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Abstract. The problem of efficiently minimizing deterministic weighted
tree automata (wta) is investigated. Such automata have found promis-
ing applications as language models in Natural Language Processing. A
polynomial-time algorithm is presented that given a deterministic wta
over a commutative semifield, of which all operations including the com-
putation of the inverses are polynomial, constructs an equivalent minimal
(with respect to the number of states) deterministic and total wta. If the
semifield operations can be performed in constant time, then the algo-
rithm runs in time O(rmn4) where r is the maximal rank of the input
symbols, m is the number of transitions, and n is the number of states
of the input wta.

1 Introduction

Weighted tree automata (wta) [9,8,20,6] are a joint generalization of weighted
string automata [21] and tree automata [14,15]. Weighted string automata have
successfully been applied as language models in Natural Language Processing
largely due to their ability to easily incorporate n-gram models. Several toolk-
its (e.g., Carmel [16], Fire Station [13], and OpenFst [1]) enable language
engineers to rapidly prototype and develop language models because of the stan-
dardized implementation model and the consolidated algorithms made available
by the toolkits.

In recent years, the trend toward more syntactical approaches in Natural
Language Processing [19] sparked renewed interest in tree-based devices. The
weighted tree automaton is the natural tree-based analogue of the weighted
string automaton. First experiments with toolkits (e.g., Tiburon [24]) based
on tree-based devices show that the situation is not as consolidated here. In
particular, many basic algorithms are missing in the weighted setting.

In general, a wta processes a given input tree stepwise using a locally specified
transition behavior. During this process transition weights are combined using
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the operations (addition and multiplication) of a semiring to form the weight
associated with the input tree. Altogether, the wta thus recognizes (or computes)
a mapping ϕ : TΣ → A where TΣ is the set of all input trees and A is the carrier
set of the semiring. Such a mapping is also called a tree series, and if it can be
computed by a wta, then it is recognizable. The deterministically recognizable
tree series are exactly those recognizable tree series that can be computed by
deterministic wta. Recognizable and deterministically recognizable tree series
have been thoroughly investigated (see [20,5] and references provided therein).
In fact, [6] and [23] show which recognizable tree series are also deterministically
recognizable.

In this contribution, we consider deterministically recognizable tree series.
To the author’s knowledge, we propose the first polynomial-time minimization
algorithm for deterministic wta over semifields. A Myhill-Nerode theorem for
tree series recognized by such automata is known [3]. However, it only asserts
the existence of a unique, up to slight changes of representation, minimal (with
respect to the number of states) deterministic wta recognizing a given tree series.
The construction of such a wta, which is given in [3], is not effective, but with the
help of the pumping lemma of [4] an exponential-time algorithm, which given a
deterministic wta constructs an equivalent minimal deterministic and total wta,
could easily be derived. For (not necessarily deterministic) wta over fields the
situation is similar. In [9,7] the existence of a unique, up to slight changes of
representation, minimal wta is proved. Moreover, [7] shows that minimization is
effective by providing the analogue to the pumping argument already mentioned
above in this more general setting. However, the trivially obtained algorithm is
exponential.

Angluin [2] learning algorithms exist for both general [17] and determin-
istic [11,22] wta. In principle, those polynomial-time learning algorithms could
also be used for minimization since they produce minimal wta recognizing the
taught tree series. However, this also requires us to implement the oracle, which
answers coefficient and equivalence queries. Although equivalence is decidable
in polynomial time in both cases [26,4], a simple implementation would return
counterexamples of exponential size, which would yield an exponential-time min-
imization algorithm. Clearly, this can be avoided by the method presented in this
contribution.

Finally, let us mention the minimization procedures [25,12] for deterministic
weighted string automata. They rely on a weight normal-form obtained by a
procedure called pushing. After this normal form is obtained, the weight of a
transition is treated as an input symbol and the automaton is minimized as if
it were unweighted. We do not follow this elegant approach here because we
might have to explore several distributions of the weight to the input states of a
transition (in a tree automaton a transition can have any number of input states
whereas in a string automaton it has exactly one) during pushing. It remains
open whether there is an efficient heuristic that prescribes how to distribute the
weight such that we obtain a minimal deterministic wta recognizing the given
series after the unweighted minimization.
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Here we give a direct minimization construction, which uses partition refine-
ment as in the unweighted case [10]. To this end, we first define the Myhill-
Nerode relation on states of the deterministic input wta. This definition, as well
as the Myhill-Nerode relation on tree series [3], will include a scaling factor
and Algorithm 2 will determine those scaling factors. In the refinement process
(see Definition 13) we check for the congruence property (as in the unweighted
case) and the consistency of the weight placement on the transitions. Overall,
our algorithm runs in time O(rmn4) where r is the maximal rank of the input
symbols, m is the number of transitions, and n is the number of states of the
input wta.

2 Preliminaries

The set of nonnegative integers is IN. Given l, u ∈ IN we write {i ∈ IN | l ≤ i ≤ u}
simply as [l, u]. Let n ∈ IN and Q a set. We write Qn for the n-fold Cartesian
product of Q. The empty tuple () ∈ Q0 is sometimes displayed as ε. We reserve
the use of a special symbol � /∈ Q. The set of n-ary contexts over Q, denoted
by Cn(Q), is

⋃
i+j+1=nQ

i × {�} × Qj . Given C ∈ Cn(Q) and q ∈ Q we write
C[q] to denote the tuple of Qn obtained from C by replacing � by q.

An equivalence relation≡ onQ is a reflexive, symmetric, and transitive subset
of Q2. Let ≡ and ≡′ be equivalence relations on Q. Then ≡ is a refinement of ≡′ if
≡ ⊆ ≡′. The equivalence class of q ∈ Q is [q]≡ = {q′ ∈ Q | q′ ≡ q}. Whenever ≡
is obvious from the context, we simply omit it. The system (Q/≡) = {[q] | q ∈ Q}
actually forms a partition of Q; i.e., a system Π of subsets (also called blocks)
of Q such that

⋃
P∈Π P = Q and P ∩ P ′ = ∅ for every P, P ′ ∈ Π with P 6= P ′.

A mapping r : (Q/≡) → Q is a representative mapping if r(P ) ∈ P for every
P ∈ (Q/≡). The number of blocks of (Q/≡) is denoted by index(≡). Let Π be
any partition on Q and F ⊆ Q. The equivalence relation ≡Π on Q is defined for
every p, q ∈ Q by p ≡Π q if and only if {p, q} ⊆ P for some block P ∈ Π. We
say that Π saturates F if ≡Π is a refinement of ≡{F,Q\F}; i.e.,

⋃
P∈Π′ P = F

for some Π ′ ⊆ Π.

An alphabet is a finite and nonempty set of symbols. A ranked alphabet
(Σ, rk) is an alphabet Σ and a mapping rk: Σ → IN. Whenever rk is clear
from the context, we simply drop it. The subset of n-ary symbols of Σ is
Σn = {σ ∈ Σ | rk(σ) = n}. The set TΣ(Q) of Σ-trees indexed by Q is inductively
defined to be the smallest set such that Q ⊆ TΣ(Q) and σ(t1, . . . , tn) ∈ TΣ(Q)
for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). We write TΣ for TΣ(∅). The mapping
var : TΣ(Q) → P(Q), where P(Q) is the power set of Q, is inductively defined
by var(q) = {q} for every q ∈ Q and var(σ(t1, . . . , tn)) =

⋃n
i=1 var(ti) for every

σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). For every P ⊆ Q, we use varP (t) as a short-
hand for var(t) ∩ P . Moreover, we use |t|q to denote the number of occurrences
of q ∈ Q in t ∈ TΣ(Q). Finally, we define the height and size of a tree with
the help of the mappings ht, size : TΣ(Q) → IN inductively for every q ∈ Q by
ht(q) = size(q) = 1 and ht(σ(t1, . . . , tn)) = 1 + max{ht(ti) | i ∈ [1, n]} and
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size(σ(t1, . . . , tn)) = 1 +
∑n
i=1 size(ti) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q).

Note that max ∅ = 0.

The set CΣ(Q) of Σ-contexts indexed by Q is defined as the smallest set such
that � ∈ CΣ(Q) and σ(t1, . . . , ti−1, C, ti+1, . . . , tn) ∈ CΣ(Q) for every σ ∈ Σn
with n ≥ 1, index i ∈ [1, n], t1, . . . , tn ∈ TΣ(Q), and C ∈ CΣ(Q). We write CΣ
for CΣ(∅). Note that CΣ(Q) ⊆ TΣ(Q ∪ {�}). Next we recall substitution. Let
V be an alphabet (possibly containing �), v1, . . . , vn ∈ V be pairwise distinct,
and t1, . . . , tn ∈ TΣ(V ). Then we denote by t[vi ← ti | 1 ≤ i ≤ n] the tree
obtained from t by replacing every occurrence of qi by ti for every i ∈ [1, n]. We
abbreviate C[�← t] simply by C[t] for every C ∈ CΣ(Q) and t ∈ TΣ(V ).

A (commutative) semiring is a tuple A = (A,+, ·, 0, 1) such that (A,+, 0)
and (A, ·, 1) are commutative monoids; a · 0 = 0 = 0 · a for every a ∈ A; and
· distributes over + from both sides. The semiring A is a semifield if for every
a ∈ A\{0} there exists a−1 ∈ A such that a ·a−1 = 1. A tree series is a mapping
ϕ : T → A where T ⊆ TΣ(Q). The set of all such tree series is denoted by A〈〈T 〉〉.
For every ϕ ∈ A〈〈T 〉〉 and t ∈ T , the coefficient ϕ(t) is usually denoted by (ϕ, t).

A weighted tree automaton [9,8,20,6] (wta) is a tuple M = (Q,Σ,A, µ, ν)
such that Q is an alphabet of states; Σ is a ranked alphabet; A = (A,+, ·, 0, 1)
is a (commutative) semiring; µ = (µn)n≥0 with µn : Σn → AQ

n×Q; and ν ∈ AQ
is a final weight vector. The semantics of M is the tree series ϕM ∈ A〈〈TΣ〉〉
given by (ϕM , t) =

∑
q∈Q hµ(t)q · νq (or simply the scalar product hµ(t) · ν)

where hµ : TΣ → AQ is inductively defined by

hµ(σ(t1, . . . , tn))q =
∑

q1,...,qn∈Q
µn(σ)(q1,...,qn),q ·

n∏
i=1

hµ(ti)qi

for every σ ∈ Σn, q ∈ Q, and t1, . . . , tn ∈ TΣ . The wta M is said to recognize ϕM
and two wta are equivalent if they recognize the same tree series.

The wta M is deterministic and total [6] if for every σ ∈ Σn and w ∈ Qn
there exists exactly one q ∈ Q such that µn(σ)w,q 6= 0. Since we will exclusively
deal with deterministic and total wta over semifields from now on, we will use the
following representation: M = (Q,Σ,A, δ, c, ν) where δ ⊆

⋃
n≥0Q

n ×Σn ×Q is
finite and c : δ → A \ {0}. In particular, (w, σ, q) ∈ δ if and only if µn(σ)w,q 6= 0,
and for every τ = (w, σ, q) ∈ δ we have c(τ) = µn(σ)w,q. The determinism and to-
tality restriction ensures that δ can be represented as (δσ)σ∈Σ with δσ : Qn → Q.
We extend δ to a mapping δ : TΣ(Q)→ Q as follows: δ(q) = q for every q ∈ Q and
δ(σ(t1, . . . , tn)) = δσ(δ(t1), . . . , δ(tn)) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q).
A state q ∈ Q is useful if there exists t ∈ TΣ such that δ(t) = q. The deter-
ministic and total wta M is said to have no useless states if all states of Q are
useful.

Similarly, c can be represented as (cσ)σ∈Σ with cσ : Qn → A\{0}. Due to the
semifield restriction, this can be extended to a mapping c : TΣ(Q)→ A \ {0} by
c(q) = 1 for every q ∈ Q and c(σ(t1, . . . , tn)) = cσ(δ(t1), . . . , δ(tn))·

∏n
i=1 c(ti) for

every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). It is easy to show that (ϕM , t) = c(t) ·νδ(t)
for every t ∈ TΣ . In fact, we extend ϕM to a tree series of A〈〈TΣ(Q)〉〉 by defining
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(ϕM , t) = c(t) · νδ(t) for every t ∈ TΣ(Q). The following property, which will be
used without explicit mention in the sequel, follows immediately.

Proposition 1 (cf. [3, Theorem 1]). We have (ϕM , t) = 0 if and only if
νδ(t) = 0 for every t ∈ TΣ(Q). Moreover,

c(t[qi ← ti | 1 ≤ i ≤ n]) = c(t) ·
n∏
i=1

c(ti)
|t|qi

for all pairwise distinct q1, . . . , qn ∈ Q and t1, . . . , tn ∈ TΣ(Q) such that δ(ti) = qi
for every i ∈ [1, n].

Finally, let us recall the Myhill-Nerode congruence relation [3] for tree
series. To this end, we first recall Σ-algebras and congruences. A Σ-algebra
(S, f) consists of a carrier set S and f = (fσ)σ∈Σ such that fσ : Sn → S for
every σ ∈ Σn. The term Σ-algebra is given by (TΣ , Σ) where Σ = (σ)σ∈Σ
with σ(t1, . . . , tn) = σ(t1, . . . , tn) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ . In the
sequel, we will drop the overlining. Note that (Q, δ) is a Σ-algebra. Let ≡ be an
equivalence relation on S. Then ≡ is a congruence of (S, f) if for every σ ∈ Σn
and s1, . . . , sn, t1, . . . , tn ∈ S such that si ≡ ti for every i ∈ [1, n] we also have
fσ(s1, . . . , sn) ≡ fσ(t1, . . . , tn).

Let ϕ ∈ A〈〈TΣ〉〉. The Myhill-Nerode [3] relation ≡ϕ ⊆ TΣ ×TΣ is defined
for every t, u ∈ TΣ by t ≡ϕ u if and only if there exists a ∈ A \ {0} such that
(ϕ,C[t]) = a · (ϕ,C[u]) for every C ∈ CΣ . We note that ≡ϕ is a congruence
of (TΣ , Σ) [3, Lemma 5].

3 Myhill-Nerode Relation

In this section, we recall the theoretical foundations for the minimization pro-
cedure and introduce the Myhill-Nerode relation on states of a deterministic
and total wta. We keep it short because most of the material is only slightly
adapted. Readers who are familiar with the Myhill-Nerode congruence ≡ϕ
for a tree series ϕ may decide to read only Definition 2 and proceed to the next
section. For the rest of the paper, let M = (Q,Σ,A, δ, c, ν) be a deterministic
and total wta without useless states and A = (A,+, ·, 0, 1) a semifield, of which
multiplication and calculation of inverses can be performed in constant time.
Note that, depending on the actual semifield used, this might be an unrealistic
assumption, but it simplifies the complexity analysis and is typically true for the
fixed-precision arithmetic implemented on stock hardware. Finally, let ϕ = ϕM .

Definition 2 (cf. [3, page 8]). The Myhill-Nerode relation ≡ ⊆ Q×Q is
defined for every p, q ∈ Q by p ≡ q if and only if there exists a ∈ A \ {0} such
that (ϕ,C[p]) = a ·(ϕ,C[q]) for every C ∈ CΣ. We denote such a scaling factor a
by ap,q for every p, q ∈ Q such that p ≡ q.
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Note the similarity with the definition of the Myhill-Nerode relation≡ϕ [3].
This similarity allows us to retain some of the useful properties of ≡ϕ. In the
remainder of this section, we show some of those properties. We start with the
fact that ≡ is a congruence relation on (Q, δ).

Proposition 3 (cf. [3, Lemma 5]). The relation ≡ is a congruence relation
on (Q, δ).

The next lemma introduces a more restricted variant of ≡ and relates it to ≡.
The more restricted variant will be very useful in the sequel and allows us to
avoid an exponential blow-up.

Lemma 4. The relation ≡′ ⊆ Q×Q, which is given for every p, q ∈ Q by p ≡′ q
if and only if there exists a ∈ A \ {0} such that (ϕ,C[p]) = a · (ϕ,C[q]) for every
C ∈ CΣ(Q), coincides with ≡.

In fact, for every p, q ∈ Q such that p ≡ q the scaling factor ap,q also verifies
p ≡′ q. This leads to the second main property (the first being the congruence
property) that we will later use for refinement (see Proposition 12). The final
lemma of this section establishes the relation of ≡ to ≡ϕ. Note that index(≡ϕ)
coincides with the number of states of a minimal deterministic and total wta
recognizing ϕ [3, Theorem 3].

Lemma 5. index(≡) = index(≡ϕ).

Proof. Let t, u ∈ TΣ such that t ≡ϕ u. There exists a ∈ A \ {0} such that
(ϕ,C[t]) = a · (ϕ,C[u]) for every C ∈ CΣ . We reason as follows:

c(t) · (ϕ,C[δ(t)]) = (ϕ,C[t]) = a · (ϕ,C[u]) = a · c(u) · (ϕ,C[δ(u)]) .

Since a · c(t)−1 · c(u) does not depend on C, we obtain δ(t) ≡ δ(u). Since M has
no useless states, ≡ thus has at most as many equivalence classes as ≡ϕ. For
the converse, let p, q ∈ Q such that p ≡ q. Moreover, let t, u ∈ TΣ be such that
δ(t) = p and δ(u) = q. Then analogous to the above we can prove that t ≡ϕ u.
Hence, index(≡) and index(≡ϕ) coincide. ut

4 Minimization Algorithm

In this section, we will develop our minimization algorithm for deterministic
wta. Throughout, let F = {q ∈ Q | νq 6= 0}. Note that any deterministic
wta M ′ can be converted in linear time (in the number of transitions) into an
equivalent deterministic and total wta without useless states. In contrast to the
classical minimization algorithm for deterministic unweighted tree automata, we
need to determine the scaling factor ap,q (see Definition 2) for each pair (p, q) of
equivalent states. We will use the concept of a sign of life to help us determine
it.
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Definition 6. A state q ∈ Q is live if δ(C[q]) ∈ F for some context C ∈ CΣ(Q).
Such a context is called a sign of life of q. If no sign of life of q exists, then q is
dead.

Roughly speaking, a state q is live if some final state can be reached from
it. A sign of life of q shows one such path. Note that the sign-of-life context
may contain states. Our first task is to determine signs of life for all states. This
also identifies live and dead states. Let n be the number of states of M , m the
number of transitions of M , and r the maximal rank of the symbols in Σ. To
simplify the complexity statements, suppose that r ≥ 1. Note that consequently
m ≥ n.

Algorithm 1 ComputeSoL(M): Compute signs of life and initial partition.

Require: deterministic and total wta M = (Q,Σ,A, δ, c, ν)
D ← Q \ F // unexplored states

2: sol← {(q,�) | q ∈ F} // final states have trivial sign of life
T ← {(w, σ, q) ∈ δ | q ∈ F} // add all transitions leading to a final state to queue

4: while T 6= ∅ do
let τ = ((q1, . . . , qk), σ, q) ∈ T // get first element in FIFO queue T

6: I ← {i ∈ [1, k] | qi ∈ D,∀j ∈ [1, i− 1] : qj 6= qi} // select unexplored states
sol← sol ∪ {(qi, sol(q)[σ(q1, . . . , qi−1,�, qi+1, . . . , qk)]) | i ∈ I} // add sol

8: P ← {qi | i ∈ I} // new live states
D ← D \ P // remove new live states from unexplored states

10: T ← (T \ {τ}) ∪ {(w, γ, p) ∈ δ | p ∈ P} // add transitions to new live states
end while

12: Π ← {{q ∈ Q \D | ht(sol(q)) = i} | i ≥ 1} ∪ {D} // group states by height of sol
return (Π, sol, D)

Algorithm 1 returns an initial partition Π, signs of life sol, and the set D
of dead states. Let us make two remarks. First, it is essential that T is handled
as a FIFO queue with additions at the end and removal at the beginning. This
guarantees that the height of the constructed signs of life is minimal. Second,
∅ might be an element of Π. To avoid complicated case distinctions, we permit
this slightly nonstandard behavior, which does not affect the correctness of our
algorithms.

Lemma 7. Let (Π, sol, D) be the result of running Algorithm 1 on M . Then sol(q)
is a sign of life of q of size at most rn for every state q of Q\D, D is the set of all
dead states, Π saturates F , and ≡ is a refinement of ≡Π . Moreover, Algorithm 1
can be implemented to run in time O(rm).

Proof. Lines 1–3 run in time O(m) because m ≥ n. Clearly, each transition can
be added at most once to T , so lines 4–11 can be executed at most m times.
Lines 6–8 can be executed in time O(r); note that this requires a list representa-
tion of the signs of life (i.e., a sign of life is a list of pairs consisting of a transition
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and an integer indicating the position of �) to avoid the creation and/or copying
of transitions. If we suppose that access to the list of transitions leading to a
certain state is constant (which can be achieved by a O(m) preprocessing step
sorting the transitions in n buckets), then line 10 can be executed in O(r) time.
Since r ≥ 1, we obtain a running time of O(rm). Finally, we note that the par-
tition constructed in line 12 could have been constructed during the loop at no
additional expense; we presented it this way for clarity.

Next, we prove that sol(q) is indeed a sign of life of q for every q ∈ Q \ D.
The trivial contexts added for each final state in line 2 are obviously signs of life.
It remains to show that C, the second component in the pair of line 7, is a sign
of life of qi. By induction hypothesis, we may assume that sol(q) is a sign of life
of q; i.e., δ(sol(q)[q]) ∈ F . Since M is deterministic and ((q1, . . . , qk), σ, q) ∈ δ,
we obtain δ(C[qi]) = δ(sol(q)[q]) ∈ F and thus C is a sign of life of qi. It is
obvious that Π saturates F . We leave the proof of the fact that D is indeed the
set of all dead states to the reader.

Clearly, final states are assigned a sign of life of height 1 and size 1 ≤ r.
Further signs of life are constructed as C = sol(q)[σ(q1, . . . , qi−1,�, qi+1, . . . , qk)]
(see line 7). Thus, the height (respectively, the size) of the new sign of life C is 1
(respectively, at most r) greater than that of the sign of life sol(q). Consequently,
height and size of every sign of life sol(q) with q ∈ Q \D are at most n and rn,
respectively. Finally, we have to show that ≡ is a refinement of ≡Π . To this
end, we have to show that p ≡ q implies that p ≡Π q for every p, q ∈ Q. Let
p, q ∈ Q be such that p ≡ q. Clearly, p and q share all signs of life (see Lemma 4).
Consequently, if p is dead, then also q must be dead, and in that case, p ≡Π q.
Otherwise, p and q are live. We already remarked that Algorithm 1 computes
signs of life that are minimal in height; the proof of that statement is left as an
exercise. The height-minimal sign of life sol(p) must be a sign of life of q as well,
and consequently, ht(sol(p)) = ht(sol(q)), which yields p ≡Π q. ut

We allow contexts of CΣ(Q) instead of only contexts of CΣ as signs of life in
order to obtain the linear size complexity given in Lemma 7. The more common
approach to use contexts of CΣ would yield signs of life, whose size might be
exponential in n. Since we will run M on signs of life, this would have led to an
exponential time complexity.

The principal approach of the minimization algorithm is partition refine-
ment as, for example, in the classical minimization algorithm for minimizing
unweighted deterministic tree automata [10]. We successively refine the initial
partition returned by Algorithm 1 until ≡ is reached. Before we turn to more
detail, let us introduce the main data structure.

Definition 8. Let Π be a partition of Q that saturates F , L ⊆ Q be the set
of live states, sol : L → CΣ(Q) be such that sol(q) is a sign of life of q for
every q ∈ L, f : L → A \ {0}, and r : (Π \ {∅, Q \ L}) → Q a representative
mapping. Then (Π, sol, f, r) is a stage if

(i) ≡ is a refinement of ≡Π ;
(ii) sol(q) = � for every q ∈ F ; and



Minimizing Deterministic Weighted Tree Automata 365

(iii) for every q ∈ L we have (ϕ, sol(p)[q]) = f(q) · (ϕ, sol(p)[p]) where p = r([q]).

The stage is stable if additionally

(iv) ≡Π is a congruence of (Q, δ); and
(v) for every q ∈ L, σ ∈ Σn, and C ∈ Cn(Q) such that δσ(C[q]) ∈ L

f(q)−1 · cσ(C[q]) · f(δσ(C[q])) = cσ(C[p]) · f(δσ(C[p]))

where p = r([q]).

In a stage, we have a partition, signs of life, and two new components. The
mapping r assigns to each nonempty block (apart from the block of dead states)
of the partition a representative and the mapping f assigns to each live state
the scaling factor to the representative of its block [see Condition (iii)]. A stable
stage additionally requires ≡Π to be a congruence of (Q, δ) and Condition (v),
which is of paramount importance in the implementation (as a wta) of a stable
stage. Let us show how to derive a deterministic and total wta recognizing ϕ
from a stable stage.

Definition 9 (cf. [3, Definition 4]). Let S = (Π, sol, f, r) be a stable stage and
D the set of dead states. The wta MS = (Π \ {∅}, Σ,A, δ′, c′, ν′) is constructed
as follows: for every σ ∈ Σk and q1, . . . , qk ∈ Q let

– δ′σ([q1], . . . , [qk]) = [δσ(q1, . . . , qk)];
– c′σ([q1], . . . , [qk]) = 1 if δσ(q1, . . . , qk) ∈ D and otherwise

c′σ([q1], . . . , [qk]) =

k∏
i=1

f(qi)
−1 · cσ(q1, . . . , qk) · f(δσ(q1, . . . , qk))

– ν′B = νr(B) for every B ∈ Π \ {∅, D} and if D ∈ Π \ {∅}, then ν′D = 0.

The construction of MS can be implemented to run in time O(rm). How-
ever, some remarks are required here. First, δ′ is well-defined because ≡Π is
a congruence on (Q, δ). Second, let us consider the definition of c′. Suppose
that p1, . . . , pk, q1, . . . , qk ∈ Q such that pi ≡Π qi for every i ∈ [1, k]. By the
congruence property and Condition (i) of Definition 8, the case distinction is
well-defined. We show that

k∏
i=1

f(pi)
−1 · cσ(p1, . . . , pk) · f(δσ(p1, . . . , pk))

=

k∏
i=2

f(pi)
−1 · cσ(r([p1]), p2, . . . , pk) · f(δσ(r([p1]), p2, . . . , pk))

= . . .

= cσ(r([p1]), . . . , r([pk])) · f(δσ(r([p1]), . . . , r([pk])))

= cσ(r([q1]), . . . , r([qk])) · f(δσ(r([q1]), . . . , r([qk])))
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= . . .

=

k∏
i=2

f(qi)
−1 · cσ(r([q1]), q2, . . . , qk) · f(δσ(r([q1]), q2, . . . , qk))

=

k∏
i=1

f(qi)
−1 · cσ(q1, . . . , qk) · f(δσ(q1, . . . , qk))

by repeated application of Condition (v) of Definition 8, which proves the well-
definedness of c′. It is obvious that MS has index(≡Π) many states. We should
finally show that MS recognizes ϕ.

Theorem 10. Let S = (Π, sol, f, r) be a stable stage. Then MS is a minimal
deterministic and total wta recognizing ϕ.

Proof. Let us first show that MS = (Q′, Σ,A, δ′, c′, ν′) recognizes ϕ. From the
classical minimization construction it should be clear that δ(t) ∈ δ′(t) for every
t ∈ TΣ . We prove the statement c(t) = c′(t) · f(δ(t))−1 by induction on t. Let
t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . By definition

c(t) = cσ(δ(t1), . . . , δ(tk)) ·
k∏
i=1

c(ti) = cσ(δ(t1), . . . , δ(tk)) ·
k∏
i=1

(
c′(ti) · f(δ(ti))

−1
)

where the last equality is by induction hypothesis. We finish the proof of the
auxiliary statement using the definition of c′ and δ(ti) ∈ δ′(ti)

c(t) = c′σ(δ′(t1), . . . , δ′(tk))·
k∏
i=1

c′(ti)·f(δσ(δ(t1), . . . , δ(tk)))−1 = c′(t)·f(δ(t))−1 .

We now continue for every t ∈ TΣ with a case distinction. Let q = δ(t).
If q /∈ F , then (ϕ, t) = 0 and (ϕMS

, t) = 0 because ν′[q] = 0 (recall that Π

saturates F ). If q ∈ F , then

(ϕMS
, t) = c′(t) · ν′[q] = c(t) · f(q) · νr([q]) = c(t) · νq = (ϕ, t)

by Conditions (ii) and (iii) of Definition 8 since sol(r([q])) = �. Thus, we proved
that MS recognizes ϕ. By Lemma 5 and [3, Theorem 3], index(≡) is the number
of states of a minimal deterministic and total wta recognizing ϕ. The wta MS

has index(≡Π) states and by Condition (i) of Definition 8, ≡ is a refinement
of ≡Π , hence index(≡Π) ≤ index(≡). Consequently, ≡Π coincides with ≡ and
MS is a minimal deterministic and total wta recognizing ϕ. ut

Note that the above theorem also shows that (Π, sol, f, r) can only be a stable
stage if ≡Π coincides with ≡. Since we already have a suitable initial partition
that saturates F along with suitable signs of life, our next step is to determine
the scaling factors (see Definition 2). To this end, we employ Algorithm 2, which
is given a partition and computes the scaling factor for each element relative to
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a chosen representative of its block. If it cannot compute such a scaling factor
(which only happens when the sign of life of the representative is not a sign
of life of the considered state), then it splits the state from its current block.
The algorithm completely ignores the block of dead states. This can be done
because the block of dead states will never be split (since p ≡ q whenever both
p and q are dead). The idea of our minimization algorithm is to refine the initial
partition returned by Algorithm 1 until we reach ≡. Algorithm 2 completes a
suitable partition to a stage.

Algorithm 2 Complete(M,Π, sol, D): Compute scaling factors.

Require: deterministic and total wta M = (Q,Σ,A, δ, c, ν), set D of dead states, sign
of life sol(q) for every q ∈ Q \D, and a partition Π coarser than ≡
f ← ∅ // map of scaling factors

2: r ← ∅ // map of representatives
Π ← Π \ {D} // remove block of dead states

4: Π ′ ← {D} // output partition containing block of dead states
while Π 6= ∅ and Π 6= {∅} do

6: let P ∈ Π and p ∈ P // select new block and representative
P ′ ← {q ∈ P | δ(sol(p)[q]) ∈ F} // collect states that share sign of life sol(p)

8: f ← f ∪ {(q, c(sol(p)[q]) · c(sol(p)[p])−1) | q ∈ P ′} // add scaling factors
r ← r ∪ {(P ′, p)} // add representative for P ′

10: Π ′ ← Π ′ ∪ {P ′} // block P ′ is processed
Π ← (Π \ {P}) ∪ {P \ P ′} // remove old block and add new block P \ P ′

12: end while
return (Π ′, sol, f, r)

Lemma 11. Given signs of life of Algorithm 1 and a partition Π such that ≡
is a refinement of ≡Π , Algorithm 2 can be implemented to run in time O(rn3)
and returns a stage (Π ′, sol, f, r) such that ≡Π′ is a refinement of ≡Π .

Proof. We defer correctness for the moment. The loop in lines 5–12 can be
executed at most n times as each time at least one state is processed. Evaluating
the sign of life takes at most O(rn) since the size of any sign of life is at most rn.
Thus, lines 7-8 execute in O(rn2) and the whole algorithm runs in time O(rn3).
Now, let us consider correctness. It should be clear that Condition (ii) holds
and Condition (iii) holds because it is enforced in line 8. It remains to check
Condition (i). Clearly, ≡Π′ is a refinement of ≡Π and by assumption ≡ is a
refinement of ≡Π . Let p, q ∈ Q such that p ≡ q. Consequently, p ≡Π q. Let p′ ∈ Q
be such that p ≡Π p′ (cf. the selection in line 6). Then δ(sol(p′)[p]) ∈ F if and
only if δ(sol(p′)[q]) ∈ F because (ϕ, sol(p′)[p]) 6= 0 if and only if (ϕ, sol(p′)[q]) 6= 0
by p ≡ q. This yields that independently of the selection of the representative in
line 6, p and q cannot be split in line 7, and hence p ≡Π′ q. ut

Note that Π ′ saturates F whenever Π does because ≡Π′ is a refinement
of ≡Π . As in the unweighted case [10], we use a partition refinement algorithm
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to compute the Myhill-Nerode relation. To this end, we start with the initial
partition computed by Algorithm 1 and complete it to a stage with the help of
Algorithm 2. Then we refine according to Conditions (iv) and (v) of Definition 8.
For this to work, variants of these conditions should also be fulfilled by ≡. We
already proved in Proposition 3 that ≡ is a congruence of (Q, δ) as in the classical
unweighted case. Second, the weights of transitions from equivalent states leading
to live states must obey a certain compatibility requirement, which we show in
the next proposition.

Proposition 12. For every σ ∈ Σk, C ∈ Ck(Q), and p, q ∈ Q such that p ≡ q
and δσ(C[p]) is live, we have a−1

p,q ·cσ(C[p]) ·ap′,q′ = cσ(C[q]) where p′ = δσ(C[p])
and q′ = δσ(C[q]).

Proof. Since p′ is live, there exists a context C ′ ∈ CΣ(Q) such that δ(C ′[p′]) ∈ F .
Consider the context C ′′ = C ′[σ(C)]. Since p ≡ q, and thus p ≡′ q by Lemma 4,
it follows that (ϕ,C ′′[p]) = ap,q · (ϕ,C ′′[q]). In addition, p′ ≡ q′ because ≡ is a
congruence. Now we compute as follows:

cσ(C[p]) · (ϕ,C ′[p′]) = (ϕ,C ′′[p]) = ap,q · (ϕ,C ′′[q])
= ap,q · cσ(C[q]) · (ϕ,C ′[q′]) = ap,q · cσ(C[q]) · a−1

p′,q′ · (ϕ,C
′[p′]) .

Since (ϕ,C ′[p′]) 6= 0 because δ(C ′[p′]) ∈ F , we obtain the statement by cancelling
(ϕ,C ′[p′]). ut

In the classical unweighted case, only the congruence property is used to re-
fine. The additional constraint basically restricts the weights on the transitions
whereas the congruence property only restricts the presence/absence of tran-
sitions. Altogether, the previous proposition suggests the following refinement
step.

Definition 13. Let (Π, sol, f, r) be a stage and D be the set of dead states. Then
the refinement Refine(M,Π, sol, f, r,D) is defined to be the partition Π ′ such
that for every p, q ∈ Q we have p ≡Π′ q if and only if p ≡Π q and for every
σ ∈ Σk and C ∈ Ck(Q)

(i) δσ(C[p]) ≡Π δσ(C[q]); and
(ii) f(p)−1 · cσ(C[p]) · f(δσ(C[p])) = f(q)−1 · cσ(C[q]) · f(δσ(C[q])), if δσ(C[p]) is

live.

The following lemma shows that Refine refines in the desired manner. In
particular, whenever ≡ is a refinement of ≡Π , then ≡ is also a refinement of ≡Π′ .
Thus, we only refine to the level of ≡ and never beyond. This simple property
follows in a straightforward manner from Definition 13 and Proposition 12.

Lemma 14. Let (Π, sol, f, r) be a stage and D the set of dead states. The pro-
cedure Refine(M,Π, sol, f, r,D) can be implemented to run in time O(rmn2).
Moreover, the resulting partition Π ′ is such that ≡Π′ is a refinement of ≡Π , and
if ≡ is a refinement of ≡Π , then ≡ is a refinement of ≡Π′ .
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Algorithm 3 Minimization of deterministic wta

Require: deterministic and total wta M = (Q,Σ,A, δ, c, ν) without useless states
(Π ′, sol, D)← ComputeSoL(M) // see Algorithm 1; complexity: O(rm)

2: repeat
(Π, sol, f, r)← Complete(M,Π ′, sol, D) // see Algorithm 2; complexity:
O(rn3)

4: Π ′ ← Refine(M,Π, sol, f, r,D) // see Definition 13; complexity: O(rmn2)
until Π ′ = Π

6: return M(Π,sol,f,r) // see Definition 9; complexity O(rm)

Again note that whenever Π saturates F , then also Π ′ saturates F sim-
ply because ≡Π′ is a refinement of ≡Π . We are now ready to state the main
minimization algorithm.

Theorem 15. A minimal deterministic and total wta M ′ recognizing ϕ can be
obtained in time O(rmn4).

Proof. The loop in lines 2–5 in Algorithm 3 can be entered at most n times, which
immediately yields the required time bound using Lemmata 7, 11, and 14. The
initial partition Π ′ in line 1 saturates F and so does every subsequent parti-
tion. Moreover, by Lemmata 11 and 14, ≡ is a refinement of every subsequent
≡Π and ≡Π′ because ≡ is a refinement of ≡Π′ in line 1 by Lemma 7. Con-
sequently, every Π is a stage by Lemma 11, and if Π = Π ′ in line 5, then
(Π, sol, f, r) is a stable stage. By Theorem 10, the wta returned in line 6 is a
minimal deterministic and total wta recognizing ϕ. ut

5 A Small Example

Let us discuss the example of [22] (with one minor modification), which presents
a simplistic wta for simple English sentences. It penalizes long sentences by de-
creasing their score. The score will be a real number and we will use (IR,+, ·, 0, 1)
as the underlying field. Our ranked alphabet is

Σ = {σ,Alice,Bob, loves,hates,ugly,nice,mean}

of which σ is binary and all other symbols have rank 0. We abbreviate the
multi-letter symbols by their first letter (e.g., Alice by just A). As states we
have Q = {NN,VB,ADJ,VP,NP,S,⊥} of which only S is final (with νS = 1).
Transitions and transition weights are given as follows:

δσ(NN,VP) = S δσ(NP,VP) = S δσ(VB,NN) = VP δσ(VB,NP) = VP

cσ(NN,VP) = 0.5 cσ(NP,VP) = 0.5 cσ(VB,NN) = 0.5 cσ(VB,NP) = 0.5

δσ(ADJ,NN) = NP δσ(ADJ,NP) = NP

cσ(ADJ,NN) = 0.5 cσ(ADJ,NP) = 0.5
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and

δA() = δB() = NN δl() = δh() = VB δu() = δn() = δm() = ADJ

cA() = cB() = 0.5 cl() = ch() = 0.5 cu() = cn() = cm() = 0.33 .

For all remaining combinations (x, y) we set δσ(x, y) = ⊥ and cσ(x, y) = 1.
Now, we completely specified our deterministic and total input wta M , which
has no useless states. Next, we compute signs of life according to Algorithm 1.
It may return (Π ′, sol, {⊥}) where Π ′ = {{S}, {VP,NP,NN}, {ADJ,VB}, {⊥}}
and the signs of life are

sol(S) = � sol(NP) = σ(�,VP) sol(ADJ) = σ(σ(�,NN),VP)

sol(VP) = σ(NN,�) sol(NN) = σ(�,VP) sol(VB) = σ(NN, σ(�,NN)) .

Next, we call procedure Complete(M,Π ′, sol, {⊥}), which may return the stage
(Π, sol, f, r) where

– Π = {{S}, {VP}, {NP,NN}, {ADJ}, {VB}, {⊥}};
– f(x) = 1 for all live states x; and
– r({NP,NN}) = NP and r({x}) = x for all other live states x.

Finally, we refine this partition, but NP and NN will not be split. Thus, we
construct the deterministic and total wta M(Π,sol,f,r) = (Π,Σ, IR, δ′, c′, ν′) with
the final state {S} (with ν′{S} = 1). Transitions and transition weights are given

as follows (we drop the parentheses from the singleton sets):

δ′A() = {NN,NP} δB() = {NN,NP} δ′l() = VB δh() = VB δ′u() = ADJ

c′A() = 0.5 c′B() = 0.5 c′l() = 0.5 c′h() = 0.5 c′u() = 0.33

δ′n() = ADJ δ′m() = ADJ

c′n() = 0.33 c′m() = 0.33

and using N = {NN,NP}

δ′σ(N,VP) = S δ′σ(VB, N) = VP δ′σ(ADJ, N) = N

c′σ(N,VP) = 0.5 c′σ(VB, N) = 0.5 c′σ(ADJ, N) = 0.5 .

For all remaining combinations (x, y) we have δ′σ(x, y) = {⊥} and c′σ(x, y) = 1.
Note that a different minimal deterministic wta was obtained in [22]; note that
this different wta cannot be obtained by our algorithm (since all transitions not
involving NP and NN are essentially kept).

Conclusion and Open Problems

We presented the first polynomial-time minimization algorithm for deterministic
weighted tree automata over semifields. If we suppose that the semifield opera-
tions can be performed in constant time, then our algorithm runs in timeO(rmn4).
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In fact, our algorithm works equally well for wta with final states (i.e., νq ∈ {0, 1}
for every q ∈ Q) because it then returns a minimal equivalent wta with fi-
nal states. This contrasts the situation encountered with the pushing strategy
of [25,12], which needs final weights in general.

Finally, let us mention some open problems. Can a Hopcroft-like strat-
egy [18] improve the presented algorithm? A more detailed complexity analysis
should be conducted to obtain a tighter bound on the time complexity of the
algorithm. Can minimization be performed in a similar manner as presented
in [25,12] for deterministic weighted string automata? This might lead to an al-
gorithm that outperforms our algorithm. Finally, the theoretical foundations for
minimization of (even nondeterministic) weighted tree automata over fields have
been laid in [9,7], but to the author’s knowledge a polynomial-time minimization
algorithm is still missing.
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