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Figure 1: left: Path lines (blue to red), streak lines (black) and corresponding surface for particles passing through eyelet in synthetic test
dataset. right: Eyelet path lines and eyelet path surface for two different positions (marked by arrows) at wing apex in delta wing dataset. Note
how the path lines emanating from the eyelet centered above the apex (red arrow) at first lead into the right primary vortex, then into the right
secondary vortex and finally turn to the left secondary vortex.

ABSTRACT

It is a challenging task to visualize the behavior of time-dependent
3D vector fields. Most of the time an overview of unsteady fields
is provided via animations, but, unfortunately, animations provide
only transient impressions of momentary flow. In this paper we
present two approaches to visualize time varying fields with fixed
geometry. Path lines and streak lines represent such a steady visu-
alization of unsteady vector fields, but because of occlusion and vi-
sual clutter it is useless to draw them all over the spatial domain. A
selection is needed. We show how bundles of streak lines and path
lines, running at different times through one point in space, like
through an eyelet, yield an insightful visualization of flow structure
(“eyelet lines”). To provide a more intuitive and appealing visual-
ization we also explain how to construct a surface from these lines.
As second approach, we use a simple measurement of local changes
of a field over time to determine regions with strong changes. We
visualize these regions with isosurfaces to give an overview of the
activity in the dataset. Finally we use the regions as a guide for
placing eyelets.
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1 INTRODUCTION

CFD simulations are a widely used tool for prototyping in industry
and research. As fluid dynamical mechanisms are of very complex
nature, simulations assuming steady flow are insufficient for many
problems. With increasing speed and memory size of the comput-
ers used to carry out the numerical computations, simulations of
unsteady flow have gained more and more importance. Producing
time-dependent vector fields covering many time steps, unsteady
simulations provided new challenges for visualization. These were
replied to with particle tracing, which allowed drawing path lines,
streak lines and time lines [10] as well as it enabled the visualiza-
tion with animated particles [6].

Especially for the development of aircraft prototypes, the simu-
lations’ output has reached extreme sizes in recent times. Datasets
requiring several terabytes of memory are produced by CFD simu-
lations in this area. However, not only the sheer size of the dataset
in the memory poses new problems to be handled by the visualiza-
tion community, also the very detailedness and mass of data points
requires new approaches for visualization. It is well known that
direct visualization of such amounts of data may overstrain the re-
ception capabilities of the human eye. In 2D and 3D steady flow
this problem is addressed by feature-based and topological visual-
ization, which reduce the number of drawn geometric objects to a



minimum while keeping the relevance of these objects at a maxi-
mum. Both general approaches have been subject to extensive re-
search that yielded very satisfying results for the cases of 2D steady
and unsteady flow and 3D steady flow. However, there is a gap con-
sidering 3D unsteady flow. There has been some research that we
will review in section 2, but until now there remain many open ques-
tions. We did not find any satisfying results on 3D time-dependent
topology in literature and the feature-based methods have problems
to visualize the 4-dimensional (3D+t) features in only three spatial
dimensions.

Displaying 4D information in 3D space is a central issue in visu-
alization of time-dependent flow data. In most cases this problem
is handled by animation even though animation only provides tran-
sient impressions. It is not possible for the user to get an overview
of all time steps while being able to navigate in this view to get a
better impression of it. Although many animations allow the user to
stop and navigate in the momentary configuration, no context and
no steady overview of the data are available to him.

With the work presented in this paper we want to take a first
step into the gap of steady visualization of time-dependent flow
data. We utilize the well known techniques of path lines and streak
lines combined with an intelligent selection and positioning, i.e. we
trace a number of particles running through the same point in space
for different times. The particles are selected to pass the point at
equidistant and equally distributed points in a given time interval.
We refer to the entirety of the obtained lines as eyelet lines and call
the spatial position common to all these lines an eyelet because the
lines look like threads running through an eyelet (see figure 1). The
lines and the surface we construct from them represent the complete
area that can be reached by particles passing through the eyelet in
the considered time interval. We show how the visualization of the
area or of single lines lying in it can help understanding the influ-
ence of one location on the global flow and the influence of global
flow on a single location. The first is achieved by tracing particles
forward in time, while tracing them backwards yields the latter.

To give an overview of the activity in the flow we propose to
measure the variation of the vectors over time for each data point.
Visualizing these variations with isosurfaces we provide the user a
steady overview, which he can examine to get insight in the struc-
ture of the whole flow over time. As the eyelet particle tracing un-
folds its potentials best in regions with high activity, the variation
data is used to select interesting positions for eyelets.

2 RELATED WORK

The visualization of unsteady fields is a busy field of research.
As mentioned before a central problem for visualization of time-
varying data is the additional dimension of time. This is especially
true in the case of 3D flow. Most research addresses this problem
by animation. The first approaches in this direction were to animate
groups of particles [6], for example to show the movement of streak
lines as presented by Lane [10]. In order to provide better spatial
impressions flow volumes were presented by Becker et al. [2].

More recent publications use dense and texture-based techniques
for visualizing time-dependent flow. The first approaches were pre-
sented by de Leeuw et al. [3] who extended the use of spot noise
for flow visualization to the time-dependent case and by Shen and
Kao [16] who extended the well known LIC for unsteady flows
(UFLIC). Lagrangian-Euler Advection [8] and IBFV [20] are some
of the most recent advances for 2D image-based techniques. These
and many similar techniques were also applied to three-dimensional
flow [12]. These extensions, however, all have to deal with prob-
lems of occlusion and visual clutter.

Another widely used group of methods is topological and
feature-based visualization [13]. For unsteady flow, feature-based
methods perform a tracking of features over time. Again, in many

cases the time is incorporated by animation. Alternatives to directly
displaying extracted features are used by Reinders et al. [14] and
Garth et al. [5]. Both show the features respectively singularities
in a schematic view. While Reinders et al. use their graph view
to ease the navigation through single time steps and to show events
like birth, death and annihilation of features over time, Garth et al.
show the movement of singularities relative to a given axis. Con-
cerning time-dependent vector field topology the most advanced
approaches we found in literature were proposed by Tricoche et
al. [19] and Theisel et al. [17]. Unfortunately both are only dealing
with 2D time-varying fields.

In the context of our aim to visualize 3D unsteady flow using
fixed geometry in the spatial domain of the dataset, the only ap-
proach we found is the vortex tracking by Bauer et al. [1]. However,
in contrast to our direct method, their approach is feature-based.

Another approach showing information from all time steps of
a dataset at once are the time histograms presented by Kosara et
al. [9]. With this method the change of distribution of values over
time is shown by drawing histograms extended to a third dimension
(time).

3 LINE-BASED VISUALIZATION OF TIME-DEPENDENT
FIELDS

Using lines as primitives for visualization of vector fields is com-
mon practice. In the following we will shortly review three types
of lines for unsteady vector fields, emphasize their differences and
give their mathematical definition to clarify explanations concern-
ing the eyelet path surface given later in this paper (see sec. 5.1).

For the following definitions let v : R
3 × [tmin, tmax] → R

3 be a
continuous time-dependent vector field. Let a ∈ R

3 be the position
of a particle in space and let t ∈ [tmin, tmax] be a certain time.

Stream Lines Stream lines are integral curves ca,t(u) of vector
fields which are tangential to the vectors of a field’s domain.
They can be interpreted as trajectories of particles in a steady
flow. For time-dependent vector fields streamlines are of little
use as they stay in a single time step. Thus they do not show
actual particle motion but theoretical trajectories of particles
with infinite velocity.

u → ca,t(u)

ca,t(0) = a
∂ca,t

∂u
(u) = v(ca,t(u), t)

Here u is a time-independent parameter, t selects the time
from which the vectors v are taken and and a is the stream-
line seed at u = 0.

Path Lines In contrast to stream lines, path lines pa,s in unsteady
flow, indeed, are the paths of moving particles. Path lines are
obtained by integration over space and time. For steady flow
path lines and stream lines are identical.

t → pa,s(t)
pa,s(s) = a

∂pa,s

∂ t
(t) = v(pa,s(t), t)

Here s is the seed time.

Streak Lines Streak lines sa,t are imaginary lines connecting the
locations of particles that were released into a flow at consec-
utive time steps. The lines can be observed when looking at



the particles at a certain time t. Like path lines, streak lines
coincide with stream lines in the steady case.

s → sa,t(s) = pa,s(t) (1)

Note that t is fixed and s varies.

For our purpose it is worth recalling that stream lines, and thus
path lines and streak lines, can not cross each other in steady vector
fields. Also recall that this means that only one line runs through
each point and each point uniquely identifies the line it lies on. This
is why streamlines yield a good overview of non-varying vector
fields and are one of the most popular visualization techniques for
such data. Many streamlines spread over the whole domain of a
steady vector field produce a good impression of the flow’s struc-
ture. In time-dependent vector fields, however, there is a line run-
ning through each position for every point in time, i.e. a single
position is contained in an infinite number of lines. Drawing “all”
these lines yields a visualization that suffers extremely from visual
clutter and occlusion.

4 VARIATION FIELD

In this section we introduce measures for the change of a vector
field over time. We subsume the measures under the notion of vari-
ation fields or activity fields and define all these terms mathemati-
cally.

Let
v : {x0, . . . ,xm}×{t0, . . . , tn}→ R

3

be a discrete 3D time-dependent vector field that is defined for n+1
particular times t0 < .. . < tn at m + 1 nodes x0, . . . ,xm. Let vti
be one time step and vti, j the vector at a node x j in time step vti .
Let a variation or activity ati(x j) be a measure for the difference
between the values of a node x j in two consecutive time steps (vti ,
vti+1 ). Then we define the variation field as a field that at every node
contains the variations for this node summed over all time steps, i.e.

a(x j) =
tn−1

∑
ti=t0

ati(x j) for j = 1, . . . ,m.

Throughout this paper we will use and discuss the following
measures:

Dot Product Variation This variation is computed by accumulat-
ing the positive dot products of vectors in consecutive time
steps. The norm of the two vectors and the angle between the
vectors influences the dot product variation.

aD(x j) =
tn−1

∑
ti=t0

∣

∣〈vti, j , vti+1, j〉
∣

∣ j = 1, . . . ,m

This variation correlates to the similarity measures used by
Ebling et al. [4] for pattern matching on vector fields.

Vector Variation As second variation we compute the difference
vector of the two considered vectors and take its norm. The
physical motivation for this variation is that this norm can be
thought of as the “force” needed to turn the first vector into
the shape of the second.

aV (x j) =
tn−1

∑
ti=t0

‖vti, j −vti+1, j‖ j = 1, . . . ,m

We propose to interpret variation fields as “maps” of activity. Us-
ing isosurfaces regions of high activity can be separated from those
with nearly steady flow. For most flow datasets regions with high
activity are of great interest for analysis. Note that for datasets with
non-equidistant time steps each variation has to be scaled propor-
tional to the corresponding distance.

5 EYELET LINES

In this section we define the notion of eyelet lines for the visualiza-
tion context. We extend the eyelet lines to eyelet path surfaces and
give possible applications.

Eyelet lines, in our notion, are a bundle of lines describing flow
or vector field properties in general and running through at least one
common position (base point, eyelet) at different times. This can be
formulated mathematically as follows: Let `x,τ , defined as

`x,τ : R → R
3

t → `x,τ (t),

be a curve running through a base point x ∈ R
3 at time τ ∈

[tmin, tmax] ⊂ R, where tmin is smallest and tmax the largest time
value in consideration. Then we call the totality of lines `x,τ with
τ ∈ [tmin, tmax] eyelet lines Lx.

As mentioned in section 3, for path lines and streak lines in time-
varying vector fields one point in space can be crossed by different
lines. Thus both line types are suitable as basis for eyelet lines and
we can specialize the above definition for them as follows. The
definitions are straight forward: Eyelet path lines are eyelet lines
obtained by path line integration, i.e.

{`x,τ ∈ Lx|`x,τ = px,τ} ,

and eyelet streak lines are all streak lines running through a base
point, i.e.

{`x,τ ∈ Lx|`x,τ = sx,τ} .

To ease further explanations a particle passing the base point will
be referred to as passing particle in the following. Also note that
eyelet path lines, all throughout this paper, are colored from blue to
red with increasing time of the particle passing the eyelet.

5.1 Eyelet Path Surface

Regarding the set of all possible positions of passing particles as a
continuum leads to the notion of eyelet path surfaces. Every particle
running through the base point x can only move on this surface and,
vice versa, every point of the surface is the position of a particle that
runs through x at a certain time.

All points on path lines and streak lines describe positions of
passing particles. For path lines these are the positions of one par-
ticle over time, for streak lines the points describe the positions of
many particles at a single point in time. With the argumentation
of the previous paragraph, thus, all path lines and all streak lines
running through the base point lie in the eyelet path surface for x.
Indeed both, eyelet path lines and eyelet streak lines, build up the
whole surface.

Mathematically this can be seen as follows. The eyelet path sur-
face Pa through a can be defined by path lines as

Ppath
a = {x ∈ R

3|x ∈ pa,s(t), s, t ∈ [tmin, tmax]}

and by streak lines as

Pstreak
a = {x ∈ R

3|x ∈ sa,t(s), s, t ∈ [tmin, tmax]} .

With sa,t(s) = pa,s(t) from eq. 1 and taking into account that s
and t for Pstreak

a and Ppath
a are running through all time values in

[tmin, tmax], it follows

Pa = Ppath
a = Pstreak

a .

This is the coincidence of path lines and streak lines in the eyelet
path surface. The left image of figure 1 illustrates the coincidence



Figure 2: Inserting a new line in case of diverging behavior and
ignoring an existing line for converging case.

of these path lines and streak lines with the eyelet path surface in a
synthetic vector field.

As mentioned, the eyelet path surface represents all possible po-
sitions of all passing particles. Thus, performing the tracing of par-
ticles only in flow direction, the surface covers all parts of space
reachable by flow through the base point. Taking only the parts of
path lines in account that are located upstream to the base point,
the eyelet path surface represents the region where all flow passing
the eyelet is originated from. Applications of these interpretations
of the surface are discussed in section 6.4. Eyelet path surfaces
can also be seen as path surfaces that have a streak line as starting
curve. Widening up the eyelet to a line or a small area would lead
to a three dimensional counterpart of eyelet path surfaces similar to
a flow volume [2].

5.2 Surface Construction

In our implementation the surface is constructed using the eyelet
path lines. We move along two neighboring lines and sample them
regularly after a constant step size. We connect these points to tri-
angles as shown for lines c and d in the left images of figure 2. Two
consecutive points on both lines form a quad that is built up of two
triangles. The diagonal edge connects the pair of opposite points
that has the smaller distance.

Neighboring lines start at very close points in time (e.g. tc, td)
and as the change of vectors along the time axis is continuous the
shape of neighboring lines, in many cases, looks very similar. The
continuity in time results from the linear interpolation in time that
is performed to obtain vectors between the time steps provided by
the considered dataset. As differing shape may imply “shift” in arc
length and increasing distance between neighboring lines, this is
crucial for the quality of the aforementioned way of generating tri-
angles. However, for strongly changing vector fields slow varying
shape is not always given. Diverging behavior of the lines is one
case where the distance between the lines changes. In this case we
insert a new line between the diverging lines. We do this in a way
very similar to the approach of Hultquist [7]. Figure 2 illustrates
the idea in the left image. The distance between corresponding
points on neighboring lines a and c is controlled by a threshold.
If the distance exceeds the threshold a new line (b) has to be in-
serted. Unfortunately, we can not just start a new path line in the
middle between the two considered points (like Hultquist does), as
this new path lines, due to numerical errors, would not necessarily
run through the eyelet point x. Note also that not only the spatial
position, but also the position in time would have to be determined
for the new start point. We found that this is not a trivial task. So,
having not the same option as Hultquist, we start the new path line
(b) at the base position x for tb = 0.5(ta +tc). We are aware that this
procedure means much extra computation time, however, we think
it is well spent in order to ensure accuracy.

The new path line is not used for triangulation from the base

Figure 3: Reuse of previously computed line for diverging behavior
after convergence.

Figure 4: Split of eyelet path surface originating from eyelet above
wing apex due to large angle between line segments.

point on because this would require to restart the triangulation from
the beginning, what, obviously would be a tremendous waste of
computation time. Instead, we take as many steps on the new path
line as we took on a and c until the distance exceeded the thresh-
old. The reached position is then the first of line b used for surface
construction. From there on lines a and b, and lines b and c are
the neighboring lines considered for triangulation. For the contrary
case of converging lines (see figure 2, right) we simply omit the
positions on the path line in the middle and regard e and g as neigh-
bors.

Figure 3 shows path lines that at first draw nearer to each other
and diverge afterwards. The divergence here is handled as a special
case. We do not always compute a new path line but check whether
we have previously computed lines in the time interval associated
to the two diverging lines. If there is only one such line we use it to
compensate the divergence. In the case of more than one previously
computed line, like lines 2 and 3 in figure 3, we chose the line with
starting time next to the middle of the starting times of line 1 and 2.
We do not detect sequences of convergence and divergence, but, in
fact, check for already computed lines for every divergence.

Very rapid divergence of neighboring lines is detected and han-
dled as proposed by Hultquist [7]. This means we compute the
angle between two considered path line segments and, if large an-
gles show up, stop triangulation between these path lines. We thus
split the front of the surface into two separate parts. An example for
such a strong divergence can be observed for the eyelet path lines
shown in figure 4. The surface is split up into three parts here.

5.3 Eyelet Position Selection

The usefulness of the eyelet lines crucially depends on the position
of the eyelet, i.e. on the position shared by all computed path lines.
As path lines through a point only change when the flow at and
around this point changes over time, the eyelet path lines for steady
flow collapse to one line. Intending visualization of time-dependent



fields we do not consider steady but unsteady flow here, but also
for unsteady flow wide regions of nearly unchanging velocity are
possible. The only conclusion that can be drawn from the collapse
to one line is the existence of a (nearly) steady field, in general a not
very interesting result. Hence the position of the eyelet should be
chosen to lie in regions a priori known to be interesting or at least
in regions where the field is unsteady.

We found the regions and positions listed in the following to
yield insightful eyelet path lines.

Edges and Corners of Flow-Passed Objects Near to edges and
corners of objects, flow often splits or changes its behavior.
Hence, interesting eyelet position can be found there. The re-
gion around the apex of the delta wing (see sec. 6 and figs. 1
and 4) is a good example for this.

Vortex Cores Positions in vortex cores yield eyelet path lines that
can help understanding the feeding process for a vortex. The
surface constructed from the backwards integrated eyelet lines
describes the region where the particles in the core come from.

Singularities Eyelet path surfaces starting near singularities yield
insight in their becoming and evolution.

Region Behind Flow Passed Object Turbulence and swirling
motion often appear behind objects immersed in a flow. The
sources of these behaviors can be studied by positioning
eyelets there.

Active Regions In general, following the argumentation at the be-
ginning of this subsection, regions with high activity serve as
interesting eyelet positions. The variation fields presented in
section 4 can be employed to find such regions.

Which positions to choose, in general, depends on the task.
However, in many cases the positions of some of the mentioned
locations coincide. The delta wing dataset discussed later is an ex-
treme example for this, since there the locations of singularities,
high activity and the vortex cores of the main vortices coincide.

As eyelet lines are used for studying the influence of one position
in space, in most cases one will draw only the lines or the surface
for one eyelet. For presentation, however, it may be interesting to
show the influence of a number of eyelets. We found that using
different color ranges for different eyelets and transparent surfaces,
it is possible to create an understandable visualization for around
six eyelets. But note that this number strongly depends on the posi-
tions of the eyelets and on the considered data because of possible
occlusion.

6 RESULTS, APPLICATIONS AND DISCUSSION

We tested our methods using real and synthetic datasets. In this sec-
tion we describe the real datasets and present the results of applying
our methods to them.

6.1 Datasets

6.1.1 Delta Wing

We studied a CFD simulation1 of airflow around a sharp-edged
delta wing at subsonic speed (Mach 0.2). The initially already high
angle of attack increases over time, resulting in the creation of vor-
tex bubbles, i.e. in the breakdown of the main vortices. The sim-
ulation shows the evolution of the primary, secondary and tertiary
vortex structures over time and the breakdown of the main vortices

1This simulation dataset has already served as subject of study for other
authors. See for example [5, 18]

Figure 5: upper row: Top view of isosurface of pressure for first and
last time step of hurricane Isabel showing its movement throughout
the simulation. lower row: Isosurfaces in vector variation field and
dot product variation field showing the trace of the hurricanes center.

Figure 6: Eyelet path lines integrated backwards from eyelet near
land fall of Isabel (North Carolina) and transparent isosurface of dot
product variation field.



above the wing. For our tests we picked out every tenth of the 1000
time steps. The grid is constant over time, it consists of roughly 3
million vertices and 11.1 million unstructured cells. Altogether, the
dataset has a size of 6.3 GB.

6.1.2 Hurricane Isabel

As second realistic example, we tested our methods on data pro-
duced by a simulation of hurricane Isabel2 from the U.S. National
Center for Atmospheric Research. The dataset was provided in con-
text of the IEEE Visualization 2004 contest. It consists of several
time-varying scalar and vector variables on a 500×500×100 recti-
linear grid for 48 time steps. Between consecutive time steps there
is a time span of one hour. For our tests we used a spatially sub-
sampled version of the data set. The graphical output is scaled in
z-direction (vertical) for a more appealing visualization.

6.2 Data Handling and Performance

All computations were carried out on a standard PC with a 64-bit
Opteron CPU running at 2 GHz. The virtual main memory of the
machine consisted of 3 GB RAM and 22 GB swap space. Having
the 64-bit CPU it is possible for us to address more than 4 GB of
main memory and thus to load datasets up to 24 GB within a single
process.

For computing the variation fields every position of the data has
to be processed for each time step. Thus, no strategy for pre-loading
time steps is needed. Vector variation and dot product variation both
take about six minutes for the whole delta wing dataset. This scales
linearly with the size for other data.

It would be desirable to have real-time interactivity for the com-
putation of eyelet lines and eyelet path surfaces. However, at least
for large datasets this is not possible due to several reasons. The
first reason is that integration on irregular grids using a Runge Kutta
scheme is not computationally cheap. Secondly the computation
time depends on the number of computed streamlines and thus on
the resolution of the surface. Finally, the fact that time-dependent
data does not fit into the RAM slows the computation down because
the data has to be loaded from disk. Many approaches for visual-
ization of time-varying fields use special data structures for acceler-
ating computations. This is not possible in our case. As eyelet path
lines can run through any point in time and space we can not deter-
mine any of the needed data in advance to pre-load it. However, as
we hold the complete dataset in the virtual main memory the cache
of the operating system can yield performance gains when comput-
ing path lines that do not differ much. This helps when computing
only few lines with small numerical precision for fast tests and af-
terwards computing a better resolved eyelet path surface. The cells
for the first computation will be kept in the cache and accelerate
the second integration. As our data structure [11] is organized with
arrays and as grid cells of CFD data often are organized in a way
that neighboring cells are stored close to each other, not only the
cells of previous computations but also their neighboring cells are
cached. Our data structure also supports fast point location which
is very important for integral curve computation on irregular grids.
While the computations for surfaces like in figure 4, where we have
over 7 million field lookups for the Runge Kutta scheme, take about
two minutes, computing surfaces for nearby eyelets thereafter take
less than 20 seconds.

6.3 Variation Field

Four isosurfaces for different isovalues in the vector variation field
of the delta wing are shown in figure 7. The first surface around the
whole wing reveals no special features. It only shows that the most

2http://www.vets.ucar.edu/vg/isabeldata/

a b

c d

Figure 7: Isosurfaces in the vector variation field of the delta wing
dataset. Isovalues (a-d): 2(10% of all values), 10, 50(90%) and
200(98%)

activity can be found around the wing, which is clear a priori. In
the next two images the centers of the main vortices emerge step by
step. For the last image the isosurfaces do not cover the whole vor-
tices anymore, but form around their breakdown bubbles. Hence,
the most interesting features for this data set are exactly where the
most activity can be found. The volume enclosed by the isosurfaces
for large values are thus very interesting locations to place eyelets.
As mentioned before, in fact three criteria for interesting locations
coincide there: large activity, vortex core line (early time steps)
and stagnation point corresponding to vortex breakdown (late times
steps). Eyelet path lines started there can be seen in figure 8.

Isosurfaces in the variation fields of the hurricane Isabel data are
shown in the lower images of figure 5. The red isosurface indicates
a region of high values in the dot product variation field and the
blue isosurface encloses high values of the vector variation field.
Both surfaces show the path of Isabel’s center. As evidence for this
interpretation, in the upper two images isosurfaces of the pressure
for the first and the last time step are given showing the movement
of the center.

Automation We tried to automate the process of isolvalue se-
lection but discovered that this is not possible offhand. Since we
had good experience from the delta wing (see fig. 7) we tried to
choose the isovalues such that they divided the dataset at 10%, 90%
and 98% of the number of values. This, unfortunately, yielded un-
satisfying results for some other datasets. Even choosing isovalues
in the mentioned way for a single dataset but for different varia-
tions not always yielded useful results. However, large isovalues
are a good selection for most data sets. The hurricane dataset is a
good example for this because the two isosurfaces in figure 5 are
at 94% and 98% of the number of values. As automation is not
possible, exploration of variation fields has to be interactive and the
user has to choose the isovalues. This is no disadvantage, since,
as mentioned before, the range of usually useful values is limited
and, in addition, fast isosurface extraction can be achieved by using
acceleration data structures [15]. Computing the variation field and
setting up the acceleration structure can be done automatically in
one step in post-processing of the simulation.



6.4 Eyelet Path Lines

The delta wing appeared to be an interesting example in our studies
of eyelet path lines. The vortices dominate this flow field. Thus the
first questions that arose were: Which particles enter which vortex
and are there positions from where particles passing at different
times enter different vortices. In figure 1 eyelet path lines running
into different vortices are drawn. While all particles passing the
left eyelet run into the left primary vortex, the traces of particles
passing the base point central above the apex lead into vortices on
both sides. The lines turn from the right primary vortex to the right
secondary vortex and finally run into the left secondary vortex. A
very similar situation, used to depict the splitting of the surface, is
shown in figure 4. However, notice that for the eyelet in figure 4 the
lines lead into the vortices in reverse order. The base points of these
similar cases are very close to each other but the particles running
through them, nevertheless, take very different directions.

In contrast to the vortices of the delta wing, the vortical struc-
ture in the hurricane data set moves. Thus, we could not select an
eyelet “in” the vortex. However we found an even more interesting
selection, namely the location of Isabel’s landfall. The lines gener-
ated by integrating against the flow direction are shown in figure 6.
They represent the paths of particles approaching to the eyelet, i.e.
the winds directed to its position. The lengths of the particles with
large time values correspond to the velocity of the particles because
faster particles cover a larger distance in the same time. Lines for
very small start time values (blue lines) are short because the back-
ward integration reaches the first time step, where the integration
has to end, very fast. Not considering these, the length of the other
lines (violet to red) show the evolution of the hurricane: The wind
has high velocities for the approaching hurricane but slows down
immediately when its eye reaches the eyelet. Not only the lengths,
but also the directions of the lines reveal the advance. At first the
wind comes from the ocean, it develops a turn as Isabel approaches
nearer and, finally, when the eye of the hurricane reaches the base
point of the lines, it attracts air from inland.

In the rest of this section we give possible applications for eyelet
lines that aim at particular physical problems.

6.4.1 Origin of particles in Vortex Bubble

Eyelet path lines started inside a vortex bubble, can aid analysis
of vortex breakdown. Integrating eyelet lines backwards in time
from a position known to lie in a breakdown bubble for some time
steps, shows the origin of the material inflating the bubble. For
our experiments we started the lines at the position of one of the
stagnation points in time step 750 (fig. 8). These stagnation points
are known to play a central role for the creation of the recirculation
bubble. We computed lines for two different time intervals. For
the right image the interval contained all time steps of the dataset,
while the lines in the left image correspond to an interval containing
only time steps with a pronounced bubble. The left images shows,
in agreement with known facts, that the vortex bubbles are fed only
from very small regions around the center of the vortices. Blue
lines in the right image show how particles running through the
base points before the appearance of the bubbles come also from
regions of the vortices apart from their centers.

6.4.2 Combustion

The gas and airflow in combustion chambers is often studied to
achieve high effectiveness of the reaction process. An appropriate
mixture of gas and air is needed for a proper reaction. The worst
conditions for the combustion are where only air or only gas is in a
region as no reaction will take place there.

Eyelet lines and their corresponding surface can provide a useful
tool for analyzing the flow in such regions. Given a region under

suspect to contain no air or no gas, one can select points in this
region and compute their eyelet lines backwards in time. The lines
then provide an overview of the origins of all particles passing the
selected point. If the lines only reach the inlet for air respectively
only the inlet for gas this shows that, indeed, no air respectively gas
will ever reach the point.

7 CONCLUSION AND OUTLOOK

In this paper we have presented two methods for visualizing three
dimensional time-dependent vector fields using steady graphical
representation, i.e without the use of animation. One method shows
the temporal evolution of path lines or streak lines emanating from
a certain spatial location called eyelet. We connected these lines to
a surface to display the whole area belonging to the flow through
the eyelet. The second method proposed in the paper, computes an
“activity map” for the data by measuring local changes of vectors.
Isosurfaces in the map show regions of high activity and were used
to give an overview of the activity in the field. Different measures
were discussed. Both methods were combined by taking regions
of large variation as first guess for interesting positions of eyelets.
Applied to large flow datasets and interesting physical problems our
methods proved their usefulness.

As future work it may be interesting to perform the flow localiza-
tion proposed by Wiebel et al. [21] for each time step and apply the
techniques presented throughout this paper to the obtained fields.

For the variation field computation we plan to explore more sim-
ilarity measures and test their usefulness for describing the global
structure of time-dependent vector fields. We also plan to study
possibilities for applying our methods to datasets with moving ge-
ometry or moving frame of reference.
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