e4,

b2 = 1.0 e2 + 0.5 e4,

b3 = 1.0 e3 − 0.75 e4,

such thatB = b1 ∧ b2 ∧ b3.

Factorization, Join (and Meet) of Blades – p. 4/20

UNIVERSITEIT

VAN

AMSTERDAM

Example of FastFactorization

Suppose our input blade is:

B = 1.0 e1∧e2∧e3−0.5 e1∧e3∧e4+0.25 e2∧e3∧e4−0.75 e1∧e2∧e4.

FastFactorization factorizes this to:

b1 = 1.0 e1 + 0.25 e4,

b2 = 1.0 e2 + 0.5 e4,

b3 = 1.0 e3 − 0.75 e4,

such thatB = b1 ∧ b2 ∧ b3.

The coordinates of the factors are± the coordinates of the input
blade! How does this work?

Factorization, Join (and Meet) of Blades – p. 4/20

UNIVERSITEIT

VAN

AMSTERDAM

Basic Factorization Algorithm

Algorithm Factorization(B):

Factorization, Join (and Meet) of Blades – p. 5/20

UNIVERSITEIT

VAN

AMSTERDAM

Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis bladeF in the representation ofB.
I.e.,F = ei ∧ ej ∧ . . . ∧ ek.

Factorization, Join (and Meet) of Blades – p. 5/20

UNIVERSITEIT

VAN

AMSTERDAM

Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis bladeF in the representation ofB.
I.e.,F = ei ∧ ej ∧ . . . ∧ ek.

2. Project the basis vectors ofF ontoB.
Use orthogonal projection:bi = (eicB)cB−1.
Thebi will be independent.

Factorization, Join (and Meet) of Blades – p. 5/20

UNIVERSITEIT

VAN

AMSTERDAM

Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis bladeF in the representation ofB.
I.e.,F = ei ∧ ej ∧ . . . ∧ ek.

2. Project the basis vectors ofF ontoB.
Use orthogonal projection:bi = (eicB)cB−1.
Thebi will be independent.

3. Compute the scaleβ such thatB = β bi ∧ bj ∧ . . . ∧ bk.

Factorization, Join (and Meet) of Blades – p. 5/20

UNIVERSITEIT

VAN

AMSTERDAM

Basic Factorization Algorithm

Algorithm Factorization(B):

1. Find the largest basis bladeF in the representation ofB.
I.e.,F = ei ∧ ej ∧ . . . ∧ ek.

2. Project the basis vectors ofF ontoB.
Use orthogonal projection:bi = (eicB)cB−1.
Thebi will be independent.

3. Compute the scaleβ such thatB = β bi ∧ bj ∧ . . . ∧ bk.

This works but is a bit slow (in our implementation, 50× to
100× slower than a simple bilinear outer product).
→The projection is expensive!

Factorization, Join (and Meet) of Blades – p. 5/20

UNIVERSITEIT

VAN

AMSTERDAM

Orthogonal Projection Shortcut

B

a

a B

(a B) B-1

Factorization, Join (and Meet) of Blades – p. 6/20

UNIVERSITEIT

VAN

AMSTERDAM

Orthogonal Projection Shortcut

B

a

a B

(a B) B-1

Instead of doing a true projectionbi = (eicB)cB−1,
we do a ‘pseudo projection’ bi = (eicF)cB−1.

The pseudo projection is computationally cheap because it
amounts to simply selecting coordinates fromB.

Factorization, Join (and Meet) of Blades – p. 6/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Algorithm

Algorithm FastFactorization(B):

Factorization, Join (and Meet) of Blades – p. 7/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Algorithm

Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:

Factorization, Join (and Meet) of Blades – p. 7/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Algorithm

Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:

1. Find the basis bladeF = f1 ∧ f2 ∧ . . . ∧ fk to which the
absolute largest coordinate ofB refers. Thefi are basis
vectors. Letβ be the coordinate that refers toF.

Factorization, Join (and Meet) of Blades – p. 7/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Algorithm

Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:

1. Find the basis bladeF = f1 ∧ f2 ∧ . . . ∧ fk to which the
absolute largest coordinate ofB refers. Thefi are basis
vectors. Letβ be the coordinate that refers toF.

2. ComputeBs = B/β.

Factorization, Join (and Meet) of Blades – p. 7/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Algorithm

Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:

1. Find the basis bladeF = f1 ∧ f2 ∧ . . . ∧ fk to which the
absolute largest coordinate ofB refers. Thefi are basis
vectors. Letβ be the coordinate that refers toF.

2. ComputeBs = B/β.

3. For eachfi compute:bi = (ficF
−1)cBs.

Factorization, Join (and Meet) of Blades – p. 7/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Algorithm

Algorithm FastFactorization(B):

Let B be ak-blade, with1 < k < n.
The algorithm computes a factorization
B = β b1 ∧ b2 ∧ . . . ∧ bk, whereβ is a scalar:

1. Find the basis bladeF = f1 ∧ f2 ∧ . . . ∧ fk to which the
absolute largest coordinate ofB refers. Thefi are basis
vectors. Letβ be the coordinate that refers toF.

2. ComputeBs = B/β.

3. For eachfi compute:bi = (ficF
−1)cBs.

Because thek vectorsbi are linearly independent and all
contained inB, they must form a factorization ofBs.

Factorization, Join (and Meet) of Blades – p. 7/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization ‘Proof’

(The full proof in the paper).
Again, suppose our input blade is:

B = 1.0 e1∧e2∧e3−0.5 e1∧e3∧e4+0.25 e2∧e3∧e4−0.75 e1∧e2∧e4.

ThenF = e1 ∧ e2 ∧ e3, and the factors are:

b1 = 1.0 e1 + 0.25 e4,

b2 = 1.0 e2 + 0.5 e4,

b3 = 1.0 e3 − 0.75 e4.

The diagonal typesetting ofe1, e2, e3 should make it obvious
that thebi are linearly independent.

Factorization, Join (and Meet) of Blades – p. 8/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Code Generation

We used code generation to implementFastFactorization.

One function was generated for each valid combination of basis
blade and grade.

Example of a generated function:

void factorE234grade3(const float *B, float **b) {
 b[2][0] = B[0];
 b[1][0] = -B[1];
 b[0][0] = B[2];
 b[0][1] = b[1][2] = b[2][3] = B[3];
 b[2][4] = B[6];
 b[1][4] = -B[8];
 b[0][4] = B[9];
 b[0][2] = b[0][3] = b[1][1] = b[1][3] = b[2][1] = b[2][2] = 0.0f;
}

Factorization, Join (and Meet) of Blades – p. 9/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Implementation

The full FastFactorization implementation amounts to:

• Filter out trivial special cases (hand written).

• Find largest coordinate / basis blade (hand written).

• Call the appropriate factorization function (generated) via a
lookup table .

Factorization, Join (and Meet) of Blades – p. 10/20

UNIVERSITEIT

VAN

AMSTERDAM

FastFactorization Benchmarks

Benchmark: Factorize millions of random blades.

Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.

n 3 4 5 6

factorizations per second 15M 9.2M 5.2M 2.8M

relative to O.P. 5.1× 5.1× 3.4× 3.8×

Factorization, Join (and Meet) of Blades – p. 11/20

UNIVERSITEIT

VAN

AMSTERDAM

The Join (and the Meet)

The join A ∪B is the union ofA andB.

The join is a non-linear product, for example in general
A ∪ (B + C) 6= A ∪B + A ∪C.

Factorization, Join (and Meet) of Blades – p. 12/20

UNIVERSITEIT

VAN

AMSTERDAM

The Join (and the Meet)

The join A ∪B is the union ofA andB.

The join is a non-linear product, for example in general
A ∪ (B + C) 6= A ∪B + A ∪C.

Themeet A ∩B can be (most?) efficiently computed from the
join usingA ∩B = (Bc(A ∪B)−1)cA.

Factorization, Join (and Meet) of Blades – p. 12/20

UNIVERSITEIT

VAN

AMSTERDAM

The Join, Meet and Delta Product Illustrated

a
1

b
1

a
2

c
AUB

a
1

b
1

a
2

c

A

U

B

a
1

b
1

a
2

c

A

BA = a1^a2^c

B = c^b1

a
1

b
1

a
2

c

Factorization, Join (and Meet) of Blades – p. 13/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF

−1)cB.

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF

−1)cB.
(c) ComputeH = J ∧ unit(bi).

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF

−1)cB.
(c) ComputeH = J ∧ unit(bi).
(d) If (‖H‖ ≥ ε) setJ← unit(H).

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

The FastJoin Algorithm

Algorithm FastJoin(A,B, ε):

1. Filter out trivial cases.

2. SwapA andB such thatgrade(A) ≥ grade(B).

3. SetJ← unit(A).

4. Find the largest basis blade termF in B.

5. Whilegrade(J) 6= n and not all basis vectorsfi in F have
been tried:
(a) Take basis vectorfi in F which has not been tried yet.
(b) Computebi = (ficF

−1)cB.
(c) ComputeH = J ∧ unit(bi).
(d) If (‖H‖ ≥ ε) setJ← unit(H).

6. ReturnJ.

Factorization, Join (and Meet) of Blades – p. 14/20

UNIVERSITEIT

VAN

AMSTERDAM

Limitations of the FastJoin Algorithm

Limitations of theFastJoin algorithm:

• Grade stability.

Factorization, Join (and Meet) of Blades – p. 15/20

UNIVERSITEIT

VAN

AMSTERDAM

Limitations of the FastJoin Algorithm

Limitations of theFastJoin algorithm:

• Grade stability.

• Numerical stability.

Factorization, Join (and Meet) of Blades – p. 15/20

UNIVERSITEIT

VAN

AMSTERDAM

Limitations of the FastJoin Algorithm

Limitations of theFastJoin algorithm:

• Grade stability.

• Numerical stability.

TheStableFastJoin algorithm (next slide) solves both problems.

Factorization, Join (and Meet) of Blades – p. 15/20

UNIVERSITEIT

VAN

AMSTERDAM

Limitations of the FastJoin Algorithm

Limitations of theFastJoin algorithm:

• Grade stability.

• Numerical stability.

TheStableFastJoin algorithm (next slide) solves both problems.

Thedelta product∆ (geometric symmetric difference) is used:

grade(A ∪B) =
grade(A) + grade(B) + grade(A∆B)

2
.

Factorization, Join (and Meet) of Blades – p. 15/20

UNIVERSITEIT

VAN

AMSTERDAM

The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

Factorization, Join (and Meet) of Blades – p. 16/20

UNIVERSITEIT

VAN

AMSTERDAM

The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:

Factorization, Join (and Meet) of Blades – p. 16/20

UNIVERSITEIT

VAN

AMSTERDAM

The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:

7. Computegrade(A ∪B) using thedelta product.

Factorization, Join (and Meet) of Blades – p. 16/20

UNIVERSITEIT

VAN

AMSTERDAM

The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:

7. Computegrade(A ∪B) using thedelta product.

8. While(grade(J) < grade(A ∪B))

(a) For all validi, computebi = (ficF
−1)cB.

Setbm to thatbi which leads to the largest‖J ∧ bi‖.
(b) UpdateJ← J ∧ bm.

Factorization, Join (and Meet) of Blades – p. 16/20

UNIVERSITEIT

VAN

AMSTERDAM

The StableFastJoin Algorithm

Algorithm StableFastJoin(A,B, ε, δ):

Start with steps 1-5 ofFastJoin(A,B, ε).

6. If (grade(J) = n)
or (grade(J) = grade(A) + grade(B)),
returnJ. Otherwise:

7. Computegrade(A ∪B) using thedelta product.

8. While(grade(J) < grade(A ∪B))

(a) For all validi, computebi = (ficF
−1)cB.

Setbm to thatbi which leads to the largest‖J ∧ bi‖.
(b) UpdateJ← J ∧ bm.

9. ReturnJ.

Factorization, Join (and Meet) of Blades – p. 16/20

UNIVERSITEIT

VAN

AMSTERDAM

FastJoin Implementation

Code generation is used to generate the core ofFastJoin.
Example of a generated function (step 5b/5c of algorithm):

void factorAndOuterProductE35G3(const float *J, const float *B, float *H) {
 H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
 H[1] = J[6] * B[5] - J[5] * B[6];
 H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
 H[3] = J[9] * B[5] - J[5] * B[9];
 H[4] = J[9] * B[6] - J[6] * B[9];
 return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}

Factorization, Join (and Meet) of Blades – p. 17/20

UNIVERSITEIT

VAN

AMSTERDAM

FastJoin Implementation

Code generation is used to generate the core ofFastJoin.
Example of a generated function (step 5b/5c of algorithm):

void factorAndOuterProductE35G3(const float *J, const float *B, float *H) {
 H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
 H[1] = J[6] * B[5] - J[5] * B[6];
 H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
 H[3] = J[9] * B[5] - J[5] * B[9];
 H[4] = J[9] * B[6] - J[6] * B[9];
 return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}

Implementation of thedelta product is optimized using code
generation and lazy evaluation.

Factorization, Join (and Meet) of Blades – p. 17/20

UNIVERSITEIT

VAN

AMSTERDAM

FastJoin Implementation

Code generation is used to generate the core ofFastJoin.
Example of a generated function (step 5b/5c of algorithm):

void factorAndOuterProductE35G3(const float *J, const float *B, float *H) {
 H[0] = J[3] * B[5] - J[2] * B[6] + J[0] * B[9];
 H[1] = J[6] * B[5] - J[5] * B[6];
 H[2] = J[8] * B[5] - J[7] * B[6] - J[4] * B[9];
 H[3] = J[9] * B[5] - J[5] * B[9];
 H[4] = J[9] * B[6] - J[6] * B[9];
 return B[5] * B[5] + B[6] * B[6] + B[9] * B[9];
}

Implementation of thedelta product is optimized using code
generation and lazy evaluation.

The approach is limited to 6-D due to code size!
Above 6-D a conventional (hand-written) approach can be used
(about 2× slower).

Factorization, Join (and Meet) of Blades – p. 17/20

UNIVERSITEIT

VAN

AMSTERDAM

FastJoin Benchmarks

Benchmark: Compute thejoin of millions of random blades.
Pairs of blades were generated such that they shared a common
factor of a random grade.

Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.

Factorization, Join (and Meet) of Blades – p. 18/20

UNIVERSITEIT

VAN

AMSTERDAM

FastJoin Benchmarks

Benchmark: Compute thejoin of millions of random blades.
Pairs of blades were generated such that they shared a common
factor of a random grade.

Used one CPU on a Core2Duo 1.83Ghz.
Compiled using VS2005.

n 3 4 5 6

FastJoin (absolute) 7.4M 5.4M 3.1M 1.8M

FastJoin (relative) 9.8× 8.7× 5.8× 6.4×

StableFastJoin (absolute) 7.4M 5.2M 2.6M 1.6M

StableFastJoin (relative) 9.8× 9.1× 7.0× 6.8×

Gram-Schmidt (relative) 12× 12× 7.9× 8.0×

Factorization, Join (and Meet) of Blades – p. 18/20

UNIVERSITEIT

VAN

AMSTERDAM

The Meet

Themeet can be directedly computed by factorizing the dual of
thedelta product.

Factorization, Join (and Meet) of Blades – p. 19/20

UNIVERSITEIT

VAN

AMSTERDAM

The Meet

Themeet can be directedly computed by factorizing the dual of
thedelta product.

But:
-Expensive full evaluation ofdelta product is always required.
-Generated code is larger.

Factorization, Join (and Meet) of Blades – p. 19/20

UNIVERSITEIT

VAN

AMSTERDAM

Discussion / Summary

• Fastest possible factorization algorithm?

Factorization, Join (and Meet) of Blades – p. 20/20

UNIVERSITEIT

VAN

AMSTERDAM

Discussion / Summary

• Fastest possible factorization algorithm?

• The join 10× faster and still numerically stable. Still some
possibility for improvement.

Factorization, Join (and Meet) of Blades – p. 20/20

UNIVERSITEIT

VAN

AMSTERDAM

Discussion / Summary

• Fastest possible factorization algorithm?

• The join 10× faster and still numerically stable. Still some
possibility for improvement.

Factorization, Join (and Meet) of Blades – p. 20/20

	Factorization, Join (and Meet) of Blades
	Motivation
	Motivation
	Motivation
	Motivation

	Blade Representation
	Example of FastFactorization
	Example of FastFactorization

	Basic Factorization Algorithm
	Basic Factorization Algorithm
	Basic Factorization Algorithm
	Basic Factorization Algorithm
	Basic Factorization Algorithm

	Orthogonal Projection Shortcut
	Orthogonal Projection Shortcut

	FastFactorization Algorithm
	FastFactorization Algorithm
	FastFactorization Algorithm
	FastFactorization Algorithm
	FastFactorization Algorithm
	FastFactorization Algorithm

	FastFactorization `Proof'
	FastFactorization Code Generation
	FastFactorization Implementation
	FastFactorization Benchmarks
	The Join (and the Meet)
	The Join (and the Meet)

	The Join, Meet and Delta Product Illustrated
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm
	The FastJoin Algorithm

	Limitations of the FastJoin Algorithm
	Limitations of the FastJoin Algorithm
	Limitations of the FastJoin Algorithm
	Limitations of the FastJoin Algorithm

	The StableFastJoin Algorithm
	The StableFastJoin Algorithm
	The StableFastJoin Algorithm
	The StableFastJoin Algorithm
	The StableFastJoin Algorithm

	FastJoin Implementation
	FastJoin Implementation
	FastJoin Implementation

	FastJoin Benchmarks
	FastJoin Benchmarks

	The Meet
	The Meet

	Discussion / Summary
	Discussion / Summary
	Discussion / Summary

