A matricial Hilbert transform on closed surfaces in Hermitean Clifford analysis

Fred Brackx Bram De Knock Hennie De Schepper

Clifford Research Group, Ghent University, Belgium

AGACSE 2008, Grimma August 17-19, 2008

Outline

(1) Introduction: the Hilbert transform on the real line
(2) The Hilbert transform on closed surfaces in Euclidean Clifford analysis
(3) Hermitean Clifford analysis
(4) A matricial Hilbert transform on closed surfaces in Hermitean Clifford analysis

Outline

(1) Introduction: the Hilbert transform on the real line
(2) The Hilbert transform on closed surfaces in Euclidean Clifford analysis
(3) Hermitean Clifford analysis
(4) A matricial Hilbert transform on closed surfaces in Hermitean Clifford analysis
consider finite energy signals f, i.e. $f \in L_{2}(\mathbb{R})$, so

$$
\|f\|_{L_{2}(\mathbb{R})}^{2}=\int_{-\infty}^{+\infty}|f(t)|^{2} d t<+\infty
$$

then, the Hilbert transform $\mathcal{H}[\mathbf{f}]$ of f

$$
\begin{aligned}
\mathcal{H}[f](t) & =\frac{1}{\pi} \operatorname{Pv} \int_{-\infty}^{+\infty} \frac{f(x)}{t-x} d x \\
& =\frac{1}{\pi} \lim _{\epsilon \rightarrow 0+} \int_{|t-x|>\epsilon} \frac{f(x)}{t-x} d x \\
& =(H * f)(t)
\end{aligned}
$$

with the Hilbert kernel H

$$
H(x)=\operatorname{Pv} \frac{1}{\pi x}
$$

(1) the Hilbert operator \mathcal{H} is translation invariant, i.e.

$$
\tau_{a}[\mathcal{H}[f]]=\mathcal{H}\left[\tau_{a}[f]\right], \quad \text { with } \tau_{a}[f](t)=f(t-a), a \in \mathbb{R}
$$

(2) the Hilbert operator \mathcal{H} is dilation invariant, i.e.

$$
d_{a}[\mathcal{H}[f]]=\mathcal{H}\left[d_{a}[f]\right], \quad \text { with } d_{a}[f](t)=\frac{1}{\sqrt{a}} f\left(\frac{t}{a}\right), a>0
$$

(3) the Hilbert operator \mathcal{H} is a bounded linear operator on $\mathrm{L}_{2}(\mathbb{R})$, and is a fortiori norm preserving, i.e.

$$
\|\mathcal{H}[f]\|_{L_{2}(\mathbb{R})}=\|f\|_{L_{2}(\mathbb{R})}
$$

(0) $\mathcal{H}^{2}=-1$ on $L_{2}(\mathbb{R})$, and hence $\mathcal{H}^{-1}=-\mathcal{H}$
(0) the Hilbert operator \mathcal{H} is unitary on $L_{2}(\mathbb{R})$, i.e.

$$
\mathcal{H}_{\mathcal{H}}=\mathcal{H}^{*} \mathcal{H}=\mathbf{1}
$$

with its adjoint \mathcal{H}^{*} given by $-\mathcal{H}$, i.e.

$$
(\mathcal{H}[f], g)_{L_{2}(\mathbb{R})}=(f,-\mathcal{H}[g])_{L_{2}(\mathbb{R})}
$$

© the Hilbert operator \mathcal{H} commutes with differentiation, i.e. if f and f^{\prime} are in $L_{2}(\mathbb{R})$, then

$$
\mathcal{H}\left[\frac{d}{d t} f(t)\right](x)=\frac{d}{d x}[\mathcal{H}[f](x)]
$$

let $\mathbb{C}^{ \pm}=\{x+i y \in \mathbb{C}: y \gtrless 0\}$
the Cauchy integral $\mathcal{C}[f]$
\square

$$
\begin{aligned}
\mathcal{C}[f](z) & =\mathcal{C}[f](x, y) \\
& =\frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{f(t)}{(x-t)+i y} d t, \quad y \neq 0
\end{aligned}
$$

is holomorphic in $\mathbb{C}^{ \pm}$, i.e.

$$
\partial_{z^{c}} \mathcal{C}[f](z)=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) \mathcal{C}[f](x, y)=0, \quad y \neq 0
$$

$$
\text { let } \mathbb{C}^{ \pm}=\{x+i y \in \mathbb{C}: y \gtrless 0\}
$$

the Cauchy integral $\mathcal{C}[f]$
\square

$$
\begin{aligned}
\mathcal{C}[f](z) & =\mathcal{C}[f](x, y) \\
& =\frac{i}{2 \pi} \int_{-\infty}^{+\infty} \frac{f(t)}{(x-t)+i y} d t, \quad y \neq 0
\end{aligned}
$$

is holomorphic in $\mathbb{C}^{ \pm}$, i.e.

$$
\partial_{z^{c}} \mathcal{C}[f](z)=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right) \mathcal{C}[f](x, y)=0, \quad y \neq 0
$$

(1) the Hilbert transform arises in a natural way by considering boundary limits (in L_{2} sense) of the Cauchy integral, i.e.

$$
\lim _{y \rightarrow 0 \pm} \mathcal{C}[f](x, y)= \pm \frac{1}{2} f(x)+\frac{1}{2} i \mathcal{H}[f](x), \quad \text { for a.e. } x \in \mathbb{R}
$$

(Plemelj-Sokhotzki formulae)

- signal processing
- metallurgy (theory of elasticity)
- Dirichlet boundary value problems (potential theory)
- dispersion relation in high energy physics, spectroscopy and wave equations
- wing theory
- harmonic analysis
notice: applications were not discussed in my research

$f(t)$: "nice" real valued function \rightarrow $\left\{\begin{array}{l}\text { amplitude } \\ \text { phase } \\ \text { frequency }\end{array}\right.$?

$f(t):$ "nice" real valued function $\rightarrow\left\{\begin{array}{l}\text { amplitude } \\ \text { phase } \\ \text { frequency }\end{array} ?\right.$
possible approach: associated analytic signal

$$
f_{\mathcal{A}}(t)=f(t)+i \mathcal{H}[f](t)
$$

$f(t):$ "nice" real valued function $\rightarrow\left\{\begin{array}{l}\text { amplitude } \\ \text { phase } \\ \text { frequency }\end{array} ?\right.$
possible approach: associated analytic signal

$$
f_{\mathcal{A}}(t)=f(t)+i \mathcal{H}[f](t)=\rho(t) \cos (\theta(t))+i \rho(t) \sin (\theta(t))
$$

with

$$
\begin{aligned}
\rho(t) & =\text { instantaneous amplitude } \\
\theta(t) & =\text { instantaneous phase } \\
\frac{d \theta}{d t}(t) & =\text { instantaneous frequency }
\end{aligned}
$$

Outline

(1) Introduction: the Hilbert transform on the real line
(2) The Hilbert transform on closed surfaces in Euclidean Clifford analysis
(3) Hermitean Clifford analysis
(4) A matricial Hilbert transform on closed surfaces in Hermitean Clifford analysis

- 1D signal processing:

1D Hilbert transform is used to construct analytic signal in order to extract interesting features (amplitude, phase, frequency) of real 1D signal

- mD signal processing (e.g. images (2D), video signals (3D)):
$m \mathrm{D}$ Hilbert transform as a tool to obtain interesting mD signal information

Euclidean Clifford analysis

- $\mathbb{R}^{m}=\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$ with

$$
\left\{\begin{array}{l}
e_{j}^{2}=e_{j} e_{j}=-1 \\
e_{j} e_{k}=-e_{k} e_{j}, \quad j \neq k
\end{array}\right.
$$

- $\mathbb{R}_{0, m}=\left\langle 1,\left\{e_{j_{1}} e_{2} \ldots e_{j_{h}}: 1 \leq j_{1}<j_{2}<\cdots<j_{h} \leq m\right\}\right\rangle$
- $\mathbb{R}^{m}=\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$ with

$$
\left\{\begin{array}{l}
e_{j}^{2}=e_{j} e_{j}=-1 \\
e_{j} e_{k}=-e_{k} e_{j}, \quad j \neq k
\end{array}\right.
$$

non-commutative multiplication!

- $\mathbb{R}_{0, m}=\left\langle 1,\left\{e_{j_{1}} e_{2} \ldots e_{j_{h}}: 1 \leq j_{1}<j_{2}<\cdots<j_{h} \leq m\right\}\right\rangle$
- $\left(X_{1}, \ldots, X_{m}\right) \longleftrightarrow \quad$ vector $\underline{X}=\sum_{j=1}^{m} e_{j} X_{j}$
- norm of a vector: $|\underline{\mathbf{X}}|^{2}=-\underline{X}^{2}=\sum_{j=1}^{m} X_{j}^{2}$
- conjugation (anti-involution)

$$
\overline{e_{j}}=-e_{j} \quad \text { and } \quad \overline{a b}=\bar{b} \bar{a}
$$

- Dirac operator: $\partial \underline{\mathbf{x}}=\sum_{j=1}^{m} e_{j} \partial X_{j}$
fundamental solution: $E(\underline{X})=\frac{1}{a_{m}} \frac{\bar{X}}{|\underline{X}|^{m}}$, i.e. $\partial_{\underline{X}} E(\underline{X})=\delta(\underline{X})$
- $f: \Omega \stackrel{\text { open }}{\subset} \mathbb{R}^{m} \rightarrow \mathbb{R}_{0, m}$ monogenic on $\Omega \Longleftrightarrow \partial_{\underline{X}} f=0$ on Ω
- Laplace operator: $\boldsymbol{\Delta}=\sum_{j=1}^{m} \partial_{X_{j}}^{2}=-\partial_{\underline{X}} \partial_{\underline{X}}$
- Dirac operator: $\partial \underline{\mathbf{x}}=\sum_{j=1}^{m} e_{j} \partial X_{j}$
fundamental solution: $\mathrm{E}(\underline{X})=\frac{1}{a_{m}} \frac{\bar{X}}{|\underline{X}|^{m}}$, i.e. $\partial_{\underline{X}} E(\underline{X})=\delta(\underline{X})$
- $f: \Omega \stackrel{\text { open }}{\subset} \mathbb{R}^{m} \rightarrow \mathbb{R}_{0, m}$ monogenic on $\Omega \Longleftrightarrow \partial_{\underline{X}} f=0$ on Ω
- Laplace operator: $\boldsymbol{\Delta}=\sum_{j=1}^{m} \partial_{X_{j}}^{2}=-\partial_{\underline{X}} \partial_{\underline{X}}$
harmonic analysis in \mathbb{R}^{m}
$\Delta \mathrm{f}=0$, with $\Delta=\sum_{j=1}^{m} \partial_{X_{j}}^{2}$

1D complex analysis (holomorphic functions)

$$
\partial_{z^{c}} \mathrm{f}=0, \text { with } \partial_{z^{c}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)
$$

refinement

Euclidean Clifford analysis in \mathbb{R}^{m} (monogenic functions)
$\partial \underline{\mathbf{x}} \mathbf{f}=0$, with $\partial \underline{x}=\sum_{j=1}^{m} e_{j} \partial x_{j}$ and $\Delta=-\partial_{\underline{x}}^{2}$

$$
\Gamma^{+}=\stackrel{\circ}{\Gamma} ; \quad \Gamma^{-}=\Omega \backslash \Gamma
$$

Euclidean Cauchy integral for functions $f \in L_{2}(\partial \Gamma)$

$$
\begin{aligned}
& \mathcal{C}[f](\underline{Y})=\int_{\partial \Gamma} E(\underline{X}-\underline{Y}) \widetilde{d}_{\underline{X}} f(\underline{X}), \quad \underline{Y} \in \Gamma^{ \pm} \\
& \text {onogenic on } \Gamma^{ \pm} \\
& f \in L_{2}(\partial \Gamma) \Longleftrightarrow\|f\|_{L_{2}(\partial \Gamma)}^{2}=\int_{\partial \Gamma}|f(\underline{X})|^{2} d S(\underline{X})<\infty
\end{aligned}
$$

- $\widetilde{\mathbf{d}} \sigma_{\underline{x}}=$ vector valued oriented surface element on $\partial \Gamma$

$$
\begin{aligned}
& =\sum e_{j}(-1)^{j-1}\left(d X_{1} \wedge \cdots \wedge d X_{j-1} \wedge d X_{j+1} \wedge \cdots \wedge d X_{m}\right) \\
& =\nu(\underline{X}) d S(\underline{X})
\end{aligned}
$$

- $\nu(\underline{X})=$ outward pointing unit normal vector in \underline{X} on $\partial \Gamma$

Euclidean Hilbert transform on $\partial \Gamma$

definition

the Euclidean Hilbert transform arises in a natural way by considering boundary limits (in L_{2} sense) of the Euclidean Cauchy integral, i.e.

$$
\lim _{\frac{Y}{\underline{Y} \in \Gamma^{I}} \mathfrak{U}} \mathcal{U}[f](\underline{Y})= \pm \frac{1}{2} f(\underline{U})+\frac{1}{2} \mathcal{H}[f](\underline{U}), \quad \underline{U} \in \partial \Gamma
$$

with the Euclidean Hilbert transform

$$
\mathcal{H}[f](\underline{U})=2 \operatorname{Pv} \int_{\partial \Gamma} E(\underline{X}-\underline{U}) \widetilde{d \sigma} \underline{\sigma}_{\underline{X}} f(\underline{X}), \quad \underline{U} \in \partial \Gamma
$$

properties

(1) \mathcal{H} is a bounded linear operator on $L_{2}(\partial \Gamma)$
(3) $\mathcal{H}^{2}=1$ on $L_{2}(\partial \Gamma)$
(0) $\mathcal{H}^{*}=\nu \mathcal{H} \nu$ on $L_{2}(\partial \Gamma)$, i.e. $\langle\mathcal{H}[f], g\rangle=\langle f, \nu \mathcal{H}[\nu g]\rangle$

Outline

(1) Introduction: the Hilbert transform on the real line
(2) The Hilbert transform on closed surfaces in Euclidean Clifford analysis
(3) Hermitean Clifford analysis
4. A matricial Hilbert transform on closed surfaces in Hermitean Clifford analysis

$\mathbb{C}_{2 \mathrm{n}}=$ complex Clifford algebra over $\mathbb{R}^{2 \mathrm{n}}$

$$
\mathbb{C}_{2 n}=\mathbb{C} \otimes \mathbb{R}_{0,2 n}=\mathbb{R}_{0,2 n} \oplus i \mathbb{R}_{0,2 n}
$$

- why $m=2 n$?
\mathbb{R}^{m} : complex structure J, i.e. $J \in S O(m)$, with $J^{2}=-\mathbf{1}$

$\mathbb{C}_{2 n}=$ complex Clifford algebra over $\mathbb{R}^{2 n}$

$$
\mathbb{C}_{2 n}=\mathbb{C} \otimes \mathbb{R}_{0,2 n}=\mathbb{R}_{0,2 n} \oplus i \mathbb{R}_{0,2 n}
$$

- why $m=2 n$?
\mathbb{R}^{m} : complex structure J, i.e. $J \in S O(m)$, with $J^{2}=-\mathbf{1}$
- $\left(e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 n}\right) \xrightarrow{J}\left(-e_{n+1}, \ldots,-e_{2 n}, e_{1}, \ldots, e_{n}\right)$
- Euclidean objects $\stackrel{\frac{1}{2}(1 \pm \mathrm{i} \mathrm{J})}{\longmapsto}$ Hermitean objects
- $\lambda \in \mathbb{C}_{2 n} \longleftrightarrow \lambda=a+i b, \quad a, b \in \mathbb{R}_{0,2 n}$

Hermitean conjugation: $\lambda^{\dagger}=\bar{a}-i \bar{b}$

Witt basis

$$
\left\{\begin{aligned}
\mathfrak{f}_{j}=\frac{1}{2}(\mathbf{1}+i J)\left[e_{j}\right] & =\frac{1}{2}\left(e_{j}-i e_{n+j}\right), \quad j=1, \ldots, n \\
\mathfrak{f}_{j}^{\dagger}=-\frac{1}{2}(\mathbf{1}-i J)\left[e_{j}\right] & =-\frac{1}{2}\left(e_{j}+i e_{n+j}\right), \quad j=1, \ldots, n
\end{aligned}\right.
$$

properties

- isotropy

$$
\left(\mathfrak{f}_{j}\right)^{2}=0, \quad\left(\mathfrak{f}_{j}^{\dagger}\right)^{2}=0, \quad j=1, \ldots, n
$$

- Grassmann identities

$$
\begin{array}{ll}
\mathfrak{f}_{j} f_{k}+\mathfrak{f}_{k} \mathfrak{f}_{j}=0, & j, k=1, \ldots, n \\
\mathfrak{f}_{j}^{\dagger} f_{k}^{\dagger}+\mathfrak{f}_{k}^{\dagger} \mathfrak{f}_{j}^{\dagger}=0, & j, k=1, \ldots, n
\end{array}
$$

- duality identities

$$
\mathfrak{f}_{j} f_{k}^{\dagger}+\mathfrak{f}_{k}^{\dagger} \mathfrak{f}_{j}=\delta_{j k}, \quad j, k=1, \ldots, n
$$

vector variables

- Euclidean vector

$$
\underline{X}=\sum_{j=1}^{2 n} e_{j} X_{j}=\sum_{j=1}^{n}\left(e_{j} x_{j}+e_{n+j} y_{j}\right)
$$

- isotropic Hermitean vectors

$$
\begin{array}{ll}
\underline{\mathbf{Z}}=\frac{1}{2}(\mathbf{1}+i J)[\underline{X}]=\sum_{j=1}^{n} \mathfrak{f}_{j} z_{j}, \quad z_{j}=x_{j}+i y_{j} \\
\underline{\underline{\mathbf{Z}}}^{\dagger}=-\frac{1}{2}(\mathbf{1}-i J)[\underline{X}]=\sum_{j=1}^{n} \mathfrak{f}_{j}^{\dagger} z_{j}^{c}, \quad z_{j}^{c}=x_{j}-i y_{j}
\end{array}
$$

- notice that

$$
\underline{X}=\underline{Z}-\underline{Z}^{\dagger} \quad \text { and } \quad|\underline{X}|^{2}=|\underline{Z}|^{2}=\left|\underline{Z}^{\dagger}\right|^{2}=\underline{Z} \underline{Z}^{\dagger}+\underline{Z}^{\dagger} \underline{Z}
$$

Dirac operators

- Euclidean Dirac operator

$$
\partial \underline{X}=\sum_{j=1}^{2 n} e_{j} \partial_{X_{j}}=\sum_{j=1}^{n}\left(e_{j} \partial_{x_{j}}+e_{n+j} \partial_{y_{j}}\right)
$$

- isotropic Hermitean Dirac operators

$$
\begin{array}{ll}
\partial_{\underline{\mathbf{Z}}^{\dagger}}=\frac{1}{4}(1+i J)\left[\partial_{\underline{x}}\right]=\sum_{j=1}^{n} \mathfrak{f}_{j} \partial_{z_{j}^{c}}, \quad \partial_{z_{j}^{c}}=\frac{1}{2}\left(\partial_{x_{j}}+i \partial_{y_{j}}\right) \\
\partial_{\underline{\mathbf{z}}}=-\frac{1}{4}(1-i J)\left[\partial_{\underline{X}}\right]=\sum_{j=1}^{n} \mathfrak{f}_{j}^{\dagger} \partial_{z_{j}}, \quad \partial_{z_{j}}=\frac{1}{2}\left(\partial_{x_{j}}-i \partial_{y_{j}}\right)
\end{array}
$$

- notice that

$$
\partial_{\underline{X}}=2\left(\partial_{\underline{Z}^{\dagger}}-\partial_{\underline{Z}}\right) \quad \text { and } \quad \Delta=4\left(\partial_{\underline{\underline{Z}}} \partial_{\underline{\underline{Z}}^{\dagger}}+\partial_{\underline{Z}^{\dagger}} \partial_{\underline{Z}}\right)
$$

- $g: \Omega \rightarrow \mathbb{C}_{2 n}$ is (Hermitean or) \mathbf{h}-monogenic if and only if

$$
\partial_{\underline{\underline{Z}}} \mathrm{~g}=0 \quad \text { and } \quad \partial_{\underline{\underline{Z}}^{\dagger}} \mathrm{g}=0
$$

harmonic analysis in \mathbb{R}^{m}

$$
\Delta \mathrm{f}=0, \text { with } \Delta=\sum_{j=1}^{m} \partial_{X_{j}}^{2}
$$

1D complex analysis (holomorphic functions)

$$
\partial_{z^{c}} f=0, \text { with } \partial_{z^{c}}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right)
$$

Euclidean Clifford analysis in \mathbb{R}^{m} (monogenic functions)

$\partial_{\underline{\mathrm{x}}}^{\mathrm{f}}=0$, with $\partial_{\underline{x}}=\sum_{j=1}^{m} e_{j} \partial_{X_{j}}$ and $\Delta=-\partial_{\underline{X}}^{2}$

refinement

Hermitean Clifford analysis in $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ (h-monogenic functions)

$$
\left\{\begin{array} { l }
{ \partial _ { \underline { Z } } \mathbf { f } = 0 } \\
{ \partial _ { \underline { \mathbf { z } } ^ { \dagger } } \mathbf { f } = 0 }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
\partial_{\underline{Z}}=\sum_{j=1}^{n} f_{j}^{\dagger} \partial_{z_{j}} \\
\partial_{\underline{Z}^{\dagger}}=\sum_{j=1}^{n} f_{j} \partial_{z_{j}^{c}}
\end{array}\right.\right.
$$

- further development: need for a Cauchy integral formula for h-monogenic functions
- put:

$$
\begin{aligned}
\mathcal{E}\left(\underline{Z}, \underline{Z}^{\dagger}\right) & =-(\mathbf{1}+i J)[E(\underline{X})] \\
\mathcal{E}^{\dagger}\left(\underline{Z}, \underline{Z}^{\dagger}\right) & =(\mathbf{1}-i J)[E(\underline{X})]
\end{aligned}
$$

introducing the particular circulant (2×2) matrices

$$
\mathcal{D}_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)}=\left(\begin{array}{ll}
\partial_{\underline{\boldsymbol{z}}} & \partial_{\underline{Z}^{\dagger}} \\
\partial_{\underline{\underline{Z}}^{\dagger}} & \partial_{\underline{\boldsymbol{Z}}}
\end{array}\right), \quad \mathcal{E}=\left(\begin{array}{ll}
\mathcal{E} & \mathcal{E}^{\dagger} \\
\mathcal{E}^{\dagger} & \mathcal{E}
\end{array}\right), \quad \boldsymbol{\delta}=\left(\begin{array}{ll}
\delta & 0 \\
0 & \delta
\end{array}\right)
$$

one obtains that

$$
\mathcal{D}_{\left(\underline{\mathbf{Z}}, \underline{z}^{\dagger}\right)} \mathcal{E}\left(\underline{Z}, \underline{Z}^{\dagger}\right)=\delta(\underline{Z})
$$

- $g_{1}, g_{2} \in C^{1}\left(\Omega ; \mathbb{C}_{2 n}\right) \rightarrow \mathbf{G}_{2}^{1}=\left(\begin{array}{ll}g_{1} & g_{2} \\ g_{2} & g_{1}\end{array}\right)$
$\mathrm{G}_{2}^{1} \mathrm{H}$-monogenic if and only if

$$
\mathcal{D}_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)} \mathbf{G}_{2}^{1}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
\partial_{\underline{Z}}\left[g_{1}\right]+\partial_{\underline{\underline{Z}}^{+}}\left[g_{2}\right]=0 \\
\partial_{\underline{Z}^{\dagger}}\left[g_{1}\right]+\partial_{\underline{\boldsymbol{Z}}}\left[g_{2}\right]=0
\end{array}\right.
$$

where \mathbf{O} denotes the matrix with zero entries

- $g_{1}, g_{2} \in C^{1}\left(\Omega ; \mathbb{C}_{2 n}\right) \rightarrow \mathbf{G}_{2}^{1}=\left(\begin{array}{ll}g_{1} & g_{2} \\ g_{2} & g_{1}\end{array}\right)$
$\mathbf{G}_{2}^{1} \mathbf{H}$-monogenic if and only if

$$
\mathcal{D}_{\left(\underline{\mathbf{z}}, \underline{\mathbf{Z}}^{\dagger}\right)} \mathbf{G}_{2}^{1}=\mathbf{0} \Longleftrightarrow\left\{\begin{array}{l}
\partial_{\underline{\mathbf{Z}}}\left[g_{1}\right]+\partial_{\underline{Z}^{\dagger}}\left[g_{2}\right]=0 \\
\partial_{\underline{Z}^{\dagger}}\left[g_{1}\right]+\partial_{\underline{\boldsymbol{Z}}}\left[g_{2}\right]=0
\end{array}\right.
$$

where \mathbf{O} denotes the matrix with zero entries

- important observation
$\mathrm{G}_{0}=\left(\begin{array}{ll}g & 0 \\ 0 & g\end{array}\right)$ is H -monogenic $\Longleftrightarrow \mathrm{g}$ is h -monogenic
- volume element on Γ :

$$
\mathrm{dW}\left(\underline{\mathbf{Z}}, \underline{z}^{\dagger}\right)=\left(d z_{1} \wedge d z_{1}^{c}\right) \wedge\left(d z_{2} \wedge d z_{2}^{c}\right) \wedge \cdots \wedge\left(d z_{n} \wedge d z_{n}^{c}\right)
$$

- matricial Hermitean oriented surface element on $\partial \Gamma$:

$$
\mathbf{d} \Sigma_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)}=\left(\begin{array}{cc}
d \sigma_{\underline{z}} & -d \sigma_{\underline{z}^{\dagger}} \\
-d \sigma_{\underline{z}^{\dagger}} & d \sigma_{\underline{z}}
\end{array}\right)
$$

with

$$
d \sigma_{\underline{Z}}=\sum_{j=1}^{n} \mathfrak{f}_{j}^{\dagger} \widehat{d z_{j}}, \quad d \sigma_{\underline{Z}^{\dagger}}=\sum_{j=1}^{n} \mathfrak{f}_{j} \widehat{d z_{j}^{c}}
$$

and

$$
\begin{aligned}
\widehat{d z_{j}} & =\left(d z_{1} \wedge d z_{1}^{c}\right) \wedge \cdots \wedge\left(\left[d z_{j}\right] \wedge d z_{j}^{c}\right) \wedge \cdots \wedge\left(d z_{n} \wedge d z_{n}^{c}\right) \\
\widehat{d z_{j}^{c}} & =\left(d z_{1} \wedge d z_{1}^{c}\right) \wedge \cdots \wedge\left(d z_{j} \wedge\left[d z_{j}^{c}\right]\right) \wedge \cdots \wedge\left(d z_{n} \wedge d z_{n}^{c}\right)
\end{aligned}
$$

Outline

(1) Introduction: the Hilbert transform on the real line
2) The Hilbert transform on closed surfaces in Euclidean Clifford analysis
(3) Hermitean Clifford analysis
(4) A matricial Hilbert transform on closed surfaces in Hermitean Clifford analysis

(1) Clifford-Stokes theorems

Theorem (Euclidean Clifford-Stokes theorem)

Let f and g be functions in $C^{1}\left(\Omega ; \mathbb{R}_{0,2 n}\right)$, then

$$
\int_{\partial \Gamma} f(\underline{X}) \widetilde{d \sigma} \underline{x} g(\underline{X})=\int_{\Gamma}\left[\left(f \partial_{\underline{\partial}}\right) g+f\left(\partial_{\underline{x}} g\right)\right] \widetilde{d V}(\underline{X})
$$

Theorem (Hermitean Clifford-Stokes theorem)

Let f_{1}, f_{2}, g_{1} and g_{2} be functions in $C^{1}\left(\Omega ; \mathbb{C}_{2 n}\right)$ and let \mathbf{F}_{2}^{1} and \mathbf{G}_{2}^{1} be their respective associated matrix functions, then

$$
\begin{aligned}
& \int_{\partial \Gamma} \mathbf{F}_{2}^{1}(\underline{X}) \mathbf{d} \boldsymbol{\Sigma}_{\left(\underline{z}, \underline{z}^{\dagger}\right)} \mathbf{G}_{2}^{1}(\underline{X}) \\
& \quad=\int_{\Gamma}\left[\left(\mathbf{F}_{2}^{1} \mathcal{D}_{\left(\underline{Z}, \underline{z}^{\dagger}\right)}\right) \mathbf{G}_{2}^{1}+\mathbf{F}_{2}^{1}\left(\mathcal{D}_{\left(\underline{Z}, \underline{z}^{\dagger}\right)} \mathbf{G}_{2}^{1}\right)\right] d W\left(\underline{Z}, \underline{Z}^{\dagger}\right)
\end{aligned}
$$

(2) Cauchy-Pompeiu formulae

Theorem (Euclidean Cauchy-Pompeiu formula)

Let $g \in C^{1}\left(\Omega ; \mathbb{R}_{0,2 n}\right)$, then

$$
\int_{\partial \Gamma} E(\underline{X}-\underline{Y}) \widetilde{d \sigma_{\underline{X}}} g-\int_{\Gamma} E(\underline{X}-\underline{Y})\left(\partial_{\underline{x}} g\right) \widetilde{d V}(\underline{X})= \begin{cases}0, & \underline{Y} \in \Gamma^{-} \\ g(\underline{Y}), & \underline{Y} \in \Gamma^{+}\end{cases}
$$

Theorem (Hermitean Cauchy-Pompeiu formula)

Let g_{1} and g_{2} be functions in $C^{1}\left(\Omega ; \mathbb{C}_{2 n}\right)$ and let \mathbf{G}_{2}^{1} be the associated matrix function, then

$$
\begin{aligned}
\int_{\partial \Gamma} \mathcal{E}(\underline{Z}-\underline{V}) & \mathbf{d} \boldsymbol{\Sigma}_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)} \mathbf{G}_{2}^{1}-\int_{\Gamma} \mathcal{E}(\underline{Z}-\underline{V})\left(\mathcal{D}_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)} \mathbf{G}_{2}^{1}\right) d W\left(\underline{Z}, \underline{Z}^{\dagger}\right) \\
& = \begin{cases}\mathbf{0}, & \underline{Y} \in \Gamma^{-} \\
(-1)^{\frac{n(n+1)}{2}}(2 i)^{n} \mathbf{G}_{2}^{1}(\underline{Y}), & \underline{Y} \in \Gamma^{+}\end{cases}
\end{aligned}
$$

(3) Cauchy integral formulae

Theorem (Euclidean Cauchy integral formula)

If the function $g: \Omega \rightarrow \mathbb{R}_{0,2 n}$ is monogenic, then

$$
\int_{\partial \Gamma} E(\underline{X}-\underline{Y}) \widetilde{d \sigma} \underline{x} g(\underline{X})= \begin{cases}0, & \underline{Y} \in \Gamma^{-} \\ g(\underline{Y}), & \underline{Y} \in \Gamma^{+}\end{cases}
$$

Theorem (Hermitean Cauchy integral formula I)

Let g_{1} and g_{2} be functions in $C^{1}\left(\Omega ; \mathbb{C}_{2 n}\right)$ and let \mathbf{G}_{2}^{1} be the associated matrix function. If \mathbf{G}_{2}^{1} is \mathbf{H}-monogenic, then

$$
\int_{\partial \Gamma} \mathcal{E}(\underline{Z}-\underline{V}) \mathbf{d} \boldsymbol{\Sigma}_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)} \mathbf{G}_{2}^{1}(\underline{X})= \begin{cases}\mathbf{0}, & \underline{Y} \in \Gamma^{-} \\ (-1)^{\frac{n(n+1)}{2}}(2 i)^{n} \mathbf{G}_{2}^{1}(\underline{Y}), & \underline{Y} \in \Gamma^{+}\end{cases}
$$

(3) Cauchy integral formulae

Theorem (Euclidean Cauchy integral formula)

If the function $g: \Omega \rightarrow \mathbb{R}_{0,2 n}$ is monogenic, then

$$
\int_{\partial \Gamma} E(\underline{X}-\underline{Y}) \widetilde{d \sigma} \underline{X} g(\underline{X})= \begin{cases}0, & \underline{Y} \in \Gamma^{-} \\ g(\underline{Y}), & \underline{Y} \in \Gamma^{+}\end{cases}
$$

Theorem (Hermitean Cauchy integral formula II)

If the function $g: \Omega \rightarrow \mathbb{C}_{2 n}$ is \mathbf{h}-monogenic, then

$$
\int_{\partial \Gamma} \mathcal{E}(\underline{Z}-\underline{V}) \mathbf{d} \boldsymbol{\Sigma}_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)} \mathbf{G}_{0}(\underline{X})= \begin{cases}\mathbf{0}, & \underline{Y} \in \Gamma^{-} \\ (-1)^{\frac{n(n+1)}{2}}(2 i)^{n} \mathbf{G}_{0}(\underline{Y}), & \underline{Y} \in \Gamma^{+}\end{cases}
$$

Hermitean Cauchy integral \mathcal{C}

$$
\mathcal{C}\left[\mathbf{G}_{2}^{1}\right](\underline{Y})=\int_{\partial \Gamma} \mathcal{E}(\underline{Z}-\underline{V}) \mathbf{d} \boldsymbol{\Sigma}_{\left(\underline{Z}, \underline{Z}^{\dagger}\right)} \mathbf{G}_{2}^{1}(\underline{X}), \quad \underline{Y} \in \Gamma^{ \pm}
$$

for functions $g_{1}, g_{2} \in C^{0}(\partial \Gamma)$
Hermitean Hilbert transform \mathcal{H}

- definition
$\lim _{\underline{Y} \rightarrow}^{\underline{Y} \in \Gamma^{\underline{U}}} \left\lvert\, \mathcal{C}\left[\mathbf{G}_{2}^{1}\right](\underline{Y})=(-1)^{\frac{n(n+1)}{2}}(2 i)^{n}\left(\pm \frac{1}{2} \mathbf{G}_{2}^{1}(\underline{U})+\frac{1}{2} \mathcal{H}\left[\mathbf{G}_{2}^{1}\right](\underline{U})\right)\right., \quad \underline{U} \in \partial \Gamma$
for functions $g_{1}, g_{2} \in L_{2}(\partial \Gamma)$
- properties
(1) \mathcal{H} is a bounded linear operator on $\mathbf{L}_{\mathbf{2}}(\partial \Gamma)$
(2) $\mathcal{H}^{2}=\mathbb{E}_{2}$ on $\mathbf{L}_{2}(\partial \Gamma)$
(3) $\mathcal{H}^{*}=\mathcal{V} \mathcal{H} \mathcal{V}$ on $\mathbf{L}_{2}(\partial \Gamma)$

To read：Hermitean Clifford analysis

國 F．Brackx，H．De Schepper，F．Sommen， The Hermitean Clifford analysis toolbox， to appear in Adv．Appl．Clifford Alg．

目 F．Brackx，J．Bureš，H．De Schepper，D．Eelbode，F．Sommen， V．Souček，
Fundaments of Hermitean Clifford Analysis．Part I：Complex structure， Complex Anal．Oper．Theory 1（3）（2007），341－365．
囯 F．Brackx，J．Bureš，H．De Schepper，D．Eelbode，F．Sommen V．Souček，
Fundaments of Hermitean Clifford Analysis．Part II：Splitting of h－monogenic equations， Complex Var．Elliptic Equ．52（1011）（2007），1063－1079．

To read: Hermitean Hilbert transform

围 F. Brackx, B. De Knock, H. De Schepper, D. Peña Peña, F. Sommen, On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis, submitted.
囯 F. Brackx, B. De Knock, H. De Schepper, A matrix Hilbert transform in Hermitean Clifford analysis, J. Math. Anal. Appl. 344(2) (2008), 1068-1078.

