Deciding Equivalence for Deterministic Top-down Tree-to-Weight Transducers

Malte Blattmann & <u>Andreas Maletti</u> Universität Leipzig, Germany

RAQM — June 23, 2021

Connection

• Started PhD under supervision of Heiko Vogler in 2003 on weighted tree transducers

Connection

• Started PhD under supervision of Heiko Vogler in 2003 on weighted tree transducers

Weighted tree transducers introduced by Werner in 1997
 Werner Kuich: Formal Power Series over Trees. Proc. DLT 1997

Connection

• Started PhD under supervision of Heiko Vogler in 2003 on weighted tree transducers

Weighted tree transducers introduced by Werner in 1997
 Werner Kuich: Formal Power Series over Trees. Proc. DLT 1997

• Werner served as external reviewer of my thesis

The Power of Tree Series Transducers

Dissertation

zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt an der Technischen Universität Dresden Fakultät Informatik

eingereicht von

Diplom-Informatiker Andreas Maletti

geboren am 22. November 1978 in Dresden

Gutachter:

Prof. Dr.-Ing. habil. *Heiko Vogler* (Technische Universität Dresden)

Prof. Dr. rer. nat. habil. Manfred Droste (Universität Leipzig)

O. Univ. Prof. Dr. phil. Dr. h.c. Werner Kuich (Technische Universität Wien)

Tag der Verteidigung: 15. Juni 2006

Weighted automata

- Offer elegant algebraic constructions (even for unweighted case)
- Enable use of powerful linear algebra (Hilbert's basis theorem, Gröbner bases)
- Yield more general results & better insights
- Standard model in several application areas (e.g. NLP)

Equivalence decidable

- Deterministic Top-Down Tree-to-String Transducers [Seidl, Maneth, Kemper: J. ACM 2018]
- Linear Det. Top-Down Tree Transducers with Output in Free Group [Löbel, Luttenberger, Seidl: Proc. DLT 2020]

Equivalence decidable

- Deterministic Top-Down Tree-to-String Transducers [Seidl, Maneth, Kemper: J. ACM 2018]
- Linear Det. Top-Down Tree Transducers with Output in Free Group [Löbel, Luttenberger, Seidl: Proc. DLT 2020]

Joint generalization

- Deterministic Top-Down Tree-to-Weight Transducer
- Weights in monoid $(S, \cdot, 1, 0)$ with adjoined zero 0 $(s \cdot 0 = 0 = 0 \cdot s \text{ and } s \cdot s' = 0 \text{ implies } 0 \in \{s, s'\})$

Equivalence decidable

- Deterministic Top-Down Tree-to-String Transducers [Seidl, Maneth, Kemper: J. ACM 2018]
- Linear Det. Top-Down Tree Transducers with Output in Free Group [Löbel, Luttenberger, Seidl: Proc. DLT 2020]

Joint generalization

- Deterministic Top-Down Tree-to-Weight Transducer
- Weights in monoid $(S, \cdot, 1, 0)$ with adjoined zero 0 $(s \cdot 0 = 0 = 0 \cdot s \text{ and } s \cdot s' = 0 \text{ implies } 0 \in \{s, s'\})$
- Free monoid $(A^*,\cdot,arepsilon,\bot)$ in (
- Free group $(G, \cdot, \varepsilon, \bot)$ in @

Fix $(S, \cdot, 1, 0)$ monoid with adjoined zero 0 and $[k] = \{1, \dots, k\}$

 $X_{k,n} = \left\{ x_{i,q} \mid i \in [k], \ q \in [n] \right\}$

Definition (wDT transducer)

Deterministic top-down tree-to-weight transducer (wDT transducer) is tuple

 $(\Sigma, n, (\delta_k)_{k \in \mathbb{N}})$

• ranked alphabet Σ of input symbols and number $n \in \mathbb{N}_+$ of states

Fix $(S, \cdot, 1, 0)$ monoid with adjoined zero 0 and $[k] = \{1, \dots, k\}$

 $X_{k,n} = \{x_{i,q} \mid i \in [k], q \in [n]\}$

Definition (wDT transducer)

Deterministic top-down tree-to-weight transducer (wDT transducer) is tuple

 $(\Sigma, n, (\delta_k)_{k \in \mathbb{N}})$

ranked alphabet Σ of input symbols and number n ∈ N₊ of states
transition functions δ_k: Σ_k × [n] → (X_{k,n} ∪ S)*

Let $S = (\{\alpha, \beta\}^* \times \mathbb{Z}_6) \cup \{\bot\}$ product monoid with adjoined \bot (free monoid generated by $\{\alpha, \beta\} \times$ additive group $\mathbb{Z}_6 = \mathbb{Z}/6\mathbb{Z}$)

Let $S = (\{\alpha, \beta\}^* \times \mathbb{Z}_6) \cup \{\bot\}$ product monoid with adjoined \bot (free monoid generated by $\{\alpha, \beta\} \times$ additive group $\mathbb{Z}_6 = \mathbb{Z}/6\mathbb{Z}$)

Example transitions

 $\delta_{2}(\sigma, 1) = (\varepsilon, 1) x_{1,1} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 3) = (\varepsilon, 1) x_{1,3} x_{1,3}$
$$\begin{split} \delta_0(\alpha,1) &= \bot & \delta_0(\beta,1) = \bot \\ \delta_0(\alpha,2) &= (\alpha,0) & \delta_0(\beta,2) = (\beta,0) \\ \delta_0(\alpha,3) &= (\varepsilon,0) & \delta_0(\beta,3) = (\varepsilon,0) \end{split}$$

Fix wDT transducer $\mathcal{M} = \left(\Sigma, n, (\delta_k)_{k \in \mathbb{N}}\right)$

Definition (state semantics) For every state $q \in [n]$ define $[\![q]\!]: T_{\Sigma} \to S$ by $[\![q]\!] (\sigma(t_1, \dots, t_k)) = [\![\delta_k(\sigma, q)]\!]^{t_1 \cdots t_k}$

where $\llbracket \cdot \rrbracket^{h \cdots t_k} \colon (X_{k,n} \cup S)^* \to S$ unique homomorphism given by

Fix wDT transducer $\mathcal{M} = \left(\Sigma, n, (\delta_k)_{k \in \mathbb{N}}\right)$

Definition (state semantics) For every state $q \in [n]$ define $[\![q]\!]: T_{\Sigma} \to S$ by $[\![q]\!] (\sigma(t_1, \dots, t_k)) = [\![\delta_k(\sigma, q)]\!]^{t_1 \dots t_k}$ where $[\![\cdot]\!]^{t_1 \dots t_k}: (X_{k,n} \cup S)^* \to S$ unique homomorphism given by • $[\![x_{i,p}]\!]^{t_1 \dots t_k} = [\![p]\!](t_i)$ for all $i \in [k]$ and $p \in [n]$

Fix wDT transducer $\mathcal{M} = \left(\Sigma, n, (\delta_k)_{k \in \mathbb{N}}\right)$

Definition (state semantics) For every state $q \in [n]$ define $\llbracket q \rrbracket$: $T_{\Sigma} \to S$ by $\llbracket q \rrbracket (\sigma(t_1, \dots, t_k)) = \llbracket \delta_k(\sigma, q) \rrbracket^{t_1 \dots t_k}$ where $\llbracket \cdot \rrbracket^{t_1 \dots t_k} : (X_{k,n} \cup S)^* \to S$ unique homomorphism given by • $\llbracket x_{i,p} \rrbracket^{t_1 \dots t_k} = \llbracket p \rrbracket (t_i)$ for all $i \in [k]$ and $p \in [n]$ • $\llbracket s \rrbracket^{t_1 \dots t_k} = s$ for all $s \in S$

Used transition

 $\delta_2(\sigma, 1) = (\varepsilon, 1) x_{1,2} x_{1,3} x_{2,2}$

Applied transition

Definition (semantics)

Translation $\mathcal{M}: T_{\Sigma} \to S$ is $\mathcal{M}(t) = \llbracket 1 \rrbracket(t)$ for all trees $t \in T_{\Sigma}$

<u>Transitions</u>

 $\delta_{2}(\sigma, 1) = (\varepsilon, 1) x_{1,1} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 3) = (\varepsilon, 1) x_{1,3} x_{1,3}$
$$\begin{split} \delta_0(\alpha,1) &= \bot & \delta_0(\beta,1) = \bot \\ \delta_0(\alpha,2) &= (\alpha,0) & \delta_0(\beta,2) = (\beta,0) \\ \delta_0(\alpha,3) &= (\varepsilon,0) & \delta_0(\beta,3) = (\varepsilon,0) \end{split}$$

<u>Transitions</u>

 $\delta_{2}(\sigma, 1) = (\varepsilon, 1) x_{1,1} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 3) = (\varepsilon, 1) x_{1,3} x_{1,3}$
$$\begin{split} \delta_0(\alpha,1) &= \bot & \delta_0(\beta,1) = \bot \\ \delta_0(\alpha,2) &= (\alpha,0) & \delta_0(\beta,2) = (\beta,0) \\ \delta_0(\alpha,3) &= (\varepsilon,0) & \delta_0(\beta,3) = (\varepsilon,0) \end{split}$$

Subderivations

$$\llbracket 2 \rrbracket \left(\begin{array}{c} \sigma \\ \alpha & \beta \end{array} \right) = (\varepsilon, 0) \cdot \llbracket 2 \rrbracket (\alpha) \cdot \llbracket 3 \rrbracket (\alpha) \cdot \llbracket 2 \rrbracket (\beta) \\ = (\varepsilon, 0) \cdot (\alpha, 0) \cdot (\varepsilon, 0) \cdot (\beta, 0) = (\alpha \beta, 0)$$

<u>Transitions</u>

 $\delta_{2}(\sigma, 1) = (\varepsilon, 1) x_{1,1} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$ $\delta_{2}(\sigma, 3) = (\varepsilon, 1) x_{1,3} x_{1,3}$

$$\begin{split} \delta_0(\alpha,1) &= \bot & \delta_0(\beta,1) = \bot \\ \delta_0(\alpha,2) &= (\alpha,0) & \delta_0(\beta,2) = (\beta,0) \\ \delta_0(\alpha,3) &= (\varepsilon,0) & \delta_0(\beta,3) = (\varepsilon,0) \end{split}$$

Subderivations

$$\begin{bmatrix} 2 \end{bmatrix} \begin{pmatrix} \sigma \\ \alpha & \beta \end{pmatrix} = (\varepsilon, 0) \cdot \begin{bmatrix} 2 \end{bmatrix} (\alpha) \cdot \begin{bmatrix} 3 \end{bmatrix} (\alpha) \cdot \begin{bmatrix} 2 \end{bmatrix} (\beta) \\ = (\varepsilon, 0) \cdot (\alpha, 0) \cdot (\varepsilon, 0) \cdot (\beta, 0) = (\alpha\beta, 0) \\ \begin{bmatrix} 3 \end{bmatrix} \begin{pmatrix} \sigma \\ \alpha & \beta \end{pmatrix} = (\varepsilon, 1) \cdot \begin{bmatrix} 3 \end{bmatrix} (\alpha) \cdot \begin{bmatrix} 3 \end{bmatrix} (\alpha) \\ = (\varepsilon, 1) \cdot (\varepsilon, 0) \cdot (\varepsilon, 0) = (\varepsilon, 1) \end{bmatrix}$$

~

$$\llbracket 1 \rrbracket \begin{pmatrix} \sigma & \sigma \\ \alpha & \beta & \beta & \alpha \end{pmatrix} = (\varepsilon, 1) \cdot \llbracket 2 \rrbracket \begin{pmatrix} \sigma \\ \alpha & \beta \end{pmatrix} \cdot \llbracket 3 \rrbracket \begin{pmatrix} \sigma \\ \alpha & \beta \end{pmatrix} \cdot \llbracket 2 \rrbracket \begin{pmatrix} \sigma \\ \beta & \alpha \end{pmatrix}$$
$$= (\varepsilon, 1) \cdot (\alpha\beta, 0) \cdot (\varepsilon, 1) \cdot (\beta\alpha, 0) = (\alpha\beta\beta\alpha, 2)$$

Semantics

$$\mathcal{M}(t) = (\text{yield}(t), 2^{\text{left-spine}(t)} - \text{left-spine}(t) \mod 6)$$

(left-spine(t) = number of σ -occurrences along left spine of t)

Two wDT transducers equivalent if their computed functions coincide

Two wDT transducers equivalent if their computed functions coincide

Assumption

 Finitely generated monoid (E)s of used weights effectively embeds into multiplicative monoid of infinite, computable, and commutative field F (discussion when possible in second part)

Two wDT transducers equivalent if their computed functions coincide

Assumption

 Finitely generated monoid (E)s of used weights effectively embeds into multiplicative monoid of infinite, computable, and commutative field F (discussion when possible in second part)

Approach following [Seidl, Maneth, Kemper 2018]

- Take disjoint union of both wDT transducers
- Prove invariance [1](t) [n](t) = 0 for all $t \in T_{\Sigma}$ (1 and *n* initial states)

Fix disjoint union wDT transducer $(\Sigma, n, (\delta_k)_{k \in \mathbb{N}})$

Definition (invariance)
Map
$$h: F^n \to F$$
 invariance if $h(\llbracket t \rrbracket) = 0$ for all $t \in T_{\Sigma}$
where $\llbracket t \rrbracket = (\llbracket 1 \rrbracket(t), \dots, \llbracket n \rrbracket(t))$

<u>Note</u>

• Input wDT transducers equivalent iff $h^*(s_1, \ldots, s_n) = s_1 - s_n$ invariance

(can be seen as monomials)

$$\begin{split} \delta_{2}(\sigma, 1) &= (\varepsilon, 1) \, x_{1,2} \, x_{1,3} \, x_{2,2} \\ \delta_{2}(\sigma, 2) &= (\varepsilon, 0) \, x_{1,2} \, x_{1,3} \, x_{2,2} \\ \delta_{2}(\sigma, 3) &= (\varepsilon, 1) \, x_{1,3} \, x_{1,3} \end{split}$$

(can be seen as monomials)

$$\delta_{2}(\sigma, 1) = (\varepsilon, 1) x_{1,2} x_{1,3} x_{2,2}$$

$$\delta_{2}(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$$

$$\delta_{2}(\sigma, 3) = (\varepsilon, 1) x_{1,3} x_{1,3}$$

Polynomial reformulation

• Use tree vector notation $\llbracket \sigma(t_1, t_2) \rrbracket_1 = (\varepsilon, 1) \cdot \llbracket t_1 \rrbracket_2 \cdot \llbracket t_1 \rrbracket_3 \cdot \llbracket t_2 \rrbracket_2$

(can be seen as monomials)

$$\delta_{2}(\sigma, 1) = (\varepsilon, 1) x_{1,2} x_{1,3} x_{2,2}$$

$$\delta_{2}(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$$

$$\delta_{2}(\sigma, 3) = (\varepsilon, 1) x_{1,3} x_{1,3}$$

Polynomial reformulation

- Use tree vector notation $[\![\sigma(t_1, t_2)]\!]_1 = (\varepsilon, 1) \cdot [\![t_1]\!]_2 \cdot [\![t_1]\!]_3 \cdot [\![t_2]\!]_2$
- Group transitions $\llbracket \sigma \rrbracket = (\delta_2(\sigma, 1), \, \delta_2(\sigma, 2), \, \delta_2(\sigma, 3))$

(can be seen as monomials)

$$\delta_{2}(\sigma, 1) = (\varepsilon, 1) x_{1,2} x_{1,3} x_{2,2}$$

$$\delta_{2}(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$$

$$\delta_{2}(\sigma, 3) = (\varepsilon, 1) x_{1,3} x_{1,3}$$

Polynomial reformulation

- Use tree vector notation $[\![\sigma(t_1, t_2)]\!]_1 = (\varepsilon, 1) \cdot [\![t_1]\!]_2 \cdot [\![t_1]\!]_3 \cdot [\![t_2]\!]_2$
- Group transitions $\llbracket \sigma \rrbracket = (\delta_2(\sigma, 1), \delta_2(\sigma, 2), \delta_2(\sigma, 3))$

Thus generally

$$\llbracket \sigma(t_1,\ldots,t_k) \rrbracket = \llbracket \sigma \rrbracket \bigl[x_{i,q} \leftarrow \llbracket t_i \rrbracket_q \bigr]$$

$\delta_2(\sigma, \mathbf{l}) = (\varepsilon, \mathbf{l}) \mathbf{x}_{\mathbf{l}, \mathbf{l}} \mathbf{x}_{\mathbf{l}, 3} \mathbf{x}_{2, 2}$	$\delta_0(\alpha, 1) = \bot$	$\delta_0(\beta, 1) = \bot$
$\delta_2(\sigma, 2) = (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}$	$\delta_0(\alpha, 2) = (\alpha, 0)$	$\delta_0(\beta,2) = (\beta,0)$
$\delta_2(\sigma,3) = (\varepsilon,1) x_{1,3} x_{1,3}$	$\delta_0(\alpha,3) = (\varepsilon,0)$	$\delta_0(\beta,3) = (\varepsilon,0)$

Symbol semantics

$$\begin{bmatrix} \sigma \end{bmatrix} = \left\langle (\varepsilon, 1) x_{1,1} x_{1,3} x_{2,2}, (\varepsilon, 0) x_{1,2} x_{1,3} x_{2,2}, (\varepsilon, 1) x_{1,3} x_{1,3} \right\rangle$$
$$\begin{bmatrix} \alpha \end{bmatrix} = \left\langle \bot, (\alpha, 0), (\varepsilon, 0) \right\rangle$$
$$\begin{bmatrix} \beta \end{bmatrix} = \left\langle \bot, (\beta, 0), (\varepsilon, 0) \right\rangle$$

Ideal $I \subseteq F[X_n]$ inductive invariant if for all $\sigma \in \Sigma$

$$I \subseteq \left\{ p \in F[X_n] \mid p[x_q \leftarrow \llbracket \sigma \rrbracket_q] \in \sum_{i=1}^k \langle I[x_q \leftarrow x_{i,q}] \rangle_{F[X_{k,n}]} \right\}$$

Ideal $I \subseteq F[X_n]$ inductive invariant if for all $\sigma \in \Sigma$

$$I \subseteq \left\{ p \in F[X_n] \mid p[x_q \leftarrow \llbracket \sigma \rrbracket_q] \in \sum_{i=1}^k \langle I[x_q \leftarrow x_{i,q}] \rangle_{F[X_{k,n}]} \right\}$$

Example

- Potential invariance $p = x_1 x_3$
- Propagate symbol semantics

$$p[x_q \leftarrow \llbracket \sigma \rrbracket_q] = \left((\varepsilon, 1) \, x_{1,1} \, x_{1,3} \, x_{2,2} \right) - \left((\varepsilon, 1) \, x_{1,3} \, x_{1,3} \right)$$
$$p[x_q \leftarrow \llbracket \alpha \rrbracket_q] = \left(\bot \right) - \left((\varepsilon, 0) \right)$$

Theorem [Seidl, Maneth, Kemper 2018]

Let / be inductive invariant and \tilde{i} set of all invariances

• Every $p \in I$ is invariance

Theorem [Seidl, Maneth, Kemper 2018]

Let / be inductive invariant and \tilde{i} set of all invariances

- Every $p \in I$ is invariance
- **2** \widetilde{I} is inductive invariant

Theorem

Each ideal $I \subseteq F[X_n]$ finitely generated and ideals recursively enumerable

Theorem

Each ideal $I \subseteq F[X_n]$ finitely generated and ideals recursively enumerable

Proof.

Hilbert's basis theorem proves first statement and enumeration of finite sets $P \subseteq F[X_n]$ generating ideals using recursive enumeration of F

• Select next $P \subseteq F[X_n]$

- Select next $P \subseteq F[X_n]$
- ② If $I = \langle P \rangle_{F[X_n]}$ inductive invariant <u>and</u> $h^* \in I$, then return **yes**

- Select next $P \subseteq F[X_n]$
- ② If $I = \langle P \rangle_{F[X_n]}$ inductive invariant <u>and</u> $h^* \in I$, then return **yes**
- Back to

- Select next $P \subseteq F[X_n]$
- ② If $I = \langle P \rangle_{F[X_n]}$ inductive invariant and $h^* \in I$, then return **yes**
- Back to

Semidecision algorithm for non-equivalence

• Select next $t \in T_{\Sigma}$

- Select next $P \subseteq F[X_n]$
- ② If $I = \langle P \rangle_{F[X_n]}$ inductive invariant and $h^* \in I$, then return **yes**
- Back to

Semidecision algorithm for non-equivalence

- Select next $t \in T_{\Sigma}$
- **2** If $[1](t) \neq [n](t)$, then return **yes**

- Select next $P \subseteq F[X_n]$
- ② If $I = \langle P \rangle_{F[X_n]}$ inductive invariant and $h^* \in I$, then return **yes**
- Back to

Semidecision algorithm for non-equivalence

- Select next $t \in T_{\Sigma}$
- If $[1](t) \neq [n](t)$, then return **yes**
- Back to

Deciding Equivalence

Monoid $\langle E \rangle_S$ of used weights effectively embeds into multiplicative monoid of infinite, computable, and commutative field F

Theorem

Equivalence of wDT transducers is decidable

Deciding Equivalence

Monoid $\langle E \rangle_S$ of used weights effectively embeds into multiplicative monoid of infinite, computable, and commutative field F

Theorem

Equivalence of wDT transducers is decidable

Proof.

Two trivially correct semidecidability algorithms yield decidability. Testing inductive invariant and membership of h^* effective via Gröbner basis of l

• Finitely presented

(for effective computation)

- Finitely presented
- Commutative: $s \cdot s' = s' \cdot s$

(for effective computation) (necessary)

- Finitely presented
- Commutative: $s \cdot s' = s' \cdot s$

• Cancellative: $s \cdot s_1 = s \cdot s_2$ implies $s_1 = s_2$

(for effective computation) (necessary)

(necessary)

- Finitely presented
- Commutative: $s \cdot s' = s' \cdot s$
- Cancellative: $s \cdot s_1 = s \cdot s_2$ implies $s_1 = s_2$
- Locally cyclic torsion subgroup

(for effective computation)

(necessary)

(necessary)

(necessary)

- Finitely presented
- Commutative: $s \cdot s' = s' \cdot s$
- Cancellative: $s \cdot s_1 = s \cdot s_2$ implies $s_1 = s_2$
- Locally cyclic torsion subgroup
 - ► Torsion subgroup S₀ = {s ∈ S | ∃n ∈ N₊: sⁿ = 1} (subgroup due to cancellation)

(for effective computation)

(necessary)

- (necessary)
- (necessary)

- Finitely presented
- Commutative: $s \cdot s' = s' \cdot s$
- Cancellative: $s \cdot s_1 = s \cdot s_2$ implies $s_1 = s_2$
- Locally cyclic torsion subgroup
 - ► Torsion subgroup S₀ = {s ∈ S | ∃n ∈ N₊: sⁿ = 1} (subgroup due to cancellation)
 - ► Locally cyclic group G: every finitely generated subgroup of G is cyclic

- (for effective computation)
 - (necessary)
 - (necessary)
 - (necessary)

Example monoid ($\{a\}^*, \cdot, \varepsilon$)

(isomorphic to $(\mathbb{N}, +, 0)$)

- Free monoid generated by *a* thus finitely presented
- Commutative since $a^m a^n = a^n a^m$
- Cancellative since $a^m a^n = a^m a^k$ implies $a^n = a^k$
- Trivial torsion subgroup $\{\varepsilon\}$ since $(a^m)^n \neq \varepsilon$ for all $n \in \mathbb{N}_+$ if $m \neq 0$

Example monoid ($\{a\}^*, \cdot, \varepsilon$)

(isomorphic to $(\mathbb{N}, +, 0)$)

- Free monoid generated by *a* thus finitely presented
- Commutative since $a^m a^n = a^n a^m$
- Cancellative since $a^m a^n = a^m a^k$ implies $a^n = a^k$
- Trivial torsion subgroup $\{\varepsilon\}$ since $(a^m)^n \neq \varepsilon$ for all $n \in \mathbb{N}_+$ if $m \neq 0$

Example monoid $\{a\}^* \times \mathbb{Z}_6$

- Finitely presented $\langle a, 1 | a | = |a, 1^6 \rangle$
- Commutative since product of commutative monoids
- Cancellative since product of cancellative monoids

(group \mathbb{Z}_6)

• Torsion subgroup $\{\varepsilon\} \times \mathbb{Z}_6 \simeq \mathbb{Z}_6$ cyclic

Embed monoid S into group

- Utilize Grothendieck group G (embed additive monoid of non-negative integers into integers or multiplicative monoid of integers into rationals)
- *G* finitely presented

 $\langle E \cup E^{-1} \mid ee' = e \cdot e', \Pi \rangle$ for finite presentation $\langle E, \Pi \rangle$ of *S*

- Monoid S embeds into G due to cancellation
- Torsion subgroups of *G* and *S* isomorphic

 $(G_0 \simeq S_0)$

Embedding Monoids into Fields

 F^* multiplicative group of field F and additive group $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup effectively embeds into F^* of infinite, computable, and commutative field F

Embedding Monoids into Fields

 F^* multiplicative group of field F and additive group $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup effectively embeds into F^* of infinite, computable, and commutative field F

Proof sketch (1/2).

Wlog. suppose that finitely presented Abelian group G has non-trivial 2-component in torsion subgroup G_0 .

Embedding Monoids into Fields

 F^* multiplicative group of field F and additive group $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup effectively embeds into F^* of infinite, computable, and commutative field F

Proof sketch (1/2).

Wlog. suppose that finitely presented Abelian group G has non-trivial 2-component in torsion subgroup G_0 . Invoke invariant factor decomposition of fundamental theorem for finitely generated Abelian groups to obtain

 $G \simeq \mathbb{Z}^r \times \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n}$

with $1 < k_1 < \cdots < k_n$ and $k_i | k_{i+1}$ for all $1 \le i < n$

Torsion subgroup is $G_0 \simeq \{0\}^r \times \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n}$ and thus finite and finitely generated.

Torsion subgroup is $G_0 \simeq \{0\}^r \times \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n}$ and thus finite and finitely generated. By assumption G_0 cyclic.

Torsion subgroup is $G_0 \simeq \{0\}^r \times \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n}$ and thus finite and finitely generated. By assumption G_0 cyclic. Since no $k, \ell \in \{k_1, \ldots, k_n\}$ co-prime, no product $\mathbb{Z}_k \times \mathbb{Z}_\ell$ cyclic.

Torsion subgroup is $G_0 \simeq \{0\}^r \times \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n}$ and thus finite and finitely generated. By assumption G_0 cyclic. Since no $k, \ell \in \{k_1, \ldots, k_n\}$ co-prime, no product $\mathbb{Z}_k \times \mathbb{Z}_\ell$ cyclic. Hence n = 1 and $G \simeq \mathbb{Z}^r \times \mathbb{Z}_k$ with k even.

Torsion subgroup is $G_0 \simeq \{0\}^r \times \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n}$ and thus finite and finitely generated. By assumption G_0 cyclic. Since no $k, \ell \in \{k_1, \ldots, k_n\}$ co-prime, no product $\mathbb{Z}_k \times \mathbb{Z}_\ell$ cyclic. Hence n = 1 and $G \simeq \mathbb{Z}^r \times \mathbb{Z}_k$ with k even. Embed into cyclotomic extension field $F = \mathbb{Q}(\zeta_k)$ with primitive k-th root ζ_k of unity.

Torsion subgroup is $G_0 \simeq \{0\}^r \times \mathbb{Z}_{k_1} \times \cdots \times \mathbb{Z}_{k_n}$ and thus finite and finitely generated. By assumption G_0 cyclic. Since no $k, \ell \in \{k_1, \ldots, k_n\}$ co-prime, no product $\mathbb{Z}_k \times \mathbb{Z}_\ell$ cyclic. Hence n = 1 and $G \simeq \mathbb{Z}^r \times \mathbb{Z}_k$ with k even. Embed into cyclotomic extension field $F = \mathbb{Q}(\zeta_k)$ with primitive k-th root ζ_k of unity. Then torsion subgroup F_0 of F isomorphic to G_0 and

$$(z_1,\ldots,z_r,t)\mapsto \zeta_k^t\cdot\prod_{i=1}^r p_i^{z_i}$$
 for all $z_1,\ldots,z_r\in\mathbb{Z},\ t\in\mathbb{Z}_k$

effective embedding into F^* with first *r* primes p_1, \ldots, p_r

Final notes

- Torsion subgroup of F* locally cyclic for every commutative field F [Cohn: Bemerkung über multiplikative Gruppe eines Körpers. Archiv der Mathematik] [May: Multiplicative groups of fields. Proc. London Mathematical Society]
- F^{\star} trivially commutative & cancellative

Theorem

Equivalence is decidable for wDT transducers over finitely presented, cancellative, and commutative monoids with locally cyclic torsion subgroup

Theorem

Equivalence is decidable for wDT transducers over finitely presented, cancellative, and commutative monoids with locally cyclic torsion subgroup

Thank you for the attention