
S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 305–317, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Syntax-Directed Translations and
Quasi-alphabetic Tree Bimorphisms — Revisited

Andreas Maletti? and Cătălin Ionuţ Tîrnăucă??

Universitat Rovira i Virgili
Departament de Filologies Romàniques

Av. Catalunya 35, 43002 Tarragona, Spain
andreas.maletti@urv.cat

catalinionut.tirnauca@estudiants.urv.cat

Abstract. Quasi-alphabetic tree bimorphisms by [Steinby, Tîrnăucă:
Defining syntax-directed translations by tree bimorphisms. Theor. Com-
put. Sci., to appear. http://dx.doi.org/10.1016/j.tcs.2009.03.009,
2009] are reconsidered. It is known that the class of (string) transla-
tions defined by such bimorphisms coincides with the class of syntax-
directed translations. This result is extended to a smaller class of tree
bimorphisms namely (linear and complete) symbol-to-symbol tree bi-
morphisms. Moreover, it is shown that the class of simple syntax-directed
translations coincides with the class of translations defined by alphabetic
tree bimorphisms (also known as finite-state relabelings). This proves
that alphabetic tree bimorphisms are not sufficiently powerful to model
all syntax-directed translations. Finally, it is shown that the class of tree
transformations defined by quasi-alphabetic tree bimorphisms is closed
under composition. The corresponding result is known in the variable-free
case. Overall, the main results of [Steinby, Tîrnăucă] are strengthened.

Keywords: syntax-directed translation, regular tree language, tree bi-
morphism, natural language processing

1 Introduction

The field of syntax-based machine translation was established by the demand-
ing need of systems used in practical translations between natural languages (for
example, Arabic to English). Modern systems should be able to perform local ro-
tations and capture syntax-sensitive transformations (i.e, tree transformations).
Another important property that such a system should possess is composability.
This property allows us to split the system into subsystems, which are easier to
handle, train, and study. Those subsystems can then be assembled into a large
system by an automatic composition construction [1,2].
? This author was financially supported by the Ministerio de Educación y Ciencia
(MEC) grant JDCI-2007-760.

?? This author is indebted to the MEC project MTM-2007-63422 which made this work
possible.

andreas.maletti@urv.cat
catalinionut.tirnauca@estudiants.urv.cat
http://dx.doi.org/10.1016/j.tcs.2009.03.009

306 A. Maletti and C.I. Tîrnăucă

Two powerful tools that define tree transformations have been proposed dur-
ing the past decades in the formal language community: tree transducers and
tree bimorphisms (see [3,4] for surveys). The former devices are operational and
easy to implement but closure under composition only holds for few classes of
tree transformations [5,3,2]. This closure is easier to establish using the latter
devices by imposing suitable restrictions on their constituents [6,7,8,9], but tree
bimorphisms are more difficult to implement. More precisely, a tree bimorphism
is formed by two tree homomorphisms and a center tree language. The tree
transformation is obtained by applying both homomorphisms to elements of the
center tree language. One homomorphism yields the input tree and the other
homomorphism yields the corresponding output tree. If we take the yield of the
input and output tree, then we obtain a (string) translation.

Synchronous grammars [10,11,12] are another way to define tree transforma-
tions. They easily capture even difficult local rotations that are required by pairs
of natural languages with very different syntax-structures (e.g., Chinese and En-
glish). A synchronous grammar basically consists of two grammars, in which the
productions have associated nonterminals. The derivations are then obtained by
applying two suitable rules, one of each grammar, to associated nonterminals.
Again one side produces the input tree and the other side produces the output
tree in this fashion. Unfortunately, few closure under composition results were
known about such grammars until [13] related synchronous grammars and tree
bimorphisms.

One synchronous grammar device is the syntax-directed translation schema
(SDTS), which appeared first as a simple model of a compiler [10] (see [14] for a
survey). In the spirit of [13], quasi-alphabetic tree bimorphisms [15] were shown
to be as powerful as SDTSs for string translations. Moreover, for quasi-alphabetic
tree bimorphisms, in which the center tree language does not permit variables,
the class of tree transformations (and thus also the class of string translations)
defined by them is shown to be closed under composition [15].

Here we sharpen the connection between SDTSs and tree bimorphisms. The
class of all translations defined by SDTSs coincides with the class of all transla-
tions defined by (linear and complete) symbol-to-symbol tree bimorphisms (see
Section 3). The latter devices define a strictly smaller class of tree transforma-
tions than quasi-alphabetic tree bimorphisms. In addition, simple SDTSs [16,17]
are equally powerful as alphabetic tree bimorphisms [3] (finite-state relabel-
ings [5]). Finally, we strengthen the closure under composition result of quasi-
alphabetic tree bimorphisms by showing that the class of tree transformations
defined by them remains closed under composition even if we allow variables in
the center tree language (see Section 4).

2 Preliminaries

The nonnegative integers are IN. For every k ∈ IN, the set {i ∈ IN | 1 6 i 6 k} is
denoted by [k]. Let R, S, and T be sets and ρ ⊆ R×S a relation. We occasionally
write r ρ s instead of (r, s) ∈ ρ. The inverse of ρ is ρ−1 = {(s, r) | r ρ s} and the

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms 307

reflexive and transitive closure of % is denoted by %∗. The composition of ρ with
τ ⊆ S × T is ρ ; τ = {(r, t) | ∃s ∈ S : r ρ s τ t}. Finally, |S| is the cardinality of
the (finite) set S.

For a set V , we denote by V ∗ the set of all strings over V and by ε the empty
string. An alphabet is a finite set (of symbols). A ranked alphabet (Σ, rk) is an
alphabet Σ together with a mapping rk : Σ → IN. Often we leave rk implicit.
For every k ∈ IN, let Σk = {f ∈ Σ | rk(f) = k}.

Let Σ be a ranked alphabet and T a set. Then

Σ(T) = {f(t1, . . . , tk) | f ∈ Σk, t1, . . . , tk ∈ T} .

The set TΣ(V) of all Σ-trees indexed by variables V is the smallest set T such
that V ⊆ T and Σ(T) ⊆ T . Subsets of TΣ(V) are tree languages. Such a
tree language L is variable-free (respectively, almost variable-free) if L ⊆ TΣ
(respectively, L ⊆ TΣ ∪ V). Generally, for all considered trees t ∈ TΣ(V) we
assume that Σ ∩ V = ∅, so that we can safely write c instead of c() for every
c ∈ Σ0. For every tree t ∈ TΣ(V), the set pos(t) ⊆ IN∗ of positions of t is
inductively defined by pos(v) = {ε} for every v ∈ V , and

pos(f(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}

for every f ∈ Σk and t1, . . . , tk ∈ TΣ(V). Let w ∈ pos(t). The label of t at w, the
subtree of t at w, and the replacement of that subtree by s ∈ TΣ(V) are denoted
by t(w), by t|w, and by t[s]w, respectively.

A tree t ∈ TΣ(V) is linear (respectively, nondeleting) in Y ⊆ V if every
y ∈ Y occurs at most (respectively, at least) once in t. Let D ⊆ V ∪ Σ0. The
D-yield of t is defined inductively by ydD(d) = d for every d ∈ D, ydD(v) = ε
for every v ∈ V \D, and

ydD(f(t1, . . . , tk)) = ydD(t1) · · · ydD(tk)

for every f ∈ Σk \D and t1, . . . , tk ∈ TΣ(V).
We fix a set X = {xi | i > 1} of formal variables (disjoint to all other ranked

alphabets and variables considered). For every n ∈ IN, we let Xn = {xi | i ∈ [n]}.
For all t, t1, . . . , tn ∈ TΣ(V ∪Xn), we denote by t[t1, . . . , tn] the result obtained
by replacing, for every i ∈ [n], every occurrence of xi in t by ti. For every v ∈ V ,
we denote by t[v ← (t1, . . . , tn)] the result of replacing, for every i ∈ [n], the i-th
(with respect to the lexicographic order on the positions) occurrence of v by ti.

A regular tree grammar is a tuple G = (N,Σ, V, P, S) consisting of

– an alphabet N of nonterminal symbols such that N ∩ (Σ ∪ V) = ∅,
– a finite set P of productions of the form A → r, in which A ∈ N and
r ∈ TΣ(N ∪ V), and

– a start symbol S ∈ N .

The size of G, denoted by |G|, is |G| = |P |. For any s, t ∈ TΣ(N ∪ V), we
write s ⇒G t if there exists A → r ∈ P such that t can be obtained from s
by replacing one occurrence of A by r. The tree language generated by G is

308 A. Maletti and C.I. Tîrnăucă

L(G) = {t ∈ TΣ(V) | S ⇒∗G t}. A tree language L is recognizable if there exists
a regular tree grammar G such that L = L(G). The family of all recognizable
(respectively, recognizable variable-free and recognizable almost variable-free)
tree languages is denoted by Rec (respectively, Recvf and Recavf).

A tree homomorphism ϕ : TΣ(V) → T∆(Y) can be presented by a mapping
ϕV : V → T∆(Y) and mappings ϕk : Σk → T∆(Y ∪ Xk) for every k ∈ IN as
follows:

– vϕ = ϕV (v) for every v ∈ V , and
– f(t1, . . . , tk)ϕ = ϕk(f)[t1ϕ, . . . , tkϕ] for every t1, . . . , tk ∈ TΣ(V) and f ∈ Σk.

We say that it is normalized if for every f ∈ Σk there exists n ∈ IN such that
ydX(ϕk(f)) = x1 · · ·xn. Moreover, such a homomorphism ϕ is

– linear [3,7,18] (respectively, complete [18]) if ϕk(f) is linear (respectively,
nondeleting) in Xk for every f ∈ Σk,

– quasi-alphabetic [15] if it is linear and complete, ϕV (v) ∈ Y for every v ∈ V ,
and ϕk(f) ∈ ∆(Y ∪Xk) for every f ∈ Σk,

– symbol-to-symbol [18] if it is quasi-alphabetic and ϕk(f) ∈ ∆(Xk) for every
f ∈ Σk, and

– alphabetic [3,18] if it is symbol-to-symbol and normalized.

Note that our ‘symbol-to-symbol’ corresponds to “linear, complete, and symbol-
to-symbol” of [18], and ‘alphabetic’ homomorphisms are sometimes called rela-
belings [5]. We denote by qaH, ssH, and aH the classes of all quasi-alphabetic,
symbol-to-symbol, and alphabetic tree homomorphisms, respectively.

A tree bimorphism is a triple B = (ϕ,L, ψ) where L ⊆ TΓ (Z) is a tree
language, ϕ : TΓ (Z)→ TΣ(V) and ψ : TΓ (Z)→ T∆(Y) are tree homomorphisms,
called input and output homomorphism, respectively. The size of B, denoted
by |B|, is defined to be the size of a representation (e.g., by a regular tree
grammar) of L. The tree transformation defined by B is τB = {(tϕ, tψ) | t ∈ L}.
We reserve the special variable e. The translation defined by B is

yd(τB) = {(ydV \{e}(s), ydY \{e}(t)) | (s, t) ∈ τB} .

Note the special treatment of e. It is never output but acts as the empty string.
For all classes H1 and H2 of tree homomorphisms and every class L of tree
languages, we denote by B(H1,L,H2) the class of tree transformations τB where
B = (ϕ,L, ψ) with ϕ ∈ H1, L ∈ L, and ψ ∈ H2. In particular, we say that
a tree bimorphism (ϕ,L, ψ) is quasi-alphabetic (respectively, symbol-to-symbol,
alphabetic, and normalized) if both ϕ and ψ have this property and L ∈ Rec.
Moreover, a bimorphism (ϕ,L, ψ) is variable-free (respectively, almost variable-
free) if L is so.

A system M = (Q,Σ,∆, F,R) is a bottom-up tree transducer [19,5] if

– Q = Q1 is a unary ranked alphabet of states,
– Σ and ∆ are an input and an output alphabet, respectively,
– F ⊆ Q is a set of final states, and

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms 309

– R is a finite set of rules of the form f(q1(x1), . . . , qk(xk))→ r where f ∈ Σk,
q1, . . . , qk ∈ Q, and r ∈ Q(T∆(Xk)).

The bottom-up tree transducerM = (Q,Σ,∆, F,R) is linear (respectively, non-
deleting) if the right-hand side r is linear (respectively, nondeleting) in Xk for
every f(q1(x1), . . . , qk(xk)) → r ∈ R. The one-step derivation relation ⇒M is
defined as follows. For every ζ, ξ ∈ TΣ(Q(T∆)) we have ζ ⇒M ξ if and only
if there exists a rule f(q1(x1), . . . , qk(xk)) → r ∈ R, a position w ∈ pos(ζ),
and s1, . . . , sk ∈ T∆ such that ζ|w = f(q1(s1), . . . , qk(sk)) and ξ = ζ[s]w with
s = r[s1, . . . , sn]. The tree transformation computed by M is

τM = {(s, t) ∈ TΣ × T∆ | ∃q ∈ F : s⇒∗M q(t)} .

3 Syntax-directed Translation Schema

In this section, we explore the connection between quasi-alphabetic tree bimor-
phisms and syntax-directed translation schemata (SDTSs) [10,16,17]. It was
shown in [15] that quasi-alphabetic tree bimorphisms and SDTSs are equally
powerful when we consider them as translation devices for strings. This close
connection is the main motivation for quasi-alphabetic tree bimorphisms [15].
Here we show that the mentioned connection already holds between SDTSs
and symbol-to-symbol tree bimorphisms, a class that is smaller and well-known.
Moreover, we show that simple SDTS correspond to alphabetic tree bimorphisms
(also called finite-state relabelings [5]). The latter result proves that alphabetic
tree bimorphisms are strictly less powerful than SDTSs.

Roughly speaking, a syntax-directed translation schema consists of 2 context-
free grammars (CFGs) over a common set of nonterminals. A production of an
SDTS is of the form A→ u;w such that A→ u and A→ w are CFG productions,
and additionally, the same nonterminals occur in u and w. Formally, a syntax -
directed translation schema (SDTS) is a system T = (N,V, Y, P, S) where

– N is an alphabet of nonterminals disjoint with V ∪ Y ,
– V and Y are an input and output alphabet, respectively,
– P is a finite set of productions of the form A → u ; w where A ∈ N ,
u ∈ (N ∪ V)∗, w ∈ (N ∪ Y)∗, and the nonterminals in w are a permutation
of the nonterminals in u, and

– S ∈ N is a start symbol.

An SDTS is called simple if the nonterminals occur in same order in u and w
for each production A → u ; w in P . Finally, the size of T , denoted by |T |, is
defined as the numbers of its productions (i.e., |T | = |P |).

To present the semantics of SDTS, we use the slightly informal notion of
associated nonterminals. Whenever we apply a production in a derivation, we
have to apply it to two “associated” nonterminals. This notion can easily be
formalized, but we avoid this here to present the matter without excessive detail.
The translation forms of T , which are elements of (N∪V)∗×(N∪Y)∗, are defined
inductively as follows:

310 A. Maletti and C.I. Tîrnăucă

– (S, S) is a translation form and the two nonterminals S are associated.
– If (u1Au2, w1Aw2) is a translation form in which the two explicit instances

of A are associated and A → u ; w is a production in P , then we have
(u1Au2, w1Aw2) ⇒T (u1uu2, w1ww2) and the latter is a translation form.
The nonterminals of u and w are associated exactly as they are associated in
the production and the nonterminals of u1 and u2 are associated with those
of w1 and w2 in the new translation form exactly as in the original one.

The translation defined by T is the relation

τT = {(u,w) ∈ V ∗ × Y ∗ | (S, S)⇒∗T (u,w)} .

A major normal form for CFGs is the Chomsky normal form, but unfor-
tunately its analogue cannot be achieved for SDTSs. However, [17] shows that
we can obtain the following normal form. Note that we changed the definition
slightly and demand that at most one terminal symbol occurs in each part of a
production.

Definition 1. An SDTS (N,V, Y, P, S) is in normal form if

– u,w ∈ N∗ or
– u ∈ V ∪ {ε} and w ∈ Y ∪ {ε} for every production A→ u ; w in P .

Proposition 2 (cf. [17, Lemma 3.1]). For every SDTS T there exists an
SDTS T ′ in normal form such that τT = τT ′ . If T is simple, then T ′ can be
chosen to be simple as well.

Proof. Let T = (N,V, Y, P, S) be an SDTS. We first construct the new SDTS
T ′ = (N ′, V, Y, P ′, S) where

– N ′ = N ∪ {v | v ∈ V } ∪ {y | y ∈ Y } with v and y being new nonterminals,
– for every v ∈ V and y ∈ Y the following two rules are in P ′

v → v ; ε and y → ε ; y ,

– and for every production of P with associated nonterminal permutation
σ : [n]→ [n]

A→ u0A1u1 · · ·Anun ; w0Aσ(1)w1 · · ·Aσ(n)wn

where u0, . . . , un ∈ V ∗, w0, . . . , wn ∈ Y ∗, and A,A1, . . . , An ∈ N , the follow-
ing production is in P ′

A→ u0w0A1u1w1 · · ·Anunwn ; u0w0Aσ(1)u1w1 · · ·Aσ(n)unwn

where for every v1, . . . , vk ∈ V and y1, . . . , ym ∈ Y we define

v1 · · · vk = v1 · · · vk and y1 · · · ym = y1 · · · ym .

– The set P ′ does not contain any further productions.

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms 311

Obviously, T ′ is in normal form. Moreover, it is simple if T is so. Finally, it is
easy to see that τT ′ = τT . ut

Let us consider the complexity of the construction in the proof of Propo-
sition 2. Clearly, the number of productions of T ′ is |P | + |V | + |Y |. Thus,
the size of T ′ is |T | + |V | + |Y |. It is a reasonable assumption that for every
v ∈ V (respectively, y ∈ Y) there is at least one production in P in which v
(respectively, y) occurs (otherwise we can simply drop the offending v or y).
Consequently, |V | + |Y | 6 2|T | and |T ′| ∈ O(|T |), which proves that the size
of T ′ is linear in the size of T .

Before we proceed with the mentioned connection between SDTSs and quasi-
alphabetic tree bimorphisms, let us recall the well-known link between SDTSs
and simple SDTSs.

Theorem 3 (see [16, Theorem 2]). The class of all translations defined by
simple SDTSs is properly contained in the class of all translations defined by
SDTSs.

In [15, Theorem 5.7] it was shown that SDTSs and quasi-alphabetic tree
bimorphisms define the same (string) translations. The correspondence is very
close since the derivations of an SDTS can be obtained from the tree transforma-
tion of the corresponding bimorphism. However, we will show that this correspon-
dence already exists between SDTSs and symbol-to-symbol tree bimorphisms.
Moreover, we will show that simple SDTSs and alphabetic tree bimorphisms
define the same class of translations. Let us first consider the direction in which
we construct a tree bimorphism for an SDTS. Since the only difference between
quasi-alphabetic and symbol-to-symbol tree bimorphisms is in their homomor-
phisms, let us reconsider the construction of those homomorphisms from [15,
Sect. 5]. We only change the behavior on productions that only have terminal
symbols on the right-hand sides.

Definition 4. Let T = (N,V, Y, P, S) be an SDTS in normal form. For every
production p = (A→ u ;w) ∈ P let rk(p) = n be such that u ∈ NnV ∗. This turns
the set P into a ranked alphabet. Moreover, let P ′ =

⋃
k>1 Pk. We construct the

homomorphisms

ϕ : TP ′(P0)→ TP ′(V ′) and ψ : TP ′(P0)→ TP ′(Y ′)

where V ′ = V ∪ {e} and Y ′ = Y ∪ {e} as follows: Let p = (A→ u ; w) ∈ P .

– If p ∈ P0, then

ϕP0
(p) =

{
e if u = ε

u if u ∈ V
and ψP0

(p) =

{
e if w = ε

w if w ∈ V.

– If p ∈ P ′k, then ϕk(p) = p(x1, . . . , xk) and ψk(p) = p(xσ(1), . . . , xσ(k)) where
σ : [k]→ [k] is the nonterminal permutation of p.

312 A. Maletti and C.I. Tîrnăucă

By Proposition 2 we can assume normal form without loss of generality. Our
construction is very similar to the construction of [15] if we restrict ourselves to
SDTSs in normal form. The constructed homomorphisms ϕ and ψ are symbol-to-
symbol, and if T is simple, then they are alphabetic. Thus, a minor modification
of a principal result of [15, Sect. 5] yields our first result.

Lemma 5 (cf. [15, Prop. 5.5]). For every SDTS T , there exists a symbol-to-
symbol tree bimorphism B such that yd(τB) = τT . If T is simple, then B can be
chosen to be alphabetic.

Let us consider the size of the resulting bimorphism. The construction in the
proof of [15, Prop. 5.5] yields a local center tree language L ⊆ TP (the symbols
are productions and their rank is determined by the number of nonterminals as
in Definition 4). Roughly speaking, the language L contains all legal derivations
(i.e., the nonterminals in productions match). For this tree language L we can
construct the following regular tree grammar G = (N,P, ∅, P ′, S), where for
every production p ∈ Pn (note that we assume that T is in normal form) with
associated nonterminal permutation σ : [n]→ [n] such that

p = A→ A1 · · ·Anv ;Aσ(1) · · ·Aσ(n)y

for some A,A1, . . . , An ∈ N , v ∈ V ∪ {ε}, and y ∈ Y ∪ {ε}, the set P ′ contains
the production A→ p(A1, . . . , An). All productions of P ′ are constructed in this
manner. Obviously, the size of G is the same as the size of T . Thus, the size
of the bimorphism B constructed in Lemma 5 is linear in the size of the input
SDTS T .

For the converse, we can again reconsider [15]. In [15, Prop. 5.6] it is proved
that for every quasi-alphabetic tree bimorphism B there exists an SDTS T
such that τT = yd(τB). Clearly, every symbol-to-symbol bimorphism is quasi-
alphabetic, and moreover, it is an easy exercise to confirm that the SDTS con-
structed in [15, Prop. 5.6] is simple if B is alphabetic. Our minor modification
of the definition of the translation defined by a tree bimorphism (the special
treatment of the symbol e) requires only a minor change in the proof of [15,
Prop. 5.6].

Lemma 6. For every symbol-to-symbol tree bimorphism B, there is an SDTS T
such that τT = yd(τB). If B is alphabetic, then T can be chosen to be simple.

In the construction of [15, Prop. 5.6] the center tree language is represented
as a local tree language, but in the same spirit the construction can be done if the
center tree language is represented by a regular tree grammar. Every production
of the tree grammar yields a production of the constructed SDTS. Thus, the size
of the constructed SDTS is linear in the size of the input bimorphism (see, for
example, [20, Theorem 4] on how to handle the regular tree grammar).

This yields the following relations between SDTSs and symbol-to-symbol tree
bimorphisms. It was shown in [15] that the class of all translations defined by
SDTSs coincides with the class of all translations defined by quasi-alphabetic
tree bimorphisms. Here we sharpen this result.

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms 313

Theorem 7. The class of translations defined by arbitrary (respectively, sim-
ple) SDTSs coincides with the class of translations defined by symbol-to-symbol
(respectively, alphabetic) tree bimorphisms.

If we consider Theorems 3 and 7 together, we obtain that the class of all
translations defined by alphabetic tree bimorphisms is properly contained in the
class of all translations defined by symbol-to-symbol tree bimorphisms.

4 Closure under Composition

In this section we reconsider the problem of closure under composition for the
class of tree transformations defined by quasi-alphabetic tree bimorphisms. It
was shown in [15] that if we restrict ourselves to quasi-alphabetic tree bimor-
phisms with a variable-free center tree language, then the resulting class of tree
transformations is closed under composition. Here we want to extend this result
to include variables. The following proposition is trivial, but indicates why clo-
sure under composition is possible whereas closure under intersection fails [21].

Proposition 8. For every quasi-alphabetic bimorphism B, there exist a quasi-
alphabetic bimorphism B1 with a normalized input homomorphism and a quasi-
alphabetic bimorphism B2 with a normalized output homomorphism such that
τB = τB1

= τB2
. If B is variable-free (almost variable-free, respectively), then

B1 and B2 can be chosen such that they are variable-free (almost variable-free,
respectively).

So we showed that one homomorphism of a quasi-alphabetic bimorphism can
always be normalized. As a final step we try to get rid of the variables as much
as possible.

Lemma 9. B(qaH,Recavf, qaH) = B(qaH,Rec, qaH)

Proof. LetB = (ϕ,L, ψ) be a quasi-alphabetic tree bimorphism with L ⊆ TΓ (Z).
Moreover, let Y be a set, h : Z → Y be a bijection, and M = (Q,Γ ′, Ω′, Q,R)
be the linear bottom-up tree transducer with

– Q = Y ∪ {?},
– Γ ′k = Γk for every k > 1 and Γ ′0 = Γ0 ∪ Z,
– Ω′k = {t ∈ Γ (Q) | k = |t|?} for every k > 1 and Ω′0 = Γ0 ∪ Z.
– The set R of rules is given as follows:
• For every z ∈ Z, let z → q(z) be a rule of R where q = h(z).
• For every f ∈ Γk and q1, . . . , qk ∈ Q, the following is a rule of R

f(q1(x1), . . . , qk(xk))→ ?((f(q1, . . . , qk))(xi1 , . . . , xin)) ,

where i1 < · · · < in and {i1, . . . , in} = {i ∈ [k] | qi = ?}.

314 A. Maletti and C.I. Tîrnăucă

Let L′ = τM (L) be the image of L under τM . Clearly, L′ is almost variable-free,
and by [3, Lemma IV.6.5], the tree language L′ is recognizable. We construct
the bimorphism B′ = (ϕ′, L′, ψ′) such that ϕ′Z = ϕZ , ψ′Z = ψZ , and

ϕ′k(t) = ϕ(t[?← (x1, . . . , xk)]) and ψ′k(t) = ψ(t[?← (x1, . . . , xk)])

for every t ∈ Ωk. Clearly, ϕ′ and ψ′ are quasi-alphabetic. Thus, B′ is an almost
variable-free quasi-alphabetic bimorphism. Note that M is deterministic and
total and thus τM is a mapping [5]. Finally, let us prove that τB′ = τB . For this,
we prove that tϕ = τM (t)ϕ′ and tψ = τM (t)ψ′ for every t ∈ TΓ (Z). Clearly, it is
sufficient to prove the former statement since the argument is totally symmetric.
First, let t ∈ Z. Then

tϕ = τM (t)ϕ = τM (t)ϕ′ .

Now, let t = f(t1, . . . , tk) for some f ∈ Σk and t1, . . . , tk ∈ TΓ (Z). Moreover, for
every i ∈ [k], let qi = h(ti) if ti ∈ Z and qi = ? otherwise. Then

τM (f(t1, . . . , tk))ϕ
′ = ω(τM (ti1), . . . , τM (tin))ϕ

′

= ϕ′n(ω)[τM (ti1)ϕ
′, . . . , τM (tin)ϕ

′]

= ϕ(f(q1, . . . , qk)[?← (x1, . . . , xn)])[ti1ϕ, . . . , tinϕ]

= f(q1, . . . , qk)[?← (ti1 , . . . , tin)]ϕ

= f(t1, . . . , tk)ϕ

with ω = f(q1, . . . , qk), i1 < · · · < in, and {i1, . . . , in} = {i ∈ [k] | qi = ?}. This
completes the proof. ut

It is proved in [15, Theorem 7.4] that B(qaH,Recvf, qaH) is closed under
composition. Let us take another look at composition closure results. First, we
point out why it is far easier to prove the closure only for tree transformations
defined by variable-free or almost variable-free quasi-alphabetic bimorphisms.

Lemma 10. Let ϕ : TΣ(V) → TΓ (Z) and ψ : T∆(Y) → TΓ (Z) be normalized
quasi-alphabetic tree homomorphisms, and let s ∈ TΣ ∪ V and t ∈ T∆ ∪ Y . If
sϕ = tψ, then pos(s) = pos(t).

Proof. First, let s ∈ V . Then sϕ ∈ Z. Since sϕ = tψ, it follows that t ∈ Y
and hence pos(s) = pos(t). Second, let s = f(s1, . . . , sk) for some f ∈ Σk and
s1, . . . , sk ∈ TΣ . Then sϕ = ϕk(f)[s1ϕ, . . . , skϕ] = tψ. Since ϕ and ψ are quasi-
alphabetic, we have siϕ /∈ Z for every i ∈ [k]. If we additionally take into account
that sϕ = tψ, then we can conclude that t = g(t1, . . . , tk) for some g ∈ ∆k and
t1, . . . , tk ∈ T∆. Moreover, since ϕ and ψ are normalized, it also follows that
ϕk(f) = ψk(g). Using the induction hypothesis, we thus obtain pos(s) = pos(t).

ut

The previous proposition essentially states that all almost variable-free trees
with the same image under two normalized quasi-alphabetic tree homomor-
phisms can be paired up in a product data structure TΣ×∆(V ×Y). Let us plug
the statements together and establish the relation to closure under composition.

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms 315

Lemma 11. B(qaH,Rec, qaH) is closed under composition if

{t ∈ TΩ ∪ V | tϕ = tψ} (†)

is a recognizable tree language for every ranked alphabet Ω, set V of variables,
and pair (ϕ,ψ) of normalized quasi-alphabetic tree homomorphisms.

Proof. Let B1 = (ϕ1, L1, ψ1) and B2 = (ϕ2, L2, ψ2) be quasi-alphabetic bimor-
phisms. Without loss of generality, let B1 and B2 be almost variable-free by
Lemma 9. Moreover, suppose that ψ1 and ϕ2 are normalized by Proposition 8.
Let

τ = τB1
; τB2

= {(s, r) | ∃t : (s, t) ∈ τB1
, (t, r) ∈ τB2

}
= {(tϕ1, rψ2) | t ∈ L1, r ∈ L2, tψ1 = rϕ2} .

Since tψ1 = rϕ2, it follows by Lemma 10 that pos(t) = pos(r). Hence the
quantified t and r in the last displayed equation can be stored in a single tree
s ∈ TΣ×∆ ∪ (V × Y) such that sπ1 = t and sπ2 = r where π1 and π2 are the
usual projections to the first and second component.

Let T = TΣ×∆ ∪ (V × Y). We can continue the displayed equations by

τ = {(tπ1ϕ1, tπ2ψ2) | t ∈ T, tπ1 ∈ L1, tπ2 ∈ L2, tπ1ψ1 = tπ2ϕ2}
= {(tπ1ϕ1, tπ2ψ2) | t ∈ π−11 (L1) ∩ π−12 (L2) ∩ L}

where L = {t ∈ T | tπ1ψ1 = tπ2ϕ2}. It is easily seen that the tree homo-
morphisms π1ϕ1, π2ψ2, π1ψ1, and π2ϕ2 are quasi-alphabetic. Moreover, π1ψ1,
and π2ϕ2 are normalized. Consequently, L, π−11 (L1), and π−12 (L2) are recogniz-
able by [3, Theorem II.4.18]. Thus, π−11 (L1)∩ π−12 (L2)∩L is recognizable by [3,
Theorem II.4.2], and hence, τ ∈ B(qaH,Rec, qaH), which completes the proof.

ut

So whenever the equality sets [the sets (†) in Lemma 11] are recognizable, we
can construct a quasi-alphabetic bimorphism that computes the composition of
two given quasi-alphabetic bimorphisms. It remains to prove that the equality
sets are recognizable (the premise of Lemma 11).

Lemma 12. Let ϕ : TΩ(Z) → TΣ(V) and ψ : TΩ(Z) → TΣ(V) be normalized
quasi-alphabetic tree homorphisms. Then L = {t ∈ TΩ ∪ Z | tϕ = tψ} is recog-
nizable.

Proof. We construct the regular tree grammar G = ({S}, Ω′, P, S) where

– Ω′k = Ωk for every k > 1 and Ω′0 = Ω0 ∪ Z, and
– P = P1 ∪ P2 with

P1 = {S → z | z ∈ Z, zϕ = zψ}
P2 = {S → f(S, . . . , S) | f ∈ Ωk, ϕk(f) = ψk(f)} .

316 A. Maletti and C.I. Tîrnăucă

Then L = L(G) ∩ (TΩ ∪ Z), which is recognizable [3, Theorem II.4.2]. ut

We are now ready to state our main result. Let Loc (respectively, Locvf) be
the class of all local (respectively, local variable-free) tree languages [3]. Note
that [15, Theorem 7.4] proves that B(qaH,Locvf, qaH) is closed under composi-
tion. Since every recognizable tree language is the image of a local tree language
under an alphabetic tree homomorphism [3, Theorem II.9.5], we immediately
obtain

B(qaH,Locvf, qaH) = B(qaH,Recvf, qaH)

B(qaH,Loc, qaH) = B(qaH,Rec, qaH) .

The closure of B(qaH,Recvf, qaH) is thus proved in [15] and here we prove it
for B(qaH,Rec, qaH). Note that our approach is slightly different.

Theorem 13 (cf. [15, Theorem 7.4]). B(qaH,Rec, qaH) is closed under com-
position.

Proof. Follows directly from Lemmata 11 and 12. ut

Acknowledgements

The authors are grateful to Magnus Steinby for fruitful discussions regarding
Section 3. In addition, the authors appreciate the effort of the reviewers, who
pointed out several inconsistencies and mistakes.

References

1. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Proc. CICLing. Volume 3406 of LNCS., Springer (2005)
1–24

2. Knight, K.: Capturing practical natural language transformations. Machine Trans-
lation 21(2) (2007) 121–133

3. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
4. Nivat, M., Podelski, A., eds.: Tree Automata and Languages. North-Holland (1992)
5. Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math.

Syst. Theory 9(3) (1975) 198–231
6. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput.

Sci. 20(1) (1982) 33–93
7. Bozapalidis, S.: Alphabetic tree relations. Theor. Comput. Sci. 99(2) (1992) 177–

211
8. Takahashi, M.: Primitive transformations of regular sets and recognizable sets. In:

Proc. ICALP, North-Holland (1972) 475–480
9. Steinby, M.: On certain algebraically defined tree transformations. In: Proc. Al-

gebra, Combinatorics and Logic in Computer Science. Volume 42 of Colloquia
Mathematica Societatis János Bolyai., North-Holland (1986) 745–764

10. Irons, E.T.: A syntax directed compiler for ALGOL 60. Comm. ACM 4(1) (1961)
51–55

Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms 317

11. Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. COL-
ING, ACL (1990) 253–258

12. Satta, G., Peserico, E.: Some computational complexity results for synchronous
context-free grammars. In: Proc. HLT/EMNLP, ACL (2005) 803–810

13. Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. TAG+7.
(2004) 88–95

14. Aho, A.V., Ullman, J.D.: Parsing. Volume 1 of The Theory of Parsing, Translation,
and Compiling. Prentice Hall (1972)

15. Steinby, M., Tîrnăucă, C.I.: Defining syntax-directed translations by tree bimor-
phisms. Theor. Comput. Sci. (2009) to appear.
http://dx.doi.org/10.1016/j.tcs.2009.03.009.

16. Aho, A.V., Ullman, J.D.: Properties of syntax directed translations. J. Comput.
Syst. Sci. 3(3) (1969) 319–334

17. Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assem-
bler. J. Comput. Syst. Sci. 3(1) (1969) 37–56

18. Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding,
C., Tison, S., Tommasi, M.: Tree automata—techniques and applications. available
at: http://tata.gforge.inria.fr/ (2007)

19. Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory
of Computing. Prentice Hall (1973) 143–172

20. Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput.
206(9–10) (2008) 1187–1196

21. Maletti, A., Tîrnăucă, C.I.: Properties of quasi-alphabetic tree bimorphisms. un-
published, available at: http://arxiv.org/abs/0906.2369v1 (2009)

http://dx.doi.org/10.1016/j.tcs.2009.03.009
http://tata.gforge.inria.fr/
http://arxiv.org/abs/0906.2369v1

	Syntax-Directed Translations and Quasi-alphabetic Tree Bimorphisms — Revisited

