UNIVERSITÄT LEIPZIG

Institut für Informatik

Prüfungsaufgaben 1. Klausur

zur Vorlesung WS 2003/2004 und SS 2004

Prof. Dr. Martin Middendorf Dr. Hans-Joachim Lieske

Datum: Donnerstag, 29. Juli 2004

Uhrzeit: 13³⁰-16⁰⁰ Ort: H13 und H19

Aufgaben zur Klausur Grundlagen der Technische Informatik 1 und 2

Name	Matrikelnummer	Fachrichtung
Vorname		Immatrikulationsjahr

				Ergel	bnisse				
		1. Sen	nester			2. Sen	nester		
Aufgabe	1.1.	1.2.	1.3.	1.4.	2.1.	2.2.	2.3.	2.4.	Summe
max. Punkte	16	4	16	4	16	4	16	4	80
davon									
erreicht									
							No	ote	

Datum/Unterschrift des Korrigierenden:

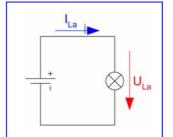
Datum/Unterschrift des Korrigierenden:

Hinweise:

Zeitdauer insgesamt 120 Minuten

Zum Bestehen der Klausur sind mindestens 40 Punkte erforderlich.

Zur Klausur Technische Informatik 1 und 2 sind keine Hilfsmittel erlaubt.


Ausnahme: Taschenrechner.

Ausländer dürfen ein Wörterbuch benutzen

Elektrische Grundgrößen am Beispiel der Glühlampe

Bei einer in eine Schaltung eingebaute Glühlampe mit einer Leistung von P_{La}=50W wird ein Strom

von I_{La}=500mA gemessen.

Werte: $P_{La} = 50W$ $I_{La} = 500mA$ r = 0.01mm t = 1h $t_1 = 1s$ $e_0 = 1.602 \cdot 10^{-19} C$

Aufgaben:

- 1. Bestimmen Sie die Energie W_{La} der Glühlampe wenn sie in der Zeit t=1h betrieben wird.
 - 3 Punkte
- 2. Bestimmen Sie die Spannung U_{La} der Glühlampe. **3 Punkte**
- 3. Bestimmen Sie den Widerstand R_{La} der Glühlampe. **2 Punkte**
- 4. Bestimmen Sie den Leitwert G_{La} der Glühlampe. **2 Punkte**
- 5. Bestimmen Sie die Stromdichte J_{La} im Wendel der Glühlampe, wenn der Radius r des Drahtes. den Wert von r = 0.01mm hat.
- 6. Welchen Wert hat die Ladung Q_{La} die in der Zeit von in t₁=1s durch das Wendel der Glühlampe fließt.
 2 Punkte
- 7. Wie viel Elektronen n fließen in t₁=1s durch das Wendel der Glühlampe. **2 Punkte**

Für die Aufgaben 5., 6. und 7. wird eine Fläche innerhalb des Drahtes angenommen. Bei Aufgabe 7 sind keine Präfixe erforderlich, da keine Maßeinheit angehangen wird. Alle Werte sind auf 4 Stellen genau zu berechnen.

Formel:

$$W = P \cdot t = U \cdot I \cdot t$$

$$P = U \cdot I$$

$$U = I \cdot R$$

$$A = \pi \cdot r^{2}$$

$$J = \frac{I}{A}$$

$$G = \frac{1}{R}$$

$$Q = I \cdot t = n \cdot e_{0}$$

Maßeinheiten:
$$[U] = V \quad [I] = A$$

$$[R] = \Omega = \frac{V}{A} \quad [t] = s, h$$

$$[r, l] = mm, m \quad [W] = J = Ws \quad -(Wh = 3600J)$$

$$[P] = W = V \cdot A \quad [J] = \frac{A}{mm^2}$$

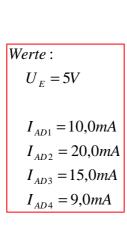
$$[A] = mm^2 \quad [Q] = C = As$$

$$[G] = S = \Omega^{-1}$$

1.2. Aufgabe (1. Semester)

(4 Punkte)

N-MOS-Transistor


Erläutern Sie den Aufbau und die Funktionsweise eines N-MOS-Transistors. Erklären Sie dabei auch den Unterschied zwischen selbstleitend und selbstsperrend.


Ströme und Spannungen an Silizium- und Leuchtdioden (LED)

Gegeben ist folgende Schaltung:

Die Dioden D₁ bis D₄ sollen an der Spannungsquelle U_E betrieben werden. Durch die Dioden fließen

dabei im Arbeitspunkt die Ströme I_{AD1} bis I_{AD4}.

Aufgaben:

1. Bestimmen Sie die Leerlaufspannungen $U_{LR1} \dots U_{LR4}$ für die Widerstände $R_1 \dots R_4$. 2 Punkte

2. Bestimmen Sie die Spannungen $U_{AD1} \dots U_{AD4}$ der Arbeitspunkte der Dioden. 2 Punkte

3. Berechnen Sie die Spannungen $U_{R1} \dots U_{R4}$ über die Widerstände. 2 Punkte

1 Punkt 4. Berechnen Sie die Ströme $I_{R1} \dots I_{R4}$ durch die Widerstände.

5. Berechnen Sie die Widerstände $R_1 \dots R_4$ mittels U_E, U_{ADn} und I_{ADn} . 2 Punkte

6. Berechnen Sie die Kurzschlussströme $I_{KR1} \dots I_{KR4}$ mittels U_E und R_n für die Widerstände $R_1 \dots R_4$.

2 Punkte

7. Konstruieren Sie die Widerstandsgeraden.

2 Punkte

8. Bestimmen Sie die Zweigströme $I_1 \dots I_4$.

1 Punkt

9. Berechnen Sie den Leistungsverbrauch $P_{AD1} \dots P_{AD4}$ der Dioden im Arbeitspunkt.

2 Punkte

Alle Werte sind auf 4 Stellen genau zu berechnen. Zum Ablesen aus den Kennlinien genügen 2 bzw. 3 Stellen.

Formel:
$$U = I \cdot R$$

$$P = U \cdot I$$

$$U_{Rn} = U_E - U_{ADn}$$

$$R_n = \frac{U_E - U_{ADn}}{I_{ADn}} = \frac{U_E}{I_{KADn}}$$

$$I_{KRn} = \frac{U_E}{R}$$

Maßeinheiten:

(4 Punkte)

1.4. Aufgabe (1. Semester)

Widerstandsarten

Erläutern Sie kurz, was man unter Scheinwiderstand, Blindwiderstand und Wirkwiderstand versteht. Geben Sie zur Erläuterung auch ein Beispiel für ein elektronisches Grundbauteil bei dem ein Blindwiderstand auftritt.

Bündelminimierung

Gegeben ist folgende Tabelle:

Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Q_1	\mathbf{Q}_2
0	0000	1	
1	0001	1	
2	0010		
3	0011		
4	0100		1
5	0101		1
6	0110		1
7	0111		1
8	1000	1	1
9	1001	1	
10	1010	1	1
11	1011	1	
12	1100	1	1
13	1101	1	1
14	1110	1	1
15	1111	1	1

Aufgaben:

1.	Bestimmen Sie die KV-Diagamme für Q_1 und Q_2	3 Punkte
2.	Bestimmen Sie das KV-Diagamme für den bündelbaren Teil $Q_{\scriptscriptstyle b\bar{u}nb}$	3 Punkte
3.	Bestimmen Sie die logische Gleichung $Q_{1-\min} = Q_{biinb} \vee Q_{1-Nbiinb}$ der bündelminin	nierten Form
	für Q_1	2 Punkte
4.	Bestimmen Sie die logische Gleichung $Q_{2-\min} = Q_{biinb} \vee Q_{2-Nbiinb}$ der bündelminin	mierten Form
	für Q_2	2 Punkte
5.	Bestimmen Sie die Kosten der bündelminimierten Form $K_{1-\min}$ für $Q_{1-\min}$	2 Punkte
6.	Bestimmen Sie die Kosten der bündelminimierten Form $K_{2-\min}$ für $Q_{2-\min}$	2 Punkte

7. Bestimmen Sie die bündelminimierte Schaltung

2 Punkte

Bemerkung:

Die Minimierung hat auf minimale Kosten zu erfolgen.

Die Teile der Einzelfunktionen die nicht bündelbar sind, sind ebenfalls maximal zu minimieren.

Es können bündelbare Minterme mitverwendet werden.

In die KV-Diagramme brauchen nur die Werte "1" eingetragen zu werden.

Es sind nur AND- OR- und NOT-Gatter zu verwenden. Diese Gatter können beliebig viele Eingänge haben.

2.2. Aufgabe (2. Semester)

(4 Punkte)

Pipelining

- 1. Erläutern Sie, was man unter Befehlsphasen-Pipelining versteht.
- 2. Angenommen ein Prozessor besitzt eine Befehlsabarbeitung mit k Stufen, die jeweils einen Takt dauern. Wie groß muss k sein, damit eine k-stufige Pipeline- Organisation bei der Abarbeitung von 3 Befehlen mindestens 51% Ersparnis bringt?

2.3. Aufgabe (2. Semester)

(16 Punkte)

Entwurf eines 2-Bit Komperators

Entwerfen Sie die Schaltung eines Komperators, der die 2-Bit-Zahlen $X=(X_1,X_0)$ und $Y=(Y_1,Y_0)$ miteinander vergleicht. Es sind die Funktionen $Q_{Y=X}$, $Q_{Y>X}$ (Y größer X) und $Q_{Y<X}$ (Y kleiner X) zu bestimmen. Die Funktionen sind wahr, wenn der Wert "1" ist.

Aufgaben:

- 1. Bestimmen Sie die Wertetabelle für $Q_{Y=X}$, $Q_{Y>X}$ und $Q_{Y<X}$ 4 Punkte
- 2. Bestimmen Sie die KV-Diagramme für $Q_{Y=X}$, $Q_{Y>X}$ und $Q_{Y<X}$ 3 Punkte
- 3. Bestimmen Sie die minimierten logischen Gleichungen $Q_{Y=X\text{-min}},\,Q_{Y< X\text{-min}}$ und $Q_{Y> X\text{-min}}$

3 Punkte

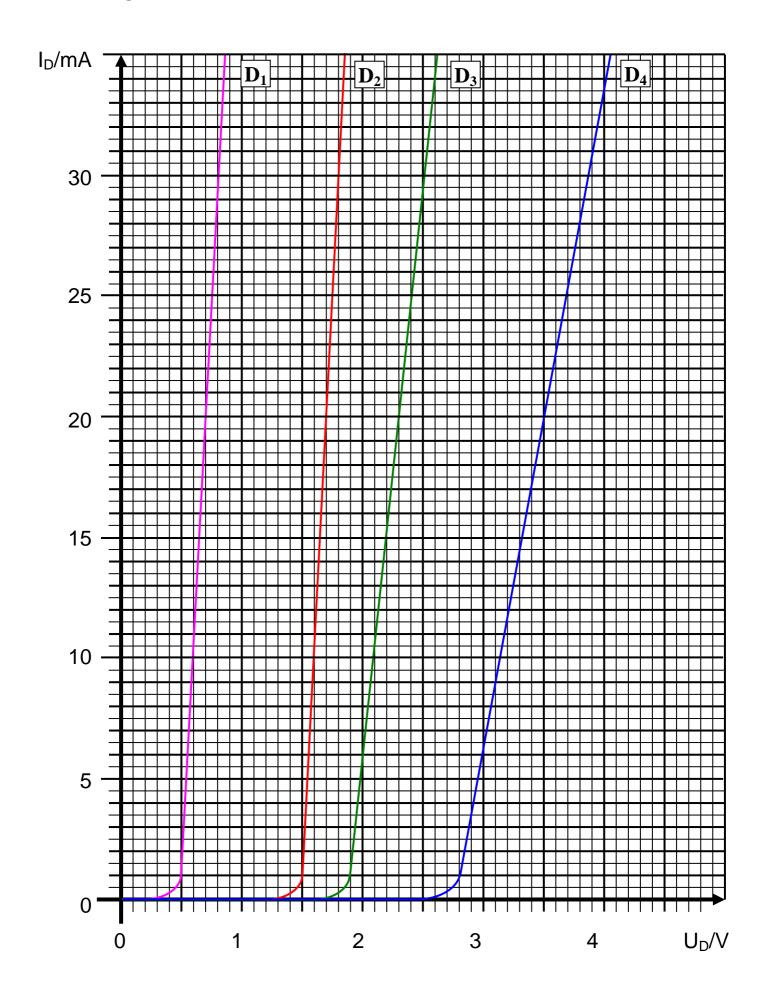
- 4. Bestimmen Sie die Kosten $K_{Y=X-min}$, $K_{Y<X-min}$ und $K_{Y>X-min}$ der minimierten logischen Gleichungen $Q_{Y=X-min}$, $Q_{Y<X-min}$ und $Q_{Y>X-min}$ 3 Punkte
- 5. Bestimmen Sie die Schaltungen für Q_{Y<X-min}

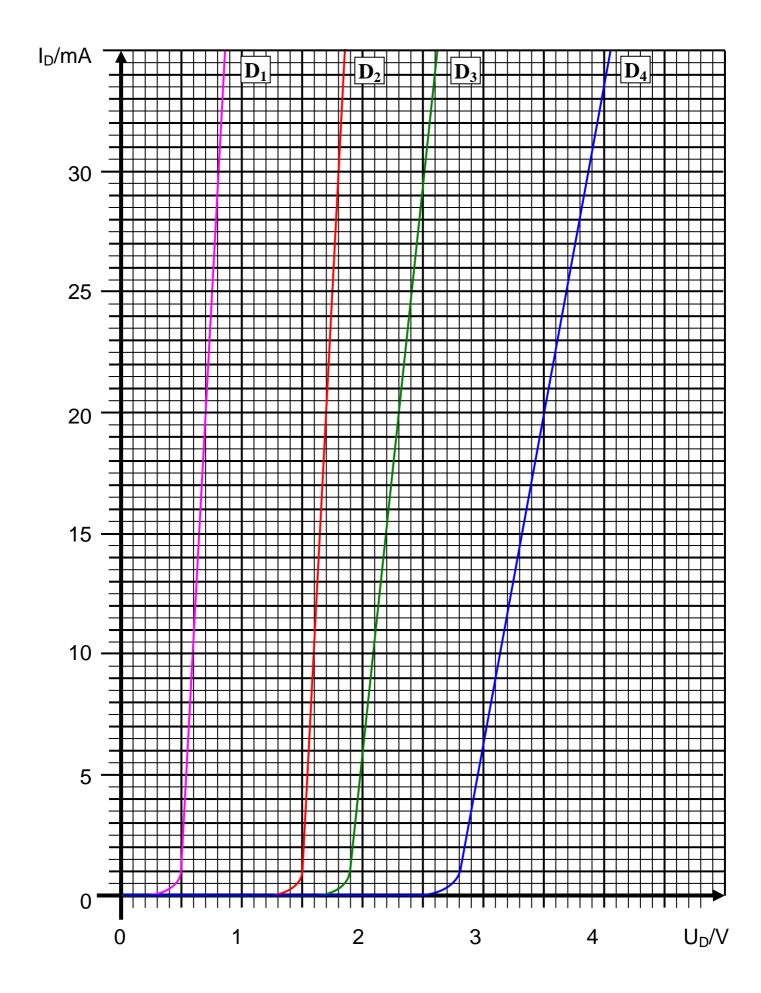
3 Punkte

Bemerkungen:

Die Minimierung hat auf minimale Kosten zu erfolgen.

In die KV-Diagramme brauchen nur die Werte "1" eingetragen zu werden.


Es sind nur AND- OR- und NOT-Gatter zu verwenden. Diese Gatter können beliebig viele Eingänge haben.


2.4. Aufgabe (2. Semester)

(4 Punkte)

Asemblierer

Erläutern Sie die Arbeitsweise eines 2-Pass-Assemblierers.

2.1. Aufgabe

Name:

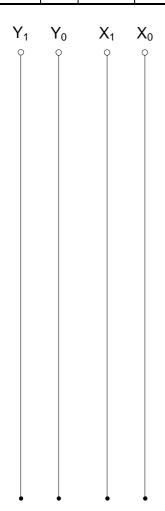
			X	-0			
		0	1	1	0		
	0	0	1	5	4	0	
X_3	0	2	3	7	6	1	X_1
213	1	10	11	15	14	1	71
	1	8	9	13	12	0	
		0	0	1	1		
			X	2			
			X	-0			
		0	1	1	0		
	0	0	1	5	4	0	
X_3	0	2	3	7	6	1	X_1
,	1	10	11	15	14	1	1
	1	8	9	13	12	0	
		0	0	1	1		

2.1. Aufgabe

Name:

			X	-0			
		0	1	1	0		
	0	0	1	5	4	0	
X_3	0	2	3	7	6	1	X_1
213	1	10	11	15	14	1	71
	1	8	9	13	12	0	
		0	0	1	1		
			X	2			
			X	-0			
		0	1	1	0		
	0	0	1	5	4	0	
X_3	0	2	3	7	6	1	X_1
,	1	10	11	15	14	1	1
	1	8	9	13	12	0	
		0	0	1	1		

2.1. Aufgabe


Name:

			X	-0			
		0	1	1	0		
	0	0	1	5	4	0	
X_3	0	2	3	7	6	1	X_1
113	1	10	11	15	14	1	A]
	1	8	9	13	12	0	
	,	0	0	1	1		
			X	-2			

X ₃	X_2	X_1	
	0	0	0

2.3. Aufgabe Name:

		Eing	gäng	e	Ausgänge			
Nr	Y	Y_1, Y_0	X	X_1, X_0	$Q_{x=y}$	$Q_{y < x}$	$Q_{y>x}$	
0	0	00	0	00				
1	0	00	1	01				
2	0	00	2	10				
3	0	00	3	11				
4	1	01	0	00				
5	1	01	1	01				
6	1	01	2	10				
7	1	01	3	11				
8	2	10	0	00				
9	2	10	1	01				
10	2	10	2	10				
11	2	10	3	11				
12	3	11	0	00		-		
13	3	11	1	01				
14	3	11	2	10				
15	3	11	3	11				

2.3. Aufgabe

Name:

 X_0

		0	1	1	0		
	0	0	1	5	4	0	
\mathbf{Y}_1	0	2	3	7	6	1	X_1
11	1	10	11	15	14	1	A
	1	8	9	13	12	0	
	•	0	0	1	1		
			Y	0			
			X	-0			
		0	1	1	0		
	0	0	1	5	4	0	
Y_1	0	2	3	7	6	1	X_1
11	1	10	11	15	14	1	Λ_1
	1	8	9	13	12	0	
	7	0	0	1	1		
			Y	0			
<u> </u>		1				1	Datei: k

2.3. Aufgabe

Name:

			X	-0			
		0	1	1	0		
	0	0	1	5	4	0	
V	0	2	3	7	6	1	v
Y ₁	1	10	11	15	14	1	X_1
	1	8	9	13	12	0	
	•	0	0	1	1		
			Y	0			
			X				
		0	X 1	1	0		
	0		1	1		0	
Y.	0	0 0			0 4	0	X.
Y ₁		0	1	5	4		X_1
Y ₁	0	0 2	1 3	5 7	6	1	X_1
Y ₁	0	2	1 3 11	1 5 7	6 14	1	X_1

1.1. Aufgabe (1. Semester)

(16 Punkte)

Elektrische Grundgrößen am Beispiel der Glühlampe

1. Bestimmen Sie die Energie W_{La} der Glühlampe wenn sie in der Zeit t=1h betrieben wird.

$$W_{La} = P_{La} \cdot t$$

$$P_{La} = 50W \quad t = 1h$$

$$W_{La} = 50W \cdot 1h = 50Wh$$

$$= 50Wh \cdot \frac{60 \cdot 60s}{h} = 50Wh \cdot \frac{3600s}{h}$$

$$= 180000Ws = 180kJ$$

2. Bestimmen Sie die Spannung U_{La} der Glühlampe.

$$P_{La} = U_{La} \cdot I_{La} \quad \Rightarrow \quad U_{La} = \frac{P_{La}}{I_{La}}$$

$$P_{La} = 50W \quad I_{La} = 500mA$$

$$U_{La} = \frac{50W}{500mA} = \frac{50VA}{0.5A} = 100V$$

3. Bestimmen Sie den Widerstand R_{La} der Glühlampe.

$$U_{La} = I_{La} \cdot R_{La} \implies R_{La} = \frac{U_{La}}{I_{La}}$$

$$U_{La} = 100V \quad I_{La} = 500mA$$

$$R_{La} = \frac{100V}{500mA} = \frac{100V}{500 \cdot 10^{-3} A} = \frac{100V \cdot 10^{3}}{500A}$$

$$= 0.2 \cdot 10^{3} \Omega = 200\Omega$$

4. Bestimmen Sie den Leitwert G_{La} der Glühlampe.

$$G_{La} = \frac{1}{R_{La}}$$

$$R_{La} = 200\Omega$$

$$G_{La} = \frac{1}{200\Omega} = 0,005 \frac{A}{V} = 5mS$$

5. Bestimmen Sie die Stromdichte J_{La} im Wendel der Glühlampe, wenn der Radius r des Drahtes. den Wert von r = 0.01mm hat.

$$J_{La} = \frac{I_{La}}{A_{La}} \quad mit \quad A_{La} = \pi \cdot r^{2}$$

$$\pi = 3,142 \quad r = 0,01mm$$

$$A_{La} = \pi \cdot (0,01mm)^{2} = \pi \cdot (10^{-2} \cdot 10^{-3} m)^{2} = \pi \cdot (10^{-5} m)^{2}$$

$$= 3,142 \cdot 10^{-10} m^{2} = 314,2 \cdot 10^{-12} m^{2}$$

$$J_{La} = \frac{500mA}{314,2 \cdot 10^{-12} m^{2}} = \frac{500 \cdot 10^{-3} A}{314,2 \cdot 10^{-12} m^{2}} = \frac{500 \cdot 10^{-3} \cdot 10^{12} A}{314,2m^{2}}$$

$$= \frac{500A}{314,2m^{2}} \cdot 10^{9} = 1,591 \cdot 10^{9} \frac{A}{m^{2}}$$

$$= 1,591 \frac{GA}{m^{2}}$$

6. Welchen Wert hat die Ladung Q_{La} die in der Zeit von in t_1 =1s durch das Wendel der Glühlampe fließt.

$$Q_{La} = I_{La} \cdot t_1$$

$$I_{La} = 500mA \quad t_1 = 1s$$

$$Q_{La} = 500mA \cdot 1s = 500mC$$

7. Wie viel Elektronen n fließen in t₁=1s durch das Wendel der Glühlampe.

$$Q_{La} = I_{La} \cdot t = n_{La} \cdot e_0 \implies n_{La} = \frac{Q_{La}}{e_0}$$

$$Q_{La} = 500mC \quad e_0 = 1,602 \cdot 10^{-19} C$$

$$n_{La} = \frac{500mC}{1,602 \cdot 10^{-19} C} = \frac{500 \cdot 10^{-3} C}{1,602 \cdot 10^{-19} C} = \frac{500}{1,602} \cdot 10^{16}$$

$$= 312,1 \cdot 10^{16} = 3,121 \cdot 10^{18}$$

1.3. Aufgabe (1. Semester)

(16 Punkte)

Ströme und Spannungen an Silizium- und Leuchtdioden (LED)

1. Bestimmen Sie die Leerlaufspannungen $U_{LR1} \dots U_{LR4}$ für die Widerstände $R_1 \dots R_4$.

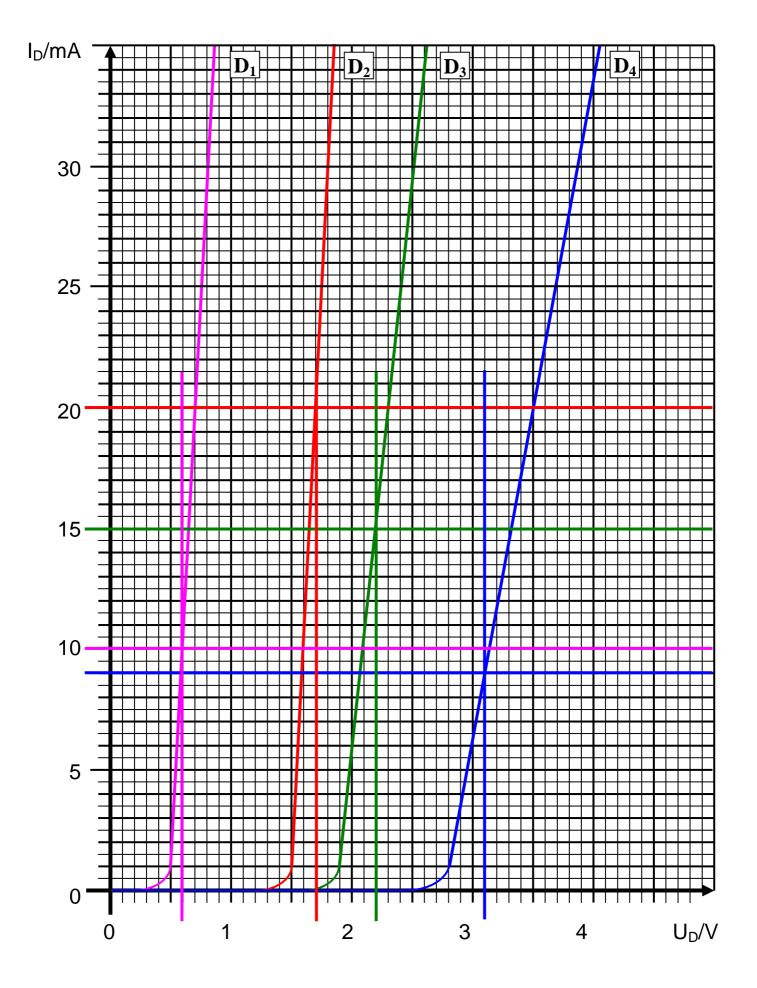
$$U_{LR1} = U_{LR2} = U_{LR3} = U_{LR4} = U_{E}$$

$$U_{E} = 5V$$

$$U_{LR1} = U_{LR2} = U_{LR3} = U_{LR4} = 5V$$

2. Bestimmen Sie die Spannungen $U_{AD1} \dots U_{AD4}$ der Arbeitspunkte der Dioden.

Aus der Kennlinie folgt:
$$I_1 = I_{AD1} = 10mA \quad \Rightarrow \quad U_{AD1} = 0,6V$$


$$I_2 = I_{AD2} = 20mA \quad \Rightarrow \quad U_{AD2} = 1,7V$$

$$I_3 = I_{AD3} = 15mA \quad \Rightarrow \quad U_{AD3} = 2,2V$$

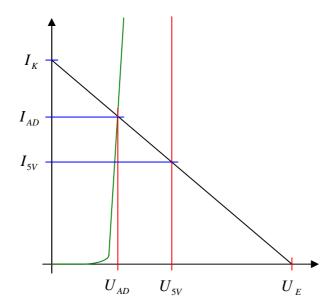
$$I_4 = I_{AD4} = 9mA \quad \Rightarrow \quad U_{AD4} = 3,1V$$

3. Berechnen Sie die Spannungen $U_{R1} \dots U_{R4}$ über die Widerstände.

$$\begin{array}{lll} U_E = U_R + U_{ADn} & \Longrightarrow & U_R = U_E - U_{ADn} \\ \\ Diode \ 1: & U_E = 5V & U_{AD1} = 0,6V \\ \\ U_{R1} = 5V - 0,6V = 4,4V \\ \\ Diode \ 2: & U_E = 5V & U_{AD2} = 1,7V \\ \\ U_{R2} = 5V - 1,7V = 3,3V \\ \\ Diode \ 3: & U_E = 5V & U_{AD3} = 2,2V \\ \\ U_{R3} = 5V - 2,2V = 2,8V \\ \\ Diode \ 4: & U_E = 5V & U_{AD4} = 3,1V \\ \\ U_{R4} = 5V - 3,1V = 1,9V \\ \end{array}$$

4. Berechnen Sie die Ströme $I_{R1} \dots I_{R4}$ durch die Widerstände.

$$I_{Rn} = I_{ADn}$$


$$I_{R1} = 10mA$$

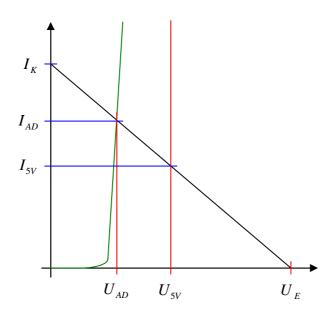
$$I_{R2} = 20mA$$

$$I_{R3} = 15mA$$

$$I_{R4} = 9mA$$

5. Berechnen Sie die Widerstände $R_1 \dots R_4$ mittels U_E, U_{ADn} und I_{ADn} .

Diode 1:
$$U_E = 5V$$
 $U_{AD1} = 0.6V$ $I_{AD1} = 10mA$


$$R_1 = \frac{5V - 0.6V}{10mA} = \frac{4.4V}{10mA} = 440\Omega$$

Diode 2:
$$U_E = 5V$$
 $U_{AD2} = 1,7V$ $I_{AD2} = 20mA$
 $R_2 = \frac{5V - 1,7V}{20mA} = \frac{3,3V}{20mA} = 165\Omega$

Diode 3:
$$U_E = 5V$$
 $U_{AD3} = 2,2V$ $I_{AD3} = 15mA$
 $R_3 = \frac{5V - 2,2V}{15mA} = \frac{2,8V}{15mA} = 186,7\Omega$

Diode 4:
$$U_E = 5V$$
 $U_{AD4} = 3,1V$ $I_{AD4} = 9mA$
 $R_4 = \frac{5V - 3,1V}{9mA} = \frac{1,9V}{9mA} = 211,1\Omega$

6. Berechnen Sie die Kurzschlussströme $I_{KR1} \dots I_{KR4}$ mittels U_E und R_n für die Widerstände $R_1 \dots R_4$.

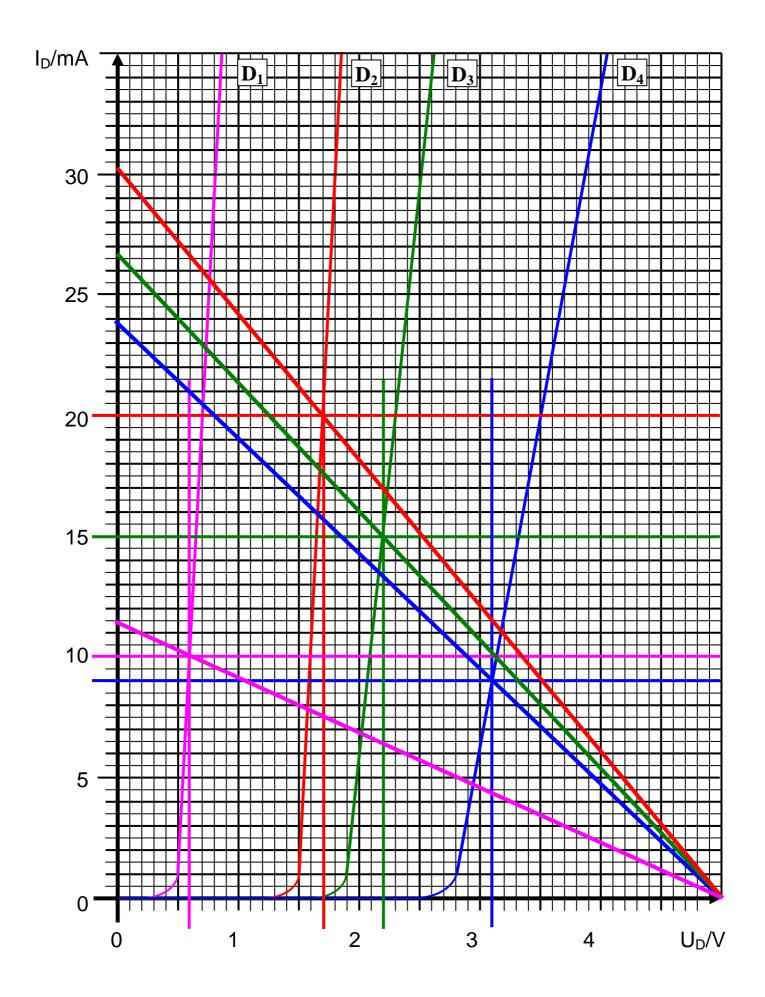
$$R_n = \frac{U_E}{I_{Kn}} = \frac{U_E - U_{ADn}}{I_{ADn}} = \frac{U_E - U_{5Vn}}{I_{5Vn}} \quad \Rightarrow \quad I_{Kn} = \frac{U_E}{R_n} = \frac{U_E - U_{ADn}}{I_{ADn}}$$

$$I_{Kn} = \frac{U_E}{R_n}$$

Diode 1:
$$U_E = 5V$$
 $R_1 = 440\Omega$

$$I_{K1} = \frac{5V}{440\Omega} = 11,36mA$$

Diode 2:
$$U_E = 5V$$
 $R_1 = 165\Omega$


$$I_{K2} = \frac{5V}{165\Omega} = 30,3 mA$$

Diode 3:
$$U_E = 5V R_1 = 186,7\Omega$$

$$I_{K3} = \frac{5V}{186,7\Omega} = 26,78mA$$

Diode 4:
$$U_E = 5V R_1 = 211,1\Omega$$

$$I_{K4} = \frac{5V}{211.1\Omega} = 23,69mA$$

8. Bestimmen Sie die Zweigströme $I_1 \dots I_4$.

$$I_{Rn} = I_{ADn} = I_n$$

$$I_1 = 10 \, mA$$

$$I_1 = 10 mA$$

$$I_2 = 20 mA$$

$$I_3 = 15 mA$$

$$I_3 = 15 \text{ mA}$$

$$I_{A} = 9mA$$

9. Berechnen Sie den Leistungsverbrauch $P_{AD1} \dots P_{AD4}$ der Dioden im Arbeitspunkt.

$$P_{ADn} = U_{ADn} \cdot I_{ADn}$$

$$U_{AD1} = 0.6V$$
 $I_{AD1} = 10mA$
 $P_{AD1} = 0.6V \cdot 10mA = 6mW$

$$U_{AD2} = 1.7V$$
 $I_{AD2} = 20 mA$
 $P_{AD2} = 1.7V \cdot 20 mA = 34 mW$

$$P_{AD2} = 1,7V \cdot 20mA = 34mW$$

$$U_{AD3} = 2,2V$$
 $I_{AD3} = 15mA$
 $P_{AD3} = 2,2V \cdot 15mA = 33mW$

$$U_{A41} = 3.1V$$
 $I_{AD4} = 9mA$
 $P_{AD4} = 3.1V \cdot 9mA = 27.9mW$

Lösung: 2.1. Aufgabe (2. Semester) -

1. Bestimmen Sie die KV-Diagamme für Q_1 und Q_2

Q ₁			X	1 2			
		0	1	1	0		
X_3	0	1 0	1	5	4	0	
	0	2	3	7	6	1	X_1
113	1	1	1	1 15	1	1	71
	1	1 8	1	1 13	1 12	0	
	•	0	0	1	1		
			X	2			

	Q_2		X				
			1	1	0		
	0	0	1	1 5	1 4	0	
X_3	0	2	3	1 7	1	1	X_1
A 3	1	1	11	1 15	1 14	1	Λ_1
	1	1 8	9	1 13	1 12	0	
		0	0	1	1		
			X	2			

Bündelminimierung

8 - Block

MINT (8,9,10,11,12,13,14,15)

Funktion : x_3 Kosten : 1

4 - Block

MINT (0,1,8,9)

Funktion : $\overline{x}_2 \overline{x}_1$

Kosten: 2

$$Q_{1-Nb\ddot{u}nb} = x_3 \vee \overline{x}_2 \overline{x}_1$$

Kosten: 3

8 - Block

MINT (4,5,6,7,12,13,14,15)

Funktion : x_2

Kosten: 1

4 - Block

MINT (08,10,12,14)

Funktion : $x_3 \overline{x}_0$

Kosten: 2

$$Q_{\scriptscriptstyle 1-Nb\bar{u}nb} \ = x_{\scriptscriptstyle 2} \vee x_{\scriptscriptstyle 3} \overline{x}_{\scriptscriptstyle 0}$$

2. Bestimmen Sie das KV-Diagamme für den bündelbaren Teil $Q_{{\scriptscriptstyle biinb}}$

Q _{bünb}			X				
		0	1	1	0		
X_3	0	0	1	5	4	0	
	0	2	3	7	6	1	X_1
Λ3	1	1	11	1 15	1 14	1	Λ_1
	1	1 8	9	1 13	1 12	0	
		0	0	1	1		
			X	-2	1		

4 – *Block MINT* (8,10,12,14)

Funktion : $x_3\overline{x}_0$

Kosten: 2

4 - Block

MINT (12,13,14,15)

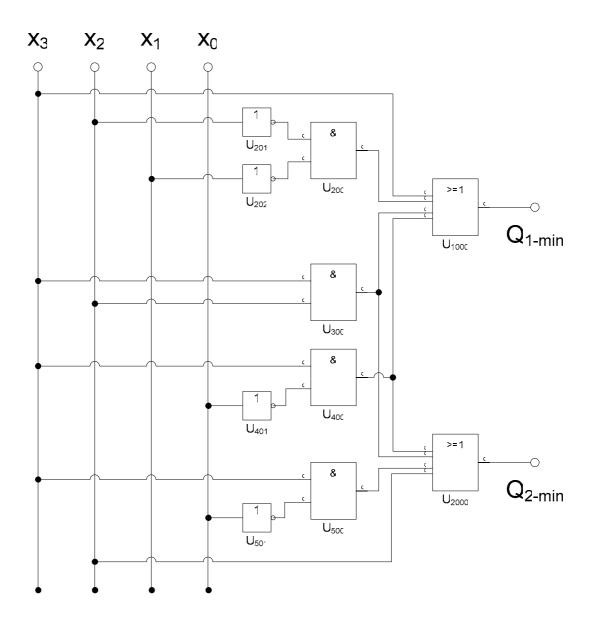
Funktion: x_3x_2

Kosten: 2

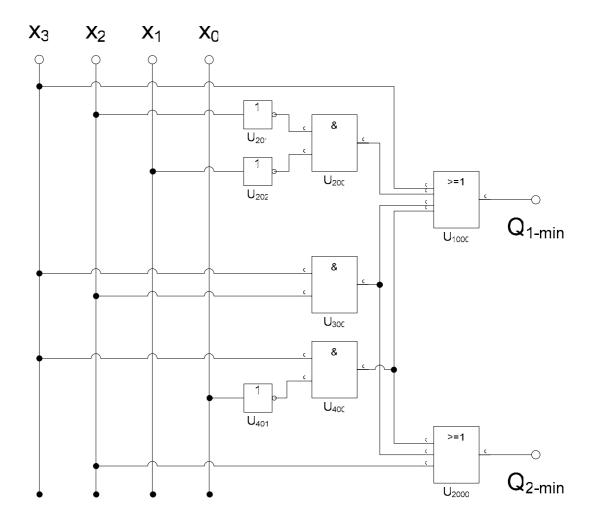
$$Q_{b\ddot{u}nb} = x_3 x_2 \vee x_3 \overline{x}_0$$

Kosten: 4

- 3. Bestimmen Sie die logische Gleichung $Q_{1-\min} = Q_{b\bar{u}nb} \vee Q_{1-Nb\bar{u}nb}$ der bündelminimierten Form für Q_1
- 4. Bestimmen Sie die logische Gleichung $Q_{2-\min} = Q_{biinb} \vee Q_{2-Nbiinb}$ der bündelminimierten Form für Q_2
- 5. Bestimmen Sie die Kosten der bündelminimierten Form $K_{1-\min}$ für $Q_{1-\min}$
- 6. Bestimmen Sie die Kosten der bündelminimierten Form $K_{2-\min}$ für $Q_{2-\min}$


Siehe linke KV-Diagramme. Die vollständigen KV-Diagramme entsprechen der optimalen Form für $Q_{1-Nbiinb}$ und $Q_{2-Nbiinb}$

$$\begin{aligned} Q_{1-\min} &= Q_{biinb} \vee Q_{1-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \vee x_3 \vee \overline{x}_2 \overline{x}_1 & K_{1-\min} &= 7 \\ Q_{2-\min} &= Q_{biinb} \vee Q_{2-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \vee x_2 \vee x_3 \overline{x}_0 & K_{2-\min} &= 7 \end{aligned}$$


 $oder \ besser$ $Q_{2-\min} = Q_{biinb} \lor Q_{2-Nbiinb} = x_3 x_2 \lor x_3 \overline{x}_0 \ \lor \ x_2$

$$K_{2-\min} = 5$$

7. Bestimmen Sie die bündelminimierte Schaltung

$$\begin{split} Q_{1-\min} &= Q_{biinb} \vee Q_{1-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \quad \vee \quad x_3 \vee \overline{x}_2 \overline{x}_1 \qquad K_{1-\min} = 7 \\ Q_{2-\min} &= Q_{biinb} \vee Q_{2-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \quad \vee \quad x_2 \vee x_3 \overline{x}_0 \qquad K_{2-\min} = 7 \\ oder \ besser \\ Q_{2-\min} &= Q_{biinb} \vee Q_{2-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \quad \vee \quad x_2 \qquad K_{2-\min} = 5 \end{split}$$

$$\begin{split} Q_{1-\min} &= Q_{biinb} \vee Q_{1-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \quad \vee \quad x_3 \vee \overline{x}_2 \overline{x}_1 \qquad K_{1-\min} = 7 \\ Q_{2-\min} &= Q_{biinb} \vee Q_{2-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \quad \vee \quad x_2 \vee x_3 \overline{x}_0 \qquad K_{2-\min} = 7 \\ oder \ besser \\ Q_{2-\min} &= Q_{biinb} \vee Q_{2-Nbiinb} = x_3 x_2 \vee x_3 \overline{x}_0 \quad \vee \quad x_2 \qquad K_{2-\min} = 5 \end{split}$$

Lösung:

2.3. Aufgabe (2. Semester)

Entwurf eines 2-Bit Komperators

1. Bestimmen Sie die Wertetabelle für $Q_{Y=X},\,Q_{Y>X}$ und $Q_{Y< X}$

Nr	Eing	änge	A	Ausgär	nge
	Y_1, Y_0	X_1, X_0	$Q_{X=Y}$	$Q_{Y < X}$	$Q_{\scriptscriptstyle Y>X}$
0	00	00	1		
1	00	01		1	
2	00	10		1	
3	00	11		1	
4	01	00			1
5	01	01	1		
6	01	10		1	
7	01	11		1	
8	10	00			1
9	10	01			1
10	10	10	1		
11	10	11		1	
12	11	00			1
13	11	01			1
14	11	10			1
15	11	11	1		

2. Bestimmen Sie die KV-Diagramme

$Q_{X=Y}$			X				
		0	1	1	0		
Y ₁	0	1	1	1 5	4	0	
	0	2	3	7	6	1	X_1
	1	1	11	1	14	1	Λ_1
	1	8	9	13	12	0	
		0	0	1	1		
			Y	0			

 $\begin{aligned} &1 - Block(Minterm) \\ &MINT(0) \\ &Funktion: \overline{Y_1}\overline{Y_0}\overline{X}_1\overline{X}_0 \\ &MINT(5) \\ &Funktion: \overline{Y_1}Y_0\overline{X}_1X_0 \end{aligned}$

MINT(10) $E_{resolution} \times V \overline{V} \times \overline{V}$

 $Funktion: Y_1\overline{Y}_0X_1\overline{X}_0$

MINT (15)

Funktion: $Y_1Y_0X_1X_0$

Alle Kosten: 4

$$\begin{split} Q_{X=Y-\min} &= Y_1 Y_0 X_1 X_0 \vee Y_1 \overline{Y_0} X_1 \overline{X_0} \vee \overline{Y_1} Y_0 \overline{X_1} X_0 \vee \overline{Y_1} \overline{Y_0} \overline{X_1} \overline{X_0} \\ Q_{YX-\min} &= Y_1 \overline{X_1} \vee Y_1 Y_0 \overline{X_0} \vee Y_0 \overline{X_1} \overline{X_0} \\ \end{split} \qquad \qquad \begin{split} K_{X=Y-\min} &= 16 \\ K_{YX-\min} &= 8 \end{split}$$

	0		X				
$Q_{Y < X}$		0	1	1	0		
	0	0	1	5	4	0	
Y_1	0	1 2	1 3	1 7	1 6	1	X_1
11	1	10	1	15	14	1	A 1
	1	8	9	13	12	0	
		0	0	1	1		
			Y	0			

 $\begin{aligned} &4 - Block \\ &MINT(2,3,5,7) \\ &Funktion: \overline{Y}_1 X_1 \end{aligned}$

Kosten: 2

$Q_{\scriptscriptstyle Y< X}$			X				
		0	1	1	0		
	0	0	1	5	4	0	
Y_1	0	1 2	1 3	1 7	1	1	X_1
11	1	10	1	15	14	1	A
	1	8	9	13	12	0	
		0	0	1	1		
			Y	0			

 $\begin{aligned} &2 - Block\\ &MINT (1,3)\\ &Funktion : \overline{Y_1}\overline{Y_0}X_0 \end{aligned}$

$Q_{\scriptscriptstyle Y< X}$			X				
		0	1	1	0		
\mathbf{Y}_{1}	0	0	1	5	4	0	
	0	1 2	1 3	1 7	1	1	X_1
11	1	10	1	15	14	1	Λ
	1	8	9	13	12	0	
		0	0	1	1		
		Y_0					

2 - Block MINT (3,11) $Funktion : \overline{Y}_0 X_1 X_0$

$$\begin{split} Q_{X=Y-\min} &= Y_1 Y_0 X_1 X_0 \vee Y_1 \overline{Y_0} X_1 \overline{X_0} \vee \overline{Y_1} Y_0 \overline{X_1} X_0 \vee \overline{Y_1} \overline{Y_0} \overline{X_1} \overline{X_0} \\ Q_{YX-\min} &= Y_1 \overline{X_1} \vee Y_1 Y_0 \overline{X_0} \vee Y_0 \overline{X_1} \overline{X_0} \\ \end{split} \qquad \qquad \begin{split} K_{X=Y-\min} &= 16 \\ K_{YX-\min} &= 8 \end{split}$$

	$Q_{\scriptscriptstyle Y>X}$		X				
Q_{Y}			1	1	0		
	0	0	1	5	1 ₄	0	
Y_1	0	2	3	7	6	1	X_1
	1	10	11	15	1	1	A
	1	1 8	1 9	1	1	0	
	•	0	0	1	1		
			Y	0			

4 - Block MINT (8,9,12,13) $Funktion : Y_1 \overline{X}_1$

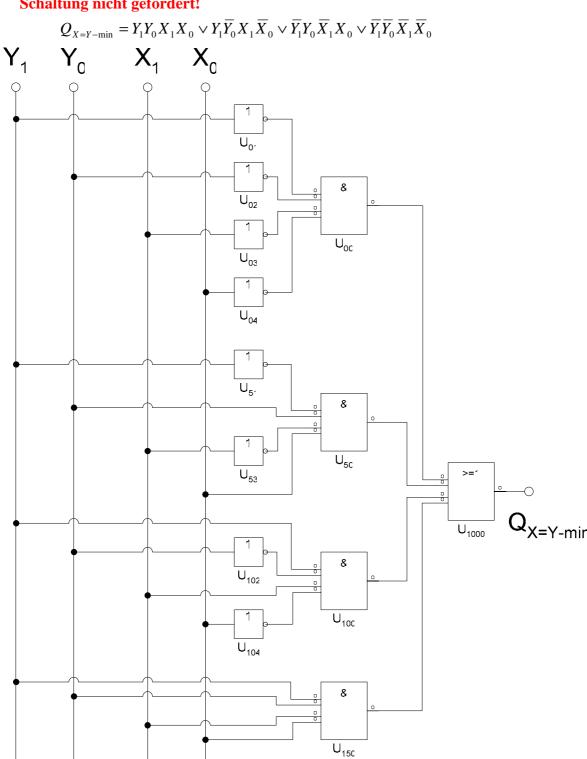
Kosten: 2

$Q_{Y>X}$			X				
		0	1	1	0		
Y ₁	0	0	1	5	1 ₄	0	
	0	2	3	7	6	1	X_1
11	1	10	11	15	1	1	α_1
	1	1	1	1	1	0	
		0	0	1	1		
			Y	0			

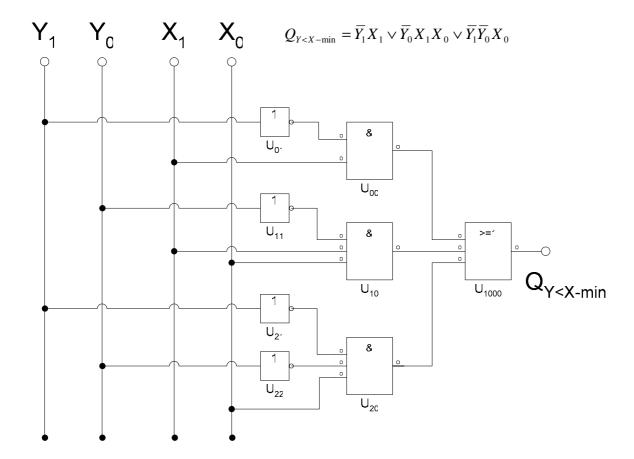
2 – *Block MINT* (12,14)

Funktion: $Y_1Y_0\overline{X}_0$

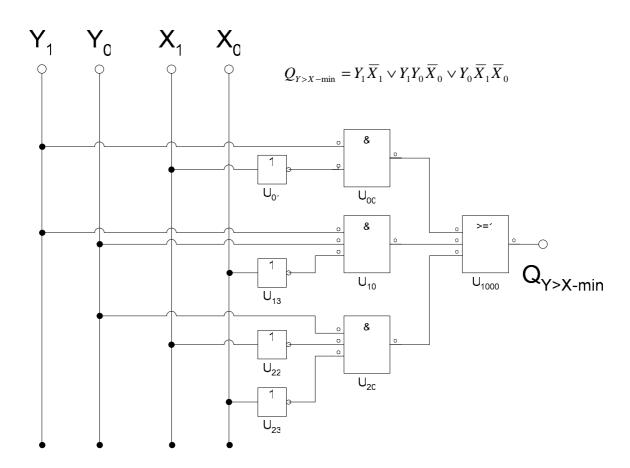
$Q_{Y>X}$			X				
		0	1	1	0		
Y ₁	0	0	1	5	1 4	0	
	0	2	3	7	6	1	X_1
	1	10	11	15	1	1	11
	1	1	1	1	1	0	
		0	0	1	1		
			Y	0			


 $\begin{aligned} &2 - Block \\ &MINT (4,12) \\ &Funktion : Y_0 \overline{X}_1 \overline{X}_0 \end{aligned}$

$$\begin{split} Q_{X=Y-\min} &= Y_1 Y_0 X_1 X_0 \vee Y_1 \overline{Y_0} X_1 \overline{X_0} \vee \overline{Y_1} Y_0 \overline{X_1} X_0 \vee \overline{Y_1} \overline{Y_0} \overline{X_1} \overline{X_0} \\ Q_{YX-\min} &= Y_1 \overline{X_1} \vee Y_1 Y_0 \overline{X_0} \vee Y_0 \overline{X_1} \overline{X_0} \\ \end{split} \qquad \qquad \begin{split} K_{X=Y-\min} &= 16 \\ K_{YX-\min} &= 8 \end{split}$$


- 3. Bestimmen Sie die minimierten logischen Gleichungen Q_{Y=X-min}, Q_{Y<X-min} und Q_{Y>X-min}
- 4. Bestimmen Sie die Kosten $K_{Y=X-min}$, $K_{Y<X-min}$ und $K_{Y>X-min}$ der minimierten logischen Gleichungen $Q_{Y=X-min}$, $Q_{Y<X-min}$ und $Q_{Y>X-min}$

$$\begin{split} Q_{X=Y-\min} &= Y_1 Y_0 X_1 X_0 \vee Y_1 \overline{Y_0} X_1 \overline{X_0} \vee \overline{Y_1} Y_0 \overline{X_1} X_0 \vee \overline{Y_1} \overline{Y_0} \overline{X_1} \overline{X_0} \\ Q_{YX-\min} &= Y_1 \overline{X_1} \vee Y_1 Y_0 \overline{X_0} \vee Y_0 \overline{X_1} \overline{X_0} \\ \end{split} \qquad \qquad \begin{split} K_{X=Y-\min} &= 16 \\ K_{YX-\min} &= 8 \end{split}$$


5. Bestimmen Sie die Schaltungen für $Q_{Y < X-min}$ Schaltung nicht gefordert!

Schaltung gefordert!

Schaltung nicht gefordert!

