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Personal Motivation

Connection

Started PhD under supervision of Heiko Vogler in 2003 on

weighted tree transducers

Weighted tree transducers introduced by Werner in 1997

Werner Kuich: Formal Power Series over Trees. Proc. DLT 1997

Werner served as external reviewer of my thesis
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General Motivation

Weighted automata

O�er elegant algebraic constructions (even for unweighted case)

Enable use of powerful linear algebra
(Hilbert’s basis theorem, Gröbner bases)

Yield more general results & better insights

Standard model in several application areas (e.g. NLP)
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Speci�c Motivation

Equivalence decidable

1 Deterministic Top-Down Tree-to-String Transducers
[Seidl, Maneth, Kemper: J. ACM 2018]

2 Linear Det. Top-Down Tree Transducers with Output in Free Group
[Löbel, Luttenberger, Seidl: Proc. DLT 2020]

Joint generalization

Deterministic Top-Down Tree-to-Weight Transducer

Weights in monoid (S, ·, 1,0) with adjoined zero 0
(s · 0 = 0 = 0 · s and s · s′ = 0 implies 0 ∈ {s, s′})
Free monoid (A∗, ·, ε,⊥) in 1

Free group (G, ·, ε,⊥) in 2
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Transducer Model

Fix (S, ·, 1,0) monoid with adjoined zero 0 and [k] = {1, . . . , k}

Xk,n =
{
xi,q | i ∈ [k], q ∈ [n]

}

De�nition (wDT transducer)
Deterministic top-down tree-to-weight transducer (wDT transducer) is tuple(

Σ, n, (δk)k∈N
)

ranked alphabet Σ of input symbols and number n ∈ N+ of states

transition functions δk : Σk × [n]→ (Xk,n ∪ S)∗
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Transducer Model

Let S =
(
{α, β}∗ × Z6

)
∪ {⊥} product monoid with adjoined ⊥

(free monoid generated by {α, β} × additive group Z6 = Z/6Z)

Example transitions

δ2(σ, 1) = (ε, 1) x1,1 x1,3 x2,2 δ0(α, 1) = ⊥ δ0(β, 1) = ⊥
δ2(σ, 2) = (ε,0) x1,2 x1,3 x2,2 δ0(α, 2) = (α,0) δ0(β, 2) = (β,0)

δ2(σ, 3) = (ε, 1) x1,3 x1,3 δ0(α, 3) = (ε,0) δ0(β, 3) = (ε,0)
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Transducer Model

Fix wDT transducerM =
(
Σ, n, (δk)k∈N

)

De�nition (state semantics)
For every state q ∈ [n] de�ne JqK : TΣ → S by

JqK
(
σ(t1, . . . , tk)

)
= Jδk(σ, q)Kt1···tk

where J·Kt1···tk : (Xk,n ∪ S)∗ → S unique homomorphism given by

Jxi,pKt1···tk = JpK(ti) for all i ∈ [k] and p ∈ [n]

JsKt1···tk = s for all s ∈ S
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Transducer Model

Used transition

δ2(σ, 1) = (ε, 1) x1,2 x1,3 x2,2

Applied transition

σ

σ

αβ

σ

βα

J1K

( )
= (ε, 1) · J2K

( )
· J3K

( )
· J2K

( )σ

βα

σ

βα

σ

αβ
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Transducer Model

De�nition (semantics)
TranslationM : TΣ → S isM(t) = J1K(t) for all trees t ∈ TΣ
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Transducer Model

Transitions

δ2(σ, 1) = (ε, 1) x1,1 x1,3 x2,2 δ0(α, 1) = ⊥ δ0(β, 1) = ⊥
δ2(σ, 2) = (ε,0) x1,2 x1,3 x2,2 δ0(α, 2) = (α,0) δ0(β, 2) = (β,0)

δ2(σ, 3) = (ε, 1) x1,3 x1,3 δ0(α, 3) = (ε,0) δ0(β, 3) = (ε,0)

Subderivations

σ

βα
J2K
( )

= (ε,0) · J2K(α) · J3K(α) · J2K(β)

= (ε,0) · (α,0) · (ε,0) · (β,0) = (αβ,0)

σ

βα
J3K
( )

= (ε, 1) · J3K(α) · J3K(α)

= (ε, 1) · (ε,0) · (ε,0) = (ε, 1)
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Transducer Model

σ

σ

αβ

σ

βα

J1K

( )
= (ε, 1) · J2K

( )
· J3K

( )
· J2K

( )σ

βα

σ

βα

σ

αβ

= (ε, 1) · (αβ,0) · (ε, 1) · (βα,0) = (αββα, 2)

Semantics

M(t) =
(
yield(t), 2left-spine(t) − left-spine(t) mod 6

)
(left-spine(t) = number of σ-occurrences along le� spine of t)
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Transducer Model
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Setup

De�nition
Two wDT transducers equivalent if their computed functions coincide

Assumption

Finitely generated monoid 〈E〉S of used weights
e�ectively embeds into multiplicative monoid of

in�nite, computable, and commutative �eld F

(discussion when possible in second part)

Approach following [Seidl, Maneth, Kemper 2018]

Take disjoint union of both wDT transducers

Prove invariance J1K(t)− JnK(t) = 0 for all t ∈ TΣ (1 and n initial states)
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Invariance

Fix disjoint union wDT transducer (Σ, n, (δk)k∈N)

De�nition (invariance)
Map h : F n → F invariance if h(JtK) = 0 for all t ∈ TΣ

where JtK =
(
J1K(t), . . . , JnK(t)

)

Note

Input wDT transducers equivalent i� h?(s1, . . . , sn) = s1 − sn invariance

27



Invariance

Transitions (can be seen as monomials)

δ2(σ, 1) = (ε, 1) x1,2 x1,3 x2,2
δ2(σ, 2) = (ε,0) x1,2 x1,3 x2,2
δ2(σ, 3) = (ε, 1) x1,3 x1,3

Polynomial reformulation

Use tree vector notation Jσ(t1, t2)K1 = (ε, 1) · Jt1K2 · Jt1K3 · Jt2K2
Group transitions JσK =

(
δ2(σ, 1), δ2(σ, 2), δ2(σ, 3)

)
Thus generally

Jσ(t1, . . . , tk)K = JσK
[
xi,q ← JtiKq

]
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Invariance

Transitions

δ2(σ, 1) = (ε, 1) x1,1 x1,3 x2,2 δ0(α, 1) = ⊥ δ0(β, 1) = ⊥
δ2(σ, 2) = (ε,0) x1,2 x1,3 x2,2 δ0(α, 2) = (α,0) δ0(β, 2) = (β,0)

δ2(σ, 3) = (ε, 1) x1,3 x1,3 δ0(α, 3) = (ε,0) δ0(β, 3) = (ε,0)

Symbol semantics

JσK =
〈

(ε, 1) x1,1 x1,3 x2,2, (ε,0) x1,2 x1,3 x2,2, (ε, 1) x1,3 x1,3
〉

JαK =
〈
⊥, (α,0), (ε,0)

〉
JβK =

〈
⊥, (β,0), (ε,0)

〉
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Invariance

De�nition
Ideal I ⊆ F [Xn] inductive invariant if for all σ ∈ Σ

I ⊆
{
p ∈ F [Xn]

∣∣∣ p[xq ← JσKq
]
∈

k∑
i=1

〈
I[xq ← xi,q]

〉
F [Xk,n]

}

Example

Potential invariance p = x1 − x3
Propagate symbol semantics

p[xq ← JσKq] =
(

(ε, 1) x1,1 x1,3 x2,2
)
−
(

(ε, 1) x1,3 x1,3
)

p[xq ← JαKq] =
(
⊥
)
−
(

(ε,0)
)
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Invariance

Theorem [Seidl, Maneth, Kemper 2018]

Let I be inductive invariant and Ĩ set of all invariances
1 Every p ∈ I is invariance

2 Ĩ is inductive invariant
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Invariance

Theorem
Each ideal I ⊆ F [Xn] �nitely generated and ideals recursively enumerable

Proof.
Hilbert’s basis theorem proves �rst statement and enumeration of �nite
sets P ⊆ F [Xn] generating ideals using recursive enumeration of F
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Deciding Equivalence

Semidecision algorithm for equivalence
1 Select next P ⊆ F [Xn]

2 If I = 〈P〉F [Xn] inductive invariant and h? ∈ I , then return yes
3 Back to 1

Semidecision algorithm for non-equivalence

1 Select next t ∈ TΣ

2 If J1K(t) 6= JnK(t), then return yes
3 Back to 1
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Deciding Equivalence

Monoid 〈E〉S of used weights e�ectively embeds into multiplicative monoid
of in�nite, computable, and commutative �eld F

Theorem
Equivalence of wDT transducers is decidable

Proof.
Two trivially correct semidecidability algorithms yield decidability.
Testing inductive invariant and membership of h? e�ective via Gröbner
basis of I
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Embedding Monoids into Fields

Requirements for monoid (S, ·, 1)
Finitely presented (for e�ective computation)

Commutative: s · s′ = s′ · s (necessary)

Cancellative: s · s1 = s · s2 implies s1 = s2 (necessary)
Locally cyclic torsion subgroup (necessary)

I Torsion subgroup S0 = {s ∈ S | ∃n ∈ N+ : sn = 1}
(subgroup due to cancellation)

I Locally cyclic group G : every �nitely generated subgroup of G is cyclic
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Embedding Monoids into Fields

Example monoid ({a}∗, ·, ε) (isomorphic to (N,+,0))

Free monoid generated by a thus �nitely presented

Commutative since aman = anam

Cancellative since aman = amak implies an = ak

Trivial torsion subgroup {ε} since (am)n 6= ε for all n ∈ N+ if m 6= 0

Example monoid {a}∗ × Z6

Finitely presented 〈a, 1 | a1 = 1a, 16〉
Commutative since product of commutative monoids

Cancellative since product of cancellative monoids (group Z6)

Torsion subgroup {ε} × Z6 ' Z6 cyclic
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Example monoid ({a}∗, ·, ε) (isomorphic to (N,+,0))

Free monoid generated by a thus �nitely presented
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Cancellative since aman = amak implies an = ak
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Embedding Monoids into Fields

Embed monoid S into group

Utilize Grothendieck group G
(embed additive monoid of non-negative integers into integers or
multiplicative monoid of integers into rationals)

G �nitely presented
〈E ∪ E−1 | ee′ = e · e′,Π〉 for �nite presentation 〈E ,Π〉 of S
Monoid S embeds into G due to cancellation

Torsion subgroups of G and S isomorphic (G0 ' S0)
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Embedding Monoids into Fields

F ? multiplicative group of �eld F and additive group Zn = Z/nZ

Theorem
Every �nitely presented Abelian group with locally cyclic torsion subgroup
e�ectively embeds into F ? of in�nite, computable, and commutative �eld F

Proof sketch (1/2).
Wlog. suppose that �nitely presented Abelian group G has non-trivial
2-component in torsion subgroup G0. Invoke invariant factor decomposition
of fundamental theorem for �nitely generated Abelian groups to obtain

G ' Zr × Zk1 × · · · × Zkn

with 1 < k1 < · · · < kn and ki |ki+1 for all 1 ≤ i < n
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Embedding Monoids into Fields

Proof sketch (2/2).
Torsion subgroup is G0 ' {0}r × Zk1 × · · · × Zkn and thus �nite and �nitely
generated.

By assumption G0 cyclic. Since no k, ` ∈ {k1, . . . , kn} co-prime,
no product Zk × Z` cyclic. Hence n = 1 and G ' Zr × Zk with k even.
Embed into cyclotomic extension �eld F = Q(ζk) with primitive k-th root ζk
of unity. Then torsion subgroup F0 of F isomorphic to G0 and

(z1, . . . , zr , t) 7→ ζ tk ·
r∏
i=1

pzii for all z1, . . . , zr ∈ Z, t ∈ Zk

e�ective embedding into F ? with �rst r primes p1, . . . , pr
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Embedding Monoids into Fields

Final notes

Torsion subgroup of F ? locally cyclic for every commutative �eld F
[Cohn: Bemerkung über multiplikative Gruppe eines Körpers. Archiv der Mathematik]

[May: Multiplicative groups of �elds. Proc. London Mathematical Society]

F ? trivially commutative & cancellative
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Deciding Equivalence

Theorem
Equivalence is decidable for wDT transducers over �nitely presented,
cancellative, and commutative monoids with locally cyclic torsion subgroup

Thank you for the attention
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