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Abstract. Unfortunately the class of transformations computed by non-
deleting and linear extended top-down tree transducers [Graehl, Knight:
Training Tree Transducers. HLT-NAACL 2004] is not closed under com-
position. It is shown that the class of transformations computed by
nondeleting and linear bimorphisms actually coincides with the previ-
ously mentioned class. Moreover, every nondeleting and linear bimor-
phism with an ε-free input-homomorphism can straightforwardly be im-
plemented by a multi bottom-up tree transducer [Fülöp, Kühnemann,
Vogler: A Bottom-up Characterization of Deterministic Top-down Tree
Transducers with Regular Look-ahead. Inf. Proc. Letters 91, 2004]. The
class of transformations realized by the latter devices is shown to be
closed under composition and is included in the composition of the class
of transformations realized by top-down tree transducers with itself.

1 Introduction

Top-down tree transducers (for short: tdtts) were introduced in [1,2] and in-
tensively studied thereafter (see [3] for a survey). Those devices were originally
motivated from syntax-directed semantics [4], but were later successfully applied
to problems as diverse as: functional programming [5]; analysis of cryptographic
protocols [6]; and decidability of the first-order theory of ground rewriting [7].

In particular, compositions of tdtts are considered in [8,9]. In this paper we
study compositions of extended tdtts, which were introduced in [10] and sub-
sequently led to several improvements [11] in machine translation (see [12] for
a survey). In fact, [12] explicitly mentions the closure of the class of transfor-
mations computed by extended tdtts under composition as an open problem
of paramount importance in natural language processing. A partial solution is
given in [13] where it is shown that the class of transformations computed by
nondeleting and linear extended tdtts is not closed under composition. The proof
shows that the non-closure is essentially due to the linearity property (i.e., copy-
ing extended tdtts can compute the transformation presented in [13]); thus the
general problem remains open.

An extended tdtt essentially is a tdtt whose left-hand sides of rules offer not
only shallow patterns of the form σ(x1, . . . , xk) for some k-ary symbol σ, but
allow arbitrary patterns (without repeated variables) as left-hand sides. In this
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paper we will mostly consider nondeleting and linear extended tdtts, in which
the right-hand side of a rule may not contain several occurrences of a variable
and further must contain every variable that occurs in the left-hand side of that
rule. Two example rules are shown in Fig. 1. The semantics of extended tdtts is
given by a simple rewrite semantics. An instance of a left-hand side of a rule is
replaced by the appropriately instantiated right-hand side of that rule. We start
this rewriting process with q(t) where q is an initial state and t is the input tree.
An extended tdtt may thus transform an input tree t into an output tree u if
there exists an initial state q such that q(t) can be rewritten to u.

It is shown in [14] that synchronized tree substitution grammars [15] are as
powerful (upto relabeling) as bimorphisms (see survey [16]) of type (LC,LC) [14].
We first show that nondeleting and linear extended tdtts are as powerful as bi-
morphisms of type (LC,LC), which thus shows that nondeleting and linear ex-
tended tdtts are as powerful as synchronized tree substitution grammars (modulo
relabeling). It is already remarked in [10] that the two previously mentioned de-
vices are similar. The problem of the closure under composition of the class of
transformations computed by synchronized tree substitution grammars is open
since their introduction in the 90s [15]. The bimorphism characterization [14]
was proposed as a first step towards composition results, however no one seems
to have followed this lead.

In this paper we approach the issue by a bottom-up device: multi bottom-up
tree transducers [17] (for short: mbutts). We show that restricted nondeleting and
linear extended tdtts can be simulated by nondeleting and linear mbutts. Then
we show that the class of transformations computed by linear mbutts is closed
under composition. This is surprising because nondeleting and linear mbutts
can reproduce certain forms of (top-down and bottom-up) copying. Finally, we
discuss how to implement mbutts in a top-down fashion, alas not as extended
tdtts as this would be impossible in general because the class of transformations
computed by nondeleting and linear extended tdtts is not closed under compo-
sition [13]. Thus we do not solve the problem as originally posed but present
a suitable superclass of transformations which enjoys the much required clo-
sure under composition. Furthermore, we illustrate the power of compositions of
extended tdtts and support the validation of composition algorithms (e.g., the
implementation of compositions in Tiburon [18]).
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Fig. 1. Illustration of extended top-down tree transducer rules.
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2 Preliminaries

We use IN to denote the set of natural numbers including 0, and we use IN+ to
denote IN \ {0}. We fix a set X = {x1, x2, . . . } of variables, and for every k ∈ IN
we let Xk = {xi | 1 6 i 6 k}. Since we need the restriction 1 6 i 6 k often, we
abbreviate {i | 1 6 i 6 k} by [k]. Alphabets and ranked alphabets are defined as
usual. We use Σ(k) to denote the set of k-ary symbols of a ranked alphabet Σ
and write rkΣ for the rank function associated to Σ. The set of Σ-trees indexed
by V is denoted by TΣ(V ).

The set of variables occurring in a tree t ∈ TΣ(V ) is denoted by var(t).
We call t nondeleting (respectively, linear) in V if every v ∈ V occurs at least
(respectively, at most) once in t. The sets pos(t) and Sub(t) denote the set of
positions of t and the set of subtrees of t, respectively, and are defined as usual.
For every w ∈ pos(t) we write t(w) for the symbol that occurs at position w in t.
By t|w we denote the subtree of t that is rooted at w, and by t[t′]w we denote
the tree obtained from t by replacing the subtree rooted at w by t′.

For sets P and T , we write P (T ) to denote {p(t) | p ∈ P, t ∈ T}. Moreover,
given a ranked alphabet ∆, we write ∆[T ] for the set

{δ(t1, . . . , tk) | δ ∈ ∆(k), t1, . . . , tk ∈ T} .

Finally, we write ; for function composition provided that the types are com-
patible; i.e., given f : A → B and g : B → C the expression f ; g denotes the
function from A to C such that (f ; g)(a) = g(f(a)) for every a ∈ A. A de-
tailed introduction into tree language theory can be found, e.g., in [3]. There
one will also find the definitions of Σ-algebra homomorphisms and recognizable
tree languages.

3 Extended Top-down Tree Transducer and Bimorphism

In this section, we recall the notion of an extended top-down tree transducer [10].
Essentially extended top-down tree transducers have rules in which the left-hand
side may contain arbitrary, not just shallow, patterns.

Definition 1 (cf. Section 4 in [10]). An extended top-down tree transducer
is a tuple M = (Q,Σ,∆, I,R) such that

– Q is a finite set of states;
– Σ and ∆ are input and output ranked alphabet;
– I ⊆ Q is a set of initial states; and
– R ⊆ Q(TΣ(X))×T∆(Q(X)) is a finite set of rules such that l is linear in X

and var(r) ⊆ var(l) for every (l, r) ∈ R.

We say that M is nondeleting (respectively, linear), if var(l) = var(r) (respec-
tively, r is linear in X) for every (l, r) ∈ R. Moreover, we say that M is a
top-down tree transducer, if for every (l, r) ∈ R there exist k ∈ IN, q ∈ Q, and
σ ∈ Σk such that l = q(σ(x1, . . . , xk)).
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Without loss of generality we commonly assume that for every rule (l, r) ∈ R
there exists n ∈ IN such that var(l) = Xn. Moreover, we commonly write (l→ r)
instead of (l, r) when handling rules. Finally, a top-down tree transducer is de-
terministic, if for every left-hand side l there exists at most one right-hand side r
such that l→ r.

In the sequel, we abbreviate top-down tree transducer to tdtt. The semantics
of those devices is given by a straightforward rewrite semantics. We identify
an instance of the left-hand side in a sentential form and replace this instance
by a corresponding (according to the rules of the tree transducer) instantiated
right-hand side.

Definition 2 (cf. Section 4 in [10]). Let M = (Q,Σ,∆, I,R) be an extended
tdtt. The relation ⇒M ⊆ T∆(Q(TΣ))2 is defined by ξ ⇒M ξ′ iff

– there exists a position w ∈ pos(ξ);
– there exists a rule (l→ r) ∈ R; and
– there exists a substitution θ : X → TΣ

such that lθ = ξ|w and ξ′ = ξ[rθ]w. The tree transformation computed by M ,
denoted by ‖M‖ ⊆ TΣ × T∆, is defined by

‖M‖ = {(t, u) ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u} .

Our first result will relate nondeleting and linear extended tdtt and partic-
ular bimorphisms. To this end, let us recall the bimorphism approach to tree
transformations. A homomorphism h : TΣ → T∆ is called nondeleting (respec-
tively, linear), if h(σ) is nondeleting (respectively, linear) in Xk for every k ∈ IN
and σ ∈ Σ(k). A bimorphism just consists of a recognizable tree language and
two homomorphisms.

Definition 3. Let Σ, Γ , and ∆ be ranked alphabets. A bimorphism is a triple
B = (ϕ,L, ψ) such that

– ϕ : TΓ → TΣ is a homomorphism (the input homomorphism);
– L ⊆ TΓ is a recognizable tree language; and
– ψ : TΓ → T∆ is a homomorphism (the output homomorphism).

The tree transformation induced by B, denoted by ‖B‖, is defined by

‖B‖ = {(ϕ(s), ψ(s)) ∈ TΣ × T∆ | s ∈ L} .

We call a bimorphism (ϕ,L, ψ) nondeleting (respectively, linear), if ϕ and ψ
are nondeleting (respectively, linear). The class of tree transformations com-
putable by nondeleting (note that the term “complete” is used instead of “non-
deleting” in [14]) and linear bimorphisms is denoted by B(LC,LC), and the class
of tree transformations computed by nondeleting and linear extended tdtts is de-
noted by nl–XTOP. The following straightforward lemma shows that the power
of nondeleting and linear extended tdtts and nondeleting and linear bimorphisms
coincides.
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Lemma 4. B(LC,LC) = nl–XTOP.

We already remarked that the class of transformations computed by nondelet-
ing and linear extended tdtts is not closed under composition. This immediately
yields the following corollary.

Corollary 5 (see [13]). B(LC,LC) is not closed under composition.

4 Multi Bottom-up Tree Transducer

In this section, we recall multi bottom-up tree transducers from [17]. We slightly
adapt the model by omitting a special root symbol. In [17] this symbol is required
so that the bottom-up device may deterministically identify the root of the input
tree. However, in natural language processing deterministic tree transducers have
only very limited applications [12], so we will not deal with deterministic devices.

Definition 6 (cf. Section 3 in [17]). A multi bottom-up tree transducer is a
tuple (Q,Σ,∆,F,R) such that

– Q is a ranked alphabet (the states) with Q(0) = ∅;
– Σ and ∆ are ranked alphabets (the input and output symbols);
– F ⊆ Q(1) (the set of final states); and
– R is a finite set (the rules) in which every element is of the form

σ(q1(x1,1, . . . , x1,n1
), . . . , qk(xk,1, . . . , xk,nk

))→ q(t1, . . . , tn)

with k ∈ IN, σ ∈ Σ(k), n, n1, . . . , nk ∈ IN+, q ∈ Q(n), qi ∈ Q(ni) for every
i ∈ [k], and t1, . . . , tn ∈ T∆(Y ) with Y = {xi,j | i ∈ [k], j ∈ [ni]}.

We say that M is nondeleting (respectively, linear), if for every rule (l→ r) ∈ R
every variable that occurs in l occurs at least (respectively, at most) once in r.

We abbreviate σ(q1(x1,1, . . . , x1,n1
), . . . , qk(xk,1, . . . , xk,nk

)) to σ(q1, . . . , qk).
Moreover, we abbreviate multi bottom-up tree transducer to mbutt. The se-
mantics of mbutts is given by a rewrite semantics (the set V of variables is only
needed for the composition construction).

Definition 7. Let M = (Q,Σ,∆, F,R) be a mbutt and V a set. The relation
⇒M ⊆ TΣ(Q[T∆(V )])2 is defined for every ξ, ξ′ ∈ TΣ(Q[T∆(V )]) by ξ ⇒M ξ′ iff

– there exists a position w ∈ pos(ξ);
– there exists a rule (l→ r) ∈ R; and
– there exists a substitution θ : X → T∆(V )

such that ξ|w = lθ and ξ′ = ξ[rθ]w. The tree transformation computed by M ,
denoted by ‖M‖ ⊆ TΣ × T∆, is defined by

‖M‖ = {(t, u) ∈ TΣ × T∆ | ∃q ∈ F : t⇒∗M q(u)}.
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It might be somewhat surprising that we start our investigation of mbutts
with a composition result (similar to the composition result for deterministic
mbutts in [19]). We will later relate mbutts to extended tdtts and bimorphisms
using the composition result established next. First let us define the composition
of two mbutts. The general idea is the classic one: take the cross-product of the
sets of states and simulate the second transducer on the right-hand sides of the
first transducer. However, a k-ary state of the first transducer has k prepared
(partial) output trees. Thus we also need to process those k trees with the second
transducer, which gives states of the form (q, p1 · · · pk). This idea was already
used in the composition construction for deterministic mbutts in [19].

Definition 8 (cf. [19]). Let M1 be the mbutt (Q1, Σ, Γ, F1, R1) and M2 be the
mbutt (Q2, Γ,∆, F2, R2). The composition of M1 and M2, denoted by M1 ;M2,
is the mbutt M1 ;M2 = (Q,Σ,∆, F1 × F2, R) where

– Q(k) = {(q, q1 · · · qn) ∈ Q1 ×Qn2 | n = rkQ1(q), k =
∑n
i=1 rkQ2(qi)} for every

k ∈ IN;
– R is given as follows.

Let k ∈ IN, σ ∈ Σ(k), n, n1, . . . , nk ∈ IN+, q ∈ Q(n)
1 , and qi ∈ Q(ni)

1 for every

i ∈ [k]. Moreover, let wi ∈ Qni
2 for every i ∈ [k] and k1, . . . , kn ∈ IN+, q′j ∈ Q

(kj)
2

for every j ∈ [n], and t′j,j′ ∈ T∆(X) for every j ∈ [n] and j′ ∈ [kj ]. The set R
contains the rule

σ((q1, w1), . . . , (qk, wk))→ (q, q′1 · · · q′n)(t′1,1, . . . , t
′
1,k1 , . . . , t

′
n,1, . . . , t

′
n,kn)

if and only if

– there exists a rule (σ(q1, . . . , qk)→ q(t1, . . . , tn)) ∈ R1;
– for every j ∈ [k] let wj = pj,1 · · · pj,nj

for some mj,1, . . . ,mj,nj
∈ IN+ and

pj,j′ ∈ Q
(mj,j′ )

2 for every j′ ∈ [nj ]; and
– for every i ∈ [n]

ti[pj,j′(x〈jj′〉)]j∈[k],j′∈[nj ] ⇒∗M2
q′i(t
′
i,1, . . . , t

′
i,ki)

where x〈jj′〉 = (xj,mj,1+···+mj,j′−1+1, . . . , xj,mj,1+···+mj,j′ ).

For the next lemma we need a new concept. Let M = (Q,Σ,∆, F,R) be a
mbutt. We call M total, if for every k ∈ IN, σ ∈ Σ(k), and states q1, . . . , qk ∈ Q
there exists r such that (σ(q1, . . . , qk)→ r) ∈ R. The classic construction shows
that for every mbutt a (semantically) equivalent total mbutt can be constructed.
The following lemma states the central property which is required to show the
correctness of the construction of Definition 8 for restricted input mbutts. The
restrictions are that the first transducer is linear and the second total.

Lemma 9. Let M1 = (Q1, Σ, Γ, F1, R1) and M2 = (Q2, Γ,∆, F2, R2) be mbutts
such that M1 is linear and M2 is total, and let M = M1 ;M2. Let t ∈ TΣ,
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n ∈ IN+, q ∈ Q(n)
1 , m1, . . . ,mn ∈ IN+, and qi ∈ Q(mi)

2 and ui ∈ Tmi

∆ for every
i ∈ [n].

t⇒∗M (q, q)(u1, . . . ,un)

⇐⇒ ∃v ∈ TnΓ ,∀i ∈ [n] :
(
t⇒∗M1

q(v) ∧ vi ⇒∗M2
qi(ui)

)
Theorem 10. Let M1 and M2 be mbutts such that M1 is linear and M2 is total,
and let M = M1 ;M2. Then ‖M‖ = ‖M1‖ ; ‖M2‖.

The following corollary summarizes the composition results obtained. It is
easy to check that the nondeletion and linearity conditions are preserved in the
construction of Definition 8. By MBOT we denote the class of tree transforma-
tions computable by mbutts. We use the prefixes n and l for nondeletion and
linearity, respectively; i.e., the class nl–MBOT comprises all tree transformations
computable by nondeleting and linear mbutts. We write [n] or [l] for an optional
nondeletion or linearity restriction. In statements such an optional restriction [r]
can be replaced (consistently) by either the empty word ε or r to obtain a valid
statement.

Corollary 11 (of Theorem 10).

[n]l–MBOT ; [n][l]–MBOT = [n][l]–MBOT .

5 Bimorphisms and Multi Bottom-up Tree Transducers

As promised we return to the issue of relating mbutts to bimorphisms. We imme-
diately observe that B(LC,LC) exhibits a strong symmetry because it is closed
under inverses; i.e., with every ρ ∈ B(LC,LC) also ρ−1 ∈ B(LC,LC). Let B
be a bimorphism computing a tree transformation ‖B‖ ⊆ TΣ × T∆. It is eas-
ily verifiable that, in general, it is possible that there exists a tree t such that
‖B‖∩ ({t}×T∆) is infinite. However, for an mbutt M the set ‖M‖∩ ({t}×T∆)
is always finite. This observation remains valid if we restrict ourselves to non-
deleting and linear bimorphisms and mbutts.

Let ϕ : TΓ → TΣ be a homomorphism. We call ϕ nonerasing, if ϕ(γ) /∈ X
for every γ ∈ Γ . Correspondingly, we call an extended tdtt M = (Q,Σ,∆, I,R)
input-consuming, if l /∈ Q(X) for every (l → r) ∈ R. We use the stem XTOPic

(with the usual prefixes) for classes of transformations computable by input-
consuming extended tdtt. Moreover, we use B(LCne,LC) for the class of trans-
formations computable by nondeleting and linear bimorphisms whose input ho-
momorphism is nonerasing.

Corollary 12 (of Lemma 4). B(LCne,LC) = nl–XTOPic.

Now we are ready to show that nondeleting and linear bimorphisms whose
input homomorphism is nonerasing can be implemented by nondeleting and
linear mbutts. For this we present the bimorphism as a composition of three
tree transformations and show that each can be simulated by a mbutt. The
composition result in Corollary 11 then yields the desired result.
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Lemma 13. Let Σ and ∆ be ranked alphabets and h : TΣ → T∆ be a nondeleting
and linear homomorphism.

(i) h ∈ nl–MBOT; and
(ii) if h is nonerasing, then h−1 ∈ nl–MBOT.

Proof. The tree transformation h can trivially be realized by a nondeleting and
linear tdtt and thus also by a nondeleting and linear mbutt.

The inverse homomorphism is more difficult. We construct a nondeleting and
linear mbutt M = (Q′, ∆,Σ, F,R) as follows:

– Q(k) = {(σ,w) | σ ∈ Σ,w ∈ pos(h(σ)), k = |var(h(σ)|w)|} for every k ∈ IN;
– Q′ = Q ∪ {?(1)};
– F = {?}; and
– the set R of rules is given as follows.

Let k ∈ IN and δ ∈ ∆(k). Moreover, let n1, . . . , nk ∈ IN+ and q1, . . . , qk ∈ Q
be such that qi ∈ Q(i) for every i ∈ [k]. Finally, let u ∈ TΣ(Q(X)), and let
xi = (xi,1, . . . , xi,ni

) for every i ∈ [k]. We have that(
δ(q1(x1), . . . , qk(xk))→ u

)
∈ R

if and only if there exists n ∈ IN, σ ∈ Σ(n), and w ∈ pos(h(σ)) such that

(i) h(σ)(w) = δ;
(ii) for every i ∈ [k]

qi =

{
(σ,wi) if h(σ)(wi) /∈ X
? otherwise

(iii) and

u =

{
(σ,w)(x1, . . . ,xk) if w 6= ε

?(σ(y)) otherwise

where y contains the variables of x1, . . . ,xk sorted in the order induced
by h(σ); i.e., the xi,j that corresponds to x1 in h(σ) comes first, then the
variable corresponding to x2 in h(σ), etc.

Note that by conditions (ii) and (iii) and the nondeletion and linearity of h we
have n1 + · · · + nk = n. It is easily checked that M is indeed nondeleting and
linear. It is intuitively clear that ‖M‖ = h−1. ut

From this lemma we can easily conclude that every input-consuming non-
deleting and linear extended tdtt can be simulated by a nondeleting and linear
mbutt.

Theorem 14. nl–XTOPic ⊆ nl–MBOT.
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Proof. By Corollary 12 we have B(LCne,LC) = nl–XTOPic. This yields that for
every input-consuming nondeleting and linear extended tdtt M = (Q,Σ,∆, I,R)
there exists a nondeleting and linear bimorphism B = (ϕ,L, ψ) with ϕ noneras-
ing such that ‖B‖ = ‖M‖.

‖B‖ = {(ϕ(t), ψ(t)) | t ∈ L}
= {(t, u) | ∃s ∈ TΓ : (t, s) ∈ ϕ−1, (s, s) ∈ idL, (s, u) ∈ ψ}
= ϕ−1 ; idL ;ψ

By Lemma 13 and Corollary 11 this shows that ‖M‖ ∈ nl–MBOT because idL
can be implemented by a nondeleting and linear mbutt. ut

It follows from [13] that nl–XTOPic is not closed under composition. Thus
we immediately obtain that nl–XTOPic ⊂ nl–MBOT because nl–MBOT is
closed under composition (see Corollary 11). Thus we identified a suitable super-
class which possesses the much required closure under composition. Nondeleting
mbutts are usually quite efficient because they visit each node of the input tree
at most once and each constructed output tree is used in the final output tree.
However, they are also more difficult to implement than, e.g., tdtts. Let us in-
vestigate the input-consuming restriction for extended tdtts. It might seem like
a harsh restriction to disallow rules of the form q(x) → u. Such rules are quite
useful in practice and used, e.g., for spontaneous insertion in machine translation
systems.

Lemma 15. Let M = (Q,Σ,∆, I,R) be a nondeleting and linear extended tdtt
such that ‖M‖∩({t}×T∆) is finite for every t ∈ TΣ. Then there exists an input-
consuming nondeleting and linear extended tdtt M ′ such that ‖M ′‖ = ‖M‖.

We showed that only if the spontaneous insertations are unbounded then we
potentially cannot model it by a input-consuming extended tdtt.

Finally, let us consider how mbutts relate to extended tdtts. An important
result in this respect can be found in [17]. It is shown there that every linear
deterministic mbutt can be simulated by a deterministic tdtt with regular look-
ahead [20]. Here we present a slightly different construction which however yields
the mentioned result of [17] as a corollary. Our construction is a faithful gener-
alization of the decomposition of bottom-up tree transducers of [9]. We denote
by QREL and d–TOP the classes of tree transformations computable by stateful
relabelings (i.e., tdtts with rules q(σ(x1, . . . , xk))→ δ(q1(x1), . . . , qk(xk)) where
σ and δ are k-ary) and deterministic tdtts, respectively.

Theorem 16 (cf. Lemma 4.1 of [17]). nl–MBOT ⊆ QREL ; d–TOP

Proof. The stateful relabeling annotates the input tree with the transitions ap-
plied by a run of the mbutt. It thus takes care of the nondeterminism. The
deterministic tdtt then executes the annotated transitions using a state for each
parameter position. ut
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It can thus be shown that compositions of input-consuming, nondeleting and
linear tdtts can be simulated by a composition of a stateful relabeling and a
deterministic tdtt. This is our main theorem for compositions of extended tdtts.

Theorem 17. For every n ∈ IN+

nl-XTOPnic ⊆ nl–MBOT ⊆ QREL ; d–TOP .

Proof. We have the inclusions

nl-XTOPnic ⊆ nl–MBOTn ⊆ nl–MBOT ⊆ QREL ; d–TOP

by Theorem 14, Corollary 11, and Theorem 16, respectively. ut

6 Conclusions and Open Problems

We have identified a class, namely nl–MBOT, that is closed under compositions
and contains all transformations that can be computed by input-consuming,
nondeleting and linear extended tdtt. We further showed that compositions of
input-consuming, nondeleting and linear extended tdtt can be implemented by
a single composition of a stateful relabeling and a deterministic tdtt.

It remains an open problem to decide whether the composition of the trans-
formations computed by two extended tdtts can be computed by just a single
extended tdtt. In the relevant subcase where the two extended tdtts are input-
consuming one can investigate how to implement (restricted) mbutts using just
one extended tdtt.

Acknowledgement. The author is grateful to the anonymous referees for their
insightful remarks on the draft version of the paper.

References

1. Doner, J.: Tree acceptors and some of their applications. J. Comput. System Sci.
4(4) (1970) 406–451

2. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci.
4(4) (1970) 339–367

3. Gécseg, F., Steinby, M.: Tree languages. In Rozenberg, G., Salomaa, A., eds.:
Handbook of Formal Languages. Volume 3. Springer (1997) 1–68
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