UNIVERSITÄT LEIPZIG

Institut für Informatik

Abt. Technische Informatik Dr. Hans-Joachim Lieske

Aufgaben zum Elektronik - Grundlagenpraktikum

3. Praktikumskomplex - Schaltungen mit digitalen Grundgattern

Aufgabe 3.1 - Aufbau eines XOR - Gatters aus den Grundbausteinen Aufgabe 3.1.1 - Aufbau eines XOR - Gatters ausschließlich aus NAND - Bausteinen

Bauen Sie folgende Schaltung mithilfe der Digital - Experimentiertafel auf:

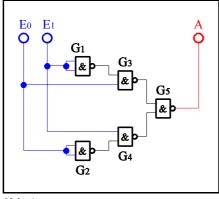


Abb. 1

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₁E₀ mit E=0_D...3_D =0_H...3_H=00_B...11_B) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die der Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

+5 V
$$\triangleq$$
 high - Pegel \triangleq "1" (logisch 1)
0 V \triangleq low - Pegel \triangleq "0" (logisch 0)

Symbole: $E_i = Eingänge$, $A_i = Ausgänge$, $G_k = Gatter$, $S_l = Steuereingänge$

Aufgabe 3.1.2 - Aufbau eines XOR - Gatters aus AND, OR und NOT - Bausteinen

Bauen Sie folgende Schaltung mithilfe der Digital - Experimentiertafel auf:

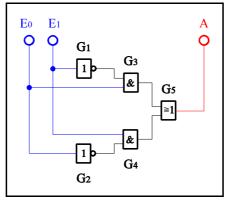


Abb. 2

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₁E₀ mit E=0_D...3_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die der Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

```
+5 V \triangleq high - Pegel \triangleq "1" ( logisch 1)
0 V \triangleq low - Pegel \triangleq "0" ( logisch 0)
```

Symbole: E_i = Eingänge, A_i = Ausgänge, G_k = Gatter, S_l = Steuereingänge

Aufgabe 3.2 - Aufbau eines 4:1 Multiplexers aus den Grundbausteinen

Bauen Sie folgende Schaltung mithilfe der Digital - Experimentiertafel auf:

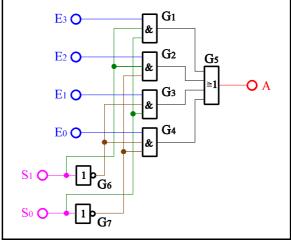
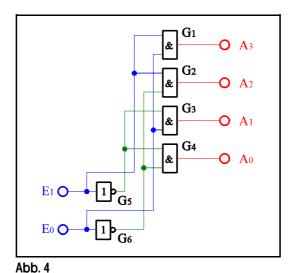


Abb. 3

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (S=S₁,S₀ mit S=0_D...3_D soeie für E=E₃E₂E₁E₀ mit E=6_D und E=10_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die der Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.


Einstellungen:

```
+5 V \triangleq high - Pegel \triangleq "1" ( logisch 1)
0 V \triangleq low - Pegel \triangleq "0" ( logisch 0)
```

Symbole: E_i = Eingänge, A_i = Ausgänge, G_k = Gatter, S_l = Steuereingänge

Aufgabe 3.3 - Aufbau eines 2:4 Dekoders aus den Grundbausteinen

Bauen Sie folgende Schaltung mithilfe der Digital - Experimentiertafel auf:

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₁E₀ mit E=0_D...3_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die der Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

```
+5 V \triangleq high - Pegel \triangleq "1" ( logisch 1)
0 V \triangleq low - Pegel \triangleq "0" ( logisch 0)
```

Symbole: E_i = Eingänge, A_i = Ausgänge, G_k = Gatter, S_l = Steuereingänge

Aufgabe 3.4 - Aufbau eines 1-Bit Volladders aus den Grundbausteinen Aufgabe 3.4.1 - Aufbau eines 1-Bit Volladders aus den Grundbausteinen (ohne Verwendung der XOR - Bausteine)

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

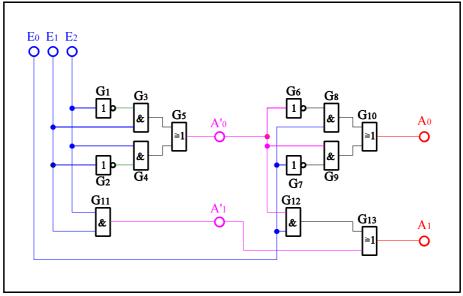
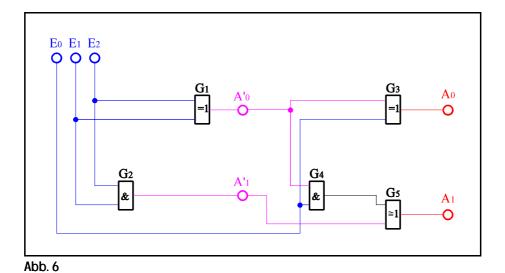


Abb. 5

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₂E₁E₀ mit E=0_D...7_D) und kontrollieren Sie die Ausgangswerte an A' und A. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die der Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter. Welche Funktionen erfüllen die Ausgänge A'_{0} , A'_{1} , A_{0} , A_{1} .
- 5. Protokollieren Sie die Ergebnisse.


Einstellungen:

```
+5 V \triangleq high - Pegel \triangleq "1" ( logisch 1)
0 V \triangleq low - Pegel \triangleq "0" ( logisch 0)
```

Symbole: E_i = Eingänge, A_j = Ausgänge, G_k = Gatter, S_l = Steuereingänge E_0 entspricht dem Übertag von der vorherigen Stelle. E_1 und E_2 sind die zu addierenden Bits. A_0 ist die Summe und A_1 ist der Übertrag am Ausgang. A_0 ist die Summe und A_1 ist der Übertrag am Ausgang des niederwertigeren Halbadders.

Aufgabe 3.4.2 - Aufbau eines 1-Bit Volladders aus den Grundbausteinen unter Verwendung von zwei XOR - Bausteinen

Bauen Sie folgende Schaltung mit Hilfe der Digital - Experimentiertafel auf:

Aufgabenstellung:

- 1. Bauen Sie die Schaltung entsprechend dem Schaltplan auf.
- 2. Überprüfen Sie die Funktionsweise durch Eingabe aller möglichen Eingangswerte (E=E₂E₁E₀ mit E=0_D...7_D) und kontrollieren Sie die Ausgangswerte. Benutzen Sie zur Anzeige der Pegel der Ein- und Ausgänge die externen Leuchtdioden und die der Siebensegmentanzeige.
- 3. Stellen Sie die Ergebnisse in einer Logiktabelle für die Eingangs- und Ausgangswerte dar und erstellen Sie die Gleichung der logischen Verknüpfung für jeden Ausgang.
- 4. Erklären Sie die Funktionsweise der Schaltung und der relevanten Gatter. Welche Funktionen erfüllen die Ausgänge A'₀, A'₁, A₀, A₁.
- 5. Protokollieren Sie die Ergebnisse.

Einstellungen:

```
+5 V \triangleq high - Pegel \triangleq "1" ( logisch 1) 0 V \triangleq low - Pegel \triangleq "0" ( logisch 0)
```

Symbole: E_i = Eingänge, A_j = Ausgänge, G_k = Gatter, S_l = Steuereingänge E_0 entspricht dem Übertag von der vorherigen Stelle. E_1 und E_2 sind die zu addierenden Bits. A_0 ist die Summe und A_1 ist der Übertrag am Ausgang. A_0 ist die Summe und A_1 ist der Übertrag am Ausgang des niederwertigeren Halbadders.