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Abstract: Gröbner bases in polynomial rings over a field have numerous
applications in geometry, applied mathematics, and engineering. Non com-
mutative Gröbner bases in Grassmann and Clifford (geometric) algebras are
less known but have a potential to be very useful in practical applications of
these algebras. We show a few standard applications of commutative Gröbner
bases in the theory of symmetric functions, finite group invariants, as well as
in some problems in engineering including finding polynomial equations of
equidistant curves and surfaces. We show how these bases are computed in
Grassmann and Clifford algebras.
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I. Gröbner basis theory in polynomial rings (Cox et al.)

Definition 1. Let k-field, f1, . . . , fs ∈ k[x1, . . . , xn]

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0}
for all 1 ≤ i ≤ s. We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs.

Example 1. Examples of some varieties:

− V(x2 + y2 − 1) ⊂ R2 (circle)

− V(y − x2, z − x3) ⊂ R3 (twisted cubic)

− V(x + y + z + w,x − 2y + z − 3w) ⊂ R4 (linear variety)

Lemma 1. If V, W ⊂ kn are affine varieties, then so are V ∪ W and V ∩ W.

Definition 2. A subset I ⊂ k[x1, . . . , xn] is an ideal if it satisfies:

(i) 0 ∈ I,

(ii) If f, g ∈ I, then f + g ∈ I,

(iii) If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I.

4



Definition 3. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then we set

〈f1, . . . , fs〉 =

{
s∑

i=1

hifi : h1, . . . , hs ∈ k[x1, . . . , xn]

}

Lemma 2. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then 〈f1, . . . , fs〉 is an
ideal of k[x1, . . . , xn]. We call 〈f1, . . . , fs〉 the ideal generated by f1, . . . , fs

Definition 4. We say that ideal I is finitely generated if there exist f1, . . . , fs ∈
k[x1, . . . , xn] such that I = 〈f1, . . . , fs〉. We say that f1, . . . , fs are a basis of I.

Proposition 1. If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in k[x1, . . . , xn],
so that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V(f1, . . . , fs) = V(g1, . . . , gt).

Definition 5. Let V ⊂ kn be an affine variety. Then we set

I(V ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0}
for all (a1, . . . , an) ∈ V.
Lemma 3. If V ⊂ kn is an affine variety, then I(V ) ⊂ k[x1, . . . , xn] is an ideal.
We call I(V ) the ideal of V.

Note that 〈f1, . . . , fs〉 ⊂ I(V(f1, . . . , fs)) although equality need not occur, for
example, 〈x2, y2〉 ( I(V(x2, y2)).
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Definition 6. A monomial ordering on k[x1, . . . , xn] is any relation > on
Zn
≥0 = {(α1, . . . , αn) |αi ∈ Z≥0}, or equivalently, any relation on the set of

monomials xα, α ∈ Zn
≥0, satisfying:

(i) > is a total ordering on Zn
≥0 (for any α, β ∈ Zn

≥0, α > β, α = β or β > α)

(ii) If α > β and γ ∈ Zn
≥0, then α + γ > β + γ.

(iii) > is a well-ordering on Zn
≥0 (every nonempty subset has smallest element)

− Lexicographic Order: α >lex β if, in the vector difference α − β ∈ Zn,
the left-most nonzero entry is positive.

− Graded Reverse Lex Order: α >grevlex β if either |α| > |β|, or |α| = |β|
and in α − β ∈ Zn the right-most nonzero entry is negative.

− Graded Inverse Lex Order: α >ginvlex β if either |α| > |β|, or |α| = |β|
and in α − β ∈ Zn the right-most nonzero entry is positive. (NC case)

− Elimination Order: Separate all n variables into two (or more) dis-
joint lists L1, L2 of lengths n1, n2. Then, (α1, α2) >lexdeg (β1, β2), where
length(α1) = length(β1) = n1, length(α2) = length(β2) = n2, if α1 >grevlex

β1 with ties broken by α2 >grevlex β2.
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General Division Algorithm in k[x1, . . . , xn]. Fix a monomial order > on Zn
≥0,

and let F = (f1, . . . , fs) be an ordered s-tuple of polynomials. Then every
f ∈ k[x1, . . . , xn] can be written as

f = a1f1 + · · · asfs + r, (1)

where ai, r ∈ k[x1, . . . , xn] and either r = 0 or r is a linear combination,
with coefficients in k, of monomials, none of which is divisible by any of
LT(f1), . . . , LT(fs). We call r a remainder of f on division by F. Furthermore,
if aifi 6= 0, then we have multideg(f) ≥ multideg(aifi).

Remark. The remainder r in (1) is not unique as it depends on the order of
polynomials in F and on the monomial order. For example, let f = xy3 +
1, f1 = xy + 1, f2 = y2 − y. Then, in lex(x, y) order, one gets

f = y2 · f1 + (−1) · f2 + (−y + 1) when dividing by (f1, f2) (2)

f = (xy + x) · f1 + (1) · f2 + 0 when dividing by (f2, f1) (3)

Thus, (3) shows that f ∈ 〈f1, f2〉 ⊂ k[x1, . . . , xn] while (2) fails to give zero
remainder, when dividing by the ideal basis, and seems to imply that f /∈
〈f1, f2〉. This shortcoming of the Division Algorithm disappears when we divide
polynomials by a Gröbner basis.
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Definition 7. An ideal I ⊂ k[x1, . . . , xn] is a monomial ideal if there is a subset
A ⊂ Zn

≥0 (possibly infinite) such that I consists of all polynomials which are

finite sums of the form
∑

α∈A hαxα, where hα ∈ k[x1, . . . , xn]. In this case we
write I = 〈xα : α ∈ A〉.

Dickson’s Lemma. Every monomial ideal I ⊂ k[x1, . . . , xn] has a finite basis.

Definition 8. Let I ⊂ k[x1, . . . , xn] be a nonzero ideal. Then, LT(I) is the set
of leading terms of elements of I and 〈LT(I)〉 is the ideal generated by the
elements of LT(I).

Proposition 2. Let I ⊂ k[x1, . . . , xn] be an ideal.

(i) 〈LT(I)〉 is a monomial ideal.

(ii) There are finitely-many g1, . . . , gs ∈ I such that

〈LT(I)〉 = 〈LT(g1), . . . , LT(gs)〉.

Hilbert Basis Theorem. Every ideal I ⊂ k[x1, . . . , xn] has a finite generating
set. That is, I = 〈g1, . . . , gs〉 for some g1, . . . , gs ∈ I.
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Definition 9. Fix a monomial order. A finite subset G = {g1, . . . , gt} of an
ideal I is said to be a Gröbner basis if

〈LT(g1), . . . , LT(gt)〉 = 〈LT(I)〉. (4)

As a consequence of Proposition 2 and Hilbert Basis Theorem we have

Corollary 1. Fix a monomial order. Then every ideal I ⊂ k[x1, . . . , xn] other
than {0} has a Gröbner basis.

Useful results (Cox et al):

Proposition 3. If g1, . . . , gt is a Gröbner basis for I and f ∈ k[x1, . . . , xn], then
f ∈ I if and only if the remainder of f on division by g1, . . . , gt is zero.

Proposition 4. If g1, . . . , gt is a Gröbner basis for I and f ∈ k[x1, . . . , xn], then
f can be written uniquely in the form f = g + r where g ∈ I and no term of r
is divisible by any LT(gi).

When dividing f by a Gröbner basis, we denote the remainder as r = f
G
.

Due to the uniqueness of r, one gets unique coset representatives for el-
ements in the quotient ring k[x1, . . . , xn]/I : The coset representative of

[f ] ∈ k[x1, . . . , xn]/I will be f
G
.
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How to compute a Gröbner basis? How to check whether an ideal
basis is a Gröbner basis?

Answer is provided by Buchberger’s algorithm (and its modifications) that
uses S-polynomials.

Definition 10. The S-polynomial of f1, f2 ∈ k[x1, . . . , xn] is defined as

S(f1, f2) =
xγ

LT(f1)
f1 − xγ

LT(f2)
f2, (5)

where xγ = lcm(LM(f1), LM(f2)) and LM(fi) is the leading monomial of fi

w.r.t. some monomial order.

Example 2. Let f1 = x4−3xy, f2 = x2y−2 ∈ k[x, y] and lex(x, y) order. Then,
LT(f1) = x4, LT(f2) = x2y and

S(f1, f2) =
x4y

x4
· f1 − x4y

x2y
· f2 = y · f1 − x2 · f2 = −3xy2 + 2x2 ∈ 〈f1, f2〉.

Since LT(S(f1, f2)) divisible by neither LT(f1) nor LT(f2), or, LT(S(f1, f2)) /∈
〈LT(f1), LT(f2)〉, we see that f1, f2 is not a Gröbner basis of 〈f1, f2〉.
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Buchberger’s Criterion. A basis {g1, . . . , gt} ⊂ I is a Gröbner basis of I if an

only if S(gi, gj)
G

= 0 for all i < j.

Buchberger’s algorithm for finding a Gröbner basis: If F = {f1, . . . , fs} fails

because S(fi, fj)
G 6= 0 for some i < j, then we add this remainder to F and

try again.

Example 3. Let F = {f1, f2} as in Example 2. We know that S(f1, f2)
F

=
−3xy2 + 2x2 = f3, so we set F1 = {f1, f2, f3} and compute:

S(f1, f2)
F1

= 0, S(f1, f3)
F1

= 0, S(f2, f3)
F1

= −4 + 3xy3 = f4,

so F1 is not a Gröbner basis yet. Adding F2 = {f1, f2, f3, f4}, we compute

S(f1, f4)
F2

= 0, S(f2, f3)
F2

= 0, S(f2, f4)
F2

= −3y2 + 2x = f5,

so F2 is not a Gröbner basis yet. Adding F3 = {f1, f2, f3, f4, f5}, we compute

again and find that S(fi, fj)
F3

= 0 for all i < j except S(f4, f5)
F3

= 9y5−8 = f6,
so that the Gröbner basis of I = 〈f1, f2〉 finally is

F4 = {x4 − 3xy, x2y − 2, −3xy2 + 2x2, 3xy3 − 4, 2x − 3y2, 9y5 − 8}.

since S(fi, fj)
F4

= 0 for all i < j.
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Buchberger’s Algorithm. Given {f1, . . . , fs} ⊂ k[x1, . . . , xn], consider the al-
gorithm which starts with F = {f1, . . . , fs} and then repeats the two steps

• (Compute Step) Compute S(fi, fj)
F

for all fi, fj ∈ F with i < j,

• (Augment step) Augment F by adding the nonzero S(fi, fj)
F

until the
Compute Step gives only zero remainders. The algorithm always termi-
nates and the final value of F is a Gröbner basis of 〈f1, . . . , fs〉.

Comments

− Gröbner bases were introduced in 1965 by B. Buchberger and named by
him in honor of W. Gröbner (1899-1980), Buchberger’s thesis advisor.

− Gröbner bases gave rise to development of computer algebra systems
like muMath, Maple, Mathematica, Reduce, AXIOM, Singular, CoCoCA,
FGb, Macaulay, etc.

− Buchberger’s Algorithm has been made more efficient, see Becker and
Cox, Faugère, and references therein.
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cont.

− Gröbner basis F4 computed above is too big: A standard way to re-
duce it is to replace any polynomial fi with its remainder on division by
{f1, . . . , fi−1, fi+1, . . . , ft}, removing zero remainders, and for polynomials
that are left, making their leading coefficient equal to 1. This produces
a reduced Gröbner basis.

− In general, for a fixed monomial, order, any ideal in k[x1, . . . , xn] has a
unique reduced Gröbner basis. For example, for the ideal in Example 3,
the reduced Gröbner basis is

Gred = {y5 − 8

9
, x − 3

2
y2}

Some problems that can be solved using Gröbner bases:

− The ideal membership problem, i.e., does f ∈ I = 〈f1, . . . , fs〉?
− Finding generators for the intersection of two ideals I ∩ J.
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cont.

− Solving systems of polynomial equations, e.g., intersecting surfaces and
curves, finding closest point on curve to the given point, Lagrange multi-
plier problems (especially for several multipliers), etc. Solutions to these
problems are based on the so called Extension Theory. (Cox)

− Finding equations for equidistant curves and surfaces to curves and sur-
faces defined in terms of polynomial equations, such as conic sections,
Bézier cubics; finding syzygy relations among various sets of polynomials,
for example, symmetric polynomials, finite group invariants, interpolating
functions, etc. Solutions to these problems are based on the so called
Elimination Theory. (Cox)

− Finding equidistant curves and surfaces as envelopes to families of curves
and surfaces, respectively. (Cox et al.) (Ab lamowicz and Liu)

− The implicitization problem, i.e., eliminating parameters and finding im-
plicit forms for curves and surfaces.
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cont.

− The forward and the inverse kinematic problems in robotics. (Buch-
berger, Cox)

− Automatic geometric theorem proving. (Buchberger, Buchberger and
Winkler, Cox)

− Expressing invariants of a finite group in terms of generating invariants.
(Cox)

− Finding relations between polynomial functions, e.g., interpolating func-
tions (syzygy relations).

− For many other applications, including integer programming, complex in-
formation systems, or algebraic coding theory see Buchberger and Win-
kler, Cox, Grabmeier

− See also bibliography on Gröbner bases at Johann Radon Institute for
Computational and Applied Mathematics (RICAM).
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Example 1: Equidistant curves to a parabola

• f1 defines a parabola with a focus at (0, p) where |p| denotes the distance
between the focus F = (0, p) and the vertex V = (0, 0) :

f1 = 4py0 − x2
0 = 0 (6)

• f2 defines a circle of radius (offset) r centered at a point (x0, y0) on f1

f2 = (y − y0)2 + (x − x0)2 − r2 = 0 (7)

• f3 gives a condition that point P(x, y) lies on a line perpendicular to f1

at (x0, y0) on f1

f3 = 2xp − 2x0p + x0y − x0y0 = 0 (8)

• Study affine variety V = V(I) where I = 〈f1, f2, f3〉 ⊂ R[x0, y0, x, y, p, r]

• Reduced Gröbner basis for I2 for the lex order y0 > x0 > x > y > p > r :

I2 = I ∩ R[x, y] = 〈g〉 (second elimination ideal)

• When is V(g) smooth? What are the singular points, if any, p ∈ V(g)
where (∇g)(p) = 0?
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Envelope with three singular points when p = 1
3

and r = 3
2

> rcrit = 2|p| :

g = 83808y + 52812x2 + 16900y2 −37248y3 −4896x2y2 −34416x4 −17280x4y

− 13824x2y3 + 9216y4 + 5184x4y2 + 5184x6 − 84681 + 6240x2y

F

g

g

S1

S2

f1

S3

–2

–1

1

2

3

y

–2 –1 1 2

x

Fig. 3: Parabola with parallel lines and three singular points S1, S2, S3
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For a generic parabola 4py = x2 :

• As the offset r → rcrit = 2|p|, virtual singular point approaches variety g.

• No singular points when 0 < r < rcrit, exactly one singular point when
r = rcrit, and three singular points when r > rcrit = 2|p|.

• For the order lex(y0, x0, x, y, r, p), reduced Gröbner basis for I has 14 poly-
nomials with exactly one polynomial g ∈ R[x, y, r, p].

• Single polynomial g ∈ R[x, y, r, p] implicitly determines the envelope:

g = −2pr2yx2 + 8pr2y3 + 8p2r2y2 − 32yp3r2 + 16p4r2 − 16y4p2 + 32y3p3

− 16p4y2 + 3r2x4 + 8p2r4 + 20p2r2x2 − y2x4 + 10ypx4 − x6 − x4p2 + 8py3x2

− 32x2y2p2 + 8x2yp3 − 3r4x2 + 2r2x2y2 + r6 − r4y2 − 8pr4y

• Analysis of ∇g = 0 gives exact coordinates of the singular points and the
critical value of the offset rcrit = 2|p| (see [2]).

• rcrit = 2|p| = 1
κmax

= ρmin is parabola’s semi-latus rectum
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Example 2: Idempotent variety

Consider C`2,0 with a monomial basis 1, e1, e2, e12 = e1 ∧ e2. What is the most
general idempotent u = u2 ∈ C`2,0? Let u = x0 + x1e1 + x2e2 + x12e12. Then,
the equation u2 = u yields:

p1 = x2
0 + x2

1 + x2
2 − x2

12 − x0, p2 = x1(2x0 − 1),

p3 = x2(2x0 − 1), p4 = x12(2x0 − 1) (9)

The family of idempotents is an affine variety V(p1, p2, p3, p4). We solve the
above system by finding a Gröbner basis G for the ideal I〈p0, p1, p2, p3〉 ⊂
R[x0, x1, x2, x12] for lex(x0, x1, x2, x12) order. G consists of seven polynomials:

g1 = x12(4x2
1 − 1 + 4x2

2 − 4x2
12), g2 = x2(4x2

1 − 1 + 4x2
2 − 4x2

12),

g3 = x1(4x2
1 − 1 + 4x2

2 − 4x2
12), g4 = x12(2x0 − 1),

g5 = x2(2x0 − 1), g6 = x1(2x0 − 1),

g7 = x2
0 + x2

2 − x2
12 + x2

1 − x0. (10)

Here g1, g2, g3 ∈ G1 = G ∩ R[x1, x2, x12] whereas g4, g5, g6, g7 ∈ G0 = G ⊂
R[x1, x2, x12]. Thus, V(p1, p2, p3, p4) = V(g1, g2, g3, g4, g5, g6, g7). When x0 = 1

2
,

we get

u1,2 =
1

2
+ x12e12 ± 1

2

√

1 − 4x2
2 + 4x2

12 e1 + x2e2, 1 − 4x2
2 + 4x2

12 ≥ 0. (11)

19



cont. When x0 6= 0, we get trivial idempotents 0 and ±1. Thus, u1,2 in (11)
are the only non-trivial idempotents in C`2,0 and their variety is the hyperboloid

4x2
1 +4x2

2−4x2
12 = 1. The primitive idempotents 1

2
(1±e1) and 1

2
(1±e2) belong

to this variety when x12 = x2 = 0 and x12 = x1 = 0, respectively.

The above example can be generalized when searching for general elements
in any Clifford or Grassmann algebra that satisfy certain relations.

Example 3: Distance to ellipse

Find a point (or points) on ellipse f1 = x2

a2 + y2

b2 −1 that minimizes distance from

the ellipse to a given point P = (x0, y0), x0 6= 0, not on the ellipse. Thus, one
needs first to find points Q on the ellipse such that a line T tangent to the

ellipse at Q is orthogonal to the vector
−−→
QP. Let f2 = a2y(x−x0)− b2x(y − y0).

Then, the condition f2 = 0 assures that the vector
−−→
QP⊥T. Let x0 = 4, y0 =

3
2
, a = 2, b = 1. Thus, we must to solve a system of equations

f1 = 4y2 + x2 − 4 = 0 and f2 = 6yx − 32y + 3x = 0 (12)

for x and y.
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cont. We find the reduced Gröbner basis for the ideal I = 〈f1, f2〉 that defines
V = V(f1, f2) for lex(x, y order. The basis contains two polynomials

g1 = −18y3 + 9 − 9y2 + 12x − 110y,

g2 = −9 − 36y + 229y2 + 36y3 + 36y4 (13)

Observe that g2 belongs to I2 = I ∩ R[y]. Observe also that the leading
coefficient in g1 w.r.t. lex(x, y) is 12, hence by the Extension Theorem
(Cox), every partial solution to the system {g1 = 0, g2 = 0} on the vari-
ety V(g2) can be extended to a complete solution of (12) on the variety
V. Since polynomial g2 is of degree 4, it’s solutions are expressible in radi-
cals. When approximated, two real values of y are y1 = 0.2811025120 and
y2 = −0.1354474035. Each of the exact values of y, when substituted into
equation g1 = 0 yields exact value of x. Thus, we have two points Q on the el-
lipse whose approximate coordinates are Q1 = (1.919355494, 0.2811025085)
and Q2 = (−1.981569077,−0.1354473991). Checking the distances, one finds

||−−→Q1P || = 2.411388118 < ||−−→Q2P || = 6.201117385, or, that the point Q1 is clos-
est to the given point P.
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cont. In the purely symbolic case when a, b, x0, y0 remain unassigned, the
above process returns a two-polynomial reduced Gröbner basis for I :

G = [a4y4 − a4y2b2 + 2a2y2b4 − 2a2b2y4 + a2y2x2
0b2 + 2a2b2y3y0−

2a2yb4y0 − b6y2
0 − 2y3y0b4 − y2b6 + 2yb6y0 + y4b4 + y2y2

0b4,

a2b4y0 − b6y0 − a2b2y2y0 + b4y2y0 + a4yb2 − 2a2yb4 + yb6−
a2x2

0yb2 − a4y3 + 2a2b2y3 − b4y3 + x0b4xy0] (14)

where the first polynomial is of degree 4 in y and is, in principle, solvable with
radicals. The second polynomial is again of degree 1 in the variable x. Thus,
in general, this problem is solvable in radicals.
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Definition 11 (Cox). Let G ⊂ GL(n, k), char k = 0, be a finite matrix group.
A polynomial f(x) ∈ k[x1, . . . , xn] is invariant under G if f(x) = f(Ax) for all
A ∈ G.∗ The set of all invariant polynomials is denoted k[x1, . . . , xn]G.

It is easy to show that k[x1, . . . , xn]G is a subring of k[x1, . . . , xn]. It is referred
to as the ring of invariants of the finite group G.

Theorem 1 (Noether). Given a finite matrix group G ⊂ GL(n, k), we have

k[x1, . . . , xn]G = k[RG(xβ) : |β| ≤ |G|].
In particular, k[x1, . . . , xn]G is generated by finitely many homogeneous invari-
ants.

Here, RG denotes the Reynolds operator of G. Gröbner basis algorithm is
used to express any G-invariant polynomial f ∈ k[x1, . . . , xn]G = k[f1, . . . , fm] in
terms of f1, . . . , fm, using this next result.

∗Here, x is the column vector [x1 x2 · · · xn]T .
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Proposition 5. Let f1, . . . , fm ∈ k[x1, . . . , xn] are given. Fix a monomial order
in k[x, . . . , xn, y1, . . . , ym] where any monomial involving one of x1, . . . , xn is
greater than all monomials in k[y1, . . . , ym]. Let G be a Gröbner basis of the
ideal 〈f1 − y1, . . . , fm − ym〉 ⊂ k[x, . . . , xn, y1, . . . , ym]. Given f ∈ k[x1, . . . , xn], let

g = f
G

be the remainder of f on division by G. Then: (i) f ∈ k[f1, . . . , fm] if
and only if g ∈ k[y1, . . . , ym]. (ii) If f ∈ k[f1, . . . , fm], then f = g(f1, . . . , fm) is an
expression of f as a polynomial in f1, . . . , fm.

Thus, this result tells us how to determine whether f ∈ k[f1, . . . , fm] and if so,
how to express it in terms of the generating polynomials. In particular, this
result allows one to determine whether a polynomial f is G-invariant, that is,
whether f ∈ k[x1, . . . , xn]G = k[f1, . . . , fm].

Example 4: Symmetric polynomials

Let G be the symmetric group S3. Let

σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, and σ3 = x1x2x3

be the elementary symmetric polynomials in x1, x2, x3. (Sturmfels) A Gröbner
basis F for the ideal I = 〈σ1−y1, σ2−y2, σ3−y3〉 in lex(x1, x2, x3, y1, y2, y3) order
is

F = [x3
3 − x2

3y1 + y2x3 − y3, x2
2 + x2x3 − x2y1 + x2

3 − x3y1 + y2, x1 + x2 + x3 − y1]
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cont. Let

f = x2
1x2 + x1x2

2 + 3x1x2x3 + x2
1x3 + x1x2

3 + x2
2x3 + x2x2

3 − x2
1x2

2x2
3.

It can be checked directly that f(x) = f(σx), ∀σ ∈ S3. That is, f is invariant

under S3 and f ∈ k[x1, x2, x3]S3. Reducing f modulo F gives g = f
F

= y1y2−y2
3 ∈

k[y1, y2, y3]. Thus, by part (i) of the above Proposition, we see again that f
is symmetric. Furthermore, from part (ii) we get that f = σ1σ2 − σ2

3.

For more examples on finite group generators and finding the so called syzygy
relations (or, syzygies), see (Cox, Sturmfels). For a small Maple package
related to finite group invariants as well as generators (relations) of syzygy
ideals, see SP package.

Example 5: Rodrigues matrix

Recall that the trigonometric form of a quaternion a = a0 + a ∈ H is a =
‖a‖(cos α+u sin α), where u = a/|a|, |a|2 = a1

2 +a2
2 +a3

2 and α is determined
by cos α = a0/‖a‖, sin α = |a|/‖a‖, 0 ≤ α < π. Then, any quaternion can be
written as

a = ‖a‖(cos α + |a|−1(a1i + a2j + a3k) sin α). (15)
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cont.

Theorem 2 (Meister). Let a and r be quaternions with non-zero vector parts
where ‖a‖ = 1, so a = cos α + u sin α where u is a unit vector. Then, the
norm and the scalar part of the quaternion r′ = ara−1 equal those of r, that
is, ‖r′‖ = ‖r‖ and Re(r′) = Re(r). The vector component r′ = Im(r′) gives a
vector r′ ∈ R3 resulting from a finite rotation of the vector r = Im(r) by the
angle 2α counter-clockwise about the axis u determined by a.

Let a = a0 + a, b = b0 + b ∈ H. Let va, vb, and vab be vectors in R4 whose
coordinates equal those of a, b, ab ∈ H. (Meister)

Then, the vector representation of the product ab is

ab 7→ vab = G1(a)vb = G2(b)va (16)

where

G1(a) =

[

a0 −aT

a a0I + K(a)

]

, G2(b) =

[

b0 −bT

b a0I − K(b)

]

, (17)

and

K(a) =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 , K(b) =





0 −b3 b2

b3 0 −b1

−b2 b1 0



 , (18)

26



cont. are skew-symmetric matrices determined by the vector parts a and b
of the quaternions a and b, respectively. For properties of matrices G1(a)
and G2(b) see (Meister). Theorem 2 implies that mapping r 7→ r′ = ara−1,
‖a‖ = 1, gives the rotation r 7→ r′ in R3. Using 4×4 matrices, it can be written
as:

vr 7→ v′
r = G1(a)G2(a−1)vr = G1(a)G2

T (a)vr (19)

where

G1(a)G2
T (a) =





1 0

0 (2a0
2 − 1)I + 2aaT + 2a0K(a)

︸ ︷︷ ︸

R(a)



 (20)

The 3×3 matrix R(a) in the product G1(a)G2
T (a) is the well-known Rodrigues

matrix of rotation. (Goldstein, Meister) The Rodrigues matrix has this form
in terms of the components of a :

R(a) =





a2
0 + a2

1 − a2
2 − a2

3 2a1a2 − 2a0a3 2a1a3 + 2a0a2

2a1a2 + 2a0a3 a2
0 − a2

1 + a2
2 − a2

3 2a2a3 − 2a0a1

2a1a3 − 2a0a2 2a2a3 + 2a0a1 a2
0 − a2

1 − a2
2 + a2

3



 (21)
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cont. Entries of R(a) are homogeneous polynomials of degree 2 in R[a0, a1, a2, a3].
Separating the scalar and the vector parts of the quaternion r in the 4D rep-
resentation (19), we get

Re(r′) = Re(r), Im(r′) = r′ = R(a)r = R(a) Im(r) (22)

The first relation shows that the scalar part of r remains unchanged, while
the vector part r′ of r′ is a result of rotation of the vector part r of r about
the axis a = a1i + a2j + a3k and the angle of counter-clockwise rotation is 2α.
Observe that

det R(a) = ‖a‖6 and R(a)T R(a) = ‖a‖4I.

Thus, the Rodrigues matrix R(a) gives a rotation if and only if ‖a‖ = 1.

Problem: Find the rotation axis a and the rotation angle 2α by expressing
(a0, a1, a2, a3) in terms of the entries of an orthogonal matrix M of determi-
nant 1. For that purpose, use Gröbner basis and the theory of elimination.
(Cox)
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cont. Let M = (mij) be an orthogonal 3 × 3 matrix so MT M = I. This one
constraint gives us six polynomial constraints on the entries of M :

c1 = m2
11 + m2

21 + m2
31 − 1, c2 = m2

12 + m2
22 + m2

32 − 1, c3 = m2
13 + m2

23 + m2
33 − 1,

c4 = m11m12 + m21m22 + m31m32, c5 = m11m13 + m21m23 + m31m33,

c6 = m12m13 + m22m23 + m32m33

We add one more constraint, namely, that det M = 1 :

c7 = m11m22m33 − m11m23m32 − m21m12m33+

m21m13m32 + m31m12m23 − m31m13m22 − 1

A Gröbner basis GJ for the syzygy ideal J = 〈c1, c2, . . . , c7〉 with respect to
lex(m11, m12, . . . , m33) contains 20 polynomials. This means that the seven
constraint polynomials are not algebraically independent. Define nine poly-
nomials fk ∈ R[a0, a1, a2, a3, mij]

[f1, f2, f3, f4, f5, f6, f7, f8, f9] = [mij − R(a)ij] (23)

Our goal is to express the four parameters a0, a1, a2, a3 in terms of the nine
matrix entries mij that are subject to the seven constraint relations cs = 0, 1 ≤
s ≤ 7. This should be possible up to a sign since for any rotation in R3 given
by an orthogonal matrix M, det M = 1, there are two unit quaternions a and
−a that such that R(a) = R(−a) = M.
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cont. We compute a Gröbner basis GI for the ideal I = 〈f1, . . . , f9, c1, . . . , c7〉
for lex(a0, a1, a2, a3, m11, m12, . . . , m33) order. GI contains 50 polynomials of
which 20 polynomials are in R[mij] : Thus, they provide a basis GJ for the
syzygy ideal J. We need to solve the remaining 30 polynomial relations for
a0, a1, a2, a3, so we divide them into a set Sl of 20 polynomials that are linear in
a0, a1, a2, a3, and a set Snl of 10 polynomials that are non-linear in a0, a1, a2, a3.
The first four polynomials in Snl are:

a0
2 =

1

4
(1 + m11 + m22 + m33), a1

2 =
1

4
(1 + m11 − m22 − m33),

a2
2 =

1

4
(1 − m11 + m22 − m33), a3

2 =
1

4
(1 − m11 − m22 + m33), (24)

which easily shows that ‖a‖ = 1, the quaternion a defined by the orthogonal
matrix M is a unit quaternion.
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cont. The remaining six polynomials in Snl are:

a0a1 =
1

4
(m32 − m23), a0a2 =

1

4
(m13 − m31), a1a2 =

1

4
(m12 + m21),

a0a3 =
1

4
(m21 − m12), a1a3 =

1

4
(m13 + m31), a2a3 =

1

4
(m23 + m32), (25)

The remaining 20 polynomials from Sl are linear in a0, a1, a2, a3. Let A be the
coefficient matrix of that linear homogeneous system. Matrix A is 20× 4 but
it can be easily reduced to 14 × 4 by analyzing its submatrices and normal
forms of their determinants modulo the Gröbner basis GJ . It can be shown
that this symbolic matrix is of rank 3. That is, there is always a one-parameter
family of solutions. Once that one-parameter family of solutions is found, two
unit quaternions ±a such that R(±a) = M can be found from remaining 10
nonlinear equations.

Let M =





1 0 0
0 0 −1
0 1 0



 . Then, the above process gives a0 = a0, a1 = a0, a2 =

0, a3 = 0, and a0 = ±1
2

√
2 so one unit quaternion is:

a =
1

2

√
2 +

1

2

√
2i = a0 + a, cos α =

1

2

√
2, sin α = |a| =

1

2

√
2.
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cont. The Rodrigues matrix gives R(±a) = M, α = 1
4
π, so the rotation angle

is 2α = 1
2
π, and the rotation axis u is just i, as expected.

For another example, consider the following orthogonal matrix:

M =








0
√

210−5
√

14
35

−2
√

35−5
√

21
35√

210+5
√

14
35

11
35

−7
√

6+5
√

10
35

−2
√

35+5
√

21
35

−7
√

6−5
√

10
35

4
35








with det M = 1. Then, solution to the linear system is a0 = a0, a1 = −
√

10
5

a0,

a2 = −
√

21
5

a0, a3 =
√

14
5

a0. Upon substitution into the non-linear equations

we find a0 = ±
√

70
14

which eventually gives a =
√

70
14

+ (−
√

7
7

i −
√

30
10

j +
√

5
5

k),

cos α =
√

70
14

, sin α = |a| = 3
√

14
14

. It can be verified again that R(±a) = M and
α ≈ 0.9302740142 rad.
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II. PBW rings and algebras (Bueso et al.)

• Let k be a field and let T = Tn = k〈x1, . . . , xn〉 be a free associative k-
algebra, e.g., a tensor k-algebra on a free k-module V with basis X =
{x1, . . . , xn}. T can be thought of as the polynomial ring over k in non-
commuting variables X with monomials

Mon(T ) = {xα1

i1
xα2

i2
· · · xαn

in
|1 ≤ i1, i2, . . . , in, αk ≥ 0}

spanning it as a k-vector space. Distinguish standard monomials:

MonS(T ) 3 xα = xα1

i1
xα2

i2
· · ·xαn

in
7→ (α1, α1, . . . , αn) = α ∈ Nn

where 1 ≤ i1 < i2 < · · · < in and αk ∈ N and the map is a bijection.

• Any finitely generated associative k-algebra is a quotient Tn/I, for some
n and a proper two-sided ideal I ⊂ Tn. (Rotman)

• If the set of standard monomials (modulo I) forms a k-basis of an algebra
A = T/I, we say that A has a Poincaré-Birkhoff-Witt (PBW) basis
in the variables X.
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• An abstract associative algebra A has a PBW basis if there exists an
isomorphism of k-algebras A ∼= T/I such that T/I has a PBW basis. For
example, k[x1, x2, . . . , xn] does have a PBW basis while k〈x1, x2, . . . , xn〉
does not.

• Generalization of the definition of PBW algebras to left PBW rings (to-
gether with admissible orders) can be found in Bueso et al.

Definition 12. Let R be a ring containing a division ring k and let xα =
xα1

1 . . . , xαn
n be a standard term where x1, . . . , xn ∈ R. The ring R is said to be

left polynomial over k if the set {xα; α ∈ Nn} is a basis of R as a left k-vectors
pace. Then, every f ∈ R has a standard representation f =

∑

α∈Nn cαxα.

Definition 13. An admissible order on (Nn, +) is a total order � satisfying
the following two conditions:

− 0 ≺ α, ∀α ∈ Nn, and

− α + γ ≺ β + γ, ∀α, β, γ ∈ Nn with α ≺ β.

For 0 6= f ∈ R, let exp(f) = max�{α ∈ Nn, cα 6= 0} for an admissible order � .
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Definition 14. A ring R which is left-polynomial over k in x1, . . . , xn is called a
left Poincaré-Birkhoff-Witt ring (left PBW ring) if there exists an admissible
order � on (Nn, +) that satisfies the following conditions:

• ∀1 ≤ i < j ≤ n, ∃ qij ∈ k \ {0} s.t. exp(xjxi − qjixixj) ≺ εi + εj where
εi = (0, . . . , 1, . . . , 0) ∈ Nn.

• ∀1 ≤ i ≤ n and ∀ a ∈ k \ {0}, ∃ qja ∈ k \ {0} s.t. exp(xja − qjaxj) ≺ εj.

Let pji = xjxi − qjixixj for 1 ≤ i < j ≤ n, and pja = xja− qjaxj for 1 ≤ i ≤ n and
a ∈ k \ {0}. We denote the left PBW ring R as

R = k{x1, . . . , xn; Q, Q′,≺}
where

Q = {xjxi = qjixixj + pji; 1 ≤ i < j ≤ n}
and

Q′ = {xja = qjaxj + pja; 1 ≤ j ≤ n, a ∈ k∗}

Definition 15. A left PBW ring R is called a PBW algebra if k is a com-
mutative field and if xja = axj for every a ∈ k and 1 ≤ j ≤ n.
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Lemma 4. (Bueso et al.) Any left PBW ring is a domain.

Hilbert Basis Theorem. Every left PBW ring is left noetherian.

Examples of PBW rings and algebras

• Commutative polynomial ring k[x1, . . . , xn] : For every admissible order �
on Nn, we have

k[x1, . . . , xn] = k{x1, . . . , xn; xixj = xjxi, �}
is a PBW algebra.

• Let g be a finite-dimensional Lie k-algebra with k basis {x1, . . . , xn}. Let
U(g) be its enveloping algebra. By the Poincaré-Birkhoff-Witt theorem,
U(g) is left polynomial in x1, . . . , xn, and it is noetherian (Bueso et al.). In
general, U(g) = T (g)/I, where T (g) is the tensor algebra over the linear
space of g and I is a two-sided ideal generated by x⊗y−y⊗x−[x, y], ∀x, y ∈
g. Therefore, U(g) is a PBW algebra and

U(g) = k{x1, . . . , xn; xixj = xjxi + [xj, xi], �deglex}
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• Let q be a multiplicatively anti-symmetric n×n matrix over k, i.e., qi,j 6= 0

and qi,j = q−1
j,i for all 1 ≤ i, j ≤ n. The (multiparameter) n-dimensional

quantum space kq[x1, . . . , xn] associated to q is the quotient of the free
k-algebra k〈x1, . . . , xn〉 by the two-sided ideal associated to the relations
Q = {xjxi = qjixixj, j > i}. Let � be any admissible order on Nn. Then

Oq(kn) = k{x1, . . . , xn; Q,�}
is a PBW algebra.

• There are constructive methods to obtain new (left) PBW rings as Ore
extensions of a given (left) PBW ring. For example, skew polynomial
Ore algebras and rings of differential operators are particular instances
of the so called iterated Ore extensions. (Bueso et al.)

• The n-th Weyl algebra An(k) is a PBW algebra.

• Let R be a (left) PBW ring containing a division ring k as defined above.
The multivariable division algorithm in R, the normal form of a polynomial
f in R w.r.t. to a set F , the Gröbner bases in left-, and two-sided ideals
are discussed at length in (Bueso et al.)
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III. G-algebras and GR-algebras (Levandovskyy)

Definition 16. Let ≺ be a total well-ordering on Nn.

1. Let A be an algebra with PBW basis and ≺A be an ordering on A induced
by ≺ . Then ≺A is a monomial ordering on A if the following conditions hold
∀α, β, γ ∈ Nn :

• If xα 6= 0, xβ 6= 0, then α ≺ β ⇒ xα ≺ xβ,

• If xα ≺ xβ, xα+γ 6= 0 and xβ+γ 6= 0 then xα+γ ≺ xβ+γ.

2. Any f ∈ A \ {0} can be written uniquely as f = cxα + f ′, with c ∈ k∗ and
xα′ ≺A xα for any non-zero term c′xα′

of f ′. Define lm(f) = xα as the leading
monomial of f, and lc(f) = c as the leading coefficient of f.

38



Constructing a G-algebra

Definition 17. Let I be a two-sided ideal of T = k〈x1, x2, . . . , xn〉 generated
by the elements:

xjxi − cijxixj − dij, 1 ≤ i < j ≤ n, cij ∈ k∗, dij ∈ T. (26)

A k-algebra A = T/I = k〈x1, x2, . . . , xn | xjxi = cijxixj + dij, ∀1 ≤ i < j ≤ n〉 is
called a G-algebra in n variables, if the following conditions hold:

- Ordering condition: There exists a monomial well-ordering ≺ on T such
that lm(dij) ≺ xixj,∀1 ≤ i < j ≤ n.

- Non-degeneracy condition: ∀1 ≤ i < j < k ≤ n, define polynomials

NDCijk = cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk

The condition is satisfied if all NDCijk reduce to 0 w.r.t. the rela-
tions (26).

Note: NDCijk = xk(xjxi) − (xkxj)xi.
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Some important properties of G-algebras

Theorem 3 (Apel, Levandovskyy). Let A be a G-algebra in n variables.

• A has a PBW basis {xα1

1 xα2

2 · · ·xαn
n |αk ∈ N}.

• A is left and right Noetherian.

• A is an integral domain.

• A has a left and a right noetherian quotient ring.

Definition 18 (Levandovskyy). Let B be a G-algebra and I ⊂ B be a proper
nonzero two-sided ideal. Then the quotient algebra B/I is called a GR-
algebra (Gröbner-ready algebra)
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Examples of G-algebras

• Quasi-commutative polynomial rings, for example, the quantum plane
Cq[x, y] = C[x, y]/Iq, 0 6= q ∈ C where Iq is generated by yx − q · xy. It is a
noetherian domain a basis of which (as a vector space over C, is given by
the elements xiyj, where i, j are positive integers. Then, generalizations
to quantum spaces kq[x1, x2, . . . , xn] = k〈x1, x2, . . . , xn〉/Iq where Iq is a
two-sided ideal generated by the relations xjxi − qxixj for 1 ≤ i < j ≤ n.
(Bueso et al.)

• Universal enveloping algebras of finite dimensional Lie algebras. (Apel,
Levandovskyy)

• Positive (negative) parts of quantized enveloping algebras (Klimyk and
Schmüdgen)

• Weyl algebras and their quantizations, Smith algebras, some diffusion
algebras (Isaev et al.).

• For more examples see Levandovskyy.

• Computations with G- and GR-algebras can be performed with Plural .
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Examples of GR-algebras (Levandovskyy)

• All G-algebras.

• Grassmann algebras
∧

V, Clifford algebras C`(Q) (Q may be degener-

ate)

• Finite dimensional associative algebras given by structure constants (Drozd
and Kirichenko)

• Skew polynomial rings

• Universal enveloping algebras of finite dimensional Lie algebras

See Levandovskyy (2006) for definitions and computations of left Gröbner
bases in G- and GR-algebras as well as two-sided Gröbner bases using Plural.
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G- and GR-algebras in Plural

• G-algebras are defined using ring command extended to non-commutative
variables.

• GR-algebra is defined as a quotient of a G-algebra modulo a two-sided
ideal I. It is of the type qring, for example, qring Q = twostd(I).

• There are various special-purpose libraries for pre-defined algebras. In
particular, clifford.lib for Clifford algebras C`(Q) and nctools.lib for
non-commutative algebras including Grassmann algebra.

• In Grassmann algebra, a monomial order < is admissible if:

(1) m > 1 for every monomial m in the Grassmann basis;

(2) If m2 > m1 then ml ∧m2 ∧mr > ml ∧m1 ∧mr for all monomials m1, m2,
ml, and mr as long as ml ∧ m2 ∧ mr 6= 0 and ml ∧ m1 ∧ mr 6= 0.

The only admissible orders are: Lex, InvLex, Deg[Lex], and Deg[InvLex].
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IV. Gröbner bases in Grassmann and Clifford algebras

Computed with SINGULAR:PLURAL and the TNB package that computes GLB and
GLIB bases of Stokes. (Stokes) A Maple package SINGULARPLURALlink provides
an interface between Maple and SINGULAR:PLURAL.

Example 6 Consider polynomials f1 = e5∧e6−e2∧e3 and f2 = e4∧e5−e1∧e3

in
∧

V6 where dim RV = 6. The Gröbner basis for the ideal I = 〈f1, f2〉 in
Deg[Lex] order returned by Plural and TNB is

{e145, e245 + e156, e256, e345, e356, e13 − e45, e23 − e56} (27)

See also (Stokes).

Example 7 Take C`2,0
∼= Mat(2, R) and a primitive idempotent f = 1

2
(1 +e1).

Let S = C`2,0f = spanR{f, e2f} be a spinor ideal. Then a Gröbner basis for S
is h = 1 + e1. Note that h = 2f is an almost idempotent.

Example 8 Take C`3,1
∼= Mat(4, R) and f = 1

4
(1 + e1)(1 + e34), a primitive

idempotent. Let S = C`3,1f = spanR{f,e2f, e3f, e23f} be a spinor ideal. Then,
PLURAL returns the following nilpotent polynomial g as a Gröbner basis for S :

g = e13 + e14 − e3 − e4 = −e3f, g2 = 0, f = −e3g. (28)

Due to the relations (28), we have S = C`3,1f = C`3,1g. That is, as expected,
f and g differ by a unit.
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Example 9 (Brachey) Let f1 = e56 − e23, f2 = e45 − e13 ∈
∧

6 and use de-
gree inverse lex order Deg[InvLex] on

∧

6 . After following Stokes’ Algorithm
(Stokes) and computing ten S-polynomials with a package TNB , one finds
the following GLB basis for the left ideal I = 〈f1, f2〉 : {e56 − e23, e45 −
e13, e1236, e1234, e136 − e234} whereas a GLIB basis for I is: {e56 − e23, e45 −
e13, e236, e136 − e234, e235, e135, e134}.
V. Computational differences and similarities when computing Gröbner
bases in k[x1, . . . , xn], and Grassmann and Clifford algebras

− k[x1, x2, . . . , xn] is a domain for any field k–in fact, it is UFD. In particular,
it has no nonzero zero divisors. Grassmann algebras are never domains
whereas most Clifford algebras C`(Q) are not domains either as they
possess nontrivial idempotents e2 = e, e 6= 0, 1, and e(e − 1) = 0.

− Let R = k[x1, x2, . . . , xn] and k be a field. Then, R is a noetherian ring.
In particular, every ideal in R is finitely generated, equiv., R has ACC,
equiv., R satisfies the maximum condition: Every non-empty family F of
ideals in R has a maximal element. Any quotient ring k[x1, x2, . . . , xn]/I
where I is any ideal, is also noetherian.

− Grassmann algebras and superalgebras are left noetherian (Stokes).
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cont.

− Left and right ideals in Grassmann and Clifford algebras do not coincide
due to non-commutativity whereas they are identical in k[x1, . . . , xn].

− In commutative rings k[x1, x2, . . . , xn], the division algorithm terminates
due to noetherianness of the ring. Some non-commutative algebras are
not noetherian (Mora), therefore, the division algorithm may not termi-
nate in general. However, Grassmann algebra is left noetherian as it has
no infinite ascending chain of ideals (Stokes).

− When reducing an S-polynomial S(fi, fj) ∈ R = k[x1, x2, . . . , xn] modulo
a finite set of polynomials F while computing a Gröbner basis, suppose

S(fi, fj)
F

= 0. Then, m · S(fi, fj)
F

= 0 for any monomial m = xα ∈ R. This
is often not the case in Grassmann or Clifford algebra due the presence of
non-zero zero divisors. This complicates computation of Gröbner bases
in these algebras.
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Importance of Grassmann algebras in:

• Affine and projective geometries,

• Automatic theorem proving and geometric reasoning: The vanishing of
several ‘hypothesis’ polynomials implies the vanishing of one or more
‘conclusion’ polynomials in the ideal of consequences of the ‘hypothesis’
polynomials,

• Grassmann algebra is suitable for algorithmic treatment when treated as
graded-commutative algebra of ‘exterior polynomials’: Generalization of
Buchberger’s algorithm to Gröbner Left Bases (GLB) and Gröbner Left
Ideal Basis (GLIB) by Stokes (1990)

• Obtaining Gröbner bases in Grassmann algebras is more complicated than
in PBW algebras, which are domains, due an abundance of zero divisors.
This leads to two types of Gröbner bases: Gröbner Left Bases (GLB)
and Gröbner Left Ideal Bases (GLIB). Such dichotomy of bases does not
exist in PBW algebras.
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VI. Final Comments

• Non-commutative Gröbner bases in Grassmann algebras and the issue
of ideal membership surface when analyzing systems of partial differen-
tial equations that arise in physics, i.e., in exterior differential systems
(Hartley and Tuckey 1995 and references therein).

• Hartley and Tuckey (1995) provide another approach through the so
called saturating sets to Gröbner bases in Grassmann and Clifford alge-
bras in a REDUCE package called XIDEAL.

• Ability to compute Gröbner bases for one- and two-sided ideals in Grass-
mann and Clifford algebras allows for deciding on the ideal membership,
computing bases for ideal intersections, sums, ideal quotients, etc. fol-
lowing the standard ideal treatment in a ring theory.
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