
F. Murlak and P. Sankowski (Eds.): MFCS 2011, LNCS 6907, pp. 460–471, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Pushing for Weighted Tree Automata

Andreas Maletti? and Daniel Quernheim?

Universität Stuttgart, Institut für Maschinelle Sprachverarbeitung
Azenbergstraße 12, 70174 Stuttgart, Germany

{Andreas.Maletti,Daniel.Quernheim}@ims.uni-stuttgart.de

Abstract. Explicit pushing for weighted tree automata over semifields
is introduced. A careful selection of the pushing weights allows a normal-
ization of bottom-up deterministic weighted tree automata. Automata in
the obtained normal form can be minimized by a simple transformation
into an unweighted automaton followed by unweighted minimization.
This generalizes results of Mohri and Eisner for deterministic weighted
string automata to the tree case. Moreover, the new strategy can also be
used to test equivalence of two bottom-up deterministic weighted tree
automata M1 and M2 in time O(|M | log|Q|), where |M | = |M1| + |M2|
and |Q| is the sum of the number of states of M1 and M2. This improves
the previously best running time O(|M1| · |M2|).

1 Introduction

Automata theory is a main branch of theoretical computer science with successful
applications in many diverse fields such as natural language processing, system
verification, and pattern recognition. Recently, renewed interest in tree automata
was sparked by applications in natural language processing and XML processing.
These applications require efficient algorithms for basic manipulations of tree
automata such as determinization [7], inference [20], and minimization [17,16].

In natural language processing, weighted devices are often used to model
probabilities, cost functions, or other features. In this contribution, we con-
sider pushing [21,10] for weighted tree automata [1,11] over commutative semi-
fields [15,14]. Roughly speaking, pushing moves transition weights along a path.
If the weights are properly selected, then pushing can be used to canonicalize
a (bottom-up) deterministic weighted tree automaton [3]. The obtained canon-
ical representation has the benefit that it can be minimized using unweighted
minimization, in which the weight is treated as a transition label. This strategy
has successfully been employed in [21,10] for deterministic weighted (finite-state)
string automata, and we adapt it here for tree automata. In particular, we im-
prove the currently best minimization algorithm [19] for deterministic weighted
tree automata from O(|M | · |Q|) to O(|M | log|Q|), which coincides with the com-
plexity of minimization in the unweighted case [17].

? Both authors were supported by the German Research Foundation (DFG) grant
MA/4959/1-1.

Pushing for Weighted Tree Automata 461

The improvement is achieved by a careful selection of signs of life [19]. Intu-
itively, a sign of life for a state q is a context which takes q into a final state.
In particular, equivalent states will receive the same sign of life, which ensures
that their pushing weights are determined using the same evaluation context.
This property sets our algorithm apart from the similar algorithm in [19, Al-
gorithm 1] and allows a proper canonicalization. After the pushing weights are
determined we perform pushing, which we define for general (potentially nonde-
terministic) weighted tree automata. We prove that the semantics is preserved
and that equivalent states have equally weighted corresponding transitions after
pushing, which allows us to reduce minimization to the unweighted case [17].

Secondly, we apply pushing to equivalence testing. The currently fastest al-
gorithm [9] for checking equivalence of two deterministic weighted tree automata
M1 and M2 runs in time O(|M1| · |M2|). Our algorithm that computes signs of
life can also handle states in different automata with the help of a particular
sum construction. The pushing weight (and the evaluation context) is deter-
mined carefully, so that equivalent states in different automata receive the same
sign of life. This allows us to minimize both input automata and then only
test the corresponding unweighted automata for isomorphism. This approach
reduces the run-time complexity to O(|M | log|Q|), where |M | = |M1|+ |M2| and
|Q| = |Q1|+ |Q2| is the number of total states.

2 Preliminaries

The set of nonnegative integers is N. Given l, u ∈ N we denote {i ∈ N | l ≤ i ≤ u}
simply by [l, u]. Let k ∈ N and Q a set. We write Qk for the k-fold Cartesian
product of Q, and the empty tuple () ∈ Q0 is displayed as ε. An alphabet is a
finite, nonempty set of symbols. A ranked alphabet (Σ, rk) consists of an alpha-
bet Σ and a mapping rk : Σ → N. Whenever ‘rk’ is clear from the context, we
simply drop it. The subsetΣk of k-ary symbols ofΣ isΣk = {σ ∈ Σ | rk(σ) = k}.
We let Σ(Q) = {σ(w) | σ ∈ Σk, w ∈ Qk}. To improve the readability, we often
write σ(q1, . . . , qk) instead of σ(q1 · · · qk), where σ ∈ Σk and q1, . . . , qk ∈ Q. The
set TΣ(Q) of Σ-trees indexed by Q is inductively defined to be the smallest
set such that Q ⊆ TΣ(Q) and Σ(TΣ(Q)) ⊆ TΣ(Q). We write TΣ for TΣ(∅).
The size |t| of a tree t is inductively defined by |q| = 1 for every q ∈ Q and
|σ(t1, . . . , tk)| = 1 +

∑k
i=1|ti| for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q).

We reserve the use of a special symbol � /∈ Q that is not an element in any
considered alphabet. The set CΣ(Q) of Σ-contexts indexed by Q is defined as the
smallest set such that � ∈ CΣ(Q) and σ(t1, . . . , ti−1, C, ti+1, . . . , tk) ∈ CΣ(Q) for
every σ ∈ Σk with k ≥ 1, index i ∈ [1, k], t1, . . . , tk ∈ TΣ(Q), and C ∈ CΣ(Q).
We write CΣ for CΣ(∅). Note that CΣ(Q) ⊆ TΣ(Q ∪ {�}). Let C ∈ CΣ(Q) and
t ∈ TΣ(Q). Then C[t] is the tree obtained from C by replacing � by t.

A (commutative) semifield [15,14] is a tuple (A,+, ·, 0, 1) such that (A,+, 0)
and (A, ·, 1) are commutative monoids, of which (A\{0}, ·, 1) is a group; a ·0 = 0
for every a ∈ A; and · distributes over +. The multiplicative inverse of a ∈ A\{0}
is denoted by a−1; i.e., a · a−1 = 1 for every a ∈ A \ {0}.

462 A. Maletti and D. Quernheim

Let (A,+, ·, 0, 1) be an arbitrary commutative semifield.

A weighted (finite-state) tree automaton [6,5,18,4,3] (for short: wta) is a
tuple M = (Q,Σ, µ, F) such that (i) Q is an alphabet of states; (ii) Σ is a
ranked alphabet; (iii) µ : Σ(Q) × Q → A is a transition weight mapping; and
(iv) F ⊆ Q is a set of final states. Note that the restriction to final states instead
of final weights does not restrict the expressive power [3, Lemma 6.1.4]. We often
write t → q for (t, q). The size |M | of M is |M | =

∑
(t→q)∈µ−1(A\{0})(|t| + 1).

We extend µ to hµ : TΣ(Q)×Q→ A by hµ(q → q) = 1, hµ(p→ q) = 0, and

hµ(σ(t1, . . . , tk)→ q) =
∑

q1,...,qk∈Q
µ(σ(q1, . . . , qk)→ q) ·

k∏
i=1

hµ(ti → qi)

for all p, q ∈ Q with p 6= q, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Q). The wta M recog-
nizes the weighted language M : TΣ → A such that M(t) =

∑
q∈F hµ(t→ q) for

every t ∈ TΣ . Two wta M and M ′ are equivalent if M =M ′.
The wta M = (Q,Σ, µ, F) is (bottom-up total) deterministic (or a dwta) if

for every t ∈ Σ(Q) there exists exactly one q ∈ Q such that µ(t → q) 6= 0.
For dwta we prefer the presentation (Q,Σ, δ, c, F) with δ : Σ(Q) → Q and
c : Σ(Q) → A \ {0}, which are defined such that δ(t) = q and c(t) = µ(t → q)
for every t ∈ Σ(Q), where q is the unique state such that µ(t → q) 6= 0. The
mappings δ and c are extended to δ : TΣ(Q)→ Q and c : TΣ(Q)→ A \ {0} by

δ(q) = q δ(σ(t1, . . . , tk)) = δ(σ(δ(t1), . . . , δ(tk)))

c(q) = 1 c(σ(t1, . . . , tk)) = c(σ(δ(t1), . . . , δ(tk))) ·
k∏
i=1

c(ti)

for every q ∈ Q, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Q). For every t ∈ TΣ we can
observe that M(t) = c(t) if δ(t) ∈ F and M(t) = 0 otherwise.

An equivalence relation ≡ on Q is a reflexive, symmetric, and transitive sub-
set ≡ ⊆ Q2. The equivalence class (or block) of q ∈ Q is [q]≡ = {p ∈ Q | p ≡ q},
and (P/≡) = {[p]≡ | p ∈ P} for every P ⊆ Q. Whenever ≡ is obvious from
the context, we simply omit it. The equivalence ≡ respects finality if [q] ⊆ F or
[q] ⊆ Q \ F for all q ∈ Q (i.e., all states of a block are either final or nonfinal).

Suppose that M is deterministic. Let ≡M ⊆ Q2 be the Myhill-Nerode
equivalence relation [2]

≡M = {(q, p) ∈ Q2 | ∃a ∈ A \ {0},∀C ∈ CΣ(Q) : c(C[q]) = a · c(C[p])} .

If M is clear from the context, then we just write ≡ instead of ≡M . The deter-
ministic (unweighted) tree automaton (dta) [12,13,8] forM isM ′ = (Q,Σ, δ, F).
It recognizes the tree language L(M ′) ⊆ TΣ , which is {t ∈ TΣ | δ(t) ∈ F}.

Let M1 = (Q1, Σ, δ1, c1, F1) and M2 = (Q2, Σ, δ2, c2, F2) be two arbitrary
dwta. A congruential relation ∼ ⊆ Q1 ×Q2 (between M1 and M2) is such that
δ1(σ(q1, . . . , qk)) ∼ δ2(σ(p1, . . . , pk)) for every σ ∈ Σk, q1, . . . , qk ∈ Q1, and
p1, . . . , pk ∈ Q2 such that qi ∼ pi for every i ∈ [1, k]. Note that this definition

Pushing for Weighted Tree Automata 463

of a congruential relation completely disregards the weights. It coincides with
the classical notion of congruence if M1 =M2. The equivalence ≡M is a congru-
ence [2]. If Q1∩Q2 = ∅, then a congruential relation ∼ extends to a congruential
equivalence ∼= ⊆ (Q1 ∪Q2)

2 such that ∼= = (∼ ∪∼−1)∗.
Finally, let us introduce a particular sum of 2 dwta, which preserves deter-

minism. Without loss of generality, let Q1 ∩ Q2 = ∅. The dwta M1] M2 is
(Q1 ∪ Q2, Σ, δ, c, F1 ∪ F2), where δ(t1) = δ1(t1), δ(t2) = δ2(t2), c(t1) = c1(t1),
and c(t2) = c2(t2) for every t1 ∈ Σ′(Q1) and t2 ∈ Σ′(Q2) with Σ′ = Σ \ Σ0.
As usual, we assume that unspecified transitions go to a nonfinal sink state.
Clearly, M1]M2 does not compute the sum of M1 and M2 because it is missing
all transitions for nullary symbols. Outside of nullary symbols (the initial steps)
it behaves just like the standard sum [3] of M1 and M2.

3 Efficient Computation of Signs of Life

In this section, we show how to efficiently compute signs of life (see Def. 1),
which are evidence that a final state can be reached, and weights for pushing
(see Sect. 4). Our algorithm (see Alg. 1) is similar to [19, Alg. 1], but we guarantee
that equivalent states receive the same sign of life. This last property will prove
to be essential in Sects. 5 and 6. Since we also want to use the computed signs of
life for equivalence testing (see Sect. 6), we potentially work with a sumM1]M2

of two dwta M1 and M2 here, where the transitions for nullary symbols have
been removed in order to preserve determinism.

Let M = (Q,Σ, δ, c, F) be a dwta with Q = Q1 ∪ Q2 and Q1 ∩ Q2 = ∅,
and let g : Q1 → Q2.

We extend g to a mapping g : TΣ(Q1) → TΣ(Q2) such that g(q1) = g(q1) for
every q1 ∈ Q1 and g(σ(t1, . . . , tk)) = σ(g(t1), . . . , g(tk)) for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ(Q1). Let us first recall the definition of a sign of life from [19],
which we adjust here to handle the potential sum.

Definition 1 (see [19, Sect. 2]). Let C ∈ CΣ(Q1), q1 ∈ Q1, and q2 ∈ Q2.
Then C is a sign of life for q1 if δ(C[q1]) ∈ F . It is a sign of life for q2 if
δ(g(C)[q2]) ∈ F . Any state that has a sign of life is live, and any state without
a sign of life is dead.

Next, we explain Alg. 1 briefly. LetM1 be the dwta obtained by restrictingM
to Q1. First we realize that every final state q ∈ F is trivially live. We set
the sign of life for its block [q] to the trivial context � (line 3) and its weight
to 1 (line 4). Since the congruence ∼= respects finality, the block [q] contains
only final states. Overall, this initialization takes time O(|Q|). Next, we add
all transitions leading to a final state of F ∩ Q1 to the FIFO queue T , which
takes time O(|M1|). Clearly each transition using Q1 can be added at most once
to T , so the ‘while-loop’ executes at most once per transition. In the loop, we
inspect the transition τ = σ(q1, . . . , qk) that we took from T . We check each

464 A. Maletti and D. Quernheim

Alg. 1 ComputeSoL: Compute signs of life and their weight.
Require: dwta M = (Q,Σ, δ, c, F), g : Q1 → Q2 with Q = Q1 ∪Q2 and Q1 ∩Q2 = ∅,

and congruential equivalence ∼= such that g ⊆ ∼= and ∼= respects finality
Ensure: live states L ⊆ Q, sol : (L/∼=) → CΣ(Q1), and λ : L → A \ {0} such that

λ(q1) = c(sol(B)[q1]) for all q1 ∈ L ∩Q1 and
λ(q2) = c(g(sol(B))[q2]) for all q2 ∈ L ∩Q2, where B = [q1]∼=

L← F // all final states are live
2: for all q ∈ F do

sol([q]∼=)← � // sign of life is the trivial context for final states. . .
4: λ(q)← 1 // . . . with trivial weight
T ← new FifoQueue

6: Append(T, {τ ∈ Σ(Q1) | δ(τ) ∈ F ∩Q1}) // add all transitions leading to F ∩Q1

while T is not empty do
8: τ ← RemoveHead(T) // get first transition

let τ = σ(q1, . . . , qk) with σ ∈ Σk and q1, . . . , qk ∈ Q1

10: for all i ∈ [1, k] such that qi /∈ L do
let C = σ(q1, . . . , qi−1,�, qi+1, . . . , qk) // prepare context

12: L← L ∪ [qi]∼= // all equivalent states are live; add to L
sol([qi]∼=)← sol([δ(τ)]∼=)[C] // add transition to sign of life of target state

14: for all q ∈ [qi]∼= do
if q ∈ Q1 then

16: λ(q)← λ(δ(C[q])) · c(C[q]) // set new weight
Append(T, {τ ′ ∈ Σ(Q1) | δ(τ ′) = q}) // add transitions leading to q

18: else
λ(q)← λ(δ(g(C)[q])) · c(g(C)[q]) // set new weight

20: return (L, sol, λ)

source state qi ∈ Q1 (with i ∈ [1, k]) whether it has been explored before. If not,
then its whole block [qi] is unexplored, since we explore the states by blocks.
Overall, we thus perform at most |M1| checks. Once we discover an unexplored
state qi (i.e., a state not yet marked as live), we mark its whole block [qi] as
explored (and live). In addition, we set the block’s sign of life to the sign of life
of the target state’s block [δ(τ)] extended by the context C created from the
current transition τ (line 13). Finally, for each state q in the current block [qi]
we compute the weight of the sign of life by plugging q into the current transition
instead of qi. If q ∈ Q2, then we adjust the transition using g. In this way, we
obtain a transition weight a and a target state p. Since the weight of the sign of
life for p has already been computed (because otherwise the transition τ would
not have been in the queue T), we simply set λ(q) = λ(p) · a (line 16 and 19).
Clearly, this is done at most once for each state, so we obtain a total complexity
(counted over all loops) of O(|Q|) for this part. We complete the iteration by
adding all transitions to newly explored states of Q1 to T . Overall, we obtain
the complexity O(|M1|+ |Q|).

Theorem 2. Algorithm 1 is correct and runs in time O(|M1|+ |Q|).

Pushing for Weighted Tree Automata 465

qf

qb q2 q1

γ : 8 γ : 4

σ : 4

γ : 2

σ : 1

γ : 2

σ : 1

σ : 4β : 1 α : 1

qf

qb q2 q1

γ : 1 γ : 4

σ : 1

γ : 1

σ : 1

γ : 2

σ : 1

σ : 1β : 8 α : 1

Fig. 1. Dwta over the Real numbers before (left) and after (right) pushing.

Proof. We already argued the run-time complexity, so let us prove the post-
condition. For q ∈ F , we have λ(q) = 1 = c(q) = c(�[q]) by lines 3–4, which
proves the post-condition because sol([q]∼=) = �. Let C ′ = C if q ∈ Q1, and
otherwise let C ′ = g(C). In the main loop, we set λ(q) = λ(δ(C ′[q])) · c(C ′[q]) in
line 16 or 19. Since q′ = δ(C ′[q]) has already been explored in a previous iteration,
we have λ(q′) = c(C ′′[q′]) by the induction hypothesis, where C ′′ = sol([q′]∼=) if
q′ ∈ Q1 and C ′′ = g(sol([q′]∼=)). Consequently,

λ(q) = c(C ′′[q′]) · c(C ′[q]) = c(C ′′[C ′[q]]) = c((C ′′[C ′])[q]) ,

which proves the post-condition because sol([q]∼=) = sol([δ(C[q])]∼=)[C] by line 13.
Since λ(q) 6= 0, it also proves that sol([q]∼=) is a sign of life for q and that q is live.
The proof that all states q /∈ L are indeed dead is simple and omitted here. ut

Example 3. An example dwta is depicted in Fig. 1 (left). For any transition
(small circles), the arrow leads to the target state and the source states have
been arranged in a counter-clockwise fashion (starting from the target arrow).
As usual, final states are indicated by double-circles. Let us note that the coars-
est congruence ∼= that respects finality is {{q1, qf}, {q2, qb}}. We use this par-
tition together with g = ∅ in Alg. 1. First, we mark all final states {q1, qf}
as live. Their block is assigned the trivial context � and each final state is
assigned the trivial weight 1. We then initialize the FIFO queue with the transi-
tions {γ(qb), γ(q2), γ(q1), γ(qf)} leading to q1 or qf . Let us pick the first transi-
tion γ(qb) from the queue. Since qb has not yet been marked as live, we consider
all transitions γ(�)[q] = γ(q) where q ∈ [qb]∼= = {qb, q2}. The sign of life for [qb]∼=
is γ(�), and the corresponding weights λ(qb) and λ(q2) are λ(qb) = λ(qf) · 2 = 2
and λ(q2) = λ(qf) · 8 = 8, respectively. For all remaining transitions, all source
states are already live. Consequently, we have computed all signs of life and the
pushing weights λ(q1) = λ(qf) = 1, λ(q2) = 2, and λ(qb) = 8.

4 Pushing

Recall that the Myhill-Nerode congruence states that there is a unique scal-
ing factor for every pair (p, q) of equivalent states. Thus, any fixed sign of life

466 A. Maletti and D. Quernheim

can be used to determine the scaling factor between p and q. In the previous
section, we computed a sign of life sol(q) for each live state q ∈ L as well as the
weight λ(q) of sol(q). Now, we will use these weights to normalize the wta by
pushing [21,10,22]. Intuitively, pushing cancels the scaling factor for equivalent
states. In weighted (finite-state) string automata, pushing is performed from the
final states towards the initial states. Since we work with bottom-up wta [3] (i.e.,
our notion of determinism is bottom-up), this works analogously here by moving
weights from the root towards the leaves.

In this section we work with an arbitrary wta M = (Q,Σ, µ, F) and an
arbitrary mapping λ : Q→ A \ {0} such that λ(q) = 1 for every q ∈ F .1

Definition 4 (see [21, p. 296]). The pushed wta pushλ(M) is (Q,Σ, µ′, F)

such that µ′(σ(q1, . . . , qk) → q) = λ(q) · µ(σ(q1, . . . , qk) → q) ·
∏k
i=1 λ(qi)

−1 for
every σ ∈ Σk and q, q1, . . . , qk ∈ Q.

The mapping λ records the pushed weights. In plain words, every transition
leading to a state q ∈ Q charges the additional weight λ(q), and every transition
leaving the state q compensates this by charging the weight λ(q)−1. Next, let us
show that M and pushλ(M) are equivalent.

Proposition 5 (see [21, Lm. 4]). The wta M and pushλ(M) are equivalent.
Moreover, if M is deterministic, then so is pushλ(M).

Proof. Let pushλ(M) = (Q,Σ, µ′, F). The preservation of determinism is obvi-
ous. We prove that hµ′(t→ q) = λ(q) · hµ(t→ q) for every t ∈ TΣ and q ∈ Q by
induction. Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . We have
hµ′(ti → qi) = λ(qi) ·hµ(ti → qi) for every i ∈ [1, k] and qi ∈ Q by the induction
hypothesis. Consequently,

hµ′(t→ q)

=
∑

q1,...,qk∈Q
µ′(σ(q1, . . . , qk)→ q) ·

k∏
i=1

hµ′(ti → qi)

=
∑

q1,...,qk∈Q
λ(q) · µ(σ(q1, . . . , qk)→ q) ·

k∏
i=1

λ(qi)
−1 ·

k∏
i=1

(
λ(qi) · hµ(ti → qi)

)
= λ(q) · hµ(t→ q) .

We complete the proof as follows.

pushλ(M)(t) =
∑
q∈F

hµ′(t→ q) =
∑
q∈F

λ(q) · hµ(t→ q) =
∑
q∈F

hµ(t→ q) =M(t)

because λ(q) = 1 for every q ∈ F . ut
1 This additional requirement is necessary because our wta have final states [3, Sec-
tion 4.1.3]. A model with final weights [3, Section 4.1.3] would be equally powerful,
but could lift this restriction.

Pushing for Weighted Tree Automata 467

Alg. 2 Overall structure of our minimization algorithm.
Require: a dwta M
Ensure: return a minimal, equivalent dwta
∼=← ComputeCoarsestCongruence(M) // complexity: O(|M | log|Q|)

2: (L, sol, λ)← ComputeSoL(M,∼=, ∅) // complexity: O(|M |)
M ′ ← pushλ(M) // complexity: O(|M |)

4: N ←Minimize(alph(M ′),∼=) // complexity: O(|M | log|Q|)
return alph−1(N)

Example 6 (cont’d). Let us return to our example dwta M in Fig. 1 (left) and
perform pushing. The pushing weights λ are given in Ex. 3. For the transi-
tion τ = σ(qb, qf) we have δ(τ) = q2 and c(τ) = 4. In pushλ(M) we have the
new weight c′(τ) = λ(q2) · c(τ) · λ(qb)−1 · λ(qf)−1 = 2 · 4 · 8−1 · 1−1 = 1. The
dwta pushλ(M) is presented in Fig. 1 (right). It is evident in pushλ(M) that
q2 and qb are equivalent, whereas q1 and qf are not.

5 Minimization

We will now turn to the main application of weight pushing for dwta: efficient
minimization. The overall structure is presented in Alg. 2. Note that the coarsest
congruence for a dwta M = (Q,Σ, δ, c, F) that respects finality can be obtained
by minimization [17] of the underlying unweighted automaton (Q,Σ, δ, F).

Let M = (Q,Σ, δ, c, F) be a dwta, λ : Q → A be the pushing weights
computed in Alg. 1, and pushλ(M) = (Q,Σ, δ, c′, F).

The dwta pushλ(M) has the property that c′(σ(q1, . . . , qk)) = c′(σ(p1, . . . , pk))
for all σ ∈ Σk and states q1, . . . , qk, p1, . . . , pk ∈ Q such that qi ≡ pi for every
i ∈ [1, k]. In analogy to the string case [10], this property allows us to treat
the transition weight as part of the input symbol. In this way we obtain a
dta, which we can minimize using, for example, the algorithm of [17]. After the
minimization, we can expand the input symbol again into a symbol from Σ and
the transition weight.

Definition 7. Let W = {c(τ) | τ ∈ Σ(Q)} be the set of occurring weights. The
syntactic dta for M is alph(M) = (Q,Σ ×W, δ′, F), where

– (Σ ×W)k = Σk ×W for every k ∈ N, and
– δ′(〈σ,w〉(q1, . . . , qk)) = q if and only if

δ(σ(q1, . . . , qk)) = q and c(σ(q1, . . . , qk)) = w

for every σ ∈ Σk, w ∈ W , and q1, . . . , qk ∈ Q. If no such q ∈ Q exists, then
δ′(〈σ,w〉(q1, . . . , qk)) is undefined.

468 A. Maletti and D. Quernheim

Note that a dta with the above structure can be turned back into a dwta.
We will write alph−1 for this operation. Clearly, these constructions can be
performed in time O(|M |). To prove that the change to the unweighted setting
is correct, we still have to prove that the involved congruences coincide. Let ∼=
be the classical (state) equivalence for alph(push(M)), and let ≡ be the (state)
equivalence for M . To prove that they coincide, we show both inclusions.

Lemma 8. The equivalence ≡ is a congruence of alph(push(M)) that respects
finality.

Proof. Let alph(push(M)) = (Q,Σ ×W, δ′, F) and push(M) = (Q,Σ, δ, c′, F).
Since M and alph(push(M)) have the same final states, ≡ respects finality. For
the congruence property, let σ ∈ Σk and q1, . . . , qk, p1, . . . , pk ∈ Q be such that
qi ≡ pi for every i ∈ [1, k]. Then δ(σ(q1, . . . , qk)) ≡ δ(σ(p1, . . . , pk)) because ≡ is
a congruence for M . If c′(σ(q1, . . . , qk)) = w = c′(σ(p1, . . . , pk)), then

δ′(〈σ,w〉(q1, . . . , qk)) = δ(σ(q1, . . . , qk))

≡ δ(σ(p1, . . . , pk)) = δ′(〈σ,w〉(p1, . . . , pk)) .

For the remaining combinations of 〈σ,w′〉 both transitions would be undefined
(or go to the sink state), which would prove the congruence property. It remains
to show that c′(σ(q1, . . . , qk)) = c′(σ(p1, . . . , pk)).

By Def. 4, we have

c′(σ(q1, . . . , qk)) = λ(δ(σ(q1, . . . , qk))) · c(σ(q1, . . . , qk)) ·
k∏
i=1

λ(qi)
−1

c′(σ(p1, . . . , pk)) = λ(δ(σ(p1, . . . , pk))) · c(σ(p1, . . . , pk)) ·
k∏
i=1

λ(pi)
−1 .

Now we prove that

λ(δ(Cj [qj])) · c(Cj [qj]) ·
j−1∏
i=1

λ(pi)
−1 ·

k∏
i=j

λ(qi)
−1

= λ(δ(Cj [pj])) · c(Cj [pj]) ·
j∏
i=1

λ(pi)
−1 ·

k∏
i=j+1

λ(qi)
−1

for every j ∈ [1, k], where Cj = σ(p1, . . . , pj−1,�, qj+1, . . . , qk). Let q′j = δ(Cj [qj])
and p′j = δ(Cj [pj]). Since qj ≡ pj , we obtain that q′j ≡ p′j because ≡ is a
congruence. Consequently, sol(q′j) = C = sol(p′j). Moreover, we have

λ(qj)

λ(pj)
=
c(C[Cj [qj]])

c(C[Cj [pj]])
=
c(C[q′j]) · c(Cj [qj])
c(C[p′j]) · c(Cj [pj])

and
λ(q′j)

λ(p′j)
=
c(C[q′j])

c(C[p′j])
,

where the former holds because C[Cj] is a sign of life for both qj and pj and the
latter holds by definition. With these equations, let us inspect the main equality.

λ(δ(Cj [qj])) · c(Cj [qj]) ·
∏j−1
i=1 λ(pi)

−1 ·
∏k
i=j λ(qi)

−1

λ(δ(Cj [pj])) · c(Cj [pj]) ·
∏j
i=1 λ(pi)

−1 ·
∏k
i=j+1 λ(qi)

−1

Pushing for Weighted Tree Automata 469

=
λ(q′j) · c(Cj [qj]) · λ(qj)−1

λ(p′j) · c(Cj [pj]) · λ(pj)−1
=
c(C[q′j]) · c(Cj [qj]) · λ(pj)
c(C[p′j]) · c(Cj [pj]) · λ(qj)

=
c(C[q′j]) · c(Cj [qj]) · c(C[p′j]) · c(Cj [pj])
c(C[p′j]) · c(Cj [pj]) · c(C[q′j]) · c(Cj [qj])

= 1

Repeated application (from i = 1 to k) yields the desired statement. ut

Theorem 9. We have ≡ = ∼=.

Proof. Lemma 8 shows that ≡ is a congruence of alph(push(M)) that respects
finality. Since ∼= is the coarsest congruence of alph(push(M)) that respects fi-
nality by [17], we obtain that ≡ ⊆ ∼=. The converse is trivial to prove. ut

The currently fastest dwta minimization algorithm is presented in [19]. It
runs in time O(|M | · |Q|). With the help of pushing, we achieve the run-time of
the fastest minimization algorithm in the unweighted case.

Corollary 10. For every dwta M = (Q,Σ, δ, c, F), we can compute a minimal,
equivalent dwta in time O(|M | log|Q|).

6 Testing Equivalence

In this section, we want to decide whether two given dwta are equivalent. To this
end, let M1 = (Q1, Σ, δ1, c1, F1) and M2 = (Q2, Σ, δ2, c2, F2) be dwta. The over-
all approach is presented in Alg. 3. First, we need to compute a correspondence
between states. For every q1 ∈ Q1, we compute a tree t ∈ δ−11 (q1). If δ−11 (q1) = ∅,
then q1 is not reachable and can be deleted. To avoid these details, let us as-
sume that all states of Q1 are reachable. In this case, we can compute an access
tree h(q1) ∈ TΣ for every state q1 ∈ Q1 in time |M1| using standard breadth-first
search, where we unfold each state (i.e., explore all transitions leading to it) at
most once. To keep the representation efficient, we store the access trees in the
format Σ(Q1), where the states refer to their respective access trees. To obtain
the correspondence g, we compute the corresponding state of Q2 that is reached
when processing the access trees. Formally, g(q1) = δ2(h(q1)) for every q1 ∈ Q1.
Consequently, we have that h(q1) ∈ δ−11 (q1) ∩ δ−12 (g(q1)) for every q1 ∈ Q1.

Next, we compute the coarsest congruence for the (reduced) sum M1]M2,
where we intend to compute a congruential equivalence. This can be achieved
by a simple modification of the standard minimization algorithms (for exam-
ple [17]), in which we replace states q1 ∈ Q1 by their corresponding state g(q1),
whenever we test a state of Q2. For example, when splitting a block using the
context C = σ(q,�, q′) with q, q′ ∈ Q1, we use this context for all states ofQ1 and
the context g(C) = σ(g(q),�, g(q′)) for all states of Q2. If we find corresponding
states that are not related by the congruence, then the dwta are obviously not
equivalent because for corresponding states there exists a common tree t that
leads M1 and M2 into the respective state. Since the states are related by the

470 A. Maletti and D. Quernheim

Alg. 3 Overall structure of our equivalence test.
Require: dwta M1 = (Q1, Σ, δ1, c1, F1) and M2 = (Q2, Σ, δ2, c2, F2)
Ensure: return yes if and only if M1 and M2 are equivalent

g ← ComputeCorrespondence(M1,M2) // complexity: O(|M1|)
2: M ←M1]M2 // (reduced) sum of M1 and M2

∼=← ComputeCoarsestCongruence′(M, g) // complexity: O(|M | log|Q|)
4: if g 6⊆ ∼= then

return no // g is not compatible with the coarsest congruence
6: (L, sol, λ)← ComputeSoL(M,∼=, g) // complexity: O(|M |)
λ1 = λ|Q1 ; λ2 = λ|Q2 // prepare pushing weights

8: M1 ← pushλ1
(M1); M2 ← pushλ2

(M2) // complexity: O(|M1|+ |M2|)
N1 ←Minimize(alph(M1),∼=|Q1×Q1) // complexity: O(|M1| log|Q1|)

10: N2 ←Minimize(alph(M2),∼=|Q2×Q2) // complexity: O(|M2| log|Q2|)
return Isomorphic?(N1, N2)

congruence, there exists a context C that is accepted in only one of the states.
This yields a difference of acceptance on C[t].

Next, we compute signs of life and pushing weights. It is again important
that equivalent states (in M1]M2) receive the same sign of life. We minimize
M1 and M2 using the method of Section 5 (i.e., we perform pushing followed
by unweighted minimization). Finally, we test the obtained unweighted dta for
isomorphism. An easy adaptation of the statement (and proof) of Lemma 8 can
be used to show that q1 ∈ Q1 and q2 ∈ Q2 are equivalent in alph(pushλ1

(M1))
and alph(pushλ2

(M2)), respectively (see Algorithm 3), if and only if q1 ≡M q2.
This proves the correctness of Algorithm 3, whose run-time should be compared
to the previously (asymptotically) fastest equivalence test for dwta of [9], which
runs in time O(|M1| · |M2|).

Theorem 11. We can test equivalence of M1 and M2 in time O(|M | log|Q|),
where |M | = |M1|+ |M2| and |Q| = |Q1|+ |Q2|.

Acknowledgements

The authors gratefully acknowledge the insight and suggestions provided by the
reviewers.

References

1. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoret.
Comput. Sci. 18(2), 115–148 (1982)

2. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Proc.
7th Int. Conf. Developments in Language Theory. LNCS, vol. 2710, pp. 146–158.
Springer (2003)

3. Borchardt, B.: The Theory of Recognizable Tree Series. Ph.D. thesis, TU Dresden
(2005)

Pushing for Weighted Tree Automata 471

4. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.
Journal of Automata, Languages and Combinatorics 8(3), 417–463 (2003)

5. Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Syst.
32(1), 1–33 (1999)

6. Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series.
Theoret. Comput. Sci. 27(1–2), 211–215 (1983)

7. Büchse, M., May, J., Vogler, H.: Determinization of weighted tree automata using
factorizations. J. Autom. Lang. Comb. 15(3–4) (2010)

8. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications. Available
on: http://www.grappa.univ-lille3.fr/tata (2007)

9. Drewes, F., Högberg, J., Maletti, A.: MAT learners for tree series — an abstract
data type and two realizations. Acta Inform. 48(3), 165–189 (2011)

10. Eisner, J.: Simpler and more general minimization for weighted finite-state au-
tomata. In: Proc. Joint Meeting of the Human Language Technology Conference
and the North American Chapter of the ACL. pp. 64–71. ACL (2003)

11. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, chap. 9, pp.
313–403. EATCS Monographs in Theoretical Computer Science, Springer (2009)

12. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
13. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, chap. 1, pp. 1–68. Springer (1997)
14. Golan, J.S.: Semirings and their Applications. Kluwer Academic Publishers, Dor-

drecht (1999)
15. Hebisch, U., Weinert, H.: Semirings – Algebraic Theory and Applications in Com-

puter Science. World Scientific, Singapore (1998)
16. Högberg, J., Maletti, A., May, J.: Bisimulation minimisation for weighted tree

automata. In: Proc. 11th Int. Conf. Developments in Language Theory. LNCS,
vol. 4588, pp. 229–241. Springer (2007)

17. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization
of tree automata. Theoret. Comput. Sci. 410(37), 3539–3552 (2009)

18. Kuich, W.: Formal power series over trees. In: Proc. 3rd Int. Conf. Developments
in Language Theory. pp. 61–101. Aristotle University of Thessaloniki (1998)

19. Maletti, A.: Minimizing deterministic weighted tree automata. Inform. Comput.
207(11), 1284–1299 (2009)

20. May, J., Knight, K., Vogler, H.: Efficient inference through cascades of weighted
tree transducers. In: Proc. 48th Annual Meeting of the ACL. pp. 1058–1066. ACL
(2010)

21. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

22. Post, M., Gildea, D.: Weight pushing and binarization for fixed-grammar parsing.
In: Proc. 11th Int. Workshop on Parsing Technologies. pp. 89–98. ACL (2009)

http://www.grappa.univ-lille3.fr/tata

	Pushing for Weighted Tree Automata

