
Tutorial:

Structure Preserving Representation

of Euclidean Motions through

Conformal Geometric Algebra

Leo Dorst (L.Dorst@uva.nl)
Intelligent Systems Laboratory, Informatics Institute,
University of Amsterdam, The Netherlands

Tutorial AGACSE 2008, Grimma near Leipzig, Germany

0

1 Structural Aspects of a Language for Geometry

� primitives: points, lines, planes, circles, spheres, tangents

� constructions: connections, intersections, orthogonal complement, duality

� motions: translations, rotations, reflection, projection

� properties: size, location, orientation, cross ratio

� numerics: approximation, estimation, linearization

Motions are at the basis of geometry (Klein), structure preservation:

Constructions and properties of primitives should be covariant under motions.

Example: covariant intersection.

line Λ, plane Π
intersect−−−−→ point Λ ∩ Π

motion

y ymotion

line Λ′, plane Π′
intersect−−−−→ Λ′ ∩ Π′ = (Λ ∩ Π)′

Not automatic in standard linear algebra!

(This example would be M ker(span(Λ,Π)>) = ker(span(M−>Λ,M−>Π)>) in hom. coordinates.)

1

2 An Example: Reflection of a Rotating Circle

FIG(1,1)

� construction of a circle: C = c1 ∧ c2 ∧ c3

� rotation: C 7→ RC/R

� line representation: L = p1 ∧ p2 ∧ e∞ = p1 ∧ u ∧ e∞
� rotation around line: R = exp(φL∗/2)

� dual plane representation: π = p · (n ∧ e∞)

� plane reflection: X 7→ −πX/π (for any odd-D X)

� logarithms of motions: R1/n = exp(log(R)/n)

Note that all is specified directly in terms of the geometric elements, and some algebraic opera-

tions (∧, , /, exp, log, ∗, ·, fortunately all reducible to one fundamental product).

No coordinates at all in the language (just in the data).

Most figures from Geometric Algebra for Computer Science ©Morgan-Kaufmann 2007.

For the demos: type FIG(i,j) in GAViewer, downloadable at www.geometricalgebra.net.

2

3 Implementation Matches the Algebra (here Gaigen2)

// p1, p2, c1, c2, c3, pt are points
line L; circle C; dualPlane p; vector n;

L = unit_r(p1 ^ p2 ^ ni);
C = c1 ^ c2 ^ c3;
p = pt << (n^ni);

draw(L); draw(C); draw(p);

draw(- p * L * inverse(p)); // draw reflected line (magenta)
draw(- p * C * inverse(p)); // draw reflected circle (blue)

// compute rotation versor:
const float phi = (float)(M_PI / 2.0);
TRversor R;
R = exp(0.5f * phi * dual(L));

draw(R * C * inverse(R)); // draw rotated cicle (green)
draw(-p * R * C * inverse(R) * inverse(p)); // draw reflected, rotated circle (blue)

// draw interpolated circles
pointPair LR = log(R); // get log of R
for (float alpha = 0; alpha < 1.0; alpha += 0.1f)
{
TRversor iR;
iR = exp(alpha * LR); // compute interpolated rotor

draw(iR * C * inverse(iR)); // draw rotated circle (light green)
draw(-p * iR * C * inverse(iR) * inverse(p)); // draw reflected, rotated circle (light blue)

}

3

4 By Contrast, the Example in Linear Algebra

� construction of a circle: none, treat the points separately.

� rotation: by 4× 4 homogeneous coordinate matrix
[[

R (I− R)t
0T 1

]]
acting on points (x, 1)T .

� line representation:

– as (position vector, direction vector)-pair (p,u); each component moves differently.

– as the kernel of two homogeneous plane equations: [[π1, π2]]T

– using 6D Plücker coordinates: {u,p× u}.

� rotation around line: [[R]] = uuT + cosφ ([[1]]− uuT) + sinφ [[u×]], then move into place.

� dual plane representation: π = [n,−p · n]

� plane reflection: Use point reflection [[P]] =

[[
I− 2nnT 2δn

0T 1

]]
. On planes as [[P]]−T , on Plücker

lines as more involved 6× 6 matrix.

� interpolation of general rotation: non-elementary (done by specialized logarithm of matrix).

Linear algebra code typically consists of such coordinate tricks, applied to the points.

No direct circle rotation, or line reflection, or rotation generation at basic level.

4

5 The Six Tricks of Conformal Geometric Algebra

Consider Euclidean geometry not as a specific projective geometry, but as conformal geometry.

Embed Rn isometrically into Rn+1,1. Then we get a unification of techniques:

FIG(16,3)

1. Through the isometric embedding, conformal transformations of

Rn are represented as orthogonal transformations of Rn+1,1.

2. We represent orthogonal transformations as multiple reflections,

and those using the geometric product of Clifford algebra as ver-

sors (‘spinors’), which preserve structure.

3. We automatically get a non-metric outer product ∧ as construc-

tor for geometric primitives (points, lines, planes, spheres, circles,

tangent vectors, directions etc). This gives structure.

4. We automatically get duality, providing and quantitative inter-

sections and a metric inner product · to do projections.

5. Versors as exponentials of bivectors give the Lie algebra of mo-

tions. Logarithms then permit interpolation.

6. Efficient implementation uses the structural coherence to build a

CGA compiler by automatic code generation.

5

6 Trick 1a: Euclidean Point Representation in Rn+1,1 (CGA)

FIG(14,3): point

FIG(14,4): circle

FIG(14,6): circle meet

Represent point with 3D Euclidean position vector x

in the 5D Minkowski space R4,1 as a ray vector:

x ∼ eo + x + 1
2‖x‖

2e∞

where eo is the standard point at the origin, x the

Euclidean ‘position vector’, e∞ is the point at infinity.

Basically, like two extra homogeneous coordinates:

x ∼ (1,x, 1
2‖x‖

2)T

on the 5D basis {eo, e1, e2, e3, e∞}.

6

7 Trick 1b: Inner Product Represents Squared Euclidean Distance

Metric of the representation space Rn+1,1 is Minkowski. Switch to preferred basis:

· x e+ e−

x ‖x‖2 0 0

e+ 0 1 0

e− 0 0 -1

eo = 1
2(e− + e+)

e∞ = e− − e+

⇐⇒

· eo x e∞

eo 0 0 −1

x 0 ‖x‖2 0

e∞ −1 0 0

n̄ = −eo

n = 2e∞
⇐⇒

(Lasenby’s)

· n̄ x n

n̄ 0 0 2

x 0 ‖x‖2 0

n 2 0 0

Now look what happens between two unit-weight points:

x · y = (eo + x + 1
2‖x‖

2 e∞) · (eo + y + 1
2‖y‖

2 e∞)

= (0 + 0− 1
2‖y‖

2) + (0 + x · y + 0) + (−1
2‖x‖

2 + 0 + 0)

= −1
2‖x− y‖2

Weird metric, nice trick: linearization of a squared distance.

The inner product in the representation space gives the squared Euclidean distance!

Therefore, Euclidean motions are represented by orthogonal transformations.

7

8 Inner Product Represents Squared Euclidean Distance (the Small Print)

Actually, the Euclidean distance corresponds to the inner product of unit weight vectors of the form

x = eo+x+ 1
2‖x‖

2e∞. Any multiple αx represents a point at the same location, but with a different

weight. For the general distance formula, we need to normalize the weight to unity:

−1
2dE(P,Q)2 =

(
p

−e∞ · p

)
·
(

q

−e∞ · q

)
.

So Euclidean motions have to preserve

� the inner product (they are orthogonal transformations),

� the point at infinity e∞.

The reason for the name ‘conformal model’ or Conformal Geometric Algebra (CGA) is:

Orthogonal transformations of Rn+1,1 represent conformal transformations of Rn.

Conformal transformations generally preserve angles; for example, an isotropic scaling.

That is the context of Euclidean motions in this model. In homogeneous coordinates, the con-

text was projective transformations. We don’t have those in the conformal model.

8

9 Bonus: Vectors in Rn+1,1 Represent Spheres and Planes in Rn

� general vectors of Rn+1,1 are oriented, weighted (dual) spheres in Rn:

d2
E(X,C) = ρ2 ⇔ x · c = −1

2ρ
2 ⇔ x · (c− 1

2ρ
2e∞) = 0

Squared norm gives radius: (c− 1
2ρ

2e∞) · (c− 1
2ρ

2e∞) = ρ2.

For ‘imaginary’ spheres, this is negative (so they are included!).

Points are (dual) spheres of zero radius.

� oriented, weighted (dual) planes of Rn are vectors in Rn+1,1 without eo-component:

d2
E(X,A) = d2

E(X,B) ⇔ x · a = x · b ⇔ x · (a− b) = 0

Note that the eo-component satisfies e∞ · (a− b) = 0.

(Geometrically, this means that the point at infinity

is on all planes.) General dual plane is of the form

n + δ e∞, with n ∈ Rn.

9

10 Trick 2: Geometric Reflections as Algebraic Sandwiching

FIG(7,1)

Reflection in an origin plane with unit normal a

x 7→ x− 2(x · a) a/‖a‖2 (classic LA).

Now consider the dot product as the symmetric part of a

more fundamental geometric product:

x · a = 1
2(x a + a x).

Then rewrite:

x 7→ x− (x a + a x) a/‖a‖2 (GA product)

= −a x a−1

with the geometric inverse of a vector: a−1 = a/‖a‖2.

Inverse works because

a−1 a = a a/‖a‖2 = 1
2(a a + a a)/‖a‖2 = a · a/‖a‖2 = 1.

10

11 Bonus: Structural Transfer: Reflection Applied to Point

We should reflect the point x itself, rather than merely its Euclidean part x:

x 7→ − a x a−1.

Try structural transfer to CGA:

position x
normal vector−−−−−−−→ a

as reflector−−−−−−→ position −a x a−1

embed in CGA

y embed in CGA

y embed in CGA

y
point x

origin plane−−−−−−→ a
as reflector−−−−−−→ point −ax a−1

Use linearity of the geometric product:

x
?7→ −ax a−1

= −a (eo + x + 1
2‖x‖

2e∞) a−1

= −a eo a−1 − a x a−1 − 1
2‖x‖

2a e∞ a−1.

Now use 0 = a · eo = 1
2(a eo + eo a) so that −a eo = eo a, same for e∞. And ‖x‖2 = ‖ − a x a−1‖2.

x
?7→ eo a a−1 − a x a−1 + 1

2‖x‖
2e∞ a a−1

= eo − a x a−1 + 1
2‖x‖

2e∞
!
= eo − a x a−1 + 1

2‖ − a x a−1‖2e∞

So indeed a conformal point at the reflected location. Automatic in the algebra.

11

12 Bonus: Orthogonal Transformations as Versors

FIG(7,2)

A reflection in two successive origin planes a and b:

x 7→ −b (−a x a−1) b−1

= (b a) x (b a)−1

So a rotation is represented by the geometric product

of two vectors b a, also an element of the algebra.

(Actually, in 3D these are quaternions.)

Multiple reflections are the fundamental representation for operators in GA:

The geometric product of vectors is called a versor.

It acts as an orthogonal transformation by sandwiching.

As we will see, versors are structure-preserving.

(It is common to use normalized versors and call those rotors.)

12

13 The Fundamental Geometric Product

Take a real metric vector space Rn with inner product · : Rn × Rn 7→ R.

Define the geometric product through:

� associative: X (Y Z) = (X Y)Z.

� linear: X (αY + βZ) = αX Y + β X Z.

� vectors have scalar square: x x = x · x.

That’s all, mathematically. Not necessarily commutative.

Starting from vectors in Rn, one generates the geometric algebra of a 2n-dimensional dimensional

multivector space, sometimes denoted Rn.

Alternatively, define the Clifford algebra as the quotient of a tensor algebra on the metric space

(V,Q) with the two-sided ideal of x ⊗ x − Q(x,x). If you’re a mathematician, you will probably

find this enlightening and reassuring.

13

14 3D Geometric Product of Vectors Expressed in Coordinates

Introduce coordinates on orthonormal basis{e1, e2, e3}. Note that

1 = e1 · e1 = 1
2(e1 e1 + e1 e1), so e1 e1 = 1.

0 = e1 · e2 = 1
2(e1 e2 + e2 e1), so e1 e2 = −e2 e1.

Then for x = x1e1 + x2e2 + x3e3, and y = y1e1 + y2e2 + y3e3, we get:

x y = x1y1 + x2y2 + x3y3 + (x2y3 − y2x3) e2 e3 + (x3y1 − y3x1) e3 e1 + (x1y2 − y1x2) e1 e2

= (x · y) + (x× y) (e3 e2 e1).

In 3D, recognizable classical products. But mixed ‘grades’: scalars and e1 e2-elements!

The elements e1 e2 etc. have the special property (e1 e2)2 = −1:

(e1 e2)2 = (e1 e2) (e1 e2) = e1 (e2 e1) e2) = −e1 (e1 e2) e2 = −(e1 e1) (e2 e2) = −1.

That is how complex numbers and quaternions are naturally embedded. Known to be handy for

rotations in 2D and 3D, and now also beyond.

14

15 Bonus: Vectors, Complex Numbers and Quaternions

� The full geometric algebra of the 2D plane involves:{
1︸︷︷︸

scalars

, e1, e2︸ ︷︷ ︸
vector space

, e1 e2︸︷︷︸
bivector space

}
Vectors are only half of this (‘the elements’).

Complex numbers of the form α + βe1 e2 are the other half (‘the operators’).

� The full geometric algebra of 3D space involves:{
1︸︷︷︸

scalars

, e1, e2, e3︸ ︷︷ ︸
vector space

, e1 e2, e2 e3, e3 e1︸ ︷︷ ︸
bivector space

, e1 e2 e3︸ ︷︷ ︸
trivector space

}
Vectors and determinants are only half of this (‘the elements’).

Quaternions of the form α + β1e2 e3 + β2e3 e1 + β3e1 e2 are the other half (‘the operators’).

(We will see that normal vectors of planes are bivectors divided by trivectors.)

You need a good representation that keeps elements and operators separate, yet makes them interact.

Characterizing elements as operators by singling out a special (real) axis is clumsy.

15

16 Trick 3: Constructing Elements by Anti-Symmetry

Skew-symmetric part of geometric product gives outer product (of Grassmann algebra):

x ∧ a = 1
2(x a− a x)

It is bilinear and associative. Use it to span oriented subspaces as Grassmannians of various grades

(dimensionality):

x ∧ (a1 ∧ · · · ∧ ak) = 0 ⇐⇒ x in span(a1, · · · , ak)
For instance, x = λ1 a1 + λ2 a2 is a vector in span(a1, a2), and we verify:

x ∧ (a1 ∧ a2) = λ1 a1 ∧ a1 ∧ a2 + λ2 a2 ∧ a1 ∧ a2

= λ1 (a1 ∧ a1) ∧ a2 − λ2 a1 ∧ (a2 ∧ a2) = 0 + 0 = 0.

{
1︸︷︷︸

scalars

, e1, e2, e3︸ ︷︷ ︸
vector space

, e1 ∧ e2, e2 ∧ e3, e3 ∧ e1︸ ︷︷ ︸
bivector space

, e1 ∧ e2 ∧ e3︸ ︷︷ ︸
trivector space

}

16

17 The Outer Product in the Conformal Model

The basic elements of Euclidean geometry are all represented as ∧-factorizable multivectors (‘blades’)

in CGA. They represent proper subspaces in the representational space, but are interpretable in the

Euclidean space by determining the point representatives on them.

FIG(14,4)

� Rounds: spheres, circles, point pairs

a ∧ b ∧ c ∧ d is an (oriented & weighted) sphere

passing orthogonally through 4 given spheres (or points), etc.

� Flats: planes, lines, flat points

a ∧ b ∧ c ∧ e∞ is an (oriented & weighted) plane

passing orthogonally through 3 given spheres (or points), etc.

� k-dimensional direction elements

B ∧ e∞ is a pure Euclidean k-space B, at infinity.

� k-dimensional tangents

eo ∧B is the tangent k-space B at the origin.

Soon: p · (p ∧B ∧ e∞) is the tangent k-space B at p.

17

18 Bonus: Dualization/Orthogonal Complement

There is also a dual representation of subspaces. It is obtained simply by dividing a blade X by the

volume blade In of the n-D vector space (aka the pseudoscalar).

X∗ ≡ X/In

If grade(X) = k, in n-D space, then grade(X∗) = n− k.

The dual of a direction vector a in 3D

is a 2-blade A of which a is the normal vector.

It allows switching between dual representation, and direct (i.e., primal) representation.

direct sphere representation: Σ = a ∧ b ∧ c ∧ d of grade 4, points satisfy x ∧ Σ = 0

←→
dual sphere representation: σ = m− 1

2ρ
2e∞ of grade 1, points satisfy x · σ = 0

18

19 Bonus: Intersection of Elements

The intersection (meet) of two subspaces is dually given as the product of the duals:

meet: (A ∩B)∗ = B∗ ∧ A∗.

with duality relative to the pseudoscalar of the smallest subspace containing A and B (their join).

FIG(14,6)

In CGA, the meet of course also applies

to the Euclidean elements.

Example: Intersection of Euclidean

circles in 2D is like the intersection

of their subspace blades, which are

general planes in the 4D conformal

model. That gives a line, on which their

are two point representatives. So two

circles meet in a point pair (possibly

imaginary).

19

20 Extra: Plunge of Elements (A New Operation)

Also, the orthogonal element operation (plunge) can be defined:

plunge: A ⊥ B = B∗ ∧ A∗.

It determines the subspace that hits A and B orthogonally. It is dual to the meet.

For three spheres, when one is real, the other is ‘imaginary’ (negative squared radius).

FIG(15,1)

20

21 Big Bonus: Euclid’s Elements Through Closure

By starting from spheres or planes dually represented as vectors, and making plunges and meets,

one gets the Euclidean menagerie.

� dual sphere: the vector σ = c− 1
2ρ

2e∞.

0 = x · σ = x · c− 1
2ρ

2x · e∞ = −1
2

(
(x− c)2 − ρ2

)
.

� dual plane: the vector π = n + δ e∞.

0 = x · π = x · n + δ x · e∞ = x · n− δ.

� dual circle at origin: the 2-blade K = σ0 ∧ π0 = (eo − 1
2ρ

2e∞) ∧ n.

0 = x · (σ0 ∧ π0) = (x · σ0) π0 − σ0 (x · π0).

� (primal) sphere: the 4-blade Σ = a ∧ b ∧ c ∧ d.

� line: the 3-blade L = a ∧ b ∧ e∞ = a ∧ u ∧ e∞.

� direction blade: the 3-blade E ∧ e∞ is a 2-direction.

� tangent vector: the 3-blade T = a · (a ∧ u ∧ e∞).

FIG(15,1)

21

22 Trick 4: The Inner Product

We can define the inner product (aka as the contraction) as dual to the outer product:

A ·B ≡ (A ∧B∗)−∗,

extending the dot product to blades. It is bilinear, but non-associative. It has properties like:

x · (a ∧ b) = (x · a) b− a (x · b).

Interpretation of the inner product

x ·B for direction blades:

the orthogonal complement of

x contained in B.

22

23 Consistency of Dual Sphere Representations

The 4-blade Σ = a ∧ b ∧ c ∧ d represents the sphere through the four points a, b, c, d.

DEMOspheres()

Σ = a ∧ b ∧ c ∧ d
= a ∧ (b− a) ∧ (c− a) ∧ (d− a)︸ ︷︷ ︸

dual meet of 3 midplanes

∝ a ∧ (m ∧ e∞)︸ ︷︷ ︸
flat center

∗

=
(
a · (m ∧ e∞)

)∗
=
(

(a ·m) e∞ − (a · e∞)m
)∗

= −(m− 1
2ρ

2e∞︸ ︷︷ ︸
dual sphere

)
∗

= σ−∗

So it is easy to determine center and radius of a sphere through 4 points:

they are the components of (a ∧ b ∧ c ∧ d)∗ (normalized).

23

24 Extra: Using the Inner Product for General Projections

CGA has a general projection operator, a structural generalization of x 7→ (x · a)/a:

ProjP (X) = (X · P)/P
(

= P−1 ∩ (X ∧ P−∗)
)
.

This meets P−1 with a Euclidean element X∧P−∗ ‘containing X and plunging into P orthogonally’.

DEMOprojection()

24

25 The Really Great Thing about CGA: Motions as Versors

Back to the motions. Make them through multiple reflections in the representative vectors of (dual)

planes and spheres.

� Translation: two parallel planes, t/2 apart.

Computation: (t + 1
2t · t e∞) t = t2 (1− t e∞/2).

translation versor: Tt = 1− t e∞/2

� Rotation at Origin: two intersecting planes, φ/2 apart.

Computation: (cos(φ/2)e1 + sin(φ/2)e2) e1 = cos(φ/2)− sin(φ/2) e1 ∧ e2.

rotation versor: RIφ = cos(φ/2)− sin(φ/2) I

� Uniform scaling at Origin: two concentric spheres.

Computation: (eo − 1
2ρ

2e∞) (eo − 1
2e∞) = −1

2

(
(1 + ρ2)− (1− ρ2)eo ∧ e∞

)
.

uniform scaling versor: Sγ = cosh(γ/2) + sinh(γ/2) eo ∧ e∞

� Transversion at Origin: two touching spheres of equal radius.

transversion versor: Vv = 1 + eo v

25

26 Big Bonus: Structure Preservation

Reflection of vector x in a plane with normal a is: x 7→ − a x a−1. If X is a product of vectors

xi, this extends to:

X 7→ (−a x1 a−1) (−a x2 a−1) · · · (−a xk a−1) = a X̂ a−1

with x̂ = (−1)dim(x) X, the ‘main involution’. Then distributes over ‘constructive’ products ∧ and

·, effectively weighted sums of geometric products:

B 7→ (−a b1 a−1) ∧ (−a b2 a−1) ∧ · · · (−a bk a−1) = (−1)ka
(
b1 ∧ b2 ∧ · · ·bk

)
a−1 = a B̂ a−1.

So
the sandwiching product is structure preserving.

Also preserved in multiple reflections, so now all motions are universally applicable to all geometric

elements using their versors:

V even : X 7→ V X V −1

V odd : X 7→ V X̂ V −1

This universality is very unlike the homogeneous coordinate approach, and enormously simplifies

software.

26

27 Transfer Principle for Reflection

For reflection x 7→ −a x a−1: transfer from direction vector to origin line to general line. Simultane-

ously, the dual origin plane becomes the general dual plane through the intersection point. Further

extension to inversion possible by conformal versor.

direction u
normal vector−−−−−−−→ a

as reflector−−−−−−−→ direction u− 2(u · a) a/‖a‖2)

embed in GA

y embed in GA

y embed in GA

y
direction u

normal vector−−−−−−−→ a
as reflector−−−−−−−→ direction u′ = −a u a−1

embed in CGA

y embed in CGA

y embed in CGA

y
origin line Λo = eo ∧ u ∧ e∞

dual plane−−−−−→ πo
as reflector−−−−−−−→ origin line Λ′o = −πo Λo π

−1
o

Euclidean versor

y Euclidean versor

y Euclidean versor

y
general line Λ = V Λo V

−1 dual plane−−−−−→ π
as reflector−−−−−−−→ general line Λ′ = −π Λ π−1

conformal versor

y conformal versor

y conformal versor

y
general circle K = V ΛV −1 dual sphere−−−−−−→ σ

as invertor−−−−−−−→ general circle K ′ = −σK σ−1

This all just holds by structure preservation, no need to prove anything!

27

28 Trick 5: The Bivector Representation of Even Versors

In a rotation, we have the rotation plane I and angle φ. What is the versor?

Versors were introduced through products of invertible vectors. But an even versor V can be

written as the exponential of a bivector B:

V = eB

The bivector specification often corresponds more directly to the geometry.

Example: rotation over φ in plane I through the origin as exponential:

R = cos(φ/2)− I sin(φ/2) = 1 + (−Iφ/2) + 1
2!(−Iφ/2)2 + · · · = e−Iφ/2,

since I2 = −1. We will show that a general 3D rotation with rotation line Λ is R = eΛ∗φ/2.

Example: translation over t:

T = 1− t ∧ e∞/2 = 1− t ∧ e∞/2 + 1
2!(−t ∧ e∞/2)2 + · · · = e−t∧e∞/2,

since (t ∧ e∞)2 = (t e∞)2 = t e∞ t e∞ = −t t e∞ e∞ = −t2 e2
∞ = 0.

28

29 Bonus: Transfer Principle to Make General Versors

Transfer principle for exponentially represented versors:

V exp(B)V −1 = V (1 + B + 1
2!BB + · · ·)V −1

= 1 + V B V −1 + 1
2!(V B V −1) (V B V −1) + · · ·

= exp(V B V −1).

Application: the conformal versor for rotation around an arbitrary unit line Λ, over φ.

2-blade I
exponentiate−−−−−−−→ ‘quaternion’ e−Iφ/2yrewrite using

Euclidean 3D duality

yrewrite using

Euclidean 3D duality

axial vector a = I?
exponentiate−−−−−−−→ ‘quaternion’ ea?φ/2yline in CGA

yline in CGA

origin line Λo = eo ∧ a ∧ e∞
exponentiate−−−−−−−→ conformal versor eΛ0

∗φ/2yEuclidean motion

yEuclidean motion

general line Λ = V Λo V
−1 exponentiate−−−−−−−→ conformal versor eΛ∗φ/2

The only thing to prove here is the duality transfer from 3D Euclidean to conformal:

Λo
∗ = (eo ∧ a ∧ e∞)∗ = (eo ∧ a ∧ e∞) (eo ∧ I−1

3 ∧ e∞) = a I−1
3 = a?.

29

30 Bonus: Logarithms of Motions Behave Linearly

Representing versors by bivectors

B = log(V),

permits geometric data processing, for bivectors are linear

and can therefore be averaged, interpolated, extrapolated, etc.

Logarithms for the similarity transformations (combinations of rotation, translation, scaling) are

now known (see book ‘GA for CS’). The general conformal logarithm is yet to be found.

30

31 Geometric Calculus and Extrapolation

The elements of geometric algebra can also be differentiated with respect to each other. This allows

for compact derivations of advanced results.

Perturbations are simple, and linear in B, involve commutator product (like Lie algebra):

e−δB/2X eδB/2 ≈ X + 1
2(X δB − δB X) ≡ X + X × δB.

First order treatment of second-order motions! Exact linearity, so apply linear data processing

methods with greatly extended functionality!

Example: Yellow mirror Π rotates φ around Λ,

where do reflected lines go?

In black: using first order bivector perturbation

(i.e., second order approximation of orbit), gives

rotation with versor

e−φ ((Λ·Π)/Π)∗,

i.e. turning around the projected line, with angle

2φ cos(Π,Λ).

FIG(13,7)

31

32 Trick 6: Implementation (Size Matters, But Is Not Prohibitive)

� GA can represent all 2m subspaces of an m-D vector space as elements of computation.

� To represent Euclidean motions in Rn as versors, you need CGA, i.e. GA of Rn+1,1-D space.

� That is a 32-dimensional representation for 3D Euclidean gometry!

� Efficient implementation is therefore an issue.

� Solved by using the strucure of GA in an automatic code generator.

(Fontijne 2007 PhD: Efficient Implementation of Geometric Algebra, UvA)

� Result: high-level programming in GA available (subspace products, sandwiching).

� The actual algebraic computation takes care of the type administration; the implementation

performs this at compile time. Effectively the program does hardly more than linear algebra at

the lowest level, but with high-level specification using CGA products and operators.

Executive summary:

Your people can now use a high-level language (GA) to specify Euclidean geometry,

at code generation level, for competitive efficiency with classical approach, but with

more compact, more maintainable and less error-prone code.

32

33 Summary: Euclid’s Elements in the Conformal Model

FIG(15,1)

� primitives as subspaces:

points, lines, planes, circles, spheres, tangents

� constructions as subspace products:

connections, intersection, plunge, duality

� motions as versors:

translations, rotations, reflections in planes or spheres

(actually, any conformal transformation)

� properties parametrized:

size, weight, location, orientation, direction

� numerics exactly linearized:

linear (bivector) parametrization of motions

33

34 A Message from Our Sponsor: Recommended Reading

Geometric Algebra for Computer Science:

An Object-Oriented Approach to Geometry

Leo Dorst, Daniel Fontijne, Stephen Mann

(Morgan-Kaufmann Publishers 2007, ISBN 0-12-369465-5)

� 22 chapters, 4 appendices, 650 pages, 150+ full color figures, free software.

� Available everywhere, price e 45-90.

� Book website, freely downloadable software and demos:

www.geometricalgebra.net

Efficient Implementation of Geometric Algebra

Daniel Fontijne

Ph.D. thesis UvA, 2007, ISBN-13: 978-90-889-10-142,

freely available at

www.science.uva.nl/∼fontijne/phd.html

34

35 Recommended Reading, Continued

Geometric Algebra for Physicists

Chris Doran and Anthony Lasenby

(Cambridge University Press 2003)

� 14 chapters, 592 pages

� Price £80 (hardback), £40 (paperback)

Clifford Algebra to Geometric Calculus

David Hestenes and Garret Sobczyk

(Kluwer Academic Publishers 1984)

� 8 chapters, 336 pages

� Price about $100 - $250

35

36 Appendix 1: Linear Algebra is Not Good Enough for Geometry

� primitives: only vectors and covectors (hyperplanes)

� constructions: hardly any at algebraic level, some as matrix manipulation

� motions: linear transformations too general; orthogonal transformations too cumbersome

� properties: involved non-linear parametrizations of geometric transformations

� numerics: strongly developed techniques for linearized estimation

The lack of algebraic constructions leads to the bad habit of specification by coordinates. The

limited number of primitives and corresponding data structures, combined with lack of covariance,

then produces confusion and errors.

Linear algebra is the assembly language of geometry.

Structure preservation needs to be carefully and explicitly designed and enforced.

36

37 Appendix 2: Geometric Algebra Is Tailored To Geometry

� primitives: general subspaces (which model points, lines, planes, spheres, tangents, etc.)

� constructions: algebraic spanning, intersection, orthogonality, duality

� motions: motions are automatically structure preserving

� properties: parametrization immediately in terms of geometric primitives

� numerics: geometric differentiation, more extended linearization, estimation (but immature)

Now everything can be specified using the geometry directly:

Geometric algebra is the high-level language of geometry.

Structure preservation is automatic.

37

38 Appendix 3: Various Conformal Demos

Voronoi diagrams FIG(14,7) Inverse Kinematics FIG(14,10) Sphere Intersection FIG(15,3)

Contour circle FIG(15,13) Loxodromes FIG(16,6) Dupin’s Cycloid FIG(16,12)

38

39 Appendix 4: Non-Euclidean Geometries

By changing the ‘infinity’ vector ~∞, we can get conformal representations of various metrics.

FIG(16,13) metrical mystery tour FIG(16,8)

Euclidean: ~∞ = e∞ Hyperbolic: ~∞ = e+ = eo − e∞/2

FIG(16,9)

Spherical: ~∞ = e− = eo + e∞/2 Spherical interpretation

39

