UNIVERSITÄT LEIPZIG

Institut für Informatik

Wintersemester 2000/2001

Abt. Technische Informatik Dr. Hans-Joachim Lieske

Aufgaben zum Elektronik - Grundlagenpraktikum

3. Praktikumskomplex - Schaltungen mit digitalen Grundgattern

Aufgabe 3.1 - Aufbau eines XOR - Gatters aus den Grundbausteinen

Aufgabe 3.1.1 - Aufbau eines XOR - Gatters ausschließlich aus NAND - Bausteinen

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

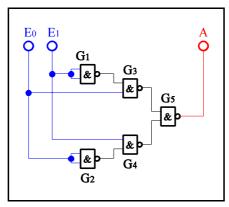


Abb. 1

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₁E₀ mit E=0_D...3_D =0_H...3_H=00_H...11_B) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

+5 V
$$\times$$
 high - Pegel \times "1" (logisch 1)
0 V \times low - Pegel \times "0" (logisch 0)

Symbole: $E_i = Eingänge$, $A_i = Ausgänge$, $G_k = Gatter$, $S_l = Steuereingänge$

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

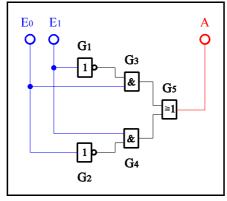


Abb. 2

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₁E₀ mit E=0_D...3_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

```
+5 V × high - Pegel × "1" ( logisch 1)
0 V × low - Pegel × "0" ( logisch 0)
```

Symbole: E_i = Eingänge, A_i = Ausgänge, G_k = Gatter, S_l = Steuereingänge

Aufgabe 3.2 - Aufbau eines 4:1 Multiplexers aus den Grundbausteinen

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

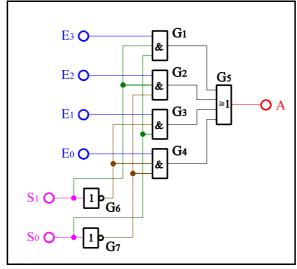


Abb. 3

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (S=S₁,S₀ mit S=0_D...3_D sowie für E=E₃E₂E₁E₀ mit E=6_D und E=10_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

```
+5 V \times high - Pegel \times "1" ( logisch 1)
0 V \times low - Pegel \times "0" ( logisch 0)
```

Symbole: $E_i = \text{Eingänge}$, $A_i = \text{Ausgänge}$, $G_k = \text{Gatter}$, $S_i = \text{Steuereingänge}$

Aufgabe 3.3 - Aufbau eines 2:4 Dekoders aus den Grundbausteinen

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

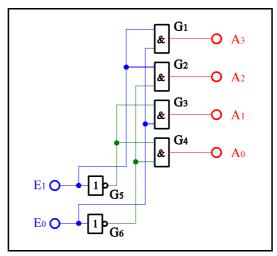


Abb. 4

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₁E₀ mit E=0_D...3_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

```
+5 V \times high - Pegel \times "1" ( logisch 1)
0 V \times low - Pegel \times "0" ( logisch 0)
```

Symbole: $E_i = Eingänge$, $A_i = Ausgänge$, $G_k = Gatter$, $S_l = Steuereingänge$

Aufgabe 3.4 - Aufbau eines 1-Bit Volladders aus den Grundbausteinen Aufgabe 3.4.1 - Aufbau eines 1-Bit Volladders aus den Grundbausteinen (ohne Verwendung der XOR - Bausteine)

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

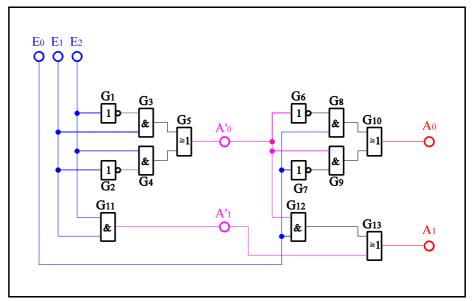
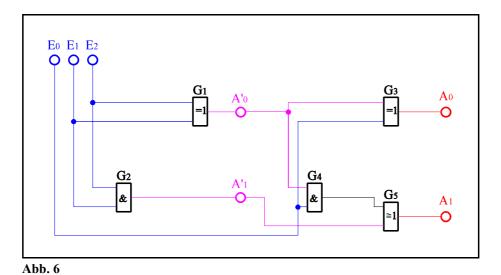


Abb. 5

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₂E₁E₀ mit E=0_D...7_D) und kontrollieren Sie die Ausgangswerte an A' und A. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter. Welche Funktionen erfüllen die Ausgänge A'_{0} , A'_{1} , A_{0} , A_{1} .
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:


```
+5 V × high - Pegel × "1" ( logisch 1)
0 V × low - Pegel × "0" ( logisch 0)
```

Halbadders.

Symbole: E_i = Eingänge, A_j = Ausgänge, G_k = Gatter, S_l = Steuereingänge E_0 entspricht dem Übertrag von der vorherigen Stelle. E_1 und E_2 sind die zu addierenden Bits. A_0 ist die Summe und A_1 ist der Übertrag am Ausgang. A'_0 ist die Summe und A'_1 ist der Übertrag am Ausgang des niederwertigeren

Aufgabe 3.4.2 - Aufbau eines 1-Bit Volladders aus den Grundbausteinen unter Verwendung von zwei XOR - Bausteinen

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₂E₁E₀ mit E=0_D...7_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter. Welche Funktionen erfüllen die Ausgänge A'₀, A'₁, A₀, A₁.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

```
+5 V × high - Pegel × "1" ( logisch 1)
0 V × low - Pegel × "0" ( logisch 0)
```

Symbole: $E_i = Eingänge$, $A_j = Ausgänge$, $G_k = Gatter$, $S_l = Steuereingänge$

 E_0 entspricht dem Übertag von der vorherigen Stelle. E_1 und E_2 sind die zu addierenden Bits. A_0 ist die Summe und A_1 ist der Übertrag am Ausgang. A_0' ist die Summe und A_1' ist der Übertrag am Ausgang des niederwertigeren Halbadders.