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Abstract

Linear extended multi bottom-up tree transducers are presented in the framework of synchronous grammars,
in which the input and the output tree develop in parallel by rewriting linked nonterminals (or states). These
links are typically transient and disappear once the linked nonterminals are rewritten. They are promoted
to primary objects here, preserved in the semantics, and carefully studied. It is demonstrated that the
links computed during the derivation of an input and output tree pair are hierarchically organized and that
the distance between (input and output) link targets is bounded. Based on these properties, two linking
theorems are developed that postulate the existence of certain natural links in each derivation for a given
input and output tree pair. These linking theorems allow easy, high-level proofs that certain tree translations
cannot be implemented by (compositions of) linear extended multi bottom-up tree transducers.

1. Introduction

The notion of a multi bottom-up tree transducer was originally introduced and studied in [4, 26], albeit under
different names. The deterministic variant was rediscovered in [13, 14], where the name “multi bottom-up
tree transducer” was coined. Quite recently, it was established [11, 28] that the (weighted) linear extended
variant has very nice algorithmic properties. It was thus further developed into a formal model for tree-to-
tree translation [29, 31], which is a sub-discipline in syntax-based statistical machine translation [23]. An
open-source implementation of a statistical machine translation system based on shallow linear extended
multi bottom-up tree transducers [6] inside the Moses framework [24] is available and has been evaluated
on an English-to-German translation task.

Here we consider linear extended multi bottom-up tree transducers (for short: mbot) and present them
in the form of synchronous grammars [7]. In such grammars, the nonterminals (or states) occurring in
sentential forms are linked, and the linked nonterminals are replaced at the same time. Consequently,
productions (or rules) of synchronous grammars often have at least two components: the input side and
the output side. An mbot rule might have even more than two components because it contains a vector
of output trees. More formally, an mbot is a finite-state tree transducer, in which the rules are of the
form 〈`, q, ~r 〉, where the left-hand side ` is a tree that is linear in the states (i.e., each state can occur at
most once), q is a state, and the right-hand side ~r is a vector of trees, in which states can also occur. It is
required that all states that occur in ~r also appear in `. In contrast to other presentations [11] we do not use
ranked alphabets — neither for the input and output symbols nor for the states. It is easy to see that our
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vice (DAAD) and Hungarian Scholarship Board Office (MÖB) exchange project “Theory and Applications of Automata”
(grant 5567).

Preprint submitted to Journal of Computer and System Sciences March 16, 2015



(rank-free) formalization (syntactically) includes all ranked versions including those that permit different
ranked alphabets for the input and output symbols. Our model thus becomes slightly more powerful than
traditional mbot since it allows the same symbol to occur with different ranks in the input or output trees.

The semantics of our mbot is defined by means of synchronous rewriting or, more generally, with the
help of a derivation relation over sentential forms. In the synchronous rewriting approach, several parts
of the sentential form develop (via the rules) at the same time. Typically, the left-hand side of the rule
contributes to the input tree of the sentential form and the right-hand side contributes at the same time to
the output tree of the sentential form. For mbot, the right-hand side consists of a vector of trees, so it can
act simultaneously at several positions in the output tree. The input and output positions that are supposed
to develop in parallel are recorded by links (v, w), which (in our case) relate a position v in the input tree
to a position w in the output tree. Consequently, a form of an mbot is a tuple 〈ξ, A, I, ζ〉 consisting of a
(partial) input tree ξ, two sets A, I ⊆ pos(ξ)× pos(ζ) of links, and a (partial) output tree ζ. The elements
of A and I are called active and inactive links, respectively. The active links fulfill the already mentioned
purpose of recording which parts are supposed to develop in parallel, whereas inactive links simply record
all links that have been active at some point during the derivation. In this way, we preserve all links and
can later argue about their structure, which will allow us to prove properties about mbot.

On these forms we now define our derivation steps. A form 〈ξ, A, I, ζ〉 derives a form 〈ξ′, A′, I ′, ζ ′〉,
written 〈ξ, A, I, ζ〉 ⇒ 〈ξ′, A′, I ′, ζ ′〉, if we can select a rule 〈`, q, ~r 〉 and an occurrence v ∈ pos(ξ) of q in the
input tree ξ such that ~r has as many components as there are output positions A(v) = {w | (v, w) ∈ A}
that are actively linked to v and
• ξ′ is obtained from ξ by replacing the occurrence v of q by the tree `,
• A′ is obtained from A by removing the used links {(v, w) | w ∈ A(v)} and adding the links induced by

the rule 〈`, q, ~r 〉,
• I ′ is obtained from I by simply adding the used links {(v, w) | w ∈ A(v)}, and
• ζ ′ is obtained from ζ by replacing the linked subtrees A(v) in ζ by ~r (in lexicographic order).

As usual, we apply derivation steps until no active links and no occurrences of states remain. The initial
sentential form consists simply of two actively linked initial states (and no disabled links). Since we are
interested in the links encountered during the derivation, the set of computed dependencies consists of all
〈t, I, u〉 such that 〈q0, {(ε, ε)}, ∅, q0〉 ⇒∗ 〈t, ∅, I, u〉, where q0 is an initial state and t and u are trees, in which
no state occurs.

Making additional information from the derivation process (like the links) visible in the computed output
has been explored already. In particular, the origin [34, 35], which associates to output positions the input
position from which this output fragment was created, has been intensively studied. For example, in [12]
origin information is used to characterize those macro tree transducers that are MSO definable, and in [25]
it is used to get a Myhill-Nerode characterization of deterministic top-down tree transducers. Information
on the type of transition used (in a push-down automaton) yields the visibly push-down languages [2], and
in the recent work [5] origin information is built into the semantics of a string transducer. However, for
us the links are purely a tool, so the computed tree relation is obtained from the computed dependencies
simply by projecting onto the input and output trees (i.e., removing the links) as usual. This computed tree
relation coincides with the tree relation computed by means of other semantics [4, 11, 13].

Our goal is to provide generic linking theorems (see Theorems 5 and 6), which given a tree relation with
particular properties (essentially it must contain a specific tree relation) predict certain natural links that
must be present in a dependency containing a specific tree pair. Roughly speaking, the linking theorems will
establish that whenever we preserve an input subtree in the output (i.e., we copy this part of the input tree
verbatim to the output), then these occurrences must be linked. This conventional and intuitive wisdom had
to be essentially reproved for each particular tree relation under investigation because the typical arguments
used (e.g., the fooling technique) require negative information (i.e., information about tree pairs that are
not in the desired tree relation), which often means that the proof cannot be reused in similar scenarios.
Our linking theorems only use positive information (i.e., only the knowledge that certain tree pairs are in
the tree relation), so they readily transfer to similar scenarios. We can then use these established links
and general properties of dependencies computed by mbot to show very easily that certain (classic) tree
relations cannot be computed by (compositions of) certain subclasses of mbot.
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Before we start with the investigation of the properties of dependencies computed by mbot, we show an
example of a proof utilizing the classic fooling technique. This example proof from [33] shall demonstrate
how the traditional proof technique works, so that it can be compared to our later solution using the
linking theorems. However, for the linking theorems to be useful, we first need to establish some basic
properties that we can use to reason with links. It turns out that the links in each dependency are organized
hierarchically [25, 30]. More precisely, a set L of links is input hierarchical if for all (v1, w1), (v2, w2) ∈ L
the condition v1 ≺ v2 implies that w2 6� w1 and that there exists a (v1, w

′
1) ∈ L such that w′1 � w2, where

� is the prefix order. Moreover, it is strictly input hierarchical if v1 ≺ v2 implies w1 � w2, and v1 = v2

implies w1 � w2 or w2 � w1. Trivially, if L is strictly input hierarchical, then it is also input hierarchical.
Finally, L is (strictly) output hierarchical if L−1 is (strictly) input hierarchical. We prove that the links in
the dependencies computed by an mbot are always input hierarchical and strictly output hierarchical (see
Theorem 2). If the vector ~r has at most one component for every rule 〈`, q, ~r 〉 of an mbot M , then M is
actually a (linear) extended top-down tree transducer with regular look-ahead [33] (for short: xtopR). The
links in the dependencies computed by an xtopR are even strictly input hierarchical (see Corollary 1). In
addition, the shape of the mbot rules and the derivation process guarantee that there cannot be large “gaps”
between two “adjacent” link positions (i.e., positions that are the source or target of a link). This property
is again true for both the input as well as the output side of each dependency computed by an mbot. More
precisely, for every mbot, there is an integer b that limits the distance between input link positions. For
the output side, even the stronger statement requiring a link position every b positions is true along each
path (see Theorem 3). If the vector ~r has exactly one component for every rule 〈`, q, ~r 〉 of an mbot M , then
M is actually a (linear) nondeleting extended top-down tree transducer [33] (for short: n-xtop), for which
the stricter distance property is also true for the input side (see Corollary 2).

Next, we prove our two linking theorems for ε-free mbot, which are mbot in which no rule has a left-
hand side that is just a state. The first linking theorem (see Theorem 5) concerns arbitrary compositions
of ε-free xtopR, whereas the second linking theorem concerns a single ε-free mbot (see Theorem 6). In
both cases, we assume that the computed tree relation contains a sub-relation that is obtained by plugging
trees from a simple, yet infinite tree language into an input-output context pair. Finally, we demonstrate
how to apply these linking theorems in Section 7. In particular, we show in Theorem 7 and in a reproof of
Theorem 1 that the counterexample tree relations of [4] and [33] cannot be computed by any ε-free xtopR.
Additionally, the linking theorems have been used in [16, 32] and the main theorems of [32] are proved in
detail here. More precisely, Theorem 8 shows that the inverse of abstract topicalization [1, 8, 20] cannot be
computed by any ε-free mbot, and in addition, Theorem 9 shows that abstract topicalization itself cannot
be computed by any composition of ε-free xtopR.

2. Preliminaries

The sets of all nonnegative integers and all positive integers are N and N+, respectively (i.e., N+ = N \ {0}).
We let [k] = {i ∈ N+ | i ≤ k} for all k ∈ N, which yields [0] = ∅. A relation ρ from a set S to a set T
is a subset ρ ⊆ S × T . Given a relation ρ ⊆ S × T and S′ ⊆ S, the inverse ρ−1 ⊆ T × S is the relation
ρ−1 = {(t, s) | (s, t) ∈ ρ}, and the image ρ(S′) ⊆ T of S′ via ρ is ρ(S′) = {t | ∃s ∈ S′ : (s, t) ∈ ρ}. For every
s ∈ S, we let ρ(s) = ρ({s}). The composition ρ ; τ of ρ with the relation τ ⊆ T × U is

ρ ; τ = {(s, u) ∈ S × U | ρ(s) ∩ τ−1(u) 6= ∅} .

The set of all finite words (or sequences) over S is S∗, where ε ∈ S∗ is the empty word. The concatenation
of the words v, w ∈ S∗ is v.w or simply vw. The length of a word w ∈ S∗ is denoted by |w|. Given a word
(or sequence) w ∈ Σ∗ of length k = |w| and i ∈ [k], we write wi for the i-th letter (or component) in w.
An alphabet Σ is a nonempty and finite set, of which the elements are called symbols. In the following, let
Σ be an alphabet and S be a set with Σ ∩ S = ∅.

The set TΣ(S) of Σ-trees indexed by S is the smallest set T such that S ⊆ T and σ(t1, . . . , tk) ∈ T
for every k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ T . Since Σ ∩ S = ∅, we can safely write α instead of α()
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for every α ∈ Σ. Moreover, for all t ∈ TΣ(S), γ ∈ Σ, and n ∈ N, we denote γ(γ(· · · γ(t) · · · )) con-
taining n occurrences of γ in the abbreviated list of γ-symbols by γn(t), and we let TΣ = TΣ(∅). The
set pos(t) ⊆ N∗+ of positions of t ∈ TΣ(S) is inductively defined by pos(s) = {ε} for every s ∈ S and
pos(σ(t1, . . . , tk)) = {ε} ∪ {i.v | i ∈ [k], v ∈ pos(ti)} for every k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(S). We
denote the usual linear lexicographic order on N∗+ by ≤, and the usual partial prefix order on N∗+ by �.
Given a finite set P ⊆ N∗+ of positions, we let seq(P ) = (w1, . . . , wk) be the sequence of the positions of P in
lexicographic order; i.e., P = {w1, . . . , wk} and w1 < · · · < wk. The size |t| ∈ N+ and the height ht(t) ∈ N
of t are |t| = |pos(t)| and ht(t) = max {|w| | w ∈ pos(t)}, respectively.

Let t ∈ TΣ(S) and w ∈ pos(t). The label of t at w is t(w) ∈ Σ ∪ S, and the w-rooted subtree of t
is t|w ∈ TΣ(S). Formally, s(ε) = s|ε = s for every s ∈ S, and for every k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(S)

(
σ(t1, . . . , tk)

)
(w) =

{
σ if w = ε

ti(v) if w = i.v with i ∈ [k] and v ∈ pos(ti)

σ(t1, . . . , tk)|w =

{
σ(t1, . . . , tk) if w = ε

ti|v if w = i.v with i ∈ [k] and v ∈ pos(ti) .

For every S′ ⊆ S, we let posS′(t) = {w ∈ pos(t) | t(w) ∈ S′} be those leaf positions whose label is in S′,
and poss(t) = pos{s}(t) for every s ∈ S. If |poss(t)| ≤ 1 for every s ∈ S, then the tree t is linear, and we

denote the set of all linear trees of TΣ(S) by T lin
Σ (S). Moreover, we let idx(t) = {s ∈ S | poss(t) 6= ∅} be the

indices that occur in t. For all u ∈ TΣ(S), the expression t[u]w denotes the tree that is obtained from t by
replacing the subtree t|w at w by u. Formally, s[u]ε = u for all s ∈ S and

σ(t1, . . . , tk)[u]w =

{
u if w = ε

σ(t1, . . . , ti−1, ti[u]v, ti+1, . . . , tk) if w = i.v with i ∈ [k] and v ∈ pos(ti)

for all k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(S). For every nonnegative integer n ∈ N, we extend this
notation to sequences ~u = (u1, . . . , un) of trees u1, . . . , un ∈ TΣ(S) and sequences ~w = (w1, . . . , wn) of
positions w1, . . . , wn ∈ pos(t) such that the positions of ~w are pairwise incomparable with respect to ≺ (i.e.,
wi 6� wj for all i, j ∈ [n] with i 6= j).3 Then t[~u]~w denotes the tree obtained from t by replacing in parallel,
for every i ∈ [n], the subtree t|wi

at wi by ui. Formally, t[~u]~w = (· · · (t[u1]w1
) · · · )[un]wn

.
Finally, let us recall contexts. We reserve the set X = {xi | i ∈ N+} of special symbols, which are called

variables. For every n ∈ N, we let Xn = {xi | i ∈ [n]}. A tree t ∈ T lin
Σ (Xn) is an n-context over Σ if

idx(t) = Xn. Alternatively, we can require that the set posxi
(t) is a singleton for every i ∈ [n]. The set

of all n-contexts over Σ is denoted by CΣ(Xn). Let c ∈ CΣ(Xn). For all i ∈ [n] we identify posxi
(c) with

its (unique) element. Given u1, . . . , un ∈ TΣ, we write c[u1, . . . , un] for c[~u]~w, where ~u = (u1, . . . , un) and
~w = (posx1

(c), . . . ,posxn
(c)). A more detailed introduction to trees and automaton models working on trees

can be found in [17, 18].

3. The transformational model

We select a variant of the (linear extended) multi bottom-up tree transducer (for short: mbot), which was
introduced and investigated in [4, 11, 13, 14, 26, 28, 29]. Roughly speaking, our version of mbot, which is
slightly more expressive than the traditional linear extended mbot4, is a synchronous grammar formalism,
in which the output side might be discontinuous. As in all synchronous grammars [7] the input and the
output trees develop (via the rules) at the same time, so each rule specifies part of the input and part of the

3This incomparability is needed to ensure that the parallel substitutions do not affect each other.
4The additional expressive power comes from the possibility to use the same symbol with different ranks. For example, our

model can use a symbol in the output tree as a binary, unary, and even nullary symbol, whereas traditional models only allow
one rank for each symbol.
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Figure 1: Rules of the mbot Mex in Example 1.

output tree. Since mbot offer discontinuity on the output side, we can in fact specify several parts of the
output tree in each rule. Note that we decided to use only one alphabet for both the input and the output
symbols. Any rule of a traditional linear extended mbot using input symbols from Σ and output symbols
from ∆ is a valid rule for our mbot using the set Σ ∪∆ of symbols.5

Definition 1 (cf. [29]) A multi bottom-up tree transducer (for short: mbot) is a tuple M = (Q,Σ, Q0, R),
where
• Q is the alphabet of states and Q0 ⊆ Q contains the initial states,
• Σ is the alphabet of input and output symbols such that Σ ∩Q = ∅, and
• R ⊆ T lin

Σ (Q)×Q× TΣ(Q)∗ is the nonempty, finite set of rules such that
⋃n

i=1 idx(ri) ⊆ idx(`) for all
〈`, q, (r1, . . . , rn)〉 ∈ R.

If additionally |~r | ≤ 1 for all 〈`, q, ~r 〉 ∈ R, then M is a (linear) extended top-down tree transducer with regular
look-ahead [3, 9, 10, 21, 22, 27, 33] (for short: xtopR), and if additionally |~r | = 1 for all 〈`, q, ~r 〉 ∈ R, then
M is a (linear) nondeleting extended top-down tree transducer (for short: n-xtop). Finally, the mbot M is
ε-free if ` /∈ Q for all 〈`, q, ~r 〉 ∈ R. 2

For the remaining discussion, let M = (Q,Σ, Q0, R) be an mbot. As usual, we call ` and ~r of a

rule 〈`, q, ~r 〉 ∈ R the left- and right-hand side of the rule, respectively. We also write `
q

— ~r instead of
〈`, q, ~r 〉.

Example 1 Let us consider the mbot Mex = ({q},Σ, {q}, R) with Σ = {σ, γ1, γ2, α} and

R =
{
σ(α, q, α)

q
— σ(q, α, q), γ1(q)

q
— γ1(q) . γ1(q), γ2(q)

q
— γ2(q) . γ2(q), α

q
— α . α

}
.

In Figure 1 we display those rules, where the gray splines show that each state occurring in the right-hand
side also occurs in the left-hand side. It can easily be verified that Mex is an ε-free mbot, but neither an
xtopR nor a n-xtop. 2

Next, we prepare the definition of the semantics of an mbot. In this definition and in the rest of the
paper, the concept of a link plays a central role. A link is just an element (v, w) ∈ N∗+×N∗+. However, we will
mostly be interested in links for which v and w are positions in an input and an output tree, respectively.
We let

F(Q,Σ) = {〈ξ, A, I, ζ〉 | ξ, ζ ∈ TΣ(Q), A, I ⊆ pos(ξ)× pos(ζ)}
be the forms over Q and Σ. Such a form 〈ξ, A, I, ζ〉 ∈ F(Q,Σ) consists of a partial input tree ξ, a partial
output tree ζ, and two sets A and I of links. Elements in A and I are called active and inactive links,

respectively. These links essentially stem from the rules. Let `
q

— ~r ∈ R be a rule. Roughly speaking, each
occurrence w′ of a state p ∈ Q in the trees of the right-hand side ~r is linked to the (unique) occurrence v′ of p
in the left-hand side `. In this fashion a link (v′, w′) is formed. The gray splines in Figure 1 indicate exactly
those links. For technical convenience, we prefix the positions by other positions in the next definition.

Definition 2 Let ρ = `
q

— ~r ∈ R be a rule, n = |~r | be the number of fragments in the right-hand side, and
let v, w1, . . . , wn ∈ N∗+. The set linksv,~w(ρ) ⊆ N∗+ × N∗+ of links induced by ρ, v, and ~w = (w1, . . . , wn) is

linksv,~w(ρ) =
⋃

q′∈Q

(
n⋃

i=1

{(v.v′, wi.w
′) | v′ ∈ posq′(`), w

′ ∈ posq′(ri)}

)
. �

5Since we do not restrict ourselves to ranked alphabets [17, 18], this union can always be taken.
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For example, {(1.2.2, 2.1), (1.2.2, 2.3)} are the links induced by the left-most rule ρ of Figure 1 , v = 1.2,
and ~w = (2). We graphically represent links as splines.

The semantics of mbot is presented using synchronous substitution. Since each rule has one partial
tree in the left-hand side and potentially several partial trees in the right-hand side, each rule acts on one
position of the input tree and potentially several positions in the output tree of a form. More precisely, the

application of a rule `
q

— ~r replaces, at the same time, one occurrence v of the state q in ξ and potentially
several occurrences of q in ζ of a form 〈ξ, A, I, ζ〉. In fact, all actively linked occurrences (i.e., all positions
that are linked to v in A) are replaced in the output tree ζ.

Definition 3 Let 〈ξ, A, I, ζ〉, 〈ξ′, A′, I ′, ζ ′〉 ∈ F(Q,Σ) be forms. We write 〈ξ, A, I, ζ〉 ⇒M 〈ξ′, A′, I ′, ζ ′〉 if

there exist a rule `
q

— ~r ∈ R and an occurrence v ∈ posq(ξ) of q in ξ such that
• |~r | = |A(v)|,
• ξ′ = ξ[`]v and ζ ′ = ζ[~r ]~w with ~w = seq(A(v)), and

• I ′ = I ∪ U and A′ = (A \ U) ∪ linksv,~w(`
q

— ~r ) with U = {(v, w) | w ∈ A(v)}.
As usual ⇒∗M is the reflexive and transitive closure of ⇒M . The set SF(M) ⊆ F(Q,Σ) of sentential forms
computed by M is

SF(M) =
⋃

q0∈Q0

{〈ξ, A, I, ζ〉 | 〈q0, {(ε, ε)}, ∅, q0〉 ⇒∗M 〈ξ, A, I, ζ〉} .

Additionally, the mbot M computes the set D(M) of dependencies given by

D(M) = {〈t, I, u〉 | 〈t, ∅, I, u〉 ∈ SF(M) and t, u ∈ TΣ}

and the (tree) relation M ⊆ TΣ × TΣ given by M = {〈t, u〉 | ∃I such that 〈t, I, u〉 ∈ D(M)}. 2

Roughly speaking, in a derivation step we select a rule `
q

— ~r ∈ R and an occurrence v of the state q
in the partial input tree ξ. Next, we select all positions A(v) of the partial output tree ζ that are actively
linked to v. We test whether |A(v)| = |~r |; i.e., whether v has as many active link partners as there are trees
in the right-hand side ~r. If this test is not successful, then the rule cannot be applied at v. Otherwise, we
replace the occurrence v of q in ξ by the left-hand side `, and similarly, we replace all subtrees at A(v) in
lexicographic order seq(A(v)) in ζ by the trees in the right-hand side ~r (in the order that they are listed in
the rule). In addition, the set U = {(v, w) | w ∈ A(v)}, which collects the links used in the derivation step,
is subtracted from the active links A and added to the inactive links I. Finally, the links induced by the
rule and the positions at which it is applied are added to the active links.

In the literature [7, 19] the used links U are often simply removed during a derivation step, but we want
to investigate and reason about those links as in [30], so we preserve them in the set I of inactive links.
More precisely, we even output them as part of the computed dependencies, which are essentially sentential
forms of state-free input and output trees without any active links. At this point, it is also clear that each

rule `
q

— ε is a look-ahead rule because it only produces part of the input tree (or alternatively: it only
checks the input tree). Such look-ahead rules can be used to check whether an input tree belongs to a certain
regular tree language [17, 18].

Example 2 A short derivation using the mbot Mex of Example 1 is shown in Figure 2. Since the final
sentential form of that derivation contains no states and has no active links, the mbot Mex can compute
the dependency 〈t, I, u〉 ∈ D(Mex) with

I = {(ε, ε), (2, 1), (2, 3), (2.1, 1.1), (2.1, 3.1), (2.1.1, 1.1.1), (2.1.1, 3.1.1)} ,

t = σ(α, γ1(γ2(α)), α), and u = σ(γ1(γ2(α)), α, γ1(γ2(α))). In general, Mex computes the tree relation
{〈σ(α, t, α) , σ(t, α, t)〉 | t ∈ T}, where T is the smallest tree language such that α ∈ T and {γ1(t), γ2(t)} ⊆ T
for all t ∈ T . 2
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Figure 2: Derivation of the mbot Mex of Example 1. The active links are clearly marked, whereas inactive links are light gray.
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Figure 3: Tree relation used in Theorem 1, where s, t, u ∈ T .

4. A traditional proof

Next, we want to illustrate a standard technique, coined fooling technique, for proving that a given tree
relation cannot be computed by a given model. We chose an instance of [33, Theorem 5.2], which demon-
strates that a given tree relation cannot be computed by any xtopR. We additionally restrict ourself to
ε-free xtopR for reasons mentioned later (see Section 6). Finally, we adjust the proof of [33] to our notation.

Theorem 1 (see [33, Theorem 5.2]) The tree relation τ over Σ = {δ, γ, α} given by

τ =
{〈
δ(γn(δ(s, t)), u) , δ(s, δ(t, u))

〉 ∣∣ n ∈ N, s, t, u ∈ T
}

with T = {γk(α) | k ∈ N} ,

which is illustrated in Figure 3, cannot be computed by any ε-free xtopR. 2

Proof For the sake of a contradiction, suppose that the tree relation τ can be computed by some ε-free

xtopR M = (Q,Σ, Q0, R). Let m > |Q| and n > max{max(ht(`),ht(r1)) | ` q
— ~r ∈ R} be a constant

larger than the height of all left- and right-hand sides. We select the contexts c = δ(γn(δ(x1, x2)), x3) and
c′ = δ(x1, δ(x2, x3)). Moreover, we select a tree t ∈ T such that ht(t) > m+ n. Clearly, such a tree t exists
and 〈c[t, t, t], c′[t, t, t]〉 ∈ τ = M . Consequently, there exists a dependency 〈c[t, t, t], I, c′[t, t, t]〉 ∈ D(M) and
hence 〈c[t, t, t], ∅, I, c′[t, t, t]〉 ∈ SF(M). From the latter we conclude that there exists an initial state q0 ∈ Q0

such that 〈q0, {(ε, ε)}, ∅, q0〉 ⇒∗M 〈c[t, t, t], ∅, I, c′[t, t, t]〉. Obviously, at least one derivation step needs to be
applied, so let

〈q0, {(ε, ε)}, ∅, q0〉 ⇒M 〈u,A′, I ′, u′〉 ⇒∗M 〈c[t, t, t], ∅, I, c′[t, t, t]〉

for some 〈u,A′, I ′, u′〉 ∈ SF(M). Let ρ = `
q0
— ~r ∈ R be the rule that is used in the first derivation step. We

now distinguish several cases for ρ.
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• First, suppose that r1 ∈ Q. By Definition 1 we have |posr1(`)| = 1, so let w ∈ posr1(`) be the unique
occurrence of the state r1 in `. Note that w 6= ε because M is ε-free. Hence w = i.w′ for some
i ∈ {1, 2} and w′ ∈ N∗+. We now distinguish two subcases.

– Let i = 1. Then w = 1k for some 1 ≤ k < n because ht(`) < n. Since ht(t) > n > ht(`), another
state q must occur in `|2 (i.e., idx(`|2) 6= ∅). This state q can only develop using look-ahead
rules since it does not occur in r1. We will argue a bit informally here since we want to avoid
introducing more material. Since the tree t is tall enough, the pumping lemma for regular tree
languages (see [17]) permits us to select a tree t′ ∈ T with t 6= t′, which the look-ahead rules can
also create. Then

〈q0, {(ε, ε)}, ∅, q0〉 ⇒M 〈u,A′, I ′, u′〉 ⇒∗M 〈c[t, t, t′], ∅, I, c′[t, t, t]〉 ,

which yields 〈c[t, t, t′], c′[t, t, t]〉 ∈M = τ contradicting the definition of τ because t 6= t′.

– The case i = 2 can be handled in much the same manner.

• Alternatively, we have r1 = δ(t1, t2) for some t1, t2 ∈ TΣ(Q). We can assume that r1 is linear since
M is an xtopR (we omit a proof of this claim). Moreover, since ht(t) > n > ht(r1), both t1 and t2
must contain a state (i.e., idx(t1) 6= ∅ 6= idx(t2). Clearly, these two states q1, q2 ∈ Q are different
because r1 is linear. By Definition 1 the left-hand side ` must contain both those states q1 and q2,
so ` = δ(γk1(q1), γk2(q2)) for some k1, k2 ∈ N with k1, k2 < n. Now we again need to distinguish two
subcases.

– First, suppose that q1 ∈ idx(t1). Clearly, there are no further states in r1 because there cannot
be any further state occurrences in `. Again, we switch to a rather informal description here. We
must have r1 = δ(t1, q2) because ht(r1) < n < ht(t). Intuitively speaking, the root of t2 can only
be δ or q2. If it were δ, then one of its subtrees would not contain a state, which contradicts the
generated tree because both subtrees of that occurrence of δ are higher than n. Hence the state q2

must develop into a subtree of t in the input and into δ(t, t) in the output. In that subderivation
we consider the rule that produces the δ in the output. This rule can only contain one state by
the shape of the input subtree that it generates, but then it cannot generate δ(t, t) in the output
because ht(t) is strictly larger than the height of the right-hand side of that rule.

– The remaining case, in which q1 ∈ idx(t2), can be contradicted in a similar manner.

All cases are contradictory. Hence an ε-free xtopR computing τ cannot exist. �

To recapture the main points of the previous proof, we suppose that we can compute the tree relation
and then cleverly select a particular pair in the relation, for which we must have a derivation. Then we
inspect the rules used in that derivation and show that (i) such rules cannot exist [as in the first subcase in
the second case] or (ii) the rules permit additional undesired derivations [as in the first subcase of the first
case]. For the latter, we need knowledge about pairs of trees that are not in the desired tree relation.

We also note that the proof is feasible because we know both the input and the output tree, which allows
us to restrict the shape of the considered rules [as demonstrated in all cases]. However, if we want to prove
that a particular tree relation cannot be computed by a composition of xtopR, then we would need to argue
over (potentially) several unknown intermediate trees, which would yield many additional potential cases
for the rules, which often makes this proof approach rather unappealing.

5. Basic properties of links

In this section, we introduce some important properties, which were already discussed in [25, 30], for sets
of links [such as A and I in a form 〈ξ, A, I, ζ〉 ∈ F(Q,Σ)] and the dependencies D(M). Let us start with
the properties that relate links in a set to each other. We generally only define the properties for the input
side, but assume that the same properties are also defined (in the same manner) for the output side.
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Definition 4 (see [30, Definition 8]) A set L ⊆ N∗+ × N∗+ of links is
• input hierarchical if for all links (v1, w1), (v2, w2) ∈ L

(i) v1 ≺ v2 implies w2 6≺ w1 and
(ii) v1 ≺ v2 implies that there exists a link (v1, w

′
1) ∈ L with w′1 � w2, and

• strictly input hierarchical if for all links (v1, w1), (v2, w2) ∈ L
(i’) v1 ≺ v2 implies w1 � w2 and

(ii’) v1 = v2 implies w1 � w2 or w2 � w1.
A form 〈ξ, A, I, ζ〉 ∈ F(Q,Σ) is (strictly) input hierarchical whenever A ∪ I is. Finally, D(M) has those
properties if for each 〈t, I, u〉 ∈ D(M) the corresponding form 〈t, ∅, I, u〉 has them (i.e., I has them). 2

Trivially, any strictly input hierarchical set L is also input hierarchical because (i’) implies (i) and (ii).
Roughly speaking, input hierarchical sets of links have no crossing links, which are links (v1, w1), (v2, w2) ∈ L
such that v1 ≺ v2 and w2 ≺ w1 [contradicting (i)]. The property (strictly) output hierarchical [for sets L
of links, forms 〈ξ, A, I, ζ〉 ∈ F(Q,Σ), and D(M)] is defined by requiring the corresponding input-side prop-
erty for the inverted set L−1 of links, the inverted form 〈ζ,A−1, I−1, ξ〉, and the inverted dependencies
D(M)−1 = {〈u, I−1, t〉 | 〈t, I, u〉 ∈ D(M)}. Consequently, L is strictly output hierarchical if and only if
L−1 is strictly input hierarchical.

Example 3 The links I of Example 2 (those of the final sentential form in Figure 2) are input hierarchical.
They are not strictly input hierarchical because the links (2, 1), (2.1, 3.1) ∈ I violate (i’). Given the same
two links, we can select the link (2, 3) ∈ I to fulfill (ii). However, I is strictly output hierarchical. 2

The properties (input hierarchical and strictly output hierarchical) mentioned in Example 3 are not
accidental, but rather they are true for the dependencies D(M) computed by each mbot M [30, Lemma 22]
as we show next.

Theorem 2 For every mbot M , the set D(M) is input hierarchical and strictly output hierarchical. 2

Proof Let M = (Q,Σ, Q0, R). We prove the more general statement that 〈ξ, A, I, ζ〉 [i.e., the set A ∪ I of
links] is input hierarchical and strictly output hierarchical for every sentential form 〈ξ, A, I, ζ〉 ∈ SF(M).
Let us prove these properties by induction on the length of the derivation 〈q0, {(ε, ε)}, ∅, q0〉 ⇒∗M 〈ξ, A, I, ζ〉,
where q0 ∈ Q0.

The properties are clearly true for the initial sentential form 〈q0, {(ε, ε)}, ∅, q0〉 with q0 ∈ Q0, so we
covered the induction base. In the induction step, we assume that they hold for some 〈ξ, A, I, ζ〉 ∈ SF(M),
and prove them for all sentential forms 〈ξ′, A′, I ′, ζ ′〉 ∈ SF(M) such that 〈ξ, A, I, ζ〉 ⇒M 〈ξ′, A′, I ′, ζ ′〉. By

the definition of ⇒M (see Definition 3) there exist a rule `
q

— ~r ∈ R and an occurrence v ∈ posq(ξ) of q
in ξ such that (i) |~r | = |A(v)|, (ii) ξ′ = ξ[`]v and ζ ′ = ζ[~r ]~w with ~w = seq(A(v)), and (iii) I ′ = I ∪ U and

A′ = (A \ U) ∪ L with U = {(v, w) | w ∈ A(v)} and L = linksv,~w(`
q

— ~r ). In the following, let m = |~r |.
Let us first prove that A′ ∪ I ′ is input hierarchical. To this end, let (v′1, w

′
1), (v′2, w

′
2) ∈ A′ ∪ I ′ with

v′1 ≺ v′2. Note that A′ ∪ I ′ = A ∪ I ∪ L. If (v′2, w
′
2) ∈ A ∪ I, then (v′1, w

′
1) ∈ A ∪ I (because v � v′ for all

(v′, w′) ∈ L and v 6≺ v′2 since v is a leaf position in ξ) and thus the required properties (i) and (ii) are trivially
true by the induction hypothesis and A∪ I ⊆ A′ ∪ I ′. It remains to investigate the case where (v′2, w

′
2) ∈ L,

which yields (v′1, w
′
1) ∈ A ∪ I because v′ is a leaf position of ξ′ for every link (v′, w′) ∈ L and thus v′ 6≺ v′2.

Consequently, the link (v′2, w
′
2) points to v′2 = vv′ and w′2 = ww′ for some v′ ∈ pos(`), w ∈ A(v), and

w′ ∈ N∗+ by the definition of L. Hence we can establish (i) [i.e., w′2 6≺ w′1] immediately because w � w′2
but w 6≺ w′1 as w is a leaf position in pos(ζ) and w′1 ∈ pos(ζ). For (ii) we observe that v′1 � v because v is
a leaf position of ξ, v′1 ≺ vv′ = v′2, and v′1 ∈ pos(ξ). If v′1 = v, then (v, w) ∈ A is a link required for (ii)
because w � w′2 and A ⊆ A′ ∪ I ′. Finally, if v′1 ≺ v, then by the induction hypothesis there exists a link
(v′1, w

′′
1 ) ∈ A ∪ I with w′′1 � w. Clearly, this link (v′1, w

′′
1 ) is also in A′ ∪ I ′ and fulfills w′′1 � w � w′2. This

establishes that A′ ∪ I ′, and thus 〈ξ′, A′, I ′, ζ ′〉 is input hierarchical.
Secondly, we need to show that A′ ∪ I ′ is strictly output hierarchical. To this end, we assume two links

(v′1, w
′
1), (v′2, w

′
2) ∈ A′ ∪ I ′ such that w′1 � w′2. If v′1 = v′2, then both (i’) and (ii’) are trivially fulfilled.

Hence assume that v′1 6= v′2. Again if (v′1, w
′
1), (v′2, w

′
2) ∈ A ∪ I, then the required properties (i’) and (ii’)
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are true by the induction hypothesis. Next we consider the case when w′1 = w′2 and (v′2, w
′
2) /∈ A ∪ I. Then

v′2 = vv′ and w′2 = ww′ for some v′ ∈ pos(`), w ∈ A(v), and w′ ∈ N∗+ by the definition of L. Since each
output position links to at most one input position in L and v′1 6= v′2, we obtain that (v′1, w

′
1) ∈ A ∪ I.

Consequently, w′ = ε because otherwise w′1 = w′2 /∈ pos(ζ). So in summary we have w′1 = w′2 = w and
two links (v, w), (v′1, w) ∈ A ∪ I. From the latter we can conclude that v � v′1 or v′1 � v by the induction
hypothesis. Since v is a leaf position in ξ and v′1 ∈ pos(ξ), we know that v′1 � v must be true. Together
with v � v′2 we obtain v′1 � v � v′2 as required for (ii’). Analogous arguments also prove the case w′1 = w′2
and (v′1, w

′
1) /∈ A ∪ I. In the remaining case, we have w′1 ≺ w′2, (v′2, w

′
2) ∈ L, and (v′1, w

′
1) ∈ A ∪ I as

w′1 ≺ w′2 yields that the links cannot be both in L and we already covered the case in which both links
are in A ∪ I. Consequently, v′2 = vv′ and w′2 = ww′ for some v′ ∈ pos(`), w ∈ A(v), and w′ ∈ N∗+ by the
definition of L. Since w is a leaf position of ζ, w′1 ≺ ww′ = w′2, and w′1 ∈ pos(ζ), we obtain that w′1 � w.
Since (v, w) and (v′1, w

′
1) are both in A ∪ I and w � w′1, we can apply the induction hypothesis to them

and distinguish two subcases. If w′1 ≺ w, then v′1 � v by the induction hypothesis, which together with
v � v′2 yields v′1 � v � v′2 as required for (i’). Similarly, if w′1 = w, then v′1 � v or v � v′1 by the induction
hypothesis, from which we can conclude that v′1 � v because v is a leaf position in ξ and v′1 ∈ pos(ξ).
Consequently, we again obtain v′1 � v � v′2 as required for (i’).

Since all sentential forms of M are input hierarchical and strictly output hierarchical, these properties
also hold for D(M). �

Corollary 1 (of the proof of Theorem 2) For every xtopR M , the set D(M) is strictly input and
strictly output hierarchical. 2

Proof Again, let M = (Q,Σ, Q0, R). Theorem 2 shows that D(M) is strictly output hierarchical. The

proof of that property can also be applied to the input side in an xtopR because for each rule ρ = `
q

— ~r ∈ R
and suitable positions v and ~w as in that proof, each input position links to at most one output position
in L = linksv,~w(ρ).6 Following the same reasoning as for the output side, we obtain that D(M) is also
strictly input hierarchical. �

Now we have established the interrelations between the links in the dependencies computed by mbot
and xtopR. However, this property by itself is not yet very useful because in order to apply it we first need
to establish the existence of links with certain properties [to fulfill the preconditions of the properties (i),
(ii), (i’), or (ii’)]. Consequently, we also need to establish the existence of “enough” links to which we can
then apply Theorem 2 and Corollary 1. Fortunately, the derivation process guarantees that there cannot be
large “gaps” between two “adjacent” links. In other words, for each mbot there should be an integer b that
limits the distance between links. Note that due to the presence of look-ahead rules, we cannot, in general,
require the stricter variant that each path in the input tree should have a link every b steps. We present
this phenomenon in more detail in Example 4.

Definition 5 (cf. [30, Definition 10]) Let b ∈ N. A form 〈ξ, A, I, ζ〉 ∈ F(Q,Σ) has
• link distance b in the input if for all links (v1, w1), (v2, w2) ∈ A ∪ I with v1 ≺ v2 and |v2| − |v1| > b,

there exists a link (v, w) ∈ A ∪ I such that v1 ≺ v ≺ v2 and |v| − |v1| ≤ b, and
• strict link distance b in the input if for all positions v1, v2 ∈ pos(ξ) with v1 ≺ v2 and |v2| − |v1| > b,

there exists a link (v, w) ∈ A ∪ I such that v1 ≺ v ≺ v2 and |v| − |v1| ≤ b.
The set D(M) of dependencies has those properties if for each 〈t, I, u〉 ∈ D(M) the corresponding sentential
form 〈t, ∅, I, u〉 ∈ SF(M) has them. Moreover, D(M) is (strictly) link-distance bounded in the input if there
exists an integer b ∈ N such that it has (strict) link distance b in the input. 2

Clearly, a form 〈ξ, A, I, ζ〉 with strict link distance b in the input has link distance b in the input because
the strict property again trivially implies the non-strict property. As before, we assume that (strict) link
distance is also defined for the output side, so a form 〈ξ, A, I, ζ〉 and D(M) have (strict) link distance b in
the output if 〈ζ,A−1, I−1, ξ〉 and D(M)−1 = {〈u, I−1, t〉 | 〈t, I, u〉 ∈ D(M)} have (strict) link distance b in
the input, respectively. Let us illustrate the difference between the two ‘link distance’ notions.

6Note that |~w| ≤ 1 because M is an xtopR and thus |~r| ≤ 1.
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Figure 4: Illustration of the dependencies (with e ∈ {α, β}) computed by the xtopR Mla of Example 4. Inactive links are
shown in light gray.

Example 4 Let us consider the ε-free xtopR Mla = ({q0, q},Σ, {q0}, R) with Σ = {δ, γ, α, β} and exactly
the following rules in R:

δ(q0, q)
q0
— q γ(q0)

q0
— ε α

q0
— ε

β
q

— β γ(q)
q

— γ(q) α
q

— α .

Clearly, Mla computes the dependencies

D(Mla) = {〈δ(γm(α), γn(e)) , In , γ
n(e)〉 | e ∈ {α, β}, m, n ∈ N} with

In = {(ε, ε), (2, ε)} ∪ {(21i, 1i) | i ∈ [n]} .

We illustrate the computed dependencies in the last sentential form of Figure 4. The set D(Mla) has link
distance 1 in both the input and the output. In addition, it has strict link distance 1 in the output, but it
is not strictly link-distance bounded in the input because for a given b ∈ N we can select the dependency
〈δ(γb(α), γ(α)), I1, γ(α)〉 and the input positions ε, 1b+1 ∈ pos(δ(γb(α), γ(α))), the latter of which points to
the α-leaf in the left branch. Then ε ≺ 1b+1 and |1b+1| − |ε| = b + 1 > b, but there is no link (v, w) ∈ I1
such that ε ≺ v ≺ 1b+1. 2

As before, the properties observed in Example 4 are not accidental. For each mbot M , the set D(M)
of dependencies is link-distance bounded in the input and strictly link-distance bounded in the output [30,
Lemma 22]. As before, the output side automatically fulfills the stricter variant, but in contrast to the
hierarchical properties, Example 4 already demonstrates that this distinction remains true even for xtopR.

Theorem 3 For every mbot M , the set D(M) is link-distance bounded in the input and strictly link-
distance bounded in the output. 2

Proof Let M = (Q,Σ, Q0, R),

a = max {ht(`) | ` q
— ~r ∈ R} and b = max {ht(ri) | `

q
— (r1, . . . , rn) ∈ R, i ∈ [n]} .
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We show that every sentential form 〈ξ, A, I, ζ〉 ∈ SF(M) has link distance a in the input and strict link
distance b in the output. Again, we prove the statement by induction on the length of the derivation
〈q0, {(ε, ε)}, ∅, q0〉 ⇒∗M 〈ξ, A, I, ζ〉, where q0 ∈ Q0.

The two link distance properties are trivially true for the initial sentential form 〈q0, {(ε, ε)}, ∅, q0〉 with
q0 ∈ Q0 (i.e., induction base), in which we simply cannot select two different links [there is only the
link (ε, ε)] nor two different input tree positions (since pos(q0) = {ε}). In the induction step, we assume
that the link distance properties hold for some 〈ξ, A, I, ζ〉 ∈ SF(M), and we need to prove them for
all sentential forms 〈ξ′, A′, I ′, ζ ′〉 ∈ SF(M) such that 〈ξ, A, I, ζ〉 ⇒M 〈ξ′, A′, I ′, ζ ′〉. By the definition

of ⇒M (see Definition 3) there exist a rule `
q

— ~r ∈ R and an occurrence v ∈ posq(ξ) of q in ξ such that
(i) |~r | = |A(v)|, (ii) ξ′ = ξ[`]v and ζ ′ = ζ[~r ]~w with ~w = seq(A(v)), and (iii) I ′ = I ∪U and A′ = (A \U)∪L
with U = {(v, w) | w ∈ A(v)} and L = linksv,~w(`

q
— ~r ).

Let m = |~r |, and we start with link distance a in the input. To this end, let (v′1, w
′
1), (v′2, w

′
2) ∈ A′ ∪ I ′

be such that v′1 ≺ v′2 and |v′2|− |v′1| > a. By the induction hypothesis and A∪ I ⊆ A′ ∪ I ′, there exists a link
(v′, w′) ∈ A′∪I ′ with v′1 ≺ v′ ≺ w′2 and |v′|− |v′1| ≤ a provided that (v′1, w

′
1), (v′2, w

′
2) ∈ A∪I. Consequently,

we consider the case that at least one of the two links (v′1, w
′
1) and (v′2, w

′
2) is in L. It is clear from the

definition of L that both links cannot be in L because ht(`) ≤ a (i.e., the longest path in ` is at most of
length a) but |v′2| − |v′1| > a. Similarly, the case (v′1, w

′
1) ∈ L is impossible because it implies v � v′1 and

(v′2, w
′
2) ∈ A ∪ I. These two statements in turn yield v′2 ∈ pos(ξ) and v � v′1 ≺ v′2, but v is a leaf position

in ξ, which contradicts v′2 ∈ pos(ξ). Only the case (v′2, w
′
2) ∈ L and (v′1, w

′
1) ∈ A ∪ I remains. Since v′1 ≺ v′2

we can conclude v′1 � v � v′2 and there exists w ∈ A(v) such that w � w′2. Note that v′1 = v is impossible
because v′1 = v yields |v′2| − |v′1| ≤ a contradicting |v′2| − |v′1| > a. Hence v′1 ≺ v � v′2. If |v| − |v′1| ≤ a,
then (v, w) ∈ A′ ∪ I ′ is a suitable link because v′1 ≺ v ≺ v′2, where v = v′2 is excluded by the conditions
|v| − |v′1| ≤ a and |v′2| − |v′1| > a. Otherwise, |v| − |v′1| > a and since (v′1, w

′
1), (v, w) ∈ A ∪ I with v′1 ≺ v we

can apply the induction hypothesis to obtain a link (v′, w′) ∈ A ∪ I with v′1 ≺ v′ ≺ v and |v′| − |v′1| ≤ a.
This link also fulfills v′1 ≺ v′ ≺ v ≺ v′2 and is in A′ ∪ I ′ because A ∪ I ⊆ A′ ∪ I ′, so we completed the link
distance a in the input.

Next, we move to the output side, for which we show the strict link distance b. Let w′1, w
′
2 ∈ pos(ζ ′)

such that w′1 ≺ w′2 and |w′2| − |w′1| > b. Again, the property is satisfied by the induction hypothesis and
A ∪ I ⊆ A′ ∪ I ′ whenever w′1, w

′
2 ∈ pos(ζ). We observe that w′1 /∈ pos(ζ ′) \ pos(ζ) because ht(ri) ≤ b for all

i ∈ [m] (i.e., the longest path in any ri with i ∈ [m] is at most of length b) and |w′2|−|w′1| > b by assumption.
Thus, we only need to investigate the case, in which w′1 ∈ pos(ζ) and w′2 ∈ pos(ζ ′) \ pos(ζ). In this case,
there exists w ∈ A(v) such that w′1 � w ≺ w′2. The case w′1 = w is impossible because w′1 = w yields
|w′2| − |w′1| ≤ b contradicting |w′2| − |w′1| > b. Hence w′1 ≺ w ≺ w′2. Now we again distinguish two cases. If
|w| − |w′1| ≤ b, then (v, w) ∈ A′ ∪ I ′ is a suitable link because w′1 ≺ w ≺ w′2. Otherwise, |w| − |w′1| > b and
we can apply the induction hypothesis to the positions w′1, w ∈ pos(ζ) because w′1 ≺ wi. In this way, we
obtain a link (v′, w′) ∈ A∪ I with w′1 ≺ w′ ≺ w and |w′| − |w′1| ≤ b. This link also fulfills w′1 ≺ w′ ≺ w ≺ w′2
and is in A′ ∪ I ′, so we completed the induction.

Consequently, D(M) is link-distance bounded in the input and strictly link-distance bounded in the
output, which establishes the main statement. �

Corollary 2 (of the proof of Theorem 3) For every n-xtop M , the set D(M) of computed dependen-
cies is strictly link-distance bounded in both the input and the output. 2

Proof Theorem 3 shows that D(M) is strictly link-distance bounded in the output. The proof of this
property can also be used to prove the strict variant for the input side given an n-xtop because for each
derivation step (as in that proof) we have that the set A(v) of output positions is never empty.7 Following
the same reasoning as for the output side, we obtain that D(M) is also strictly link-distance bounded in the
input. �

7We have |~r| = 1 for every rule `
q

— ~r ∈ R because M is an n-xtop.

12



hierarchical link distance bounded
Model \ Property input output in the input in the output

n-xtop strictly strictly strictly strictly
xtopR strictly strictly 3 strictly
mbot 3 strictly 3 strictly

Table 1: Summary of the properties of the computed dependencies.

Now we know that there must be sufficiently many links [due to the (strict) link distance] and how those
links interrelate [via the (strictly) hierarchical properties] in each dependency 〈t, I, u〉 ∈ D(M). Table 1
summarizes the properties of the dependencies computed by various transducer models.

For the special case of ε-free mbot, for which we will develop our linking theorems,8 we now limit the

number of output positions that are linked to a given input position. Trivially, given a rule ρ = `
q

— ~r ∈ R of
an ε-free mbot M (i.e., ` /∈ Q) and positions v and ~w we observe that there is no link (v, w′) ∈ linksv,~w(ρ).
In other words, each derivation step of the ε-free mbot M only adds links to “new” input positions. The
next lemma captures this property formally. In particular, in each ε-free xtopR each input position can be

used in at most one link. To simplify the notation, let rk(M) = max{n | ` q
— (r1, . . . , rn) ∈ R}. Clearly,

rk(M) ≤ 1 for each xtopR M . Moreover, let the output degree dego(M) of M be the smallest k ∈ N such

that pos(ri) ⊆ [k]∗ for all rules `
q

— (r1, . . . , rn) ∈ R and i ∈ [n]. In other words, each node in a tree in the
right-hand side of the rules of M has at most dego(M) children.

Lemma 1 For every ε-free mbot M = (Q,Σ, Q0, R), we have |I(v)| ≤ rk(M) and the elements of I(v) are
pairwise incomparable with respect to the strict prefix order ≺ for all 〈t, I, u〉 ∈ D(M) and v ∈ pos(t). 2

Proof A straightforward induction on the length of the derivation can be used to prove |(A∪I)(v)| ≤ rk(M)
and that the elements of (A ∪ I)(v) are pairwise incomparable with respect to ≺ for all sentential forms
〈ξ, A, I, ζ〉 ∈ SF(M) and v ∈ pos(ξ). We leave the proof details to the reader. �

We complete this section with results that limit the size and height of an output tree based on the size
and height of the corresponding input tree. Several such results on size and height relations are folklore
(e.g., for n-xtop and xtopR) or well-known (e.g., [14, Lemma 3.7] for deterministic mbot). Although it is
well-known [11, Lemma 8] that mbot can only compute tree relations, in which the size and height of the
output tree is linearly related to the size and height of the input tree, respectively, we reprove this result
here. It serves as a first example of how the links can be used to derive (in this case positive) useful results.
Although the result is essentially proved in the same way in the literature, we can now obtain a more general
result by establishing these relations between linked subtrees. In particular, we will derive bounds on the
number of links below a position because these bounds will be an essential tool later on. On a first reading
the details of these results can safely be skipped.

Lemma 2 Let M = (Q,Σ, Q0, R) be an ε-free mbot, and let a, b ∈ N be such that a ≥ max(2,dego(M))
and that D(M) has strict link distance b in the output.9 Then⌈ |u|w|

ab+1

⌉
≤ |L| ≤ rk(M) · |t|v|

with L = {(v′, w′) ∈ I | v � v′, w � w′} for every dependency 〈t, I, u〉 ∈ D(M) and link (v, w) ∈ I. 2

Proof Since D(M) has strict link distance b in the output, tree fragments without links can only have
height b. The size of each such fragment is strictly smaller than ab+1 because a ≥ max(2,dego(M)).
Consequently, the set L′ = {(v′, w′) ∈ I | w ≺ w′} of links pointing to positions strictly below w in the

8We defer a discussion of why ε-freeness is essential in our approach to the next section.
9Such an integer b exists by Theorem 3.
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output contains at least d |u|w|
ab+1 e − 1 links, where we subtract the link (v, w), which is not in L′. Moreover,

by Theorem 2 we know that I is strictly output hierarchical, so for each link (v′, w′) ∈ L′ we actually know
that v � v′ (i.e., they all point to positions below v in the input) and thus (v′, w′) ∈ L because w ≺ w′.
Hence L′ ⊆ L and (v, w) ∈ L \ L′. This establishes the first inequality of the lemma. Finally, by Lemma 1,
which is the only part that requires ε-freeness, each input position occurs in at most rk(M) links. Putting
all the pieces together we obtain

d |u|w|
ab+1 e ≤ |L′|+ 1 ≤ |L| ≤ rk(M) · |pos(t|v)| = rk(M) · |t|v| ,

which proves the statement. �

Theorem 4 For every ε-free mbot M , there exist integers z, b ∈ N such that
1. |u|w| ≤ z · |t|v| and
2. ht(u|w) ≤ b ·

(
ht(t|v) + 2

)
for every dependency 〈t, I, u〉 ∈ D(M) and link (v, w) ∈ I.10

2

Proof Let M = (Q,Σ, Q0, R) and a, b ∈ N be such that a ≥ max(2,dego(M)) and that D(M) has strict
link distance b in the output by Theorem 3. With the help of Lemma 2 we obtain

|u|w|
ab+1

≤
⌈ |u|w|
ab+1

⌉
≤ rk(M) · |t|v|

and thus |u|w| ≤ ab+1 · rk(M) · |t|v|, which proves the first item for z = ab+1 · rk(M).
We continue with the second item. A set W ⊆ N∗+ of positions is a prefix chain if all elements of W are

pairwise comparable with respect to the prefix order � [i.e., for all w′, w′′ ∈W we have w′ � w′′ or w′′ � w′].
A prefix chain W ⊆ pos(u) is an output-link chain of I if I−1(w) 6= ∅ for every w′ ∈W . Obviously,

ht(u|w) = max{|w′| | w′ ∈ pos(u|w)}
= max{|W | |W ⊆ pos(u|w), W is a prefix chain} − 1

≤ b ·max{|W | |W ⊆ pos(u|w), {w} ·W is an output-link chain}

≤ b ·
(

max{|W | |W ⊆ (pos(u|w) \ {ε}), {w} ·W is an output-link chain}+ 1
)

(†)

because along a prefix chain of output positions we must have a link every b positions by the strict link
distance b in the output. For each set W as in (†), the set VW = I−1({w} ·W ) is again a prefix chain and
v � v′ for every v′ ∈ VW because trivially w ≺ w′ for all w′ ∈ {w} ·W and the fact that I is strictly output
hierarchical according to Theorem 2. Finally, |W | ≤ |VW | because for each v′ ∈ VW there exists exactly
one w′ ∈ W such that (v′, ww′) ∈ I by Lemma 1. Consequently, |W | ≤ |VW | ≤ ht(t|v) + 1. In total, we
obtain ht(u|w) ≤ b ·

(
ht(t|v) + 2

)
as required. �

Corollary 3 (of Theorem 4) For every ε-free mbot M , there exist integers z, b ∈ N such that |u| ≤ z · |t|
and ht(u) ≤ b · (ht(t) + 2) for every 〈t, u〉 ∈M . 2

Proof If 〈t, u〉 ∈ M , then there exists 〈t, I, u〉 ∈ D(M). Since (ε, ε) ∈ I, we obtain the statements from
Theorem 4. �

6. Linking theorems

In this section, we develop our linking theorems for compositions of ε-free mbot. The ε-freeness is unfortu-
nately essential for our approach as we will use the linear size and height approximations of Theorem 4 as a

10The additive component in the second item is necessary since ht(t|v) = 0 [i.e., t|v is just a leaf] does not imply ht(u|w) = 0.
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key component in our proofs. Size and height bounds for the output tree do not exist for general mbot M
because for an input tree t ∈ TΣ the set {u | 〈t, u〉 ∈M} can contain arbitrarily large and high output trees.

Roughly speaking, our linking theorems establish the existence of certain interrelated links, which are
forced simply by a subset of the tree relation computed by the composition. More precisely, we simply use
the widely accepted approach of requiring the composition to reproduce parts of the input tree t exactly. It
is generally assumed that for an (ε-free) mbot to produce an exact copy in the output tree u, it needs to
process the original (i.e., in other words, the reproduction must be a translation of the original). We can
now make this widely used intuition precise by showing that such reproductions indeed force links between
the original and the reproduction. Such relations are typically established using the fooling technique,
wherein we replace one input subtree such that the overall surrounding computation is not affected. Then
we observe an undesired effect in the output tree computed for this modified input tree unless the desired
linking structure is in place. More precisely, it is usually demonstrated that by such an exchange an undesired
tree pair becomes part of the computed tree relation. In this sense, negative information (knowledge that
a certain tree pair is not in the computed tree relation) is usually necessary for the fooling technique. On
the contrary our linking theorems only require positive information (certain tree pairs are in the computed
tree relation) and then conclude the existence of certain interrelated links L. These links L represent an
underspecification of the expected dependency 〈t, I, u〉 (i.e., L ⊆ I). These links L can then be used to prove
that certain tree relations cannot be computed by compositions of mbot as demonstrated in Section 7.

The absence of negative information in our linking theorems makes them applicable to a wide array
of (similar) tree relations. On the contrary, whenever negative information is required, the tree relation
typically has to be completely specified. This yields that proofs made for those tree relations do not easily
(or automatically) generalize to similar tree relations. Our approach does not require negative information
and can thus be applied to all tree relations that include our required tree pairs. Naturally, additional
techniques such as the fooling technique might still be necessary to conclude the desired statement from
the expected links, but our linking theorems establish the expected links, which relieves us from the effort
to individually establish them in each proof. In this sense, our linking theorems allow us to focus on the
high-level argument and allow for very nice and intuitive proofs of negative results about the expressive
power of compositions of mbot (as demonstrated in Section 7).

We start with simple utility definitions and statements. The definitions establish two simple properties
of tree languages, which we will require in our linking theorems. The utility statements observe simple
properties of general trees. In particular, we show that given a large tree there exists a large subtree at a
certain depth.

Definition 6 A tree t ∈ TΣ is a chain (or unary tree) if pos(t) ⊆ [1]∗, and t is a binary tree if pos(t) ⊆ [2]∗.11

A tree language T ⊆ TΣ is
• unary shape-complete if for every chain t ∈ TΣ there exists a tree t′ ∈ T with pos(t′) = pos(t), and
• binary shape-complete if for every binary tree t ∈ TΣ there exists a tree t′ ∈ T with pos(t′) = pos(t).

2

A unary shape-complete tree language T contains chains of any length, thus for any chain t ∈ TΣ we can
find a chain t′ ∈ T such that |t′| = |t| = ht(t) + 1 = ht(t′) + 1. In a binary shape-complete tree language T
the situation is similar because for every binary tree t ∈ TΣ it contains a tree t′ ∈ T with pos(t′) = pos(t),
which also yields |t′| = |t| and ht(t′) = ht(t). These two properties will be essential in our linking theorems.
Next, we recall two simple properties of trees.

Lemma 3 Let a ∈ N+ and t ∈ TΣ be such that pos(t) ⊆ [a]∗. For every i ∈ N with i ≤ ht(t) there exists a

position w ∈ pos(t) such that |w| = i and |t|w| ≥ |t|ai − 1. 2

Proof Let i ∈ N with i ≤ ht(t), and let W ′ = [a]i ∩ pos(t) be the set of positions of t of length i. Clearly,

|W ′| ≤ |[a]i| = ai. Similarly,
∑i−1

j=0|[a]j | =
∑i−1

j=0 a
j ≤ ai, so there are at most ai positions of length strictly

11In other words, t is a chain if and only if pos(t) is a prefix chain.
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smaller than i. For a contradiction, suppose that |t|w′ | ≤ |t|ai − 2 for all w′ ∈W ′. It follows that

|t| = |pos(t)| =

(
i−1∑
j=0

|pos(t) ∩ [a]j |

)
+
∑

w′∈W ′
|pos(t|w′)| ≤

(
i−1∑
j=0

|[a]j |

)
+
∑

w′∈W ′
|t|w′ | ≤ ai +

∑
w′∈W ′

( |t|
ai
− 2
)

≤ ai + ai ·
( |t|
ai
− 2
)

= ai ·
( |t|
ai
− 1
)

= |t| − ai ≤ |t| − 1 ,

which is clearly a contradiction. Hence there exists w ∈W ′ such that |t|w| ≥ |t|ai − 1 as required. �

Corollary 4 (of Lemma 3) Let a ∈ N+ and t ∈ TΣ be such that a ≥ 2 and pos(t) ⊆ [a]∗. For every i ∈ N
with i ≤ ht(t), if |t| ≥ ai+1, then there exists a position w ∈ pos(t) such that |w| = i and |t|w| ≥ |t|

ai+1 . 2

Proof By Lemma 3 there exists a position w ∈ pos(t) such that |w| = i and |t|w| ≥ |t|ai − 1. Consequently,

|t|w| ≥
|t|
ai
− 1 ≥ |t|

ai
− |t|
ai+1

=
|t|
ai

(
1− 1

a

)
≥ |t|
ai+1

using the assumption |t| ≥ ai+1, which yields |t|
ai+1 ≥ 1, and a ≥ 2, which yields 1− 1

a ≥
1
a . �

6.1. Linking theorem for ε-free xtopR

We now start with the linking theorem for ε-free xtopR. It is known that ε-free xtopR (and many important
subclasses) are not closed under composition [33] and that their composition hierarchy collapses at the third
power [16]. However, since some important subclasses (e.g., ε-free n-xtop) have an infinite composition
hierarchy [15], we state and prove our linking theorem for the composition of arbitrarily many ε-free xtopR.
Our linking theorem is only applicable to tree relations, which contain a sub-relation that is obtained with
the help of an input and an output context into which we can plug trees from a unary shape-complete tree
language. If such a tree relation τ is computed by a composition τ = M1 ;· · ·;Mk of ε-free xtopR M1, . . . ,Mk,
then we can deduce dependencies with the natural links relating the corresponding subtrees of the contexts.

Theorem 5 Let Σ be an alphabet, k, n ∈ N+, and M1, . . . ,Mk be ε-free xtopR over Σ such that

{〈c[t1, . . . , tn] , c′[t1, . . . , tn]〉 | t1 ∈ T1, . . . , tn ∈ Tn} ⊆M1 ; · · · ;Mk

for some c, c′ ∈ CΣ(Xn) and unary shape-complete tree languages T1, . . . , Tn ⊆ TΣ. Then there exist trees
t1 ∈ T1, . . . , tn ∈ Tn, dependencies 〈u0, I1, u1〉 ∈ D(M1), 〈u1, I2, u2〉 ∈ D(M2), . . . , 〈uk−1, Ik, uk〉 ∈ D(Mk)
with u0 = c[t1, . . . , tn] and uk = c′[t1, . . . , tn], and a family of links (vij , wij) ∈ Ij for i ∈ [n] and j ∈ [k]
such that for all i ∈ [n]
• posxi

(c′) � wik,
• vi(j+1) � wij for all j ∈ [k − 1], and
• posxi

(c) � vi1. 2

Let us attempt a quick proof overview before we present the actual proof. Since we only use the prefix
order � in Theorem 5 and the link properties (Definitions 4 and 5), we will sometimes omit it in the
following discussion and proof. Consequently, when positions are incomparable, we mean to say that they
are incomparable with respect to ≺.

We chose the plugged trees t1, . . . , tn to be long chains, but such that all of them differ markedly in length
(and thus also in size). Due to their size and the strict link distance in the output, we can conclude a link
induced by the last xtopR Mk pointing into each of them in the output. Since those output positions are
naturally pairwise incomparable, also the corresponding linked input positions are pairwise incomparable
because the dependencies of the xtopR Mk are strictly input hierarchical by Corollary 1. Using Corollary 4
and Theorem 4 we can then estimate the size of the linked input subtree. Then we repeat these arguments
until we established links into the input tree of the first xtopR M1 and approximated those input subtree
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sizes. These positions in the input tree are again pairwise incomparable, and the approximated sizes of the
subtrees are still larger than the input context c, which yields that each such input position v is comparable
to an occurrence of a variable in the input context c. The markedly different sizes still exist after all the
approximations, so we can correctly associate the subtrees to the correct variables. If the largest subtree
was plugged for xi in c′, then the occurrence of xi in c must be comparable to the input position of the
corresponding link because all other subtrees are simply too small. In this way we establish all the links
relating the reproduced plugged trees. However, some of those links might still point to a prefix of the
correct variable position. For such a link we use the size approximation once more to conclude that there
must be more links in the corresponding subtrees. If the input position of this newly obtained link is still
a prefix of the correct variable occurrence in the input, then we repeat the procedure until it no longer
is. The approximated size is suitably large to allow enough iterations of this procedure. We note that
we intentionally use different constants to illustrate their influence. In the second linking theorem (see
Theorem 6) we will use a universal constant.

Proof (of Theorem 5) Let m > maxj∈[k] dego(Mj) be the maximal output degree of all the xtopR.
Note that m ≥ 2. Let b > 1 be such that D(Mj) has strict link distance b in the output (see Theorem 3)
for all j ∈ [k]. Theorem 4 shows that for each of the ε-free xtopR M1, . . . ,Mk the size of an output tree
is linearly bounded by the size of the linked input tree. Let a > 1 be an upper bound for all these linear
factors such that z > |c|, where z = a ·mb+2 is our major constant.

Now we are ready to select the trees t1 ∈ T1, . . . , tn ∈ Tn. For each i ∈ [n], let ti ∈ Ti be a chain such
that |ti| = z2ki+k. Since T1, . . . , Tn are unary shape-complete, such trees exist. We obtain the input tree
u0 = c[t1, . . . , tn] and the output tree uk = c′[t1, . . . , tn]. Since 〈u0, uk〉 ∈M1 ; · · · ;Mk by assumption, there
exist dependencies 〈u0, I1, u1〉 ∈ D(M1), . . . , 〈uk−1, Ik, uk〉 ∈ D(Mk).

Next, we prove an auxiliary statement, which states that given j ∈ [k], ` ∈ N+, and w′ ∈ pos(uj) such
that |uj |w′ | ≥ z`+j , there exists a link (v, w) ∈ Ij such that w′ � w and |uj−1|v| ≥ z`+j−1. Clearly,
ht(uj |w′) > b because |uj |w′ | ≥ z ≥ mb+2. By Corollary 4 (applied for a ← m, t ← uj |w′ , and i ← b + 1),
which is applicable because mb+2 ≤ z ≤ z`+j ≤ |uj |w′ |, there exists a position w′′ ∈ pos(uj |w′) such that
|w′′| = b+ 1 and

|uj |w′w′′ | ≥
|uj |w′ |
mb+2

≥ z`+j

mb+2
=
a`+j · (mb+2)`+j

mb+2
= a`+j · (mb+2)`+j−1 .

Thus, we have the dependency 〈uj−1, Ij , uj〉 ∈ D(Mj) and two positions w′, w′w′′ ∈ pos(uj) with w′ ≺ w′w′′
and |w′w′′| − |w′| = |w′′| = b + 1. Since D(Mj) has strict link distance b in the output, there exists a
link (v, w) ∈ Ij such that w′ ≺ w ≺ w′w′′, which yields that |uj |w| ≥ |uj |w′w′′ | ≥ a`+j · (mb+2)`+j−1.
By Theorem 4, which establishes the linear output size bound between linked subtrees, applied to the
dependency 〈uj−1, Ij , uj〉 ∈ D(Mj) and the link (v, w) ∈ Ij we obtain that

|uj−1|v| ≥
|uj |w|
a
≥ a`+j · (mb+2)`+j−1

a
= z`+j−1 ,

which proves the auxiliary statement.
Now we repeatedly apply the auxiliary statement to prove the main statement, which states that for all

i ∈ [n] and j ∈ [k] there exists a link (vij , wij) ∈ Ij with
• posxi

(c′) � wik,
• vi(j+1) � wij if j ∈ [k − 1],
• the positions v1j , . . . , vnj are pairwise incomparable, and
• |uj−1|vij | ≥ z2ki+j−1

by downward induction on j starting at k. In the induction base, we have j = k, and for every i ∈ [n] we
select the position wi = posxi

(c′). Clearly, the positions w1, . . . , wn are pairwise incomparable. For each
i ∈ [n] we have |uk|wi

| = |ti| = z2ki+k as required in the auxiliary statement (that we apply with w′ ← wi,
j ← k, and `← 2ki), so we conclude that there exists a link (vik, wik) ∈ Ik such that posxi

(c′) = wi � wik

and |uk−1|vik | ≥ z2ki+k−1 as required for the main statement. Moreover, the positions v1k, . . . , vnk are
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pairwise incomparable since Ik is strictly input hierarchical by Corollary 1 and w1k, . . . , w1n are pairwise
incomparable, which establishes the induction base because the precondition of the second item k ∈ [k − 1]
is clearly not satisfied. Now we assume that the statement is true for j + 1 ∈ [k] and prove it for j. By
the induction hypothesis we have that |uj |vi(j+1)

| ≥ z2ki+j for all i ∈ [n]. Thus, for every i ∈ [n] we can
again apply the auxiliary statement (with w′ ← vi(j+1), j ← j, and ` ← 2ki) to obtain that there exists a

link (vij , wij) ∈ Ij such that vi(j+1) � wij , thereby establishing the second item, and |uj−1|vij | ≥ z2ki+j−1.
Since Ij is strictly input hierarchical by Corollary 1 and the positions v1(j+1), . . . , vn(j+1) are pairwise
incomparable by the induction hypothesis, we obtain that also v1j , . . . , vnj are pairwise incomparable, which
proves the main statement.

Consequently, we already established the first two items of the theorem. In addition, we have that
|u0|vi1 | ≥ z2ki for every i ∈ [n] and that the positions v11, . . . , vn1 are pairwise incomparable. Since for each
i ∈ [n] the subtree u0|vi1 has size at least z > |c|, it follows that each of the positions v11, . . . , vn1 is compa-
rable to at least one of the positions posx1

(c), . . . ,posxn
(c) because the context c itself is too small to con-

tain u0|vi1 completely. For each i ∈ [n], all elements of Wi = {w ∈ pos(u0) | w � posxi
(c) or posxi

(c) � w}
are pairwise comparable (i.e., Wi is a prefix chain) since u0|posxi

(c) = ti is a chain.12 Since the positions

v11, . . . , vn1 are pairwise incomparable, we know that each v11, . . . , vn1 is comparable to exactly one position
of posx1

(c), . . . ,posxn
(c). Now we can use the size bounds to make the association precise. Let us show

for every i ∈ [n] that vi1, for which we know that |u0|vi1 | ≥ z2ki, cannot be comparable to any of the
positions posx1

(c), . . . ,posxi−1
(c). If i = 1, then we are immediately done. Otherwise, i > 1, and if we

suppose that vi1 is comparable to such a position, then

z2ki ≤ |u0|vi1 | ≤ |ti−1|+ |c| < z2k(i−1)+k + z = z2ki−k + z
(†)
≤ z2ki−k+1

because vi1 can only be comparable to one position of {posx1
(c), . . . ,posxi−1

(c)} and posxi−1
(c) is the root of

the largest such subtree to which we can potentially add part of c. The approximation marked (†) is valid be-
cause 2 ≤ z ≤ zk(2i−1). Simplifying the inequality z2ki < z2ki−k+1 we obtain k < 1, which is a contradiction.
Consequently, the position vi1 can only be comparable to one of the positions of {posxi

(c), . . . ,posxn
(c)}.

Thus we know that for every i ∈ [n] the position vi1 is comparable only to posxi
(c).

We are almost done now. For all i ∈ [n] with posxi
(c) � vi1 [see third item in theorem] we are already

done. Thus, let us consider i ∈ [n] such that vi1 ≺ posxi
(c). Reconsidering (the first part of the proof of) the

auxiliary statement (with w′ ← vi2, j ← 1, `← 2ki) that we used to obtain the link (vi1, wi1) ∈ I1, which is
applicable because |u1|vi2 | ≥ z2ki+1 by the main statement, we know that |u1|wi1

| ≥ a2ki+1·(mb+2)2ki. Conse-
quently, |u1|wi1

| ≥ z2ki. Applying Lemma 2 (with a← m and b← b) to the dependency 〈u0, I1, u1〉 ∈ D(M1)
and the link (vi1, wi1) ∈ I1 we can conclude that

|L| ≥ d |u1|wi1
|

mb+1 e ≥
|u1|wi1

|
mb+1 ≥ z2ki

a·mb+2 = z2ki−1 ,

where L = {(v′, w′) ∈ I1 | vi1 � v′, wi1 � w′}. Since M1 is ε-free, for each position v ∈ pos(u0) there is
at most one link (v, w) ∈ I1 by Lemma 1. However, L contains at least z2ki−1 ≥ z > |c| links, so it must
have at least one link (v′i1, w

′
i1) ∈ L such that posxi

(c) � v′i1. By definition of L we have vi1 � v′i1 and
wi1 � w′i1. Consequently, all requirements of the theorem are now satisfied by replacing, for every i ∈ [n]
with vi1 ≺ posxi

(c), the link (vi1, wi1) ∈ I1 by (v′i1, w
′
i1) ∈ I1. �

6.2. Linking theorem for ε-free mbot

Our second linking theorem concerns ε-free mbot. Fortunately, ε-free mbot and several relevant subclasses
(different from xtopR and its subclasses) are closed under composition [11], so we do not consider com-
positions of ε-free mbot.13 As in Theorem 5 our linking theorem applies to tree relations that contain a
sub-relation induced by two contexts into which we can plug all trees of a certain type of tree language.
However, this time we require binary shape-complete tree languages and a slightly different approach.

12Here we need the special chain shape of ti. This property would no longer be true if we allow non-chains.
13However, we could, in principle, extend the technique (in the same way as in Theorem 5) to deal with compositions of

ε-free mbot. The construction of the trees t1, . . . , tn becomes quite a bit more difficult in the extension.
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Theorem 6 Let n ∈ N+ and M = (Q,Σ, Q0, R) be an ε-free mbot such that

{〈c[t1, . . . , tn] , c′[t1, . . . , tn]〉 | t1 ∈ T1, . . . , tn ∈ Tn} ⊆M

for some c, c′ ∈ CΣ(Xn) and binary shape-complete tree languages T1, . . . , Tn ⊆ TΣ. Then there exist trees
t1 ∈ T1, . . . , tn ∈ Tn, a dependency 〈u, I, u′〉 ∈ D(M) with u = c[t1, . . . , tn] and u′ = c′[t1, . . . , tn], and links
(v1, w1), . . . , (vn, wn) ∈ I such that posxi

(c) � vi and posxi
(c′) � wi for every i ∈ [n]. 2

Let us illustrate the proof approach first. Again, we select the plugged trees t1, . . . , tn to be large and
tall such that different trees have suitably different sizes and heights, but this time we also need another
particularity. Namely, the largest tree is also the least tall and the smallest tree in size is the tallest tree
of {t1, . . . , tn}. In other words, we establish a reciprocal relation between the size and the height. To these
trees we add a long chain to the top. In this way, we can conclude that there are suitably many links pointing
into the long chain, which need to link to a position below a variable occurrence in the input context (using
the fact that D(M) for an mbotM is strictly link distance bounded and strictly output hierarchical). Next,
we use the height and size of the plugged tree to establish an approximation for the linked subtree in the
input using Theorem 4. It shows that only one plugged tree (the one pointed to in the output) fulfills the
restrictions such obtained, which establishes the desired links. This time we use a universal constant a ∈ N+

for simplicity.

Proof (of Theorem 6) Theorem 4 shows that the size and height of an output tree are linearly bounded
by the size and height of the linked input tree, respectively. Using Theorems 3 and 4 we can conclude that
there exists a ∈ N+ such that
• a > dego(M) and a > ht(c) + 1,
• a is larger than the factor of the size relation (Item 1. in Theorem 4),
• a is larger than the factor of the height relation (Item 2. in Theorem 4), and
• D(M) has strict link distance a in the output (Theorem 3).

Note that a > 2. Finally, let z ∈ N+ be such that z > max(2a2 + 1, (4n)2). From z > (4n)2 we conclude√
z > 4n and thus z =

√
z ·
√
z > 4n ·

√
z > 4n · log2(

√
z) = log2(z2n), which yields 2z > z2n. Using these

inequalities we obtain for all i ∈ N+

zi > (a2 + a2 + 1) · zi−1 > azi−1 + a2 + zi−1 > azi−1 + a2 (†)

2(azi+1) > 2az > 2a+z = 2a · 2z > a · z2n ≥ az2n−i+1 . (‡)

Now we prepare the selection of the trees t1, . . . , tn. In the following, let i ∈ [n] be arbitrary. We note that

azi < az2n−i+1 < 2(azi+1) by (‡). Consequently, there exists a binary tree t′′i ∈ TΣ such that ht(t′′i ) = azi

and |t′′i | = az2n−i+1 because ht(t′′i ) < |t′′i | < 2ht(t′′i )+1. Let t′i = γ(a2)(t′′i ) for some arbitrary γ ∈ Σ. Since
Ti is binary shape-complete, there also exists a tree ti ∈ Ti with pos(ti) = pos(t′i). Note that ht(ti) = azi+a2

and |ti| = az2n−i+1 + a2. Hence we have trees t1 ∈ T1, . . . , tn ∈ Tn, and we let u = c[t1, . . . , tn] be the input
tree and u′ = c′[t1, . . . , tn] be the output tree. By assumption, we know that 〈u, u′〉 ∈ M , so there exists a
dependency 〈u, I, u′〉 ∈ D(M).

Now we start our analysis with the output tree u′. For each i ∈ [n], let p′i = posxi
(c′) be the unique

occurrence of xi in the context c′. Then ht(u′|p′i) = ht(ti) = azi + a2 > a2 and 1(a2) ∈ pos(u′|p′i) = pos(ti).

Consequently, there exist a links (vi1, wi1), . . . , (via, wia) ∈ I such that p′i � wi1 ≺ · · · ≺ wia � p′i.1
(a2)

because D(M) has strict link distance a in the output. Since D(M) is strictly output hierarchical, we addi-
tionally obtain that vi1 � · · · � via, and together with Lemma 1 we can even conclude that vi1 ≺ · · · ≺ via
because all elements of {wi1, . . . , wia} are pairwise comparable. We select the link (vi, wi) = (via, wia) ∈ I,

so posxi
(c′) = p′i ≺ wia as required. Moreover, wia � p′i.1(a2) and thus

ht(u′|wi) ≥ ht(t′′i ) = azi and |u′|wi | = |t′′i | = az2n−i+1 .

Next we apply Theorem 4 to the dependency 〈u, I, u′〉 ∈ D(M) and the link (vi, wi) ∈ I to obtain that

ht(u|vi) ≥
ht(u′|wi

)

a
− 2 ≥ azi

a
− 2 = zi − 2 and |u|vi | ≥

|u′|wi
|

a
≥ az2n−i+1

a
= z2n−i+1 .
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Figure 5: Rules of the n-xtop M1 of Example 5.

Since vi1 ≺ · · · ≺ via = vi, we obtain that |vi| ≥ a− 1 ≥ ht(c) + 1. Consequently, vi /∈ pos(c) and thus there
exists a (unique) j ∈ [n] such that posxj

(c) ≺ vi; i.e., a variable occurrence of c must be a strict prefix of
the position vi. The uniqueness is a simple consequence of the fact that the variable occurrences in c are
pairwise incomparable. For every j ∈ [n], let pj = posxj

(c) be the unique occurrence of xj in the source-side
context c. Moreover, for every i ∈ [n], let ji ∈ [n] be the unique integer such that posxji

(c) = pji ≺ vi.
Next, we prove that ji ≥ i using the height approximation. For the sake of a contradiction, suppose that
ji < i. Since pji ≺ vi, we have ht(u|pji

) > ht(u|vi) ≥ zi − 2 > azi−1 + a2, where the last inequality is due

to (†).14 However,
ht(u|pji

) > azi−1 + a2 ≥ azji + a2 = ht(tji) = ht(u|pji
) ,

which is a contradiction. Thus ji ≥ i. Similarly, we will finally show that ji ≤ i using the size approximation.
Again, for the sake of a contradiction, suppose that ji > i. Since we have pji ≺ vi we immediately obtain
that |u|pji

| > |u|vi | ≥ z2n−i+1 > az2n−i + a2, where the last inequality is again due to (†). However,

|u|pji
| > az2n−i + a2 ≥ az2n−ji+1 + a2 = |tji | = |u|pji

| ,

which is again a contradiction. Thus i ≤ ji ≤ i, which shows that ji = i. Taking all the pieces together, the
link (vi, wi) ∈ I obeys posxi

(c) = pi = pji ≺ vi and posxi
(c′) = p′i ≺ wia = wi as required. �

7. Applications of the linking theorems

In this section, we present some applications of our linking theorems to existing results of the literature.
We start with a classical result of [4]. Figure 6 illustrates the counterexample, which [4] use to show that
the class of tree relations computed by xtopR (as well as those computed by n-xtop) is not closed under
composition. Our linking technique only applies to ε-free xtopR, but offers a fully formalized, but still very
intuitive proof of this claim. We start by recalling the particular tree relation τ , which can be computed by
two ε-free n-xtop.

Example 5 (see [4, Section 3.4]) Let M1 = (Q,Σ, {?}, R1) and M2 = (Q,Σ, {?}, R2) be the ε-free
xtopR with Q = {?, p, q, r} and Σ = {σ, δ, γ, α}, where
• R1 contains exactly the following rules for all x ∈ {p, q}:

σ(?, p, q)
?

— δ(δ(?, p), q) δ(p, q)
?

— δ(p, q) γ(p)
x
— γ(p) α

x
— α ,

• R2 contains exactly the following rules for all x ∈ {q, p, r}:

δ(r, p)
?

— δ(r, p) δ(δ(r, p), q)
r

— σ(r, p, q) γ(p)
x
— γ(p) α

x
— α .

Clearly, both M1 and M2 are ε-free n-xtop. The rules of M1 are illustrated in Figure 5. 2

Theorem 7 (see [4, Section 3.4]) The tree relation τ = M1 ; M2 of Example 5 (also illustrated in Fig-
ure 6) cannot be computed by any ε-free xtopR. 2

14Note that the 3 strict inequalities in (†) justify zi − 2 > azi−1 + a2.
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Figure 6: Counterexample relation of [4] with links, which we conclude from Theorem 5, where an inverse arrow head indicates
that the link refers to a node (not necessarily the root) inside the subtree that the spline points to.

In [4] a more general version of this result for arbitrary xtopR is proved using as essential tool a lemma15

establishing a normal form for xtopR that compute bijective tree relations [4, p. 47–50]. With this lemma
the main proof [4, p. 53–54] is then rather straightforward. However, [4] also gives an intuitive explanation
why a single xtopR cannot compute the tree relation τ [4, p. 52]. This intuitive explanation essentially
delivers our proof approach since the linking theorem establishes the links required to formalize the presented
intuition.

Proof (of Theorem 7) Suppose on the contrary that there exists an ε-free xtopR M = (Q,Σ, Q0, R)
that computes τ . By Theorem 3, the set D(M) is link-distance bounded in the input, so let b ∈ N+ be such
that D(M) has link distance b in the input. We let n = 2b+ 4, and as in [4, p. 52], we select the contexts

c = σ(σ(· · ·σ(δ(xn, xn−1), xn−2, xn−3) · · · , x4, x3), x2, x1)

c′ = δ(σ(σ(· · ·σ(xn, xn−1, xn−2) · · · , x5, x4), x3, x2), x1)

and the unary shape-complete tree languages T1 = · · · = Tn = T , where T = {γk(α) | k ∈ N}. Conse-
quently, we meet the requirements of Theorem 5 and its application yields trees t1, . . . , tn ∈ T , a depen-
dency 〈u, I, u′〉 ∈ D(M) with u = c[t1, . . . , tn] and u′ = c′[t1, . . . , tn], and links (v1, w1), . . . , (vn, wn) ∈ I
such that posxi

(c′) � wi and posxi
(c) � vi for all i ∈ [n]. This situation is also depicted in Figure 6, where

an inverse arrow head indicates that the link refers to some position inside the subtree that it (or better:
its graphical representation) points at.

This was the preparation. Now we start the argument. We observe that (ε, ε) ∈ I and (vn, wn) ∈ I. By
the selection of c, we have |vn| > b, and since D(M) has link distance b in the input, there exists another
link (v, w) ∈ I such that ε ≺ v ≺ vn and |v| ≤ b. Consequently, v = 1m for some m ∈ [b]. Moreover, we
observe that v ≺ v2m+2 and v ≺ v2m+1 because v ≺ posx2m+2

(c) and v ≺ posx2m+1
(c). Since I is strictly

input hierarchical by Corollary 1, we obtain w � w2m+2 and w � w2m+1, which by the shape of c′ yields
that w = 1k for some k ≤ m. However, this also yields that w ≺ posx2m

(c′) ≺ w2m. Since I is also strictly
output hierarchical by Corollary 1, we conclude that 1m = v � v2m, which contradicts the shape of c. Thus,
we derived the required contradiction and can conclude that such an ε-free xtopR cannot exist. �

Corollary 5 (of Example 5 and Theorem 7) The class of tree relations computable by ε-free xtopR

(or ε-free n-xtop) is not closed under composition. 2

Let us apply Theorem 5 again by providing an alternative proof for Theorem 1 that utilizes our linking
theorem. This new proof follows exactly the intuition (see Figure 7). Roughly speaking, the depicted chain

15certainly of separate interest
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Figure 7: Counterexample relation of [33] with links, which we conclude from Theorem 5, where an inverse arrow head indicates
that the link refers to a node (not necessarily the root) inside the subtree that the spline points to.

of γ-symbols in the input tree is, in general, too long to be covered by a single rule, so by a clever selection
of the input tree there must be a link (v, w) in it. The input position v of that link dominates the subtrees
s and t, so intuitively its output position w should also dominate the subtrees s and t in the output. However,
only the root position dominates those two subtrees, so w = ε. But then w dominates the subtree u in the
output, so intuitively it should also do so in the input, which allows us to conclude that v = ε because that
is the only position dominating also u in the input. But v = ε contradicts that the link points to the γ-chain
in the input. With the help of our linking theorem for xtopR we can make this informal argument formal
as we will demonstrate next.

Proof (Alternative proof of Theorem 1) For the sake of a contradiction, we assume that there ex-
ists an ε-free xtopR M = (Q,Σ, Q0, R) that computes τ . By Theorem 3, the set D(M) is link-distance
bounded in the input, so let b ∈ N+ be such that D(M) has link distance b in the input. We select the
contexts

c = δ(γb(δ(x1, x2)), x3) and c′ = δ(x1, δ(x2, x3))

and the unary shape-complete tree languages T1 = T2 = T3 = T , where T is given in Theorem 1. Con-
sequently, we meet the requirements of Theorem 5 and its application yields trees t1, t2, t3 ∈ T , a depen-
dency 〈u, I, u′〉 ∈ D(M) with u = c[t1, t2, t3] and u′ = c′[t1, t2, t3], and links (v1, w1), (v2, w2), (v3, w3) ∈ I
such that posxj

(c′) � wj and posxj
(c) � vj for all j ∈ {1, 2, 3}. These links are already indicated in Figure 7,

where an inverse arrow head indicates that the link refers to some position inside the subtree that it points
at.

Now we can again derive a contradiction using those links. First, we observe that for (v1, w1) ∈ I we
have |v1| > b because 1b+2 = posx1

(c) � v1. Since (ε, ε), (v1, w1) ∈ I with |v1| > b and D(M) has link
distance b in the input, there exists another link (v, w) ∈ I such that ε ≺ v ≺ v1 and |v| ≤ b. Consequently,
v = 1m for some m ∈ [b], and thus v ≺ v1 and v ≺ v2 because v = 1m ≺ 1b+1.2 = posx2

(c). Since I is strictly
input hierarchical by Corollary 1, we obtain that w � w1 and w � w2, which by the shape of c′ yields that
w = ε. However, this also yields that w = ε ≺ posx3

(c′) ≺ w3. Since I is also strictly output hierarchical by
Corollary 1, we conclude that v = 1m � 2 = posx3

(c) � v3, which is a contradiction because m ≥ 1. Thus,
we derived the required contradiction and can conclude that such an ε-free xtopR cannot exist. �

In addition, Theorem 5 has been used in [16] to prove results about the composition closure of ε-free
xtopR. Now let us also apply our linking theorem for ε-free mbot (see Theorem 6) to an interesting
counterexample, which is the inverse of abstract topicalization [1, 8, 20] and illustrated in Figure 9. This
result is reported and discussed in [32]. Its consequences are discussed there as well. Here we are mostly
interested in the ease of proving such results. In fact, the linking technique established here enables the
proof of this result. We start by recalling abstract topicalization, which we present using the ε-free mbot
of Example 6.

Example 6 Let Mtpc = (Q,Σ, {?}, R) be the ε-free mbot with Q = {?, p, q, r} and Σ = {σ, δ, γ, α}, where
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Figure 8: Rules of the mbot Mtpc of Example 6.
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Figure 9: Counterexample relation M−1
tpc of Example 6 with links, which we conclude from Theorem 6, where an inverse arrow

head indicates that the link refers to a node (not necessarily the root) inside the subtree that the spline points to.

R contains exactly the following rules for every x ∈ {p, q, r}

δ(p, ?)
?

— δ(?, δ(p, ?)) δ(p, ?)
?

— ? . δ(p, ?) δ(p, δ(q, r))
?

— r . δ(p, q)

σ(p, q)
x
— σ(p, q) γ(p)

x
— γ(p) α

x
— α .

The rules of Mtpc are illustrated in Figure 8, and the tree relation M−1
tpc is illustrated in Figure 9. 2

Theorem 8 (see [32, Theorem 8]) The relation M−1
tpc cannot be computed by any ε-free mbot. 2

Proof Again we suppose on the contrary that there exists an ε-free mbot M = (Q,Σ, Q0, R) that com-
putes M−1

tpc. Let b ∈ N+ be such that D(M) has strict link distance b in the output (see Theorem 3).
Moreover, let n > b+ 2, and we select the contexts

c = δ(x1, δ(x2, . . . δ(xn−1, xn) · · · )) and c′ = δ(x2, δ(x3, . . . δ(xn−1, δ(xn, x1)) · · · ))

and the binary shape-complete tree languages T1 = · · · = Tn = T , where T is the smallest tree language
such that α ∈ T , γ(t) ∈ T for all trees t ∈ T , and σ(t1, t2) ∈ T for all trees t1, t2 ∈ T . At this point, we can
apply Theorem 6 to obtain trees t1, . . . , tn ∈ T , a dependency 〈u, I, u′〉 ∈ D(M) with u = c[t1, . . . , tn] and
u′ = c′[t1, . . . , tn], and a link (vi, wi) ∈ I for every i ∈ [n] such that posxi

(c) � vi and posxi
(c′) � wi. We

depict this situation in Figure 9.
It remains to derive the contradiction. To this end, we first observe that ε, 2b+1 ∈ pos(u′) because

posx1
(c′) = 2n−1 ∈ pos(u′) and n − 1 > b + 1. Since D(M) has strict link distance b in the output, there

exists a link (v, w) ∈ I such that ε ≺ w ≺ 2b+1. We also know that w ≺ posxn
(c′) = 2n−2.1 � wn and

w ≺ posx1
(c′) = 2n−1 � w1 because w ≺ 2b+1 � 2n−2. Now we can use that D(M) is strictly output

hierarchical by Theorem 2, which applied to the links (v, w), (v1, w1), (vn, wn) ∈ I yields that v � vn
and v � v1. However, posxn

(c) � vn and posx1
(c) � v1, so the only possible selection for v is v = ε.

Consequently, we have two links (ε, ε), (ε, w) ∈ I with ε ≺ w, which is contradicting Lemma 1. Thus, we
derived the desired contradiction and such an ε-free mbot computing M−1

tpc cannot exist. �

Corollary 6 (of Example 6 and Theorem 8) The class of tree relations computable by ε-free mbot is
not closed under inverses. 2
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Finally, let us present a more complex example to demonstrate the usefulness of the linking theorems.
Namely we show that the relation Mtpc (abstract topicalization) cannot be computed by any composition
of ε-free xtopR. This result is also reported in [32], and again relies on the linking technique presented
here. An approach based on the fooling technique would be rather difficult (or hopeless in the eyes of the
authors) in this case as we would need to argue over several (at least 2) unknown intermediate trees.

Theorem 9 (see [32, Theorem 6]) The relation Mtpc cannot be computed by any chain of ε-free xtopR.2

Proof Again we prove the statement by contradiction. Therefore, we assume that Mtpc is computed by
a composition of several ε-free xtopR. By [16, Theorem 11] we know that 3 ε-free xtopR suffice, so there
are ε-free xtopR M1, M2, and M3 over Σ such that Mtpc = M1 ;M2 ;M3. Let b ∈ N+ be such that D(M1),
D(M2), and D(M3) have strict link distance b in the output (see Theorem 3). Moreover, let n > (b + 1)3,
and (essentially as in the proof of Theorem 8) we select the contexts

c = δ(x2, δ(x3, . . . δ(xn−1, δ(xn, x1)) · · · )) and c′ = δ(x1, δ(x2, . . . δ(xn−1, xn) · · · ))

and the unary shape-complete tree languages T1 = · · · = Tn = T , where T = {γk(α) | k ∈ N}. Theo-
rem 5 now yields trees t1, . . . , tn ∈ T and dependencies 〈u0, I1, u1〉 ∈ D(M1), 〈u1, I2, u2〉 ∈ D(M2), and
〈u2, I3, u3〉 ∈ D(M3) with u0 = c[t1, . . . , tn] and u3 = c′[t1, . . . , tn], and link (vi1, wi1) ∈ I1, (vi2, wi2) ∈ I2,
and (vi3, wi3) ∈ I3 for every i ∈ [n] such that
• posxi

(c) � vi1,
• vi2 � wi1 and vi3 � wi2, and
• posxi

(c′) � wi3.
We depict this situation in Figure 10.

Now we start the argumentation. Clearly, ε, 2(b3+2b2+b+1) ∈ pos(u3) because posxn
(c′) = 2n−1 and

n > (b + 1)3 > b3 + 2b2 + b + 1. We can now use the strict link distance b in the output to conclude the

existence of k′ > (b + 1)2 links (v′1, w
′
1), . . . , (v′k′ , w

′
k′) ∈ I3 such that ε ≺ w′1 ≺ · · · ≺ w′k′ ≺ 2(b3+2b2+b+1).

Using the fact that D(M3) is strictly output hierarchical by Theorem 2, we obtain v′1 � · · · � v′k′ and with
the help of Lemma 1 we can sharpen this relation to v′1 ≺ · · · ≺ v′k′ . These links are indicated as group (3)
in Figure 10. Clearly, v′1, v

′
k′ ∈ pos(u2) with v′1 ≺ v′k′ and |v′k′ | − |v′1| ≥ (b + 1)2. To these positions in u2

we can now apply the knowledge that D(M2) has strict link distance b in the output. Consequently, there
are k > b + 1 links (v1, w1), . . . , (vk, wk) ∈ I2 such that v′1 ≺ w1 ≺ · · · ≺ wk ≺ v′k′ . Again, the fact that
D(M2) is strictly output hierarchical implies that v1 � · · · � vk and also this relation can be sharpened
to v1 ≺ · · · ≺ vk. These links are marked (2) in Figure 10. Since v1, vk ∈ pos(u1) with v1 ≺ vk and
|vk| − |v1| > b and D(M1) has strict link distance b in the output, we obtain another link (v, w) ∈ I1 such
that v1 ≺ w ≺ vk. This link is marked (1) in Figure 10. Now we established all the required links, and we
refer the reader to Figure 10 for an overview of the links and their relation.

It remains to derive the contradiction. Since w′1 ≺ · · · ≺ w′k′ ≺ 2b
3+2b2+b+1 ≺ 2(b+1)3−1 = posxn

(c′),
we conclude that w′k′ ≺ w(n−1)3 and w′k′ ≺ wn3. Using that D(M3) is strictly output hierarchical once
again applied to the links (v′k′ , w

′
k′), (v(n−1)3, w(n−1)3), (vn3, wn3) ∈ I3, we obtain that v′k′ � v(n−1)3 and

v′k′ � vn3. Moving to the xtopR M2, we observe that w1 ≺ · · · ≺ wk ≺ v′k′ � v(n−1)3 � w(n−1)2

and w1 ≺ · · · ≺ wk ≺ v′k′ � vn3 � wn2. Since D(M2) is also strictly output hierarchical, the links
(vk, wk), (v(n−1)2, w(n−1)2), (vn2, wn2) ∈ I2 yield that vk � v(n−1)2 and vk � vn2. Finally, we need to
iterate this process once more for the xtopR M1. We first observe that w ≺ vk � v(n−1)2 � w(n−1)1 and
w ≺ vk � vn2 � wn1. Also the dependencies D(M1) of M1 are strictly output hierarchical, so applied
to the links (v, w), (v(n−1)1, w(n−1)1), (vn1, wn1) ∈ I1 we obtain v � v(n−1)1 and v � vn1. Together with
posxn−1

(c) � v(n−1)1 and posxn
(c) � vn1 we obtain that v ≺ posx1

(c′) � v11.
Now we start deriving another link relation. Since ε ≺ w′1, we have that posx1

(c′) and w′1 are incompa-
rable, which is thus also true for the positions w13 and w′1 because posx1

(c′) � w13. We know that D(M3) is
strictly input hierarchical by Corollary 1, so applied to the links (v′1, w

′
1), (v13, w13) ∈ I3 we obtain that

v′1 and v13 are incomparable. Since v′1 ≺ w1 and v13 � w12, also the positions w1 and w12 are incomparable.
Looking at the links (v1, w1), (v12, w12) ∈ I2 we can conclude that v1 and v12 are incomparable because
also D(M2) is strictly input hierarchical. Since v1 ≺ w and v12 � w11 also the positions w and w11 are
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Figure 10: Illustration of the links discussed in the proof of Theorem 9. Inverted arrow heads indicate that the link points to
a position below the one indicated by the spline.

incomparable. Applying that D(M1) is strictly input hierarchical to the links (v, w), (v11, w11) ∈ I1 we thus
obtain that v and v11 are incomparable. However, this contradicts v ≺ v11, which we derived in the previous
paragraph, so such ε-free xtopR M1, M2, and M3 cannot exist. �

Summary and further research

We considered linear extended multi bottom-up tree transducers [4, 11, 26, 28], which are used, for example,
as translation models in syntax-based statistical machine translation [6]. Following the tradition in that
application area, we presented them in the form of synchronous grammars, in which the input tree and the
output tree develop simultaneously in the derivation steps. During rule application, the left- and right-hand
side contribute, respectively, to the input and to the output tree. To keep track of the input and output
positions that are supposed to develop in parallel, links (v, w) are used, where v and w are, respectively,
a position in the input and the output tree. In contrast to much of the literature, we collect all links
created during the derivation of an input tree t and an output tree u in a set I. Roughly speaking, the
links in I provide origin information; i.e., they record the parts of u that were generated due to a particular
part of t. Making these links explicit, each mbot computes a set of triples 〈t, I, u〉, each of which is called
a dependency. We studied the structural properties of those dependencies for mbot and its subclasses
xtopR and n-xtop. As expected, the links in these dependencies have a certain hierarchical organization
(Theorem 2 and Corollary 1) and there exists a bound on the distances between linked positions both in the
input and the output side (Theorem 3 and Corollary 2). Our main contributions are the linking theorems for
compositions of ε-free xtopR (Theorem 5) and for ε-free mbot (Theorem 6), which guarantee the existence
of the natural links relating identical subtrees provided that a particular relation is a subset of the computed
tree relation. To demonstrate the usefulness of those linking theorems, we use them to reprove classic results
in an intuitive fashion and also showcase recent results that have been obtained with their help.

Our current linking theorems only apply to (compositions of) ε-free mbot, for which the computed
output tree is always in a linear relation to the input tree in terms of both size and height. This linear
dependence is a key ingredient in the proofs of our linking theorems. The authors naturally expect that
the essence of the linking theorems remains true also for (compositions of) arbitrary mbot, but a relation
similar to the linear size and height dependence would be required to establish those generalizations of our
linking theorems (using our approach). Second, the authors believe that it will be interesting to see, which
additional results can easily be reproved or even proved for the first time using our linking theorems.

25



Acknowledgements: The authors are indebted to Joost Engelfriet for his remarks on a draft version and
to the reviewers for their constructive feedback.

References

[1] D. Adger, Core Syntax: A Minimalist Approach, Core Linguistics, Oxford University, 2003.
[2] R. Alur, P. Madhusudan, Adding nesting structure to words, J. ACM 56 (3) (2009) 1–43.
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