Appendices Table of Contents

Appendix A
VHDL Primer

VHDL Standards History. A-1
IEEE Standard 1076.t A-1
IEEE Standard 1164. A-2

IEEE Standard 1076.3 (Numeric Standard). A-2
IEEE Standard 1076.4 (VITAL) . .. oottt e e e e A-3

Learning VHD L e A-3
A SIimple EXample A-3
Entity Declarations e A-4
Architecture Declarationsot A-5
Data TYPES . .« . ittt A-6
DESIgN UNItSo e A-7
Levels of Abstraction A-9

Sample CirCUIto e e A-11
Comparator (Dataflow) i e A-11
Barrel Shifter (Entity) A-14
Signalsand Variables e A-18
UsiNg a Procedure. e e A-18
Structural VHDL. A-20
Design Hierarchy i A-20
TeSt BENCheS.o A-21
Sample TestBench e A-22

CONCIUSION . . A-23

Examples Gallery e A-24
Using Type Version FUNCLIONS ottt e e e e A-24

Design DescCription.o A-24
TeSt BENCN. . . .o A-27
Describinga State Machine i A-28
Design DescCription.o A-28
TeSt BENCN. . . .o A-31
Reading and Writing from Files i e A-33
Design DescCription.o A-34
TeSt BENCN. . . .o A-35

Multisim 2001 User Guide

Appendix B.1
Verilog Primer

INtrOdUCHION B.1-1
What is Verilog? e B.1-2
Whatis VeriWell? B.1-2
Why Use Verilog HDL? B.1-3

The Verilog Languagec vt e e e e e e e B.1-4
A First Verilog Program e B.1-4
Lexical ConVeNntioNS e B.1-6
Program StrUCIUre B.1-7
Data TYPES . .« . ittt B.1-10

Physical Data TYPESo vttt e e e e e e B.1-10
Abstract Data TYPES . .o v v oo e B.1-11
OPEIALOIS . . . o ot B.1-12
Binary Arithmetic Operators. i e B.1-12
Unary Arithmetic Operators i e e B.1-12
Relational Operators e e e B.1-12
Logical Operatorsottt e B.1-12
Bitwise Operatorsttt B.1-13
Unary Reduction Operators.ttt e e e e B.1-13
Other OperatorS. . ..o oo e e B.1-13
Operator PreCcedencCettt e e B.1-14
2.6 Control CoNnStrUCtS oo B.1-14
Selection - if and case Statements B.1-15
Repetition - for, while and repeat Statements B.1-15
Other StatementS B.1-16
Parameter Statement. B.1-16
ContiNUOUS ASSIgNMENT. ottt e B.1-16
Blocking and Non-blocking Procedural Assignments B.1-16
Tasks and FUNCLIONS e e e e B.1-17
Timing CoNtrol e B.1-19
Delay Control (#).ot B.1-20
EVENtS . . . e B.1-20
walt Statement. e B.1-21
fork and join Statements B.1-21
Traffic Light Example. B.1-22

Using the VeriWell Simulator e e B.1-24
Creatingthe Model File e B.1-24
Starting the Simulator. B.1-24

Electronics Workbench

Simulator OptioNS.o B.1-24
Debugging Using VeriWell's Interactive Mode B.1-25
Interactive Commands. B.1-25
System Tasks and Functions B.1-26
BClEartraCE . . . ot B.1-26
BAiSplaY . . oo B.1-26
BIiNISh . . .o B.1-27
B0 Orot B.1-27

B COPE .« it B.1-28
Y=Y 1 Vo T B.1-28
BSNOWSCOPES .« . . ottt B.1-28
BSNOWVAIS . . oo B.1-29
1] o] o FE B.1-29
BlMIE. . o B.1-29
RefereNCeS e B.1-29

Appendix B.2

Verilog HDL EXtENSIONSot e B.2-1
SILOS I PLIINterfaceo e B.2-1
SILOS Il PLI Interface onthe PC e B.2-1
SILOS Il PLI Interface on the Workstation B.2-2
List of Implemented PLIRoutines B.2-3
Standard Delay Format e B.2-3
Expected Values and Stimulustable. B.2-5
BN B.2-5
Stimulustable B.2-6
RadiX . . oo B.2-7
Delay TIMe. . o B.2-7
Memory Utilization e B.2-8
SHrObE . . B.2-9

O Pad B.2-10
Expected Value EImOr. o e B.2-11
Expected Value Error Storagettt e B.2-12
Incremental Update e B.2-12
Changing Behavioral Stimulus to a "stimulustable"” Format. B.2-14
Analog Behavioral Modeling (AHDL)t e B.2-15
Specifying the Analog Behavioral Modeling Project B.2-16
Running the Analog Behavioral Modeling Simulation B.2-16

Multisim 2001 User Guide iii

ANnalog EXENSIONS e B.2-17

Real and Integer Data TYPES. vttt t i e B.2-17
Utility Transcendental Functions B.2-17
Examples for Transcendental Math Functions B.2-18
"silos" and "sse" Keywords e B.2-19
Extensions to Turn-off, Reset, and Turn-on Saving. B.2-19
SILOS lll Extensionsto Verilog HDL i e B.2-20
Global Variables: e B.2-20
Global tasks and functions: B.2-20
Functions with multiple outputs:. B.2-20
Functions without any inputs: i B.2-21
Tasks and functions with ports declared like amodule:. B.2-21
Procedural assignment to WiresS:ttt e B.2-21
Continuous assignments to register and memory variables:................ B.2-21
Continuous assignments using intra-assignment/non-blocking delays:. B.2-22
Default state value for UDP: B.2-22
UDP additional states for High-Z on inputsoroutput: B.2-22
UDP edge for High-Z: e B.2-23
UDP Multiple EAgesina ROW:. e e e B.2-23
Non-Constant Specify Block Delays:. B.2-23
Parameter for Specify Block Delays: i B.2-23
Stimulustable EXtensioN: B.2-24
"input/output/inout” declarations after the variable's declaration: B.2-24
Using registers as module inputs:ttt e B.2-24
Duplicate variable definitions: B.2-24
Parameter used for sizing numbers: B.2-25
NUll StatemeENtS: B.2-25
Timing checks without edge specifications for selected variables: B.2-25
More precision in "$timeformat” than "timescale™: B.2-25
Missing port connections are set to ground for VCS compatibility: B.2-26
VCS compatibility extension for comma at the end of the port list,
e Module (XX(a,):. oo e B.2-26
Silos Il Command Line USageottt e B.2-26
Commands OVEIVIBW.ttt et e e e e e e B.2-26
Command SYNtaX vttt e B.2-26
Inputting SILOS Commands i e e B.2-26
StOPPING PrOCESSES. . .\ttt e e B.2-26
Activity Report FOr NOdes e B.2-27
Bus Contention REPOIt.ttt e e B.2-29
Encrypting Library Files B.2-30
Control Parameters For Logic Simulation0..... B.2-31

Electronics Workbench

Default Device Delay TiMeS.ot e e e B.2-34

Disk File Name Reassignment. B.2-35
ErrOr SUMMaAIY e B.2-36
Exclude Saving Simulation Node States B.2-37
EXiting The Program. e e e e e B.2-38
File Name Specification B.2-38
Keeping Simulation Node States i e B.2-39
Exclude Saving Module Instance Variable Values. B.2-40
Keeping Module Instance Simulation Variable Values. B.2-41
NONCONVEIgENCE SUMMAIY . . . vt ittt e e e e e e e et B.2-42
Narrow Storing OUIPULSo o e B.2-43
Preprocessing Dataottt e B.2-44
Probing Node States e B.2-45
QUItEING EXECULION e e B.2-46
Resetting Selected Data. o B.2-47
scope For Printing Module Variables B.2-48
Logic Simulation Specification e B.2-48
Size-Of-Data Reprint B.2-49
Spike Summary OULPUL e B.2-50
StoriNg OUIPULSottt B.2-51
Strength Specification For Gates. B.2-52
Symbol Modification For Qutput. e B.2-52
Batch Execution OVEIVIEW oo e e B.2-55
Commands in Files B.2-55
Command-line OptioNSs i e B.2-56
Windows Batch EXecution B.2-60
Unix Batch EXECULION.o B.2-61
Verilog Libraries e B.2-63
OVBIVIBW . B.2-63
Library Command. e B.2-63
TTLLS Parts Listot e B.2-64
TTLBCT Parts LiSt. oot e B.2-73

Multisim 2001 User Guide \%

Appendix B.3
Silos Il Menus

MENUS OVEIVIEBW . . . o ottt e e e e e e e e e e e e e e e e e B.3-1
Menu Bar B.3-1
POp-UP MEBNUS B.3-2
Screen CONVENTIONSottt e e e e e e e B.3-2

File MeNU . .. B.3-2
File/NeW . . B.3-2
File/Open . .. B.3-3
File/Save e B.3-3
File/Save As. e B.3-3
File Print . . B.3-4
File/Print Preview e B.3-4
File/Print SetUp. . ..o oo B.3-4
FilelEXit. . .o e B.3-5

Edit MeNU B.3-5
Edit/UNdoo e B.3-5
Edit/CUL. . . e B.3-5
Edit/COpY . ..t e B.3-5
Edit/Paste. . . . e B.3-6
Edit/Clear e B.3-6
Edit/Select All e B.3-6
Edit/FiNdo B.3-6
Edit/Find NeXt. e B.3-6
Edit/Replace. e B.3-6
Edit/GOto Line. o e B.3-7

VIBW MEBNU . .o oo e B.3-7
VW ZOOM . o et e B.3-7

Zoom-all. ... e B.3-7
ZOOM-0UL . . .o e B.3-7
ZO0MAIN L o B.3-7
ZOOM-MaArKErS . . oo B.3-7
View/Main Toolbar B.3-8
View/Analyzer Toolbar B.3-8
ViIeW/StatUS Baro B.3-8

ProjeCt MenU e B.3-9
ProJeCtNeW . . . B.3-9
ProjeCt OPEN . .o e B.3-9
Project/Files B.3-10

Vi Electronics Workbench

ProjeCt/ Save AS . .. e B.3-10

Project/Closeo B.3-10
Project/Save Project Stateo e B.3-11
Project/Restore Project State. B.3-11
Project/Project Settingsottt e B.3-12
Project/Filters e B.3-14
Project/Load/Reload Input Files. i e B.3-14
Project/Load and GOt e B.3-14
RepOrtsS MenU B.3-14
Reports/ACHIVItY o e B.3-15
REPOMS EITOrS . . ot i e e e B.3-16
Reports/Fault e B.3-16
Reports/lteration. e B.3-16
Reports/NONCONVEIgENCE. oo e B.3-16
Nonconvergence For Gate Designst B.3-16
Nonconvergence (“Hanging”) for Behavioral Designs. B.3-18
ReEpPOMS/SIzZe. . . . B.3-20
EXPIOrer MeNU e e B.3-20
EXplorer/Open EXPIOrer B.3-20
Explorer/Go to Module Source. B.3-21
DEbUG MEBNU e e B.3-21
DEbUG/GO. . .ot e B.3-21
Simulation SUgQeStioNS e B.3-21
Debug/Break Simulation. e B.3-22
Debug/Finish Current Timepoint e B.3-22
Debug/Restart Simulation e B.3-23
Debug/Step B.3-23
Debug/Breakpoints.ttt B.3-23
OPtioNS MEBNUo B.3-24
OPtIONS/FONES B.3-24
OptioNS/TabS e e B.3-25
Options/Snap to EAgeso B.3-25
OptioNS/TIHE TIPS .« v vttt e e e B.3-25
Options/Analog Integer Display B.3-25
Options/Full Path Title e e e B.3-25
OPtioNS/Data TiPS. .+« o o et et e e B.3-25
WINAOW MEBNUo e B.3-26
Window/Cascadeo B.3-26
WINdow/Tile . .. B.3-26
WiINdoW/AITange ICONS oo e e e B.3-26

Multisim 2001 User Guide Vii

WINAOW/EXPIOTEr . . . e e B.3-26

Window/Watch e B.3-27
Window/Data Analyzer. B.3-27
Digital and Analog Signal Display. B.3-28
Notes on using the Data Analyzer Window B.3-30
Help MenU e B.3-32
Help/ContentsS.o e B.3-32
Help/Using Helpo B.3-32
Help/SILOS lll User's Manual i B.3-33
Help/Verilog LRM e e e e e B.3-33
Help/SDF Manual. e B.3-33
Help/AbOUt SSE e B.3-33
Pop-Up MeNUS B.3-33
Explorer WIiNdOW e B.3-34
Add Signalsto Analyzer B.3-34
Name Filter e B.3-34
COPY SCOPE . oottt et B.3-36
Goto Module SOUICE.t B.3-36
Goto Scope Menu Selection. e B.3-37
PrOpeIiES . oo e B.3-37
Watch Window B.3-38
Add SIgNal/EXPresSSION. . . .o e B.3-38
Set Value For Watch Window e B.3-38
Free Forced Wire For WatchWindow B.3-38
Clear All For Watch Window e B.3-38
Data Analyzer POp-Up MENUS B.3-38
Data Analyzer Timeline Areattt e e e B.3-38
Data Analyzer Signal LISt BOXt B.3-40
Source Window Pop-up Menus B.3-44
UNAO ..o e B.3-44
CUL . oo B.3-44
GO Y .+ vt e B.3-44
PaSte . . . B.3-45
Add/Remove Breakpoint i B.3-45
Data TIPS . o o oo e B.3-45
Data Tip RadiX.t e e e e B.3-45

viii Electronics Workbench

Appendix C
Sources Components

GrOUNG . . oo C-1
About Groundingot C-1
The Ground COMPONENt.ot e e e e e C-2

Digital Ground. C-2

DC Voltage Source (Battery) e C-2
Battery Background Information. C-2
Battery COmMPONENto C-3

VCC Voltage SOUICE. e e C-3

DC CUIMENE SOUICE . . . o o it e e e e e e e e C-3

AC Voltage SOUICE . . . oot e e C-3

AC CUIMENE SOUICE . . . ottt e e e e e e C-4

ClOCK SOUICE e C-4

Amplitude Modulation (AM) SOUICEo e e et C-4
Characteristic EQUAtiONttt e C-5

FM SOUICE . .o C-5
FM Voltage SOUrCe. e C-5
Characteristic EQUAtiONttt e C-5
FM CUITent SOUICE.o C-6
Characteristic EQUAtiONttt e e C-6

FOK SOUICE . . o C-6

Voltage-Controlled Voltage Source e C-7

Current-Controlled Voltage SOUICe. i e e C-7

Voltage-Controlled CUIrent SOUICE.o e e e e Cc-8

Current-Controlled Current SOUICEe. oo e e e C-8

Voltage-Controlled Sine Wave C-8
The COmMpPONENt e e e C-8
EXample C-9

Voltage-Controlled Square Wave e C-11
The COmMPONENt e e C-11
EXample C-11

Voltage-Controlled Triangle Wave C-13
The COmMPONENt e e C-13
EXample e C-13

Voltage-Controlled Piecewise Linear SOUrce C-14

Piecewise LiNear SOUICEttt e e e e C-15
The COmMPONENt e C-15

Multisim 2001 User Guide iX

EXample. e C-16

Input Text File Specification. i C-16

Special Considerations e C-17
Piecewise Linear Voltage Source. e C-18
Piecewise Linear CUMrent SOUICE.ttt e e e C-18
PUISE SOUICE . . . C-18
Pulse Voltage SOUrCe. e C-19
Pulse CUIrent SOUICE.t e e e C-20
Polynomial SOUICE e e C-20
Output Voltage Characteristic Equation it C-20
Exponential SOUICE. e C-21
Exponential Voltage Source. e C-22
Exponential CUurrent SOUICEo i i e e e e C-22
Nonlinear Dependent SOUICEottt e e C-22
Controlled One-Shot. e C-23

Appendix D
Basic Components

CONNECIONS . . . e e e D-1
SWILCN . . D-1
RS SO, . . D-2
Resistor: Background Information D-3
ADOUL RESISIANCE o D-3
Characteristic EQUAtiON e D-4
Resistor Virtual. D-4

L T 0T Lo | (o D-4
Capacitor: Background Information D-5
Characteristic EQUAtiONttt e e D-5

DC Modelo D-5
Time-Domain Model D-6

AC Frequency Model D-7
Capacitor Virtual. e D-7
INUCTOT . . . D-7
Inductor: Background Information D-8
Characteristic EQUAtiONttt e e D-8

DC Modelo D-8
Time-Domain Model. D-9

X Electronics Workbench

AC Frequency Model D-10

Inductor Virtual D-10
TranS OrMer . .. D-10
Characteristic EQUAtIONt e e e D-11
Ideal Transformer Model Parametersand Defaults D-11
Nonlinear Transformer D-12
CUSIOMIZING .« . vt e e e D-12
Nonlinear Transformer Parameters and Defaults. D-13
Relay. . . D-13
Model . .. e D-14
Characteristic EQUAtiON it e e D-14
Variable Capacitor D-15
The COmponent D-15
Characteristic Equationand Model i D-15
Virtual Variable Capacitor. D-15
Variable INdUCTOL. D-16
The COmMPONENt e e D-16
Characteristic Equation and Model D-16
Virtual Variable Inductor. D-16
Potentiometer D-17
The COmMPOoNeNt D-17
Characteristic Equationand Model i D-17
Virtual Potentiometer D-18
PUIUD . . o e D-18
RESISIOr PaCKso D-18
MagnetiC Core D-18
Characteristic EQUAtiON e D-18
Magnetic Core Parametersand Defaults. D-20
Coreless Coil D-20
Characteristic EQUAtiON e D-21
Coreless Coil Parametersand Defaults D-21

Appendix E
Diodes Components

DIOdE . .o E-1
Diodes: Background Information E-1
DC MoOdeEl E-2

Multisim 2001 User Guide Xi

Time-Domain Model. E-3

AC Small-Signal Model E-4
Diode Parameters and Defaults. i E-4
Pin Diode E-5
Photo Diode Application. E-6
ZENEr DIOdeo e E-6
DC MOdElo e E-6
Zener Diode Parametersand Defaults. E-8
LED (Light-Emitting Diode) e E-8
Background Information. E-9
LED Parametersand Defaults E-9
Full-Wave Bridge Rectifier e E-10
Characteristic EQUAtiON e E-10
MOl . . E-10
Full-Wave Bridge Rectifier Parameters and Defaults. E-11
SChottky DIOde e E-12
Silicon-Controlled Rectifier e E-12
Model e E-13
Time-Domain Model. E-14
AC Small-Signal Model E-14
SCR Parametersand Defaults. i e E-14
DIAC . E-15
DC MOAEl . ..ot e E-15
Time-Domain and AC Small-SignalModels., E-15
DIAC Parametersand Defaults i e E-16
TRIAC . . E-16
MOl . . e E-16
Varactor Diode E-18

Appendix F
Transistors Components

BIT (NPN & PNP). ..o e e e e F-1
Characteristic EQUALIONSo e F-2
Time-Domain Model. F-4
AC Small-Signal Model F-5
BJT Model Parametersand Defaults F-6

Resistor Biased BJT (NPN & PNP) e e e e F-8

Xii Electronics Workbench

Darlington Transistor (NPN & PNP) e e e e F-8

DCBias Model F-8

AC MoOdeEl . .. F-9
AC Input ImpedancCe. e F-9

AC CUITENt GaIN . . oo e F-9

BT AITAY . . oo F-9
General-purpose PNP Transistor Arrayottt e F-10
NPN/PNP Transistor Array. oot e e e e e e F-10
General-purpose High-current NPN Transistor Arrayccoo.... F-10
MOSFET . . . e F-10
DepletioN MOSFETS ...ttt e e e e e e e F-11
Enhancement MOSFETS i e F-11

DC MOdEl . . .o F-12
Time-Domain Model. F-13

AC Small-Signal Model F-13
MOSFET Level 1 Model Parametersand Defaults F-14
JFETS (JUNCLioN FETS) e F-15
DC MOdeEl . .. F-16
JFET Model Parametersand Defaults. F-18
Power MOSFET (N/P) . .ottt e e e e e e e F-19
N-Channel & P-Channel GaASFET e F-19
Model and Characteristic EqQuations. i F-20
GaAsFET Parametersand Defaults. F-21

IO BT .. F-21

Appendix G
Analog Components

O PaAMID . G-1
Opamp Model Parameters. e e e G-1
Ideal Opamp Model G-1
Opamp: Background Information e G-2
Opamp: Simulation Models G-3

L1 Simulation Model G-3
L2 Simulation Model G-5
L3 Simulation Model G-8
L4 Simulation Model G-8
NOMON OPaMP . .ot G-8

Multisim 2001 User Guide Xiii

The COmMpPONENt e e G-8

Norton Opamp: Simulation models G-9
COMPArAIOr . .. G-9
The COmMpPONENt e e e e G-9
Comparator: Simulation models. G-10
Comparator Parametersand Defaults i, G-10
Wide Band Amplifier G-11
The COmMponent G-11
Wide Band Amplifier: Simulationmodels L G-11
Special FUNCHON e e G-12
The COmMPONENt e G-12
Special Function: Simulation models G-12

Appendix H
Misc. Digital Components

TIL COMPONENTS . . o ottt e e e e e e e e e e H-1
AND Gate. e H-1
OR Gale e H-2
NOT Gate. it e e H-2
NOR Gatl. . . oottt H-3
NAND Gate . ..ottt e e H-3
XOR Gate (Exclusive OR) H-4
XNOR Gate (EXCIuSIVE NOR).o e e e e e H-4
Tristate BUffer. e H-5
BUIT B . . e H-6
SChmitt TrHgger. . . oo e H-6

VHD L .. H-7

LiNE RECEIVEI .o ottt e H-9

LiNE DIIVEI .o H-9

LiNe TranSCeIVEl . .. ittt e e e H-9

Xiv Electronics Workbench

Appendix I
Mixed Components

ADC DA C .o I-1
Characteristic EQUAtiONo e -1
Analog SWItCh e -2
11021 -3
MOdel . . -3
MONO Stable -3
MoOdeEl . . . -4
Phase-Locked LoD ... oo e e I-4
Characteristic EQUAtiONo e I-5
Phase-Locked Loop Parametersand Defaults. I-6

Appendix J
Indicators Components

VO e L J-1
Resistance (L.OW -999.99 TW) ittt e e J-1
MOde (DC OF AC) . . . e J-1
Connecting a Voltmeter e e J-2
AT J-2
Resistance (1.0 pW - 999.99 W) J-2
MOAE (DC OF AC) . o e e e e J-2
Connecting an AMMEter. J-2
Probe (LED)ttt e e J-3
LA . J-3
Time-Domain and AC Frequency Models J-3
Hex Display J-4
Seven-Segment Display.t J-4
Decoded Seven-Segment Display J-5
Bargraphs J-6
The COmMPONENt e e e J-6
Bargraph Display Parameters and Defaults J-6
Decoded Bargraph Displayt e J-6
Decoded Bargraph Display Parameters and Defaults. J-7

BUZZEr . J-7

Multisim 2001 User Guide XV

Appendix K
Misc. Components

XVi

Crystal . o K-1
D MOtOr . e e K-2
Characteristic EQUAtIONSttt e e e K-3
DC Motor Parametersand Defaults. e K-4
O OCOUPIEY oo K-4
VaCUUM TUDE . . K-4
Characteristic EQUAtiONSttt e e e K-5
Model . .. e e K-5
Triode Vacuum Tube Parameters and Defaults. K-6
Voltage Reference K-6
Voltage Regulator K-7
Input/Output Voltage Differential Rating. K-7
VOl AgE SUPPIESSOr . . o ittt e e e K-8
BOOSt CONVEI I . .. e K-8
Characteristic EQUALIONSo e K-8
Boost Converter Parameters and Defaults. L. K-10
BUCK CONVEIEr . .. K-10
Characteristic EQUAtIONSo e K-10
Buck Converter Parametersand Defaults K-12
BUCK BOOSt CONVEIMEro e e e e K-12
Characteristic EQUAtIONSot e K-13
Buck-Boost Converter Parametersand Defaults K-14
FUSE . K-14
Characteristic EQUAtIONSo e K-14
Fuse Parameters and Defaults. K-15
Lossy Transmission Line e K-15
Model . .. e K-15
Lossy Transmission Line Model Parameters and Defaults K-17
Lossless Line Type L ... e K-17
Model . .. e K-18
Lossless Transmission Line Model Parameters and Defaults K-19
LOoSSIESS LiNe TYPe 2 . . .o K-19
Nt K-19

Electronics Workbench

Appendix L
Controls Components

MU DI . L-1
Characteristic EQUALION e L-3
Multiplier Parametersand Defaults i L-3

DIVIdEr . . L-4
Characteristic EQUAtION e L-5
Divider Parameters and Defaults L-5

Transfer Function BIoCK L-6
Characteristic EQUAtION e L-6
Transfer Function Block Parameters and Defaults. L-7

Voltage Gain BIOCK L-7
Characteristic EQUAtiONo e L-8
Voltage Gain Block Parametersand Defaults L-8

Voltage Differentiator L-9
INVESHIgAatioNS o o L-9

SINE WAV . .t L-9
Triangle wWaveforms e L-9
SOUANE WAVES . . oottt t ettt e L-9
Characteristic EQUAtiON e L-10
Voltage Differentiator Parameters and Defaults. L-11

Voltage Integrator L-11
INVESHIgAtioNS o L-11
Characteristic EQUAtiONttt L-12
Voltage Integrator Parameters and Defaults L-13

Voltage Hysteresis Block L-13
Hysteresis Block Parametersand Defaults L-14

Voltage Limiter L-15
Characteristic EQUAtiON e L-16
Voltage Limiter Parameters and Defaults. L-16

Current Limiter Block e L-16
Current Limiter Parameters and Defaults. L. L-18

Voltage-Controlled Limiter e e L-18
Voltage-Controlled Limiter Parameters and Defaults. L-19

Voltage Slew Rate BIOCK L-20
Voltage Slew Rate Block Parameters and Defaults. L-21

Multisim 2001 User Guide XVii

Three-Way Voltage SUMMET e e e e e e e s L-21
Charactistic EQUation e L-22
Summer Parametersand Defaults. L-22

Appendix M
RF Components

R Capacitoro M-1
RE INAUCIOr . . . M-2
RF Bipolar ReSISIOrS i e M-2
RE MOS 3T DN .o e M-2
Tunnel Diode M-3
S LINE .o M-3

Appendix N
Electro-Mechanical Components

SWItCRES . . e N-1
Line TransSiOrmMer ... N-1
Coils, RelaYS ... N-2
TiMmed CoNtactSo N-2
Protection DeVICES i N-2
OULPUL DBVICES . . oot e e e e e e N-2
PUSHh BUONS N-3
PIlot Lights . . e N-3
TarmMINAlS . . . e N-3

Appendix @)
Functions (4000 Series)

CMOOS . L o 0O-1
Power-Supply Voltage 0-2
Logic Voltage Levels 0-2
NOISE MarginS i e e 0-2
Power Dissipation. 0-2

Xviii Electronics Workbench

4000 SErES ICS. . ottt 0-2

4000 (Dual 3-In NOR and INVERTER).o e e 0-3
4001 (Quad 2-IN NOR)o 0-3
4002 (Dual 4-In NOR) . . . oot e e 0-4
4007 (Dual Com Pair/INV)o e O-4
4008 (4-bit Binary Full Adder) 0-4
4010 (HeEX BUFFER).o e e e e 0-5
40106 (Hex INVERTER (Schmitt))o e e 0-5
4011 (Quad 2-In NAND)o 0-6
4012 (Dual 4-In NAND) oo e 0-6
4013 (Dual D-type FF (+8dgE)). « v v vttt e e o-7
4014 (8-bit Static Shift Req)o O-7
4015 (Dual 4-bit Static ShiftReg) i 0-8
40160 (4-bit Dec COUNLEI) 0-9
40161 (4-bit BINn COUNLEN)o e e e e 0-10
40162 (4-bit DeC COUNLEI) e 0-10
40163 (4-bit BINn COUNLEN)o e e e e 0-10
4017 (5-stage Johnson COUNtEr)ot e e e 0-11
40174 (Hex D-type Flip-flop).o 0-12
40175 (Quad D-type Flip-flop) 0-12
4018 (5-stage Johnson COUNtEI) oottt e e e e e 0-13
4019 (Quad 2-INn MUX)ot e 0-14
40192 (4-bit DEC COUNLEI) . .ot e e e e 0-14
40193 (4-bit BIn CouNter) 0-15
40194 (4-bit Shift Register).o e 0-15
40195 (4-bit Shift Register). 0-15
4020 (14-stage Bin CoUNter). . ..ttt 0-16
4021 (8-bit Static Shift Register). 0-16
4023 (Tri3-IN NAND)t e e 0-16
4024 (7-stage Binary COUNLET)ottt e e 0-17
40240 (Octal Inv BUffer) o e e 0-18
40244 (Octal Non-inv Buffer) 0-18
40245 (Octal BUS TranSCeIVEL) . . . v v vttt it et ettt e e 0-18
4025 (Tri3-INNOR) . ..o 0-19
4027 (Dual JK FF (+edge, pre, Clr) ..o oo e 0-19
4028 (1-0f-10 DEC) . . o v v vttt e e 0-20
4029 (4-bit BIN/BCD DeC COUNEN) . . v vttt i et e e e e 0-21
4030 (Quad 2-IN XOR) . . ottt e 0-21
4032 (Triple Serial Adder). e 0-22
4035 (4-bit Shift Register)o 0-22

Multisim 2001 User Guide XiX

XX

40373 (Octal Trans Latch) e e 0-23

40374 (Octal D-type Flip-flop) oo 0-24
4038 (Triple Serial Adder) 0-24
4040 (12-stage Binary COUNter).ot 0-24
4041 (Quad True/Complement BUFFER) 0-25
4042 (Quad D-latch) e 0-25
4043 (Quad RS latchw/3-state Out) i e 0-26
4044 (Quad RS latch w/3-state Out) e 0-26
4049 (HeX INVERTER) . . .ot e e 0-26
4050 (HEX BUFFER)ot e e e e 0-27
4066 (Quad Analog SWItCheS) 0-27
4068 (8-IN NAND) . .. oot 0-28
4069 (HeX INVERTER)o e e 0-28
4070 (Quad 2-In XOR). . . .ttt 0-28
4071 (Quad 2-IN OR) . . .o 0-29
4072 (Dual 4-In OR). . . oo 0-29
4073 (Tri3-IN AND) . . oo 0-30
4075 (Tri3-IN OR) . .ttt e e 0-31
4076 (Quad D-type Regw/3-state Out) ottt 0-31
4077 (Quad 2-In XNOR)o 0-32
4078 (B-IN NOR) . .\ttt 0-32
4081 (Quad 2-In AND)ttt 0-33
4082 (Dual 4-In AND) . ..ot 0-33
4085 (Dual 2-Wide 2-In AND-OR-INVERTER) i 0-34
4086 (4-Wide 2-In AND-OR-INVERTER) 0-36
4093 (Quad 2-In NAND (Schmitt)). . .. oo v 0-36
4094 (8-stage Serial Shift Register). 0-37
4099 (8-bit Latch). o 0-38
4502 (Strobed hex INVERTER).o e 0-38
4503 (Tri-state hex BUFFER w/Strobe). o 0-39
4508 (Dual 4-bitlatch) o 0-39
4510 (BCD up/down COUNLEN) . . .o oot e e e e e e 0-40
4511(BCD-to-seven segment latch/Dec) i i 0-41
4512 (B-In MUX W/3-state OUL)t 0-42
4514 (1-0f-16 Dec/DEMUX w/lnput latches) 0-43
4515 (1-0of-16 Dec/DEMUX w/input latches) it 0-44
4516 (Binary up/down COUNtEI)ttt e 0-45
4518 (Dual BCD COUNTEN) . . . ottt e e e e e e e e 0-46
4519 (Quad MUItipleXer) o 0-47
4520 (Dual Binary COUNLEI)ttt e e e e e e 0-47

Electronics Workbench

4522 (4-bit BCD DOWN COUNLEN) ottt ettt e e e e e 0-48

4526 (4-bit BINDOWN COUNEN)ttt ettt e e et e 0-48
4531 (13-input Checker/Generator) 0-48
4532 (8-bit Priority ENC) ottt e 0-49
4539 (Dual 4-input Multiplexer). 0-50
4543 (BCD-to-seven segment latch/dec/driver) 0-50
4544 (BCD-to-seven segment latch/dec) i 0-52
4555 (Dual 1-0f-4 DEC/DEMUX)ot 0-53
4556 (Dual 1-0f-4 DEC/DEMUX)ot e 0-53
4585 (4-bit Comparator) 0-54

Appendix P
Functions (74XX Series)

Standard TTL ... P-1
SCNOtKY T . . o e e P-1
Low-Power Schottky TTL e pP-2
TINY LOQIC .« . oot pP-2
TAXK . P-2
74xx00 (Quad 2-IN NAND)o P-2
74xx02 (Quad 2-IN NOR) e P-3
74xx03 (Quad 2-IN NAND (LS-OC)) . .. oottt e P-3
TAxX04 (HeX INVERTER)o o e e e e P-3
74xX05 (HEX INVERTER (OC)). . . v oottt e e e e e P-4
74xx06 (HEX INVERTER (OC)). . .« ittt ettt e e e e e P-4
T74xXX07 (HEXBUFFER (OC)) ..ottt e e e e e P-5
74xx08 (Quad 2-In AND)o P-5
74xx09 (Quad 2-IN AND (OC)) . . o v v ot P-5
TAXX10 (Tri 3-IN NAND) . ..o e e e P-6
74xx100 (8-Bit Bist Latch). P-6
74xx107 (Dual JIK FE(CIr)) . . o P-7
74xx109 (Dual JK FF (+edge, pre, Clr)). ..o oo P-7
TAXXLL (Tri 3-INAND) . . ot P-7
74xx112 (Dual JK FF(-edge, pre, ClIr)) . ..o e e P-8
74xx113 (Dual JK MS-SLV FF (-edge, pre)). . .« oot e P-8
74xx114 (Dual JK FF (-edge, pre,comclk &clr)). P-9
74xx116 (Dual 4-bit latches (CIr)) o P-9
TAXX12 (Tri3-INNAND (OC)) .« oot P-10

Multisim 2001 User Guide XXi

XXii

74xx125 (Quad bus BUFFER w/3-state Out). e P-10

74xx126 (Quad bus BUFFER w/3-state Out). P-11
74xx132 (Quad 2-In NAND (Schmitt)) P-11
TAXXL33 (L3-IN NAND). . . oot P-11
74xx134 (12-In NAND w/3-state OULt)o it e P-12
74xx135 (Quad EX-OR/NOR Gate)ottt e e P-12
74xx136 (Quad 2-in EXC-OR gate). oo e P-12
TAXXL38 (3-10-8 DEC) . . o ot P-13
74xx139 (Dual 2-t0-4 DeC/DEMUX).t P-13
74xx14 (Hex INVERTER (Schmitt)).o e P-14
74xx145 (BCD-to-Decimal DEC).o oo e e e e P-14
TAXX147 (10-t0-4 Priority ENC) o oo o e P-15
TAXX148 (8-t0-3 Priority ENC)o P-16
TAXXL5 (3 3-INPUt AND) . . .ot P-16
74xx150 (1-0f-16 Data Sel/MUX). P-17
74xx151 (1-0f-8 Data Sel/MUX). P-17
T74xx152 (Data Sel/MUX) oo P-18
74xx153 (Dual 4-to-1 Data Sel/MUX) e P-18
T4xx154 (4-10-16 DeC/DEMUX) oo P-19
74xx155 (Dual 2-t0-4 Dec/DEMUX).ot P-20
74xx156 (Dual 2-t0-4 Dec/DEMUX (OC)) .« . .t vt e e e P-20
74xx157 (Quad 2-to-1 Data Sel/MUX). e P-21
74xx158 (Quad 2-to-1 Data Sel/MUX)o P-21
74xx159 (4-10-16 Dec/DEMUX (OC)) . . oot it it e e e e e e p-21
74xx16 (HEX INVERTER (OC)) . . . oottt e pP-22
74xx160 (Sync 4-bit Decade Counter (CIr)) P-23
74xx161 (Sync 4-bit Bin COUNLEN)o e e P-23
74xx162 (Sync 4-bit Decade Counter).t P-24
74xx163 (Sync 4-bit Binary Counter).ottt e e P-25
74xx164 (8-bit Parallel-Out Serial ShiftReg).o P-26
74xx165 (Parallel-load 8-bit ShiftReg) pP-27
74xx166 (Parallel-load 8-bit ShiftReg) i pP-27
74xx169 (Sync 4-bit up/down Binary Counter)c.ouiiiiiinnnn. .. P-28
TAXXL7 (HEXBUFFER (OC)) . . oot e e e e e P-28
74xx173 (4-bit D-type Regw/3-state Out)o e P-29
74xx174 (Hex D-type FF (CIr)) . . oo e P-29
74xx175 (Quad D-type FF (CIr)) oo o e P-29
74xx180 (9-bit Odd/even Par GEN). P-30
74xx181 (Alu/Function Generator).o v e e P-30
74xx182 (Look-ahead Carry GEN) P-31

Electronics Workbench

74xx190 (Sync BCD up/down Counter) P-32

74xx191 (Sync 4-bitup/down Counter).t P-33
74xx192 (Sync BCD Up/down Counter)o e P-33
74xx193 (Sync 4-bit Bin Up/down Counter)t P-34
74xx194 (4-bit Bidirect Univ. ShiftReg) P-34
74xx195 (4-bit Parallel-Access ShiftReg) P-35
74xx198 (8-bit Shift Reg (shl/shrctrl)) P-36
74xx199 (8-bit Shift Reg (sh/ld ctrl))o P-37
74xx20 (Dual 4-In NAND) . . . oo P-37
T74xx21 (Dual 4-In AND) . . . oot e P-38
74xx22 (Dual 4-IN NAND (OC)) . .ot i it e e e e P-38
74xx238 (3-t0-8 line DeC/DEMUX)ot P-39
74xx240 (Octal BUFFER w/3-state Out).t e P-39
74xx241 (Octal BUFFER w/3-state OuUt).o e P-40
74xx244 (Octal BUFFER w/3-state Out).t e P-40
74xx246 (BCD-to-seven segment dec). oottt e e P-41
74xx247 (BCD-to-seven segment dec).o vt ittt e P-42
74xx248 (BCD-to-seven segment dec). oottt e P-43
74xx249 (BCD-to-seven segment dec).ot vttt it P-44
74xx25 (Dual 4-In NOR W/Strobe) e P-45
74xx251 (Data Sel/MUX w/3-state OUt)t P-45
74xx253 (Dual 4-to-1 Data Sel/MUX w/3-state OQut)., P-46
74xx257 (Quad 2-to-1line Data Sel/MUX)o e P-46
74xx258 (Quad 2-to-1line Data Sel/MUX) i e P-47
T4Axx259 (8-bit Latch) P-47
74xx26 (Quad 2-INNAND (OC)) . . .« ottt P-48
74xx266 (Quad 2-IN XNOR (OC)) . .« o vttt e e e e e e e e P-48
TAXX27 (Tri3-INNOR). . . oo e P-49
74xx273 (Octal D-type FF)o e P-49
74xx279 (Quad SR Iatches) P-50
74xx28 (Quad 2-INNOR)o P-50
74xx280 (9-bit odd/even parity generator/checker) P-51
T4xx283 (4-bit BIn FULAD)o P-51
74xx290 (Decade COUNEN). . .. v vttt e e e P-51
74xx293 (4-bit Binary COUNEr)ot e P-52
74xx298 (Quad 2-In MUX)o P-52
TAXX30 (B-IN NAND) . .o ot P-53
TAxx32 (QUad 2-IN OR). . . . oo e P-53
74xx33 (QuUad 2-INNOR (OC)) . . v v ot e P-53
74xx350 (4-bit Shifterw/3-state Out) i . P-54

Multisim 2001 User Guide Xxiii

XXIV

74xx351 (Dual Data Sel/MUX w/3-state Out)ccoiiiiiiinnnnnnn. P-54

74xx352 (Dual 4-to-1 Data Sel/MUX) e P-55
74xx353 (Dual 4-to-1 Data Sel/MUX w/3-state Out) P-55
74xx365 (Hex Buffer/Driver w/3-state). P-56
74xx366 (Hex Inverter Buffer/Driverw/3-state) P-56
74xx367 (Hex Buffer/Driver w/3-state). P-57
74xx368 (Hex Inverter Buffer/Driverw/3-state) P-57
74Axx37 (Quad 2-IN NAND). . . .o P-58
74xx373 (Octal D-type TransparentLatches) P-58
74xx374 (Octal D-type FF (+€dge)) . - - - ot P-59
74xx375 (4-bit Bistable Latches) e P-59
74xx377 (Octal D-type FFW/en)o P-59
74xx378 (Hex D-type FF W/EN) e e e e e e P-60
74xx379 (Quad D-type FF W/en) P-60
74xx38 (Quad 2-INNAND (OC)) . ..ottt P-60
74xx39 (Quad 2-INNAND (OC)) . . oottt e e e e P-61
74xx390 (Dual Div-by-2, Div-by-5 Counter). e P-61
74xx393 (Dual 4-bit Binary COUNter)t e P-62
74xx395 (4-bit Cascadable Shift Regw/3-state Out). P-63
74xx40 (Dual 4-In NAND) . . .o P-64
74xx42 (4-BCD t0 10-Decimal DEC).o oot e e e P-64
74xx43 (Exc-3-to-Decimal DecC). oo P-65
74xx44 (Exc-3-Gray-to-Decimal DecC)t e P-66
74xx445 (BCD-to-Decimal DeC). o e P-67
74xx45 (BCD-to-Decimal DEC).o oo e e e P-68
74xx46 (BCD-to-seven segment dec)ottt e P-69
74xx465 (Octal BUFFER w/3-state OUt)t P-70
74xx466 (Octal BUFFER w/3-state OUut)ot e e P-71
74xx47 (BCD-to-seven segment dec)ottt ittt e P-71
74xx48 (BCD-to-seven segment decC)ottt e P-73
74xx51 (AND-OR-INVERTER) e P-74
74xx54 (4-wide AND-OR-INVERTER).o e P-74
74xx55 (2-wide 4-In AND-OR-INVERTER) ot P-74
74xx69 (Dual 4-bit Binary COUNLEr)ot e s P-75
74xx72 (AND-gated JK MS-SLV FF (pre, clr)). oo P-75
TAXXT3 (Dual JK FF (CIN)) . oo oo e P-76
74xx74 (Dual D-type FF (pre, CIr)) . . oo oo e P-76
74xX75 (4-bit Bistable Latches) pP-77
74xx76 (Dual JK FF (pre, Clr)) .o oo e e e e P-77
T74xXT7 (4-bit Bistable Latches) P-77

Electronics Workbench

Index

74xx78 (Dual JK FF (pre,comclk &clr))o P-78

T4xx82 (2-bit Bin FUll Adder) P-78
74xx83 (4-bit Bin Full Adder) P-79
TAxX85 (4-bit Mag COMP)o P-79
74xx86 (Quad 2-IN XOR) . . .ot P-80
74xX90 (Decade COUNTEN). . .ottt e e e e P-80
74xx91 (8-bit Shift Reqg) P-81
74xx92 (Divide-by-twelve Counter). P-82
74xx93 (4-bit Binary Counter). P-82

Multisim 2001 User Guide XXV

XXVi Electronics Workbench

Appendix A
VHDL Primer

This section provides asolid introduction to programming in VHDL. It isnot intended to be a
fully comprehensive VHDL reference. It is made up of an overview of VHDL standards, a
section on learning VHDL, a conclusion and several examples.

A.1 VHDL Standards History

This section provides a detailed history of VHDL standards.

A.1.1 IEEE Standard 1076

In the early 1980s, ateam of engineers from three companies — IBM, Texas Instruments and
Intermetrics — were contracted by the Department of Defense to compl ete the specification
and implementation of a new, language-based design description method. The first publicly
available version of VHDL, version 7.2, was released in 1985. In 1986, the Institute of Elec-
trical and Electronics Engineers, Inc. (IEEE) was presented with a proposal to standardize the
language, which it did in 1987 after substantial enhancements and modifications were made
by ateam of commercial, government and academic representatives. The resulting standard,
|EEE 1076-1987, isthe basis for virtualy every VHDL simulation and synthesis product sold
today. An enhanced and updated version of the language, |EEE 1076-1993, was released in
1994, and VHDL tool vendors have been responding by adding these new language features
to their products.

Multisim 2001 User Guide A-1

J8uwild TAHA

VDHL Prrimer

VHDL Primer

Al2

A-2

IEEE Standard 1164

Although |EEE Standard 1076 defines the complete VHDL language, there are aspects of the
language that make it difficult to write completely portable design descriptions (descriptions
that can be simulated identically using different vendors' tools). The problem stems from the
fact that VHDL supports many abstract data types, but it does not address the simple problem
of characterizing different signal strengths or commonly used simulation conditions such as
unknowns and high-impedance.

Soon after IEEE 1076-1987 was adopted, simulator companies began enhancing VHDL with
new signal types (typically through the use of syntactically legal, but nonstandard, enumer-
ated types) to allow their customers to accurately simulate complex electronic circuits. This
caused problems because design descriptions entered using one simulator were often incom-
patible with other simulation environments. VHDL was quickly becoming nonstandard.

To get around the problem of nonstandard data types, ancther standard, numbered 1164, was
created by an |[EEE committee. It defines a standard package (a VHDL feature that allows
commonly used declarations to be collected into an external library) containing definitions for
astandard nine-valued datatype. Thisstandard datatypeiscalledst d_| ogi c, andthe |[EEE
1164 package is often referred to as the standard logic package, or MVL9 (for multi-valued
logic, nine values).

The |IEEE 1076-1987 and |EEE 1164 standards together form the VHDL standard in widest
use today. (IEEE 1076-1993 is slowly working itsway into the VHDL mainstream, but it does
not add significant new features for synthesis users.)

A.1.2.1 IEEE Standard 1076.3 (Numeric Standard)

Standard 1076.3 (often called the Numeric Standard or Synthesis Standard) defines standard
packages and interpretations for VHDL datatypes as they relate to actual hardware. This stan-
dard isintended to replace the many custom (nonstandard) packages that vendors of synthesis
tools have created and distributed with their products.

|EEE Standard 1076.3 does for synthesis users what |EEE 1164 did for smulation users:
increase the power of Standard 1076, while at the same time ensuring compatibility between
different vendors' tools. The 1076.3 standard includes, among other things:

» A documented hardware interpretation of values belonging to the bit and boolean types
defined by IEEE Standard 1076, as well asinterpretations of thest d_ul ogi ¢ type
defined by IEEE Standard 1164.

» A function that provides “don’'t care” or “wild card” testing of values based on the
std_ul ogi c type. Thisisof particular use for synthesis, sinceit is often helpful to
expresslogic interms of “don’t care” values.

» Definitions for standard signed and unsigned arithmetic data types, along with arithmetic,
shift, and type conversion operations for those types.

Electronics Workbench

Learning VHDL

A.2

A.1.2.2 IEEE Standard 1076.4 (VITAL)

The annotation of timing information to a simulation model is an important aspect of accurate
digital smulation. The VHDL 1076 standard describes avariety of language features that can
be used for timing annotation; however, it does not describe a standard method for expressing
timing data outside of the timing model itself.

The ability to separate the behavioral description of a simulation model from the timing spec-
ificationsisimportant for many reasons. One of the major strengths of Verilog HDL isthe fact
that it includes afeature specifically intended for timing annotation. This feature, the Standard
Delay Format (SDF), allows timing data to be expressed in atabular form and included into
the Verilog timing model at the time of simulation.

The |EEE 1076.4 standard, published by the IEEE in late 1995, adds this capability to VHDL
as a standard package. A primary impetus behind this standard effort (which was dubbed
VITAL, for VHDL Initiative Toward ASIC Libraries) was to make it easier for ASIC vendors
and othersto generate timing model s applicable to both VHDL and Verilog HDL. For thisrea-
son, the underlying data formats of |EEE 1076.4 and Verilog's SDF are quite similar.

Learning VHDL

This section presents several sample circuits and shows how they can be described for synthe-
sis and testing. These small examples are not intended to represent real applications, but will
help you to understand the relationships between various types of VHDL statements and the
actual hardware being described.

In addition to the quick introduction to VHDL presented in this section, very important con-
cepts such as concurrency and hierarchy will be introduced. Before explaining these more
complex topics, avery simple example will be presented so you can see what constitutes the
minimum VHDL sourcefile.

A.2.1 A Simple Example

Thefollowing isalook at avery simple combinational circuit: an 8-bit comparator. This com-
parator will accept two 8-bit inputs, compare them, and produce a 1-bit result (either 1, indi-
cating amatch, or O, indicating a difference between the two input values). A comparator such
asthisisacombinational function constructed in circuitry from an arrangement of exclusive-
OR gates or from some other lower-level structure depending on the capabilities of the target
technology. (It isthejob of logic synthesisto determine exactly what hardware representation
is most appropriate for agiven device.)

Multisim 2001 User Guide A-3

18uwild TAHA

VDHL Prrimer

VHDL Primer

A.2.2

A-4

entity conpare is
port (A, B: in bit;
EQ out bit);
end conpar e;

architecture conparel of conpare is
begin

EQ <= ‘1" when (A =B) else ‘0;

end conparel;

Reading from the top of the source file, you can see the following elements:

e Anentity declaration that defines the inputs and outputs — the ports — of this circuit.
» An architecture declaration that defines what the circuit actually does, using a single con-
current assignment.

Every VHDL design description consists of the following:

1. At least one entity/architecture pair, which in VHDL jargon is sometimes referred to as a
“design entity”. In alarge design, you will typically write many entity/architecture pairs
and connect them together to form a complete circuit.

An entity declaration describes the circuit as it appears from the “outside”, that is, from
the perspective of itsinput and output interfaces. If you are familiar with schematics, you
might think of the entity declaration as being analogous to a block symbol on a schematic.

2. The architecture declaration, which refers to the fact that every entity inaVHDL design
description must be bound with a corresponding architecture. The architecture describes
the actual function — or contents — of the entity to which it is bound.

Entity Declarations

An entity declaration provides the complete interface for a circuit. Using the information pro-
vided in an entity declaration (the names, data types and direction of each port), you have all
the information you need to connect that portion of acircuit into other, higher-level circuits,
or to develop input stimulus (in the form of atest bench) for testing purposes. The actual oper-
ation of the circuit, however, is not included in the entity declaration.

The following entity declaration contains a simple design description:

Electronics Workbench

Learning VHDL

entity conpare is
port(A B: in bit_vector(0 to 7);
EQ out bit);
end conpare;

The entity declaration includes aname, compare, and port declaration statement defining all
the inputs and outputs of the entity. The port list includes definitions of three ports: A, B, and
EQ. Each of these three portsis given adirection (in, out or inout), and atype (in this case,
eitherbit _vector (0 to 7),which specifiesan 8-bit array, or bi t , which represents a
single-bit value).

There are many different datatypes available in VHDL. To keep thisintroductory circuit sim-
ple, the smplest datatypesin VHDL, bit and bi t _vect or, will be used.

A.2.3 Architecture Declarations

Every entity declaration you write must be accompanied by at least one corresponding archi-
tecture.

The architecture declaration for the comparator circuit is as follows:

architecture conparel of conpare is
begi n

EQ <= ‘1" when (A =B) else ‘0;

end conparel;

The architecture declaration begins with a unique name, “comparel”, followed by the name
of the entity to which the architecture is bound, in this case “compare”. Within the architec-
ture declaration (between the begi n and end keywords) is found the actual functional
description of our comparator. There are many ways to describe combinational logic functions
in VHDL; the method used in this simple design description is atype of concurrent statement
known as a conditional assignment. This assignment specifies that the value of the output
(EQ) will be assigned avalue of ‘1’ when A and B are equal, and avalue of ‘0’ when they dif-
fer.

Multisim 2001 User Guide A-5

18uwild TAHA

VDHL Prrimer

VHDL Primer

This single concurrent assignment demonstrates the simplest form of aVHDL architecture.
There are many different types of concurrent statements available in VHDL, allowing you to
describe very complex architectures. Hierarchy and subprogram features of the language
allow you to include lower-level components, subroutines and functionsin your architectures,
and a powerful statement known asa " process’ allows you to describe complex sequential
logic aswell.

A.2.4 Data Types

A-6

Like ahigh-level software programming language, VHDL allows datato be represented in
terms of high-level data types. These data types can represent individual wiresin a circuit, or
they can represent collections of wires using a concept called an “array”.

The preceding description of the comparator circuit used the datatypesbi t and

bit _vect or foritsinputsand outputs. The bit data type has only two possible values: ‘1’
or‘0’. (Abit_vector issimply anarray of bits.) Every datatypein VHDL has a defined
set of values, and adefined set of valid operations. Type checking is strict, so it is not possi-
ble, for example, to directly assign the value of an integer datatypetoabi t _vect or data
type. (There are ways to get around this restriction, using what are called type conversion
functions. These are not discussed in this manual, but examples of their use are provided in
“A.4 Examples Gallery” on page A-24.

The following chart summarizes the fundamental data types availablein VHDL.

Data Type | Values Example

Bit 1,0 Q <=1y

Bit_vector (array of bits) DataOut <= “00010101";
Boolean True, False EQ <= True;

Integer -2,-1,0,1, 2, 3,4, etc. Count <= Count + 2;
Real 1.0, -1.0ES5, etc. V1=V2/53

Physical 1 ua, 7 ns, 100 ps, etc. Q <=1’ after 6 ns;
Record (various) Tvec := (CIk, Inp, Result);
Character ‘a’, b, 2,'$, etc. CharData <= ‘X’;

String (Array of characters) Msg <= “MEM: “ & Addr

Electronics Workbench

Learning VHDL

A.2.5 Design Units

One concept unique to VHDL (when compared to software programming languages and to
Verilog HDL) isthe concept of a“design unit”. Design units (which may also be referred to as
“library units’) are segments of VHDL code that can be compiled separately and stored in a
library. You have been introduced to two design units already: the entity and the architecture.
There are actually five types of design unitsin VHDL.: entities, architectures, packages, pack-
age bodies, and configurations.

1. Thediagram below illustrates the relationship of these five design units:

Configuration
{or default config.)

Packayge

Package Body

Entity

Architecture(s) —"‘

+ Entities
A VHDL entity isa statement (identified by theent i t y keyword) that defines the exter-
nal specification of acircuit or sub-circuit. The minimum VHDL design description must
include at least one entity and one corresponding architecture.
When you write an entity declaration, you must provide a unique name for that entity and
aport list defining the input and output ports of the circuit. Each port in the port list must
be given a name, direction (or “mode”, in VHDL jargon) and atype. Optionally, you may
also include a special type of parameter list (called ageneric list) that allows you to pass
additional information into an entity.

Multisim 2001 User Guide A-7

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-8

Architectures

A VHDL architecture declaration is a statement (beginning withthear chi t ect ur e
keyword) that describes the underlying function and/or structure of acircuit. Each archi-
tecture in your design must be associated (or bound) by name with one entity in the
design.

VHDL allows you to create more than one alternate architecture for each entity. This fea-
tureis particularly useful for simulation and for project team environments in which the
design of the system interfaces (expressed as entities) is done by a different engineer than
the lower-level architectural description of each component circuit.

An architecture declaration consists of zero or more declarations (of items such as inter-
mediate signals, components that will be referenced in the architecture, local functions
and procedures, and constants) followed by abegi n statement, a series of concurrent
statements, and an end statement.

Packages and Package Bodies

A VHDL package declaration is identified by the package keyword, and is used to col-
lect commonly-used declarations for use globally among different design units. You can
think of a package as acommon storage area, one used to store such things as type decla-
rations, constants, and global subprograms. Items defined within a package can be made
visible to any other design unit in the complete VHDL design, and they can be compiled
into libraries for later re-use.

A package can consist of two basic parts: a package declaration and an optional package
body. Package declarations can contain the following types of statements:

e type and subtype declarations

» constant declarations

» ¢lobal signal declarations

» function and procedure declarations

e attribute specifications

+ filedeclarations

e component declarations

+ diasdeclarations

e disconnect specifications

* useclauses.
Items appearing within a package declaration can be made visible to other design units
through the use of a use statement, as will be shown.

If the package contains declarations of subprograms (functions or procedures) or defines
one or more deferred constants (constants whose value is not immediately given), then a
package body isrequired in addition to the package declaration. A package body (whichis
specified using the package body keyword combination) must have the same name as

Electronics Workbench

Learning VHDL

its corresponding package declaration, but it can be located anywhere in the design (it
does not have to be located immediately after the package declaration).

The relationship between a package and package body is somewhat akin to the relation-
ship between an entity and its corresponding architecture. (There may be only one pack-
age body written for each package declaration, however.) While the package declaration
provides the information needed to use the items defined within it (the parameter list for a
global procedure, or the name of a defined type or subtype), the actual behavior of such
elements as procedures and functions must be specified within package bodies.

Examples of global procedures and functions can be found in “A.4 Examples Gallery” on
page A-24.

» Configurations
Thefina type of design unit availablein VHDL is called a configuration declaration. A
configuration declaration (identified withthe conf i gur at i on keyword) specifies

which architectures are to be bound to which entities, and allows you to change how com-
ponents are connected in your design description at the time of simulation or synthesis.

Configuration declarations are always optional, no matter how complex a design descrip-
tion you create. In the absence of a configuration declaration, the VHDL standard speci-
fies a set of rulesthat provide you with a default configuration. For example, in the case
where you have provided more than one architecture for an entity, the last architecture
compiled will take precedence and will be bound to the entity.

A.2.6 Levels of Abstraction

VHDL supports many possible styles of design description. These styles differ primarily in
how closely they relate to the underlying hardware. The different styles of VHDL refer to the
differing levels of abstraction possible using the language — behavior, dataflow, and structure
— as shown in the following diagram:

Thisfigure maps the various pointsin atop-down design process to the three general levels of
abstraction. Starting at the top, suppose the performance specificationsfor agiven project are:
“the compressed data coming out of the DSP chip needs to be analyzed and stored within 70
nanoseconds of the Strobe signal being asserted...” This human language specification must
be refined into a description that can actually be simulated. A test bench written in combina-
tion with a sequential description is one such expression of the design. These are all pointsin
the behavior level of abstraction.

After thisinitial simulation, the design must be further refined until the description is some-
thing aVHDL synthesistool can digest. That is the dataflow level of abstraction.

Multisim 2001 User Guide A-9

18uwild TAHA

VDHL Prrimer

VHDL Primer

The structure level of abstraction occurs when smaller segments of circuitry are being con-

nected together to form alarger circuit. The structure level is commonly thought of asacircuit
netlist, or perhaps a higher-level block diagram.

The three levels of abstraction are as follows:

A-10

1. Behavior

The highest level of abstraction supported in VHDL is called the behavior level of abstrac-
tion. When creating a behavioral description of acircuit, you will describe your circuit in
terms of its operation over time. The concept of time is the critical distinction between
behavioral descriptions of circuits and lower-level descriptions (specifically descriptions
created at the dataflow level of abstraction).

In abehavioral description, the concept of time may be expressed precisely, with actual
delays between related events (such as the propagation delays within gates and on wires),
or it may simply be an ordering of operations that are expressed sequentially (such asina
functional description of aflip-flop). When you are writing VHDL for input to synthesis
tools, you may use behaviora statementsto imply that there are registersin your circuit. It
isunlikely, however, that your synthesistool will be capable of creating precisely the same
behavior in actual circuitry asyou have defined in the language. (Synthesis tools today
ignore detailed timing specifications, leaving the actual timing results to the target device
technology.)

If you are familiar with event-driven software programming, writing behavior-level
VHDL will not seem like anything new. Just like with a programming language, you will
be writing one or more small programs that operate sequentially and communicate with
one another through their interfaces. The only difference between behavior-level VHDL
and a software programming language is the underlying execution platform: in the case of
software, it is some operating system running on a CPU; in the case of VHDL, it isthe
simulator.

. Dataflow

In the dataflow level of abstraction, you describe your circuit in terms of how data moves
through the system. At the heart of most digital systemstoday are registers, so in the data-
flow level of abstraction you describe how information is passed between registersin the
circuit. You will probably describe the combinational logic portion of your circuit at arel-
atively high level (and let a synthesis tool figure out the detailed implementation in logic
gates), but you will likely be quite specific about the placement and operation of registers
in the complete circuit.

. Structure

Thethird level of abstraction, structure, is used to describe a circuit in terms of its compo-
nents. Structure can be used to create a very low-level description of acircuit (such asa
transistor-level description) or avery high-level description (such as a block diagram).

Electronics Workbench

Learning VHDL

In agate-level description of acircuit, for example, components such as basic logic gates
and flip-flops might be connected in some logical structure to create the circuit. Thisis
what is often called a netlist. For a higher-level circuit (one in which the components
being connected are larger functional blocks), structure might simply be used to segment
the design description into manageable parts.

Structure-level VHDL features such as components and configurations are very useful for
managing complexity. The use of components can dramatically improve your ability to
reuse elements of your designs, and they can make it possible to work using a top-down
design approach.

A.2.6.1 Sample Circuit

To help demonstrate some of the important concepts covered so far in this section, avery sim-
ple circuit will be presented. It will show how the function of this circuit can be described in
VHDL. The design descriptions shown are intended for synthesis and therefore do not include
timing specifications or other information not directly applicable to today’s synthesis tools.

The circuit combines the comparator circuit presentedin “A.2.1 A Simple Exampl€” on page
A-3 with asimple 8-bit |oadable shift register. The shift register will allow a detailed exami-
nation of how behavior-level VHDL can be written for synthesis.

The two subcircuits (the shifter and comparator) will be connected using VHDL's hierarchy
features and will demonstrate the third level of abstraction: structure.

This diagram has been intentionally drawn to look like a hierarchical schematic with each of
the lower-level circuits represented as blocks. In fact, many of the concepts to be covered dur-
ing the development of this circuit are familiar to users of schematic hierarchy. These con-
cepts include the ideas of component instantiation, mapping of ports, and design partitioning.

In amore structured project environment, you would probably enter acircuit such as this by
first defining the interface requirements of each block, then describing the overall design of
the circuit as a collection of blocks connected together through hierarchy at the top level.
Later, after the system interfaces had been designed, you would proceed down the hierarchy
(using atop-down approach to design) and fill in the details of each subcircuit.

In this example, however, each of the lower-level blocks will be described and then they will
be connected to form the complete circuit.

A.2.6.2 Comparator (Dataflow)

The comparator portion of the design will be identical to the simple 8-bit comparator already
shown. The only difference isthat the IEEE 1164 standard logic datatypes (st d_ul ogi ¢
andstd_ul ogi c_vect or) will beused rather thanthebi t andbi t _vect or datatypes
used previously. Using standard logic data types for all system interfacesis highly recom-
mended, asit allows circuit elements from different sourcesto be easily combined. It al'so pro-

Multisim 2001 User Guide A-11

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-12

vides you the opportunity to perform more detailed and precise simulation than would
otherwise be possible.

The updated comparator design, using the IEEE 1164 standard logic data types, is shown
below:

-- Eight-bit conparator

library ieee;
use ieee.std _logic_1164.all;
entity conpare is
port (A, B: in std_ulogic_vector(0 to 7);
EQ out std_ul ogic);
end conpar e;

architecture conparel of conpare is
begin

EQ <= ‘1 when (A =B) else ‘0;
end conparel;

Reading from the top of the source file, you can see the following:

» acomment field, indicated by the leading double-dash symbol (“--"). VHDL allows com-
ments to be embedded anywhere in your sourcefile, provided they are prefaced by the two
hyphen characters as shown. Commentsin VHDL extend from the doubl e hyphen symbol
to the end of the current line. (There is no block comment facility in VHDL.)

» alibrary statement that causes the named library |EEE to be loaded into the current
compile session. When you use VHDL libraries, it is recommended that you include your
library statements once at the beginning of the sourcefile, before any use clauses or other
VHDL statements.

» ause clause, specifying which items from the |EEE library are to be made visible for the
subsequent design unit (the entity and its corresponding architecture). The general form of
ause statement includes three fields delimited by a period: the library name (in this case
“iee€”), adesign unit within the library (normally a package, in this case named
“std_logic_1164"), and the specific item within that design unit (or, asin this case, the
special keyword al | , which means “everything”) to be made visible.

e an entity declaration describing the interface to the comparator. Notethat st d_ul ogi ¢
and st d_ul ogi c_vect or, which are standard data types provided in the IEEE 1164
standard and in the associated |EEE library, were specified.

» an architecture declaration describing the actual function of the comparator circuit.

Electronics Workbench

Learning VHDL

Conditional Signal Assignment

The function of the comparator is defined using a simple concurrent assignment to port EQ.
The type of statement used in the assignment to EQ is called a*“ conditional signal assign-
ment”. Conditional signal assignments make use of the “when-else” language feature and
allow complex conditional logic to be described. The following description of a multiplexer
circuit makes the use of the conditional signal assignment more clear:

architecture mux1 of mux is

begi n
Y <= A when (Sel = “00") else
B when (Sel = “01") else
C when (Sel = “10") else
D when (Sel = “11");
end nux1;

Selected Signal Assignment

Thisform of signal assignment can be used as an aternative to the conditional signal assign-
ment. The selected signal assignment has the following general form (again, using a multi-
plexer as an example):

architecture mux2 of mux is
begi n

with Sel select

Y <= A when “00”,
B when “01”,
C when “107,
D when “117;
end nux2;

Choosing between a conditional or selected signal assignment for circuits such asthisis
largely a matter of taste. For most designs, there is no difference in the results obtained with
either type of assignment statement.

Multisim 2001 User Guide A-13

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-14

A.2.6.3 Barrel Shifter (Entity)

The second and most complex part of this design is the barrel shifter circuit. This circuit (dia-
grammed below) accepts 8-bit input data, loads this data into a register and, when the load
input signal islow, rotates this data by one bit with each rising edge clock signal. The circuit
is provided with an asynchronous reset, and the data stored in the register is accessible viathe
output signal Q.

They are many ways to describe a circuit such asthisin VHDL. If you are going to use syn-
thesis tools to process the design description into an actual device technology, however, you
must restrict yourself to well established synthesis conventions when entering the circuit. Two
of these conventions will be looked at below.

Using a Process

Thefirst design description to be looked at for this shifter is a description that usesaVHDL
process statement to describe the behavior of the entire circuit over time. Thisis the behav-
ioral level of abstraction. It represents the highest level of abstraction practical (and synthesiz-
able) for registered circuits such as this one. The VHDL source code for the barrel shifter is
shown below:

-- Eight-bit barrel shifter

library ieee;
use ieee.std_logic_1164.all;
entity rotate is
port(dk, Rst, Load: in std_ulogic;
Data: in std_ulogic_vector(0 to 7);
Q out std_ulogic_vector(0 to 7));
end rotate;

architecture rotatel of rotate is
begin
reg: process(Rst, d k)
variable Qeg: std_ulogic_vector(0 to 7);
begin
if Rst = 1" then -- Async reset
Qeg : = “00000000";
elsif (Ak =1 and Ck’event) then
if (Load = “1') then

Qeg : = Data;
el se

Qeg := Qeg(l to 7) & Qeg(0);
end if;

Electronics Workbench

Learning VHDL

end if;
Q <= Qeg;
end process;
end rotatel;

Reading from the top of the source file, you can see the following:

» acomment field, as described previoudly.

e |ibrary anduse statements, allowing usto use the |IEEE 1164 standard logic data
types.

» an entity declaration defining the interface to the circuit. Note that the direction (mode) of
Qiswritten asout , indicating that it will not be used directly as the lower-level storage
object (Q will not be fed back directly).

» an architecture declaration, consisting of a single process statement that defines the opera-
tion of the shifter over time in response to events appearing on the clock (Clk) and asyn-
chronous reset (Rst).

Process Statement

The process statement in VHDL isthe primary means by which sequential operations (such as
registered circuits) can be described. When describing registered circuits, the most common
form of a process statement is:

architecture arch_nane of ent_nane is
begi n
process_nane: process(sensitivity list)
| ocal _decl ar ati on;
| ocal _decl ar ati on;

begin
sequential statenent;
sequential statenent;
sequential statenent;

end process;
end arch_nane;

A process statement consists of the following items:

» Anoptional process name (an identifier followed by acolon).
e Theprocess keyword.

Multisim 2001 User Guide A-15

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-16

» Anoptional sensitivity list, indicating which signals result in the process “ executing”
when there is some event detected. (The sensitivity list isrequired if the process does not
include one or morewai t statements to suspend its execution at certain points. An exam-
ple that does not use a sensitivity list isdiscussed in “A.2.6.5 Using a Procedure” on page
A-18.

» Anoptional declarations section, allowing local objects and subprogramsto be defined.

* A begi n keyword.

» A sequence of statementsto be executed when the program runs.

* Anend statement.

The easiest way to think of aVHDL process such asthisisto relate it to software, as a pro-
gram that executes (in simulation) any time there is an event on one of itsinputs (as specified
in the sensitivity list). A process describes the sequential execution of statements that are
dependent on one or more events occurring. A flip-flop is a perfect example of such a situa-
tion; it remainsidle, not changing state, until thereis a significant event (either arising edge
on the clock input or an asynchronous reset event) that causes it to operate and potentially
change its state.

Although there is a definite order of operations within a process (from top to bottom), you can
think of a process as executing in zero time. This means that (@) a process can be used to
describe circuits functionally, without regard to their actual timing, and (b) multiple processes
can be “executed” in parallel with little or no concern for which processes complete their
operationsfirst. (There are certain caveatsto this behavior of VHDL processes. These caveats
are described in detail in most VHDL textbooks.)

For your reference, the process of how the barrel shifter operates is shown below:

reg: process(Rst, d k)
variable Qeg: std_ulogic_vector(0 to 7);
begin
if Rst = ‘1" then -- Async reset
Qeg := “00000000";
elsif (Ak =1 and Ck’event) then
if (Load = “1') then

Qeg := Data;
el se
Qeg := Qeg(lto7) & Qeg(0);
end if;
end if;
Q <= Qeg;

end process;

Aswritten, the process is dependent on (or sensitive to) the asynchronous inputs Rst and Clk.
These are the only signals that can have events directly affecting the operation of the circuit;

Electronics Workbench

Learning VHDL

in the absence of any event on either of these signals, the circuit described by the process will
simply hold its current value (that is, the process will remain suspended).

Consider what happens when an event occurs on either one of these asynchronous inputs.
First, look at what happens when the input Rst has an event in which it transitions to a high
state (represented by the st d_ul ogi ¢ valueof ‘1'). In this case, the process will begin exe-
cution and thefirsti f statement will be evaluated. Because the event was atransitionto ‘1’,
the simulator will see that the specified condition (Rst = ‘1") is true and the assignment of
variable Qreg to the reset value of “00000000” will be performed. The remaining statements
of the if-then-elsif expression (those that are dependent on the el si f condition) will be
ignored. The final statement in the process, the assignment of output signal Q to the value of
Qreg, isnot subject to the if-then-elsif expression and istherefore placed on the process queue
for execution. (Signal assignments do not occur until the process actually suspends.) Finally,
the process suspends, all signalsthat were assigned valuesin the process (in this case Q) are
updated, and the process waits for another event on Clk or Rst.

What about the case in which there is an event on Clk? In this case, the process will again exe-
cute, and the if-then-elsif expressions will be evaluated in turn until avalid condition is
encountered. If the Rst input continues to have ahigh value (avalue of * 1), then the simulator
will evaluate the first if test astrue, and the reset condition will take priority. If, however, the
Rst input is not avalue of ‘1’, then the next expression (Clk =*1" and O k' event) will be
evaluated. This expression is the most commonly-used convention for detecting clock edges
in VHDL. To detect arising edge clock, write the expression Clk = ‘1" in the conditional
expression. For this circuit, however, the expression Clk = ‘1’ would not be specific enough,
since the process may have begun execution as the result of an event on Rst that did not result
in Rst transitioning to a“1’. (For example, afalling edge event on Rst — that is, atransition
from 1 to 0 — would trigger the process but causeit to skip to the elsif statement even though
there was no event on Clk, since the Rst = 1 condition would evaluate as false.) To ensure that
the event we are responding to isin fact an event on Clk, we use the built-in VHDL attribute
‘event’ to check if Clk was the signal triggering the process execution.

If the event that triggered the process execution was in fact arising edge on CIk, then the sim-
ulator will go on to check the remaining if-then logic to determine which assignment state-
ment isto be executed. If Load is determined to be * 1', then the first assignment statement is
executed and the datais loaded from input data to the registers. If Load isnot ‘1’, then the
datain the registersis shifted, as specified using the bit slice and concatenation operations
available in the language.

Note Every assignment to avariable or signal you make that is dependent onaClk =‘1" and
Clk’ event expression will result in at least one register when synthesized.

Multisim 2001 User Guide A-17

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-18

A.2.6.4 Signals and Variables

There are two fundamental types of objects used to carry datafrom placeto placeinaVHDL
design description: signals and variables. In virtually all cases, you will want to use variables
to carry data between sequential operations (within processes, procedures and functions) and
use signalsto carry information between concurrent elements of your design (such as between
two independent processes).

Examples of signalsand variables, and differences between them, are shown in more detail in
“A.4 Examples Gallery” on page A-24. For now, it is useful to think of signalsaswires (asin
aschematic) and variables as temporary storage areas (similar to variablesin atraditional
software programming language).

In many cases, you can choose whether to use signals or variables to perform the same task.
Asageneral rule, you should use variables whenever possible and use signals only when you
must access data across different concurrent parts of your design.

A.2.6.5 Using a Procedure

Describing registered logic using processes requires that you follow some established conven-
tions (if you intend to synthesize the design) and to consider the behavior of the entire circuit.
In the barrel shifter design description shown in “Process Statement” on page A-15, theregis-
ters were implied by the placement and use of statements such asif Clk = ‘1’ and CIk’ event.
Assignment statements subject to that clause resulted in D-type flip-flops being implied for
the signals.

For smaller circuits, this mixing of combinational logic functions and registersis fine and not
difficult to understand. For larger circuits, however, the complexity of the system being
described can make such descriptions hard to manage, and the results of synthesis can often
be confusing. For these circuits, it often makes more sense to retreat to a dataflow level of
abstraction and to clearly define the boundaries between registered and combinational logic.

One easy way to do thisisto remove the process from your design and replace it with a series
of concurrent statements representing the combinational and registered portions of the circuit.
Thefollowing VHDL design description uses this method to describe the same barrel shifter

circuit previously described:

architecture rotate3 of rotate is
signal D Qeg: std_logic_vector(0 to 7);
begin

D <= Data when (Load = ‘1') else
Qeg(l to7) & Qeg(0);

df f(Rst, dk, D, Qeqg);

Electronics Workbench

Learning VHDL

Q<= Qeg;

end rot ate3;

In this version of the design description, the behavior of the D-type flip-flop has been placed
in an external procedure, dff, and intermediate signals have been introduced to more clearly
describe the separation between the combinational and registered parts of the circuit. The fol-
lowing diagram helpsillustrate this separation:

Inputs Logic Registers Outputs

|| D Qreg | N ©
Data l/

Load >

Clk
Rst

In this example, the combinational logic of the counter has been written in the form of asingle
concurrent signal assignment, while the registered operation of the counter’s output has been
described using a call to a procedure named df f .

What doesthedf f procedurelook like? Thefollowing is one possible procedure for a D-type
flip-flop:

procedure dff (signal Rst, Ck: in std_ulogic;
signal D in std_ulogic_vector(0 to 7);
signal Q out std_ulogic_vector(0 to 7)) is
begin
if Rst = ‘1" then
Q <= “00000000";
elsif Ak =1 and dk’event then
Q<=D
end if;
end dff;

Multisim 2001 User Guide A-19

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-20

Notice that this procedure has a striking resemblance to the process statement presented ear-
lier. The sameif-then-elsif structure used in the processis used to describe the behavior of the
registers. Instead of a sensitivity list, however, the procedure has a parameter list describing
the inputs and outputs of the procedure.

The parameters defined within a procedure or function definition are called its formal param-
eters. When the procedure or function is executed in simulation, the formal parameters are
replaced by the values of the actual parameters specified when the procedure or functionis
used. If the actual parameters being passed into the procedure or function are signal objects,
then the signal keyword can be used (as shown above) to ensure that all information about the
signal object, including its value and all of its attributes, is passed into the procedure or func-
tion.

A.2.6.6 Structural VHDL

The structure level of abstraction is used to combine multiple componentsto form alarger cir-
cuit or system. As such, structure can be used to help manage alarge and complex design, and
structure can make it possibl e to reuse components of a system in other design projects.

Because structure only defines the interconnections between components, it cannot be used to
completely describe the function of acircuit; at some level, al aspects of your circuit must be
described using behavioral and/or dataflow levels of abstraction.

To demonstrate how the structure level of abstraction can be used to connect lower-level cir-
cuit elementsinto alarger circuit, the comparator and shift register circuits will be connected
into alarger circuit as shown below.

Note Thisdiagram was drawn in much the same way you might enter it into Multisim.
Structural VHDL has many similarities with schematic-based design.

A.2.6.7 Design Hierarchy

When you write structural VHDL, you are in essence writing a textual description of a sche-
matic netlist (a description of how the components on the schematic are connected by wires,
or nets). In the world of schematic entry tools, such netlists are usually created for you auto-
matically by the schematic editor, as Multisim does. When writing VHDL, you enter the same
sort of information by hand.

When you use components and wires (signals, in VHDL) to connect multiple circuit elements
together, it isuseful to think of your new, larger circuit in terms of a hierarchy of components.
In this view, the top-level drawing (or top-level VHDL entity and architecture) can be seen as
the highest level in a hierarchy tree, as shown below.

Electronics Workbench

Learning VHDL

library ieee;
use ieee.std_logic_1164.all;
entity rotconp is port(dk, Rst, Load: in std_ul ogic;
Init: in
std_ul ogic_vector(0 to 7);
Test: in
std_ul ogi c_vector(0 to 7);
Limt: out std_ulogic);
end rotconp;

architecture structure of rotconp is

conponent conpare
port (A, B: in std_ulogic_vector(0 to 7); EQ out
std_ul ogic);
end conponent;

conponent rotate
port (d k, Rst, Load: in std_ul ogic;
Data: in std_ulogic_vector(0 to 7);
Q out std_ulogic_vector(0 to 7));
end conponent;

signal Q std_ulogic_vector(0 to 7);
begi n

COWP1: conpare port map (A=>Q B=>Test, EQ=>Linit);
ROT1: rotate port map (C k=>0 k, Rst=>Rst, Load=>Load,
Data=>Init, Q>Q;

end structure;

A.2.6.8 Test Benches

At this point, the sample circuit is complete and ready to be processed by synthesis toals.
Before processing the design, however, you should take the time to verify that it actually does
what it isintended to do. You should run asimulation.

Simulating a circuit such as this one requires that you provide more than just the design
description itself. To verify the proper operation of the circuit over timein response to input
stimulus, you will need to write atest bench.

Multisim 2001 User Guide A-21

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-22

The easiest way to understand the concept of atest bench isto think of it asavirtual tester cir-
cuit. Thistester circuit, which you will describe in VHDL, applies stimulus to your design
description and (optionally) verifies that the smulated circuit does what it isintended to do.

The diagram below graphically illustrates the relationship between the test bench and your
design description, which is called the unit under test, or UUT.

To apply stimulus to your design, your test bench will probably be written using one or more
sequential processes, and it will use a series of signal assignments and wait statements to
describe the actual stimulus. You will probably use VHDL's looping features to simplify the
description of repetitive stimulus (such as the system clock), and you may also use VHDL's
file and record features to apply stimulus in the form of test vectors.

To check the results of simulation, you will probably make use of VHDL's assert feature, and
you may also use the file features to write the simulation results to adisk file for later analy-
sis.

For complex design descriptions, developing a comprehensive test bench can be alarge-scale
project initself. Infact, it is not unusual for the test bench to be larger and more complex than
the design description. For this reason, you should plan your project so that you have thetime
required to develop the function test in addition to developing the circuit being tested. You
should also plan to create test benches that are re-usable, perhaps by devel oping a master test
bench that reads test data from afile.

When you create a test bench for your design, you use the structural level of abstraction to
connect your lower-level (previously top-level) design description to the other parts of the test
bench.

A.2.6.9 Sample Test Bench

The following VHDL source statements describe a simple test bench for the shift and com-
pare circuit. Thistest bench uses two processes that operate concurrently. One process (clock)
describes a background clock with a 100 ns period, while the second process (stimulus)
describes a sequence of inputs to be applied to the circuit over time.

Note Thissampletest bench does not include any checking of output values. More complex
test benches that include output value checking are presented in “A.4 Examples Gal-
lery” on page A-24.

library ieee;
use ieee.std _logic_1164.all;

entity testbnch is-- No ports needed in a
end testbnch;-- testbench

architecture behavior of testbnch is

Electronics Workbench

Conclusion
conponent rotconp is-- Declares the |ower-Ieve
port (d k, Rst, Load: in std_ulogic;-- conponent
and its ports
Init: in std_ulogic_vector(0 to 7);
Test: in std_ulogic_vector(0 to 7);
Limt: out std_ulogic);
end conponent;
signal Ck, Rst, Load: std_ulogic;-- Introduces top-level signals
signal Init: std_ulogic_vector(0 to 7);-- to use when
signal Test: std_ulogic_vector(0 to 7);-- testing the |ower-|evel
circuit
signal Limt: std_ul ogic;
begi n
DUT: rotconp port nmap-- Creates an instance of the
(Ak, Rst, Load, Init, Test, Limt);-- lower-level circuit (the

-- design under test)
cl ock: process
variable clktnp: std ulogic := ‘0" ;-- This process sets up a
begi n-- background cl ock of 100 ns
clktnmp := not clktnp;-- period.
a k <= cl kt np;
wait for 50 ns;
end process;

stimulus: process-- This process applies
begi n-- stimulus to the design

Rst <= ‘0';-- inputs, then waits for sone

Load <= ‘1" ;-- ampunt of tine so we can

Init <= “00001111";-- observe the results during
Test <= “11110000";-- sinul ation.

wait for 100 ns;

Load <= ‘0’ ;

wait for 600 ns;
end process;

end behavi or;

A.3 Conclusion

In this section the most important concepts and features of VHDL were explored. We hope
thisintroduction was a useful refresher for experienced VHDL users, and a good introduction
to the language for the novice. VHDL is arich and powerful language, however, and thereis
much more to learn before you become a“ master user”. To continue your learning, it is

Multisim 2001 User Guide A-23

18uwild TAHA

VDHL Prrimer

VHDL Primer

A.4

A4l

A-24

strongly recommended that you acquire at |east one textbook on VHDL, and also obtain a
copy of the IEEE 1076 VHDL Language Reference Manual. There are also many good qual-
ity VHDL training courses and multimedia training products available. Contact Electronics
Workbench, or visit their Web page at www.interactiv.com for more information.

You will aso find it useful to study, copy and modify existing VHDL design examples. “A.4
Examples Gallery” on page A-24 includes listings and descriptions of sample designs, and
additional examples are provided on your Multisim’s VHDL installation CD-ROM.

Examples Gallery

The examplesin this section are intended to help you get started with VHDL. Each example
demonstrates one or more important features of the language, and demonstrates commonly
used coding styles for synthesizable circuits and test benches. These examples, and more, can
be found in the \EXAMPLES folder of your VHDL installation. You are encouraged to copy
these examples and modify them for your own use.

Using Type Version Functions

This example, an 8-bit counter, demonstrates one possible approach to type conversion. Type
conversions are often required in VHDL due to the languages' strict type-checking features.
In this example, atype conversion isrequired to convert the array data types used in the
design’sinterface to integer data types used internally for arithmetic operations. For demon-
stration purposes, we are using a custom type conversion function that is defined in the design
description. In most cases, you will want to use a standard type conversion function from the
IEEE library, or use atype conversion function provided by your synthesis vendor.

Note Another option when numeric values are required is to make use of the IEEE 1076.3
numeric_std package. This package is provided in the library IEEE supplied with the
Multism VHDL simulator.

A.4.1.1 Design Description

library ieee;
use ieee.std_logic_1164.all;

package conversions is
function to_unsigned (a: std_ulogic_vector) returninteger;
function to_vector (size: integer; num integer) return
std_ul ogi c_vector;
end conver si ons;

Electronics Workbench

Examples Gallery

package body conversions is
-- Convert a std_ul ogic_vector to an unsigned integer --
function to_unsigned (a: std_ulogic_vector) return integer is
alias av: std_ulogic_vector (1 to a'length)is a;
variable ret,d: integer;

begi n
d :=1;
ret :=0;
for i in a'length dowmnto 1 | oop
if (av(i) ='1") then
ret :=ret + d;
end if;
d:=d* 2
end | oop;
return ret;

end to_unsigned;

-- Convert an integer to a std_ul ogic_vector --
function to_vector (size: integer; num integer) return
std_ul ogic_vector is
variable ret: std_ulogic_vector (1 to size);
vari able a: integer;

begin
a := num
for i in size dowmto 1 |oop
if ((anmd 2) =1) then
ret(i) :="'1";
el se
ret(i) :='0";
end if;
a:=al 2
end | oop;
return ret;

end to_vector;

end conver si ons;

-- COUNT16: 4-bit counter.--
Li brary i eee;

Use ieee.std_logic_1164. all;
use wor k. conversions. all;

Multisim 2001 User Guide

A-25

18uwild TAHA

VDHL Prrimer

VHDL Primer

Entity COUNT16 |s
Port (dk, Rst,Load: in std_ul ogic;
Data: in std_ulogic_vector(3 downto 0);
Count: out std_ulogic_vector(3 downto 0)
)
End COUNT16;

Architecture COUNT16_A of COUNT16 Is
Begi n
process(Rst, d k)

-- Note the use of a variable to | ocalize the feedback behavi or of the
counter registers. This is good general design practice in VHDL, as it
hel ps to cut down on unwanted side-effects. In this exanple, the use
of a variable of type integer also |ocalizes the use of a nuneric data
type to within the process itself. This nakes it easier to nodify the
desi gn as necessary when using different type conversion routines.

variable @ integer range 0 to 15;

begin

if Rst ='1'" then -- Asynchronous reset
Q:=0;
el sif rising_edge(d k) then
if Load = '1'" then
Q :=to_unsigned(Data); -- Convert vector to integer
elsif Q= 15 then
Q:=0;
el se
Q:=Q+ 1
end if;
end if;

Count <= to_vector(4,Q;
-- Convert integer to vector for use outside the process.

end process;

End COUNT16_A;

A-26 Electronics Workbench

Examples Gallery

A.4.1.2 Test Bench

library ieee;
Use ieee.std_logic_1164.all;

Entity T _COUNT16 Is
End T_COUNT16;

use wor k. count 16;

Architecture stimulus of T_COUNT16 Is
Component COUNT16

Port (dk, Rst,Load: in std_ulogic;

Data: in std_ul ogic_vector(3 downto 0);
Count: out std_ul ogic_vector(3 downto 0)

)s
End Conponent;

Signal Ok, Rst,Load: std_ulogic; -- Top |level signals
Signal Data: std_ul ogic_vector(3 downto 0);
Signal Count: std_ul ogic_vector(3 downto 0);

Signal Cock_cycle: natural := 0;

Begi n

DUT: COUNT16 Port Map (C Kk, Rst, Load, Dat a, Count) ;

-- The first process sets up a 20Whz background cl ock

CLOCK: process
begi n

Cl ock_cycle <= O ock_cycle + 1;

Ak <="'1";

wait for 25 ns;

Ak <='0";

wait for 25 ns;
end process;

-- This process applies stimulus to reset

Stinmulusl: Process

and | oad the counter...

Begi n
Rst <= '1';
wait for 40 ns;
Rst <= '0";
Load <= "1';
Data <= "0100"; -- Load 0100 into the counter

wait for 50 ns;

Multisim 2001 User Guide

A-27

18uwild TAHA

VDHL Prrimer

VHDL Primer

Load <= "'0';

wait for 500 ns;

Load <= "1";

Data <= "0000"; -- Load 0000 into the counter
wait for 50 ns;

Load <= "'0';

wait for 11000 ns;

wait;

End Process;

End sti nul us;

A.4.2 Describing a State Machine

A-28

This example demonstrates how to write a synthesizable state machine description using pro-
cesses and enumerated types.

The circuit, avideo frame grabber controller, was first described in Practical Design Using
Programmable Logic by David Pellerin and Michadl Holley (Prentice Hall, 1990). A dlightly
modified form of the circuit also appears in the ATMEL Configurable Logic Design and
Application Book, 1993-1994 edition.

The circuit described is a smple freeze-frame unit that ‘grabs and holds a single frame of
NTSC color video image. This design description includes the frame detection and capture
logic. The complete circuit requires an 8-bit D-A/A-D converter and a256K X 8 static RAM.

A.4.2.1 Design Description

-- A Video Frane G abber. --
Li brary i eee;
Use ieee.std_ | ogic_1164.all;

Entity CONTROL |s
Port (Reset: in std_ulogic;

A k: in std_ul ogic;
Mbode: in std_ul ogic;
Data: in std_ulogic_vector(7 downto 0);
TestLoad: in std_ul ogic;
Addr: out integer range 0 to 253243;
RAMAE: out std_ul ogic;
RAMOE: out std_ul ogic;
ADCE: out std_ ulogic);

End CONTROL;

Electronics Workbench

Examples Gallery

Architecture CONTROL_A of CONTROL Is
constant FRAMESI ZE: integer := 253243;
constant TESTADDR: integer := 253000;

signal ENDFR: std_ul ogic;
signal | NCAD: std_ul ogic;
signal VS: std_ul ogic;
signal Sync: integer range 0 to 127,
type states is (Statelive, StateWait, StateSanpl e, StateDi spl ay) ;
signal current_state, next_state: states;
Begi n

-- Address counter. This counter increments until we reach the end of
the frame (address 253243), or until the input | NCAD goes | ow.

ADDRCTR: process(d k)
variable cnt: integer range 0 to FRAMESI ZE;
begi n
if rising_edge(d k) then
if TestLoad = '1' then
cnt : = TESTADDR;

ENDFR <= '0';
el se
if INCAD = '0' or cnt = FRAMESI ZE t hen
cnt = 0;
el se
cnt :=cnt + 1;
end if;
if cnt = FRAMESI ZE t hen
ENDFR <= '1';
el se
ENDFR <= '0';
end if;
end if;
end if;
Addr <= cnt;

end process;

-- Vertical sync detector. Here we | ook for 128 bits of zero, which
indicates the vertical sync blanking interval.

SYNCCTR: process(Reset, d k)
begi n
if Reset = '1' then

Multisim 2001 User Guide A-29

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-30

Sync <= 0;
el sif rising_edge(d k) then
if Data /= "00000000" or Sync = 127 then

Sync <= 0;
el se

Sync <= Sync + 1,
end if;

end if;
end process;

VS <= '1' when Sync = 127 else '0';
State register process:

STREG process(Reset, d k)
begin
if Reset = '1' then
current_state <= Statelive;
el sif rising_edge(d k) then
current_state <= next_state;
end if;
end process;

State transitions:

STTRANS: process(current_state, Mbde, VS, ENDFR)

begin
case current_state is
when StatelLive => -- Display live video on the output
RAMAE <= '1';
RAMCE <= '1';
ADCE <= '0'";
INCAD <= '0';

if Mode = "1' then
next _state <= StateWit;
end if;
when StateWait => -- Wit for vertical sync
RAMAE <= '1';
RAMCE <= '1';
ADCE <= '0';
INCAD <= '0';
if V§ ="1" then
next_state <= StateSanpl e;
end if;
when StateSanple => -- Sanple one frane of video

Electronics Workbench

Examples Gallery

RAMAE <= ' 0" ;
RAMOE <= ' 1';
ADCE <= ' 0';
INCAD <= ' 1';

if ENDFR = '1' then
next _state <= StateD spl ay;

end if;
when StateDisplay => -- Display the stored frame
RAME <= "1';
RAMCE <= '0';
ADCE <= '1';
INCAD <= "1';

if Mode = '1' then
next _state <= Statelive;
end if;
end case;
end process;

End CONTROL_A;

A.4.2.2 Test Bench

The following test bench uses loops to simplify the description of along test sequence:

library ieee;
Use ieee.std_logic_1164.all;
Use std.textio.all;

library work;
use work.control;

Entity T_CONTROL Is
End T_CONTROL;

Architecture stinmulus of T_CONTROL Is
Component CONTROL
Port (Reset: in std_ul ogic;
G k: in std_ul ogic;
Mode: in std_ul ogic;
Data: in std_ul ogic_vector(7 downto 0);
TestLoad: in std_ul ogic;
Addr: out integer range 0 to 253243;
RAMAE: out std_ul ogic;
RAMOE: out std_ul ogic;

Multisim 2001 User Guide A-31

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-32

ADCE: out std_ul ogic);

End Conponent;
Constant PERIOD; tine := 100 ns;
-- Top level signals go here...

Si gnal
Si gnal
Si gnal
Si gnal
Si gnal
Si gnal
Si gnal
Si gnal
Si gnal
Si gnal

Begi n

Reset: std_ul ogic;

C k: std_ul ogic;

Mode: std_ul ogic;

Data: std_ul ogic_vector(7 downto 0);
Test Load: std_ul ogic;

Addr: integer range 0 to 253243;
RAMAE: st d_ul ogi c;

RAMOE: st d_ul ogi c;

ADCE: std_ul ogic;

done: boolean : = fal se;

DUT: CONTROL Port Map (

Reset => Reset,

adk => dk,

Mode => Mbde,

Dat a => Dat a,

Test Load => Test Load,
Addr => Addr,

RAMAE => RAMVE,
RAMCE => RAMCE,

ADCE => ADCE

)
Cl ockl: process

variable clktnmp: std_ulogic :="'0";
begin

wait for PERI OO 2;
clktmp : = not clktnp;

Ck <= clktnp; -- Attach your clock here
if done = true then

wait;
end if;

end process;

Stimulusl: Process
Begi n

-- Sequential stinulus goes here...
Reset <= "'1';

Mode <= '0';

Data <= "00000000";

TestLoad <= '0'";

Electronics Workbench

Examples Gallery

wait for PER QD
Reset <= '0';

wait for PER QD
Data <= "00000001";
wait for PERI OD
Mode <= "1';

-- Check to make sure we detect the vertical sync...
Data <= "00000000";
for i in 0 to 127 |oop
wai t for PERIOD;
end | oop;

-- Now sanple data to make sure the frane counter works...
Data <= "01010101";
for i in 0 to 100000 | oop
wai t for PERIOD;
end | oop;

-- Load in the test value to check the end of frane detection...
Test Load <= '1';
wait for PERI OD
Test Load <= '0';
for i in 0 to 300 |oop
wait for PER QD
end | oop;
done <= true;

End Process;

End sti nmul us;

A.4.3 Reading and Writing from Files

More complex test benches often make use of VHDL' s file read and write capabilities. These
features make it easy to create test benches that operate on data stored in files, such astest
vectors. The following example demonstrates how you can use the text 1/0 features of VHDL
to read test data from an ASCI| file.

Consider a Fibonacci sequence generator. A Fibonnaci sequenceis a series of numbers, begin-
ningwith 1, 1, 2, 3, 5..., in which every number in the sequenceis the sum of the previous two
numbers. To construct acircuit that generates an n-bit Fibonacci sequence, two n-bit registers
— A and B — arerequired to store the last two values of the sequence and add them to pro-
duce the next value.

Multisim 2001 User Guide A-33

18uwild TAHA

VDHL Prrimer

VHDL Primer

A-34

Toinitialize the circuit, the A and B registers must be |oaded with values of 0 and 1 respec-
tively. Subsequent cycles of the circuit must move the calculated next value into the B register
while moving the value stored in the B register to the A register. In thisimplementation, the A
and B registers form a 2-deep first-in first-out (FIFO) stack.

The VHDL source file shown below describes this Fibonnaci sequence generator.

A.4.3.1 Design Description

-- Fi bonacci sequence generator. --
-- Copyright 1996, Accol ade Design Autonation, Inc.--

library ieee;
use ieee.std_logic_1164.all;

entity fibis
port (Ck,Cr: in std_ulogic;
Load: in std_ul ogic;
Data_in: in std_ul ogic_vector(15 downto 0);
S: out std_ul ogic_vector(15 downto 0));
end fib;

architecture behavior of fibis
signal Restart, Cout: std_ul ogic;
signal Stnp: std_ul ogi c_vector(15 downto 0);
signal A, B, C std_ulogic_vector (15 downto 0);
signal Zero: std_ul ogic;
signal Carryln, CarryQut: std_ulogic_vector (15 downto 0);

begin
P1: process(d k)
begin

if rising_edge(C k) then
Restart <= Cout;
end if;
end process;

Stnmp <= A xor B xor Carryln;
Zero <= ‘1" when Stnp = “0000000000000000" else ‘0';

Carryln <= C(15 downto 1) & ‘0’ ;

CarryQut <= (B and A) or ((B or A and Carryln);
C(15 downto 1) <= CarryCut (14 downto 0);

Cout <= CarryQut (15);

Electronics Workbench

Examples Gallery

P2: process(C k,Cr,Restart)
begin
if dr ‘1 or Restart = ‘1" then
A <= “0000000000000000";
B <= “0000000000000000";
el sif rising_edge(C k) then
if Load = ‘1" then
A <= Data_in;

elsif Zero = ‘1" then
A <= “0000000000000001";
el se
A <= B;
end if;
B <= St np;
end if;

end process;
S <= Stnp;
end behavi or;

A.4.3.2 Test Bench

Thefollowing test bench readslinesfrom an ASCI| file and applies the data contained in each
line as atest vector to stimulate and test the Fibonacci circuit:

-- Test bench for Fibonacci sequence generator.

library ieee;
use ieee.std_logic_1164.all;

use std.textio.all; -- Use the text I/0O features of the standard
library

use work. fib; -- Get the design out of library ‘work’
entity testfib is -- Entity; once again we have no ports

end testfib;

architecture stimulus of testfib is
conponent fib -- Create one instance of the fib design unit
port (A k,dr: in std_ulogic;
Load: in std_ul ogic;
Data_in: in std_ul ogic_vector(15 downto 0);
S: out std_ulogic_vector(15 downto 0));
end conponent;

Multisim 2001 User Guide A-35

18uwild TAHA

VDHL Prrimer

VHDL Primer

-- The follow ng conversion functions are used to process the test
data and convert fromstring data to array data...
function str2vec(str: string) return std_ul ogic_vector is
variable vtnp: std_ul ogic_vector(str’range);

begin
for i in str’range |oop
if (str(i) ='1") then
vtmp(i) = *'1";
elsif (str(i) =*0") then
vtmp(i) := 0" ;
el se
vtmp(i) = "X
end if;
end | oop;
return vtnp;
end;

function vec2str(vec: std_ulogic_vector) return string is
variable stnp: string(vec' left+l downto 1);

begin
for i in vec'reverse_range |oop
if (vec(i) =*1") then
stnp(i+1l) = *“1";
elsif (vec(i) =*'0") then
stnp(i+l) := 0" ;
el se
stnp(i+1) = ‘X ;
end if;
end | oop;
return stnp;
end;
signal dk,dr: std_ulogic; -- Declare local signals

signal Load: std_ul ogic;

signal Data_in: std_ul ogic_vector (15 downto 0);
signal S: std_ul ogi c_vector(15 downto 0);
signal done: std_ulogic := ‘0" ;

constant PERIOD: tinme := 50 ns;

for DUT: fib use entity work.fib(behavior); -- Configuration
speci fication
begin
DUT: fib port map(d k=>C k, O r=>Cr, Load=>Load, -- Creates one
Dat a_i n=>Dat a_i n, S=>S) ; i nstance

A-36 Electronics Workbench

Examples Gallery

Cl ock: process

variable c: std_ulogic := ‘0" ;-- Background clock process
begi n
while (done = *0") loop -- The done flag indicates that we
wait for PER OO 2; are finished and can stop the cl ock
C := not c;
dk <= c;
end | oop;

end process;

read_i nput: process
file vector_file: text is in “testfib.vec”;-- File declaration

variable stinmulus_in: std_ul ogic_vector (33 dowto 0);
-- Tenporary storage for inputs

vari able S expected: std_ul ogic_vector (15 downto 0);
-- Tenporary storage for outputs

variable str_stimulus_in: string(34 downto 1);
-- Tenporary storage for big string

variable err_cnt: integer := 0;
variable file_line: line;
-- Keeps track of how many errors Text
line buffer; ‘line’ is a standard type (textio library).
begi n
wait until rising_edge(dKk); -- Synchronizes with first clock

while not endfile(vector_file) |oop-- Loops through the lines in
the file

readline (vector_file,file_line);-- Reads one conplete line
into file_line

read (file_line,str_stimulus_in);-- Extractsthefirst field
fromfile_line

stimulus_in := str2vec(str_stimulus_in);-- Converts the input
string to a vector

wait for 1 ns; -- Delays for a nanosecond

Cr <= stimulus_in(33); -- Gets each input’s

Multisim 2001 User Guide A-37

18uwild TAHA

VDHL Prrimer

VHDL Primer
Load <= stinulus_in(32); -- value fromthe test
Data_in <= stimulus_in(31 dowmnto 16);-- vector array and
assi gns the val ues
S expected : = stinulus_in(15 downto 0);
wait until falling_edge(CKk);-- Wiits until the clock goes
back to ‘0" (midway through the clock
cycl e)
if (S /= S_expected) then
err_cnt :=err_cnt + 1;
assert false -- Increnents the error counter and
reports an error if different

A-38

report “Vector failure!” &If &

“Expected Sto be “ & vec2str(S expected) & If &
“but its value was “ & vec2str(S) & If

severity note;

end if;
end | oop; -- Continues |ooping through the file
done <= ‘1'; -- Sets a flag when we are finished; this
will stop the clock.
wait; -- Suspends the simnulation

end process;

end stinmul us;

Electronics Workbench

Appendix B.1
Verilog Primer

CSCI 320 Computer Architecture
Handbook on Verilog HDL

Dr. Daniel C. Hyde
Computer Science Department
Bucknell University
Lewisburg, PA 17837
August 25, 1995

Updated August 23, 1997
Copyright 1995 Dr. Daniel C. Hyde

B.1.1 Introduction

Verilog HDL isaHardware Description Language (HDL). A Hardware Description Language
isalanguage used to describe a digital system, for example, acomputer or a component of a
computer. One may describe a digital system at several levels. For example, an HDL might
describe the layout of the wires, resistors and transistors on an Integrated Circuit (IC) chip,
i.e., the switch level. Or, it might describe the logical gates and flip flopsin adigital system,
i.e., the gate level. An even higher level describes the registers and the transfers of vectors of
information between registers. Thisis called the Register Transfer Level (RTL). Verilog sup-
ports al of these levels. However, this handout focuses on only the portions of Verilog which
support the RTL level.

Multisim 2001 User Guide B.1-1

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1.1.1What is Verilog?

Verilog is one of the two major Hardware Description Languages (HDL) used by hardware
designersin industry and academia. VHDL isthe other one. The industry is currently split on
which is better. Many feel that Verilog is easier to learn and use than VHDL. As one hardware
designer putsit, “I hope the competition uses VHDL.” VHDL was made an IEEE Standard in
1987, and Verilog in 1995. Verilog is very C-like and liked by electrical and computer engi-
neers as most learn the C language in college. VHDL isvery Ada-like and most engineers
have no experience with Ada.

Verilog was introduced in 1985 by Gateway Design System Corporation, now a part of
Cadence Design Systems, Inc.'s Systems Division. Until May, 1990, with the formation of
Open Verilog International (OVI), Verilog HDL was a proprietary language of Cadence.
Cadence was motivated to open the language to the Public Domain with the expectation that
the market for Verilog HDL -related software products would grow more rapidly with broader
acceptance of the language. Cadence realized that Verilog HDL users wanted other software
and service companies to embrace the language and devel op Verilog-supported design tools.

Verilog HDL allows a hardware designer to describe designs at a high level of abstraction
such as at the architectural or behavioral level aswell as the lower implementation levels (i.e.
gate and switch levels) leading to Very Large Scale Integration (VLSI) Integrated Circuits
(IC) layouts and chip fabrication. A primary use of HDLsis the simulation of designs before
the designer must commit to fabrication. This handout does not cover all of Verilog HDL but
focuses on the use of Verilog HDL at the architectural or behavioral levels. The handout
emphasizes design at the Register Transfer Level (RTL).

B.1.1.2What is VeriwWell?

B.1-2

VeriWell is a comprehensive implementation of Verilog HDL from Wellspring Solutions, Inc.
VeriWell supports the Verilog language as specified by the OV language Reference Manual.
VeriWell was first introduced in December, 1992, and was written to be compatible with both
the OVI standard and with Cadence's Verilog-XL.

VeriWell isnow distributed and sold by SynaptiCAD Inc. For Windows 95/NT, Windows 3.1,
Macintosh, SunOS and Linux platforms, SynaptiCAD Inc. offers FREE versions of their Ver-
iWell product available from http://www.syncad.com/ver_down.htm. The free versions are
the same as the industrial versions except they are restricted to a maximum of 1000 lines of
HDL code.

Electronics Workbench

Introduction

B.1.1.3Why Use Verilog HDL?

Digital systemsare highly complex. At their most detailed level, they may consists of millions
of elements, i.e., transistors or logic gates. Therefore, for large digital systems, gate-level
design is dead. For many decades, logic schematics served as the lingua franca of logic
design, but not any more. Today, hardware complexity has grown to such a degree that a sche-
matic with logic gatesis almost useless as it shows only aweb of connectivity and not the
functionality of design. Since the 1970s, Computer engineers and electrical engineers have
moved toward hardware description languages (HDLs). The most prominent modern HDLsin
industry are Verilog and VHDL. Verilog isthetop HDL used by over 10,000 designers at such
hardware vendors as Sun Microsystems, Apple Computer and Motorola. Industrial designers
like Verilog. It works.

The Verilog language providesthe digital designer with ameans of describing adigital system
at awide range of levels of abstraction, and, at the same time, provides access to computer-
aided design tools to aid in the design process at these levels.

Verilog allows hardware designers to express their design with behavioral constructs, deter-
ring the details of implementation to alater stage of design in the design. An abstract repre-
sentation helps the designer explore architectural alternatives through simulations and to
detect design bottlenecks before detailed design begins.

Though the behavioral level of Verilogisahigh level description of adigital system, itisstill
a precise notation. Computer-aided-design tools, i.e., programs, exist which will "compile"
programsin the Verilog notation to the level of circuits consisting of logic gates and flip flops.
One could then go to the lab and wire up the logical circuits and have a functioning system.
And, other tools can "compile" programsin Verilog notation to a description of the integrated
circuit masks for very large scale integration (VL SI). Therefore, with the proper automated
tools, one can create a VL S| description of adesign in Verilog and send the VLSI description
viaelectronic mail to asilicon foundry in Californiaand receive the integrated chip in afew
weeks by way of snail mail. Verilog also alows the designer to specific designs at the logical
gate level using gate constructs and the transistor level using switch constructs.

Our goal in the courseis not to create VL SI chips but to use Verilog to precisely describe the
functionality of any digital system, for example, a computer. However, a VLS| chip designed
by way of Verilog'sbehavioral constructswill be rather slow and be wasteful of chip area. The
lower levelsin Verilog allow engineersto optimize the logical circuitsand VLS| layouts to
maximize speed and minimize area of the VLSI chip.

Multisim 2001 User Guide B.1-3

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1.2 The Verilog Language

Thereis no attempt in this handout to describe the complete Verilog language. It describes
only the portions of the language needed to allow studentsto explore the architectural aspects
of computers. In fact, this handout covers only a small fraction of the language. For the com-
plete description of the Verilog HDL, consult the references at the end of the handout.

We begin our study of the Verilog language by looking at a simple Verilog program. Looking
at the assignment statements, we notice that the language is very C-like. Comments have a
C++ flavor, i e., they are shown by "//" to the end of the line. The Verilog language describes
adigital system as a set of modules, but here we have only a single module called “simple”.

B.1.2.1 A First Verilog Program

B.1-4

/1By Dan Hyde; August 9, 1995
/1A first digital nodel in Verilog

nodul e si npl e;

/1 Sinple Register Transfer Level (RTL) exanple to denp Veril og.
/!l Register Ais increnented by one. Then first four bits of Bis
/] set to “not” of the last four bits of A Cis the “and”

/] reduction of the last two bits of A

//declare registers and flip-flops
reg [0:7] A B
reg G

/1 The two “initial”s and “always” will run concurrently
initial begin: stop_at
/1 WIl stop the execution after 20 sinulation units.
#20; $stop;
end

/1 These statements done at sinulation tine O (since no #k)
initial begin: Init
/1 Initialize register A Oher registers have values of “x
A= 0;

”

/1 Display a header
$display(“Time A B C);

/1 Prints the values anytine a value of A B or C changes
$rmonitor(“ %d % % %", $time, A B, O;

Electronics Workbench

The Verilog Language

end

// main_process will loop until sinulation is over
al ways begi n: mai n_process

/! #1 means do after one unit of simulation tine
#1 A= A+ 1;
#1 B[0:3] = ~A[4:7]; // ~is bitwise "not" operator

#1 C = &A[6: 7] ; /1 bitwi se "and" reduction of last 2 bits
of A
end
endnodul e

In nodul e si npl e, we declared A and B as 8-hit registers and C a 1-bit register or flip-
flop. Inside of the module, the one“al ways” andtwo “i ni t i al ” constructs describe three
threads of control, i.e., they run at the same time or concurrently. Within thei ni ti al con-
struct, statements are executed sequentially much like in C or other traditional imperative pro-
gramming languages. The al ways construct isthe same asthei ni ti al construct except
that it loops forever as long as the simulation runs.

The notation #1 means to execute the statement after delay of one unit of simulated time.
Therefore, the thread of control caused by thefirsti ni ti al construct will delay for 20 time
units before calling the system task $st op and stop the simulation.

The $di spl ay system task allows the designer to print amessage much likepri nt f does
in the language C. Every time unit that one of the listed variabl€'s value changes, the $non-

i t or system task prints amessage. The system function $t i me returns the current value of
simulated time.

Below isthe output of the VeriWell Simulator: (see“B.1.3 Using the VeriWell Simulator” on
page B.1-24)

Ti A B
00000000 XXXXXXXX
00000001 XXXXXXXX
00000001 1110xxxx
00000001 1110xxxx
00000010 1110xxxX
00000010 1101xxxx
00000011 1101xxxx
00000011 1100xxxx
00000011 1100xxxx
10 00000100 1100xxxx 1
11 00000100 1011xxxx 1
12 00000100 1011xxxx O

©ONGAWNEOZ
P OOO0OO0OX X X (O

Multisim 2001 User Guide B.1-5

Jawid Bojuap

Verilog Primer

Verilog Primer

13 00000101 1011xxxx
14 00000101 1010xxxx
16 00000110 1010xxxx
17 00000110 1001xxxX
19 00000111 1001xxxX
Stop at sinmulation tine 20
You should carefully study the program and its output before going on. The structure of the
program istypical of the Verilog programs you will write for this course, i.e.,, ani ni ti al
construct to specify the length of the simulation, another i ni ti al construct toinitialize reg-
isters and specify which registers to monitor and an al ways construct for the digital system
you are modeling. Noticethat all the statementsinthesecondi ni ti al aredoneattime=0,
since there are no delay statements, i.e., #<integer>.

O OO OoOo

B.1.2.2 Lexical Conventions

B.1-6

Thelexical conventions are close to the programming language C++. Comments are desig-
nated by // to theend of alineor by /* to */ across several lines. Keywords, e.g., modul e, are
reserved and in all lower case letters. Thelanguage is case sensitive, meaning upper and lower
case |etters are different. Spaces are important in that they delimit tokens in the language.

Numbers are specified in the traditional form of a series of digits with or without a sign but
also in the following form:

<si ze><base for mat ><nunber >
where <size> contains decimal digits that specify the size of the constant in the number of
bits. The <size> is optional. The <base format> isthe single character ' followed by one of the
following characters b, d, o and h, which stand for binary, decimal, octal and hex, respec-
tively. The <number> part contains digits which are lega for the <base format>. Some exam-
ples:

549 /1 decimal nunber
"h 8FF /1l hex nunber
' 0765 /1 octal nunber
4' b1l /1 4-bit binary nunber 0011

3' b10x /1 3-bit binary number with | east
/1 significant bit unknown
5'd3 /1 5-bit decimal nunber
-4' b1l /1l 4-bit two's conpl enent of 0011 or 1101

The <number> part may not contain asign. Any sign must go on the front.
A string is a sequence of characters enclosed in double quotes.
“this is a string”

Electronics Workbench

The Verilog Language

Operators are one, two or three characters and are used in expressions (see “B.1.2.5 Opera
tors’ on page B.1-12).

Anidentifier is specified by aletter or underscore followed by zero or more letters, digits, dol-
lar signs and underscores. Identifiers can be up to 1024 characters.

B.1.2.3Program Structure

The Verilog language describes adigital system as a set of modules. Each of these modules
has an interface to other modules to describe how they are interconnected. Usually we place
one module per file but that is not a requirement. The modules may run concurrently, but usu-
ally we have one top level module which specifies a closed system containing both test data
and hardware models. The top level module invokes instances of other modules.

Modules can represent pieces of hardware ranging from simple gates to compl ete systems,
e.g., amicroprocessor. Modules can either be specified behaviorally or structurally (or acom-
bination of the two). A behavioral specification defines the behavior of adigital system (mod-
ule) using traditional programming language constructs, e.g., ifs, assignment statements. A
structural specification expresses the behavior of adigital system (module) as a hierarchical
interconnection of sub modules. At the bottom of the hierarchy the components must be prim-
itives or specified behaviorally. Verilog primitives include gates, e.g., nand, as well as pass
transistors (switches).

The structure of amodule is the following:

nodul e <nmodul e nanme> (<port |ist>);

<decl ar es>

<nmodul e itens>

endnodul e
The <module name> is an identifier that uniquely names the module. The <port list> isalist
of input, inout and output ports which are used to connect to other modules. The <declares>
section specifies data objects as registers, memories and wires as wells as procedural con-
structs such as functions and tasks.

The <module items> may be initia constructs, always constructs, continuous assignments or
instances of modules.

The semantics of the module construct in Verilog is very different from subroutines, proce-
dures and functions in other languages. A module is never called! A moduleisinstantiated at
the start of the program and stays around for the life of the program. A Verilog module instan-
tiation is used to model a hardware circuit where we assume no one unsolders or changes the
wiring. Each time amodule is instantiated, we give its instantiation a name. For example,
NAND1 and NAND?2 are the names of instantiations of our NAND gate in the example
below.

Multisim 2001 User Guide B.1-7

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1-8

Here is abehavior specification of amodule NAND. The output out is the not of the and of
theinputsinl and in2.
/1 Behavioral Mdel of a Nand gate

/1 By Dan Hyde, August 9, 1995
nmodul e NAND(i nl1, in2, out);

i nput inl, in2;

out put out;
/1 continuous assign statenent
assign out = ~(inl & in2);
endnodul e

The portsinl, in2 and out are labels on wires. The continuous assignment assign continuously
watches for changes to variablesin its right hand side and whenever that happens the right
hand side is re-evaluated and the result immediately propagated to the left hand side (out).

The continuous assignment statement is used to model combinational circuits where the out-
puts change when one wiggles the input.

Here isastructural specification of amodule AND obtained by connecting the output of one
NAND to both inputs of another one.
nmodul e AND(inl, in2, out);
/1 Structural nodel of AND gate fromtwo NANDS

i nput inl, in2;

out put out;

wre wi;

/1 two instantiations of the nodul e NAND
NAND NANDL(inl, in2, wl);
NAND NAND2(wl, wl, out);

endnodul e

This module has two instances of the NAND module called NAND1 and NAND2 connected
together by an internal wire wl.

The general form to invoke an instance of amoduleis:

<nodul e nane> <paraneter |ist> <instance nane> (<port |ist>);

where <parameter list> are values of parameters passed to the instance. An example parame-
ter passed would be the delay for a gate.

The following module is a high level module which sets some test data and sets up the moni-
toring of variables.

nodul e test _AND;

/1 High level nodule to test the two other nodul es
reg a, b;
wire outl, out2;

Electronics Workbench

The Verilog Language

initial begin // Test data
a=0;, b=0;

#1 a = 1;

#1 b = 1;

#1 a = 0;
end

initial begin // Set up nonitoring
$nmoni tor (“Ti me=%0d a=% b=% out 1=% out 2=%",
$time, a, b, outl, out2);
end
/'l Instances of npdul es AND and NAND
AND gatel(a, b, out2);
NAND gate2(a, b, outl);

endnodul e

Notice that we need to hold the values aand b over time. Therefore, we had to use 1-bit regis-
ters. reg variables store the last value that was procedurally assigned to them (just like vari-
ablesin traditional imperative programming languages). wires have no storage capacity. They
can be continuously driven, e.g., with a continuous assign statement or by the output of a
module, or if input wires are left unconnected, they get the special value of x for unknown.

Continuous assignments use the keyword assign whereas procedural assignments have the
form <reg variable> = <expression> where the <reg variable> must be a register or memory.
Procedural assignment may only appear ini ni ti al and al ways constructs.

The statementsin the block of thefirsti ni ti al construct will be executed sequentially,
some of which are delayed by #1, i.e., one unit of simulated time. The al ways construct
behavesthe sameasthei ni ti al construct except that it loops forever (until the simulation
stops). Thei ni ti al andal ways constructs are used to model sequential logic (i.e., finite
state automata).

Verilog makes an important distinction between procedural assignment and the continuous
assignment assi gn . Procedural assignment changes the state of aregister, i.e., sequential
logic, whereas the continuous statement is used to model combinational logic. Continuous
assignments drivewi r e variables and are evaluated and updated whenever an input operand
changes value. It isimportant to understand and remember the difference.

We place al three modulesin afile and run the smulator to produce the following output.

Ti me=0 a=0 b=0 out 1=1 out2=0
Ti me=1 a=1 b=0 out 1=1 out2=0
Ti me=2 a=1 b=1 out 1=0 out2=1
Ti me=3 a=0 b=1 out1=1 out 2=0
Since the simulator ran out of events, | didn't need to explicitly stop the simulation.

Multisim 2001 User Guide B.1-9

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1.2.4 Data Types

B.1-10

B.1.2.4.1Physical Data Types

Since the purpose of Verilog HDL isto model digital hardware, the primary datatypes are for
modeling registers (r eg) and wires (Wi r €). Ther eg variables store the last value that was
procedurally assigned to them whereas the wi r e variables represent physical connections
between structural entities such asgates. A wi r e doesnot storeavalue. A wi r e variableis
really only alabel on awire. (Note that thewi r e datatypeisonly one of severa net data
typesin Verilog HDL which include “wired and” (wand), “wired or” (wor) and “tristate bus’
(tri). Thishandout isrestricted to only thewi r e datatype.)

Ther eg and wi r e data objects may have the following possible values:

0 logical zero or false

1 logical one or true

X unknown | ogi cal val ue

z high inpedance of tristate gate
Ther eg variables areinitialized to x at the start of the simulation. Any wi r e variable not
connected to something has the x value.
You may specify the size of aregister or wire in the declaration For example, the declarations

reg [0:7] A B;

wire [0:3] Dataout;

reg [7:0] C
specify registers A and B to be 8-bit wide with the most significant bit the zeroth bit, whereas
the most significant bit of register C isbit seven. The wire Dataout is 4 bits wide.
The bitsin aregister or wire can be referenced by the notation [<start-bit>:<end-hit>].
For example, in the second procedural assignment statement

initial begin: intl

A = 8 b01011010
B={A0:3 | Al4:7], 4' b0000};

end
B is set to the first four bits of A bitwise or-ed with the last four bits of A and then concate-
nated with 0000. B now holds a value of 11110000. The {} brackets means the bits of the two
or more arguments separated by commas are concatenated together.

An argument may be replicated by specifying a repetition number of the form:
{repetition_nunber{expl, exp2, ... , expn}}
Here are some examples:

C = {2{4'bl1l011}}; //C assigned the bit vector 8 b10111011
C={{4{A4]}}, Al4:7]}; /I first 4 bits are sign extension

Electronics Workbench

The Verilog Language

The range referencing in an expression must have constant expression indices. However, a
single bit may be referenced by avariable. For example:

reg [0:7] A B;

B = 3;
A[0: B] = 3'b111; // ILLEGAL - indices MJST be constant!!
A B] = 1'bi1; /1l A single bit reference is LEGAL

Why such astrict requirement of constant indices in register references? Since we are describ-
ing hardware, we want only expressions which are realizable.

Memories are specified as vectors of registers. For example, Mem is 1K words each 32-hits.
reg [31: 0] Mem [O0:1023];

The notation Mem[0] references the zeroth word of memory. The array index for memory

(register vector) may be aregister. Notice that one can not reference amemory at the bit-level

in Verilog HDL. If you want a specific range of bitsin aword of memory, you must first trans-
fer the datain the word to atemporary register.

B.1.2.4.2Abstract Data Types

In addition to modeling hardware, there are other uses for variables in a hardware model. For
example, the designer might want to use an integer variable to count the number of times an
event occurs. For the convenience of the designer, Verilog HDL has several data types which
do not have a corresponding hardware realization. These data types include integer, real and
time. The data types integer and real behave pretty much asin other languages, e.g., C. Be
warned that areg variable is unsigned and that an integer variable is asigned 32-bit integer.
This has important consequences when you subtract.

time variables hold 64-bit quantities and are used in conjunction with the $time system func-
tion. Arrays of integer and time variables (but not reals) are allowed. Multiple dimensional
arrays are not allowed in Verilog HDL. Some examples:
i nteger Count; /1 sinmple signed 32-bit integer

integer K[1:64]; /1 an array of 64 integers

time Start, Stop; // Two 64-bit time variables

Multisim 2001 User Guide B.1-11

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1.2.50perators

B.1-12

B.1.2.5.1Binary Arithmetic Operators

Binary arithmetic operators operate on two operands. Register and net (wire) operands are
treated as unsigned. However, real and integer operands may be signed. If any bit of an oper-
and is unknown ('x") then the result is unknown.

Qperator Nanme Comment s

+ Addi tion

- Subtraction

* Mul tiplication

/ Di vi si on Di vide by zero produces an x,

i.e., unknown.
% Modul us

B.1.2.5.2Unary Arithmetic Operators

Qperator Nane Conment s
- Unary M nus Changes sign of its operand.

B.1.2.5.3Relational Operators

Relational operators compare two operands and return alogical value, i.e., TRUE(1) or
FALSE(0). If any bit is unknown, the relation is ambiguous and the result is unknown.

Qperator Nanme Comment s
> G eater than

>= G eater than or equal

< Less than

<= Less than or equal

== Logi cal equality
= Logi cal inequality

B.1.2.5.4Logical Operators

Logical operators operate on logical operands and return alogical value, i.e., TRUE(1) or
FALSE(0). Used typically in if and while statements. Do not confuse logical operators with
the bitwise Boolean operators. For example, ! isalogical NOT and ~ is a bitwise NOT. The
first negates, e.g., !(5 == 6) is TRUE. The second complements the bits, e.g., ~{1,0,1,1} is
0100.

Electronics Workbench

The Verilog Language

Operator Nanme

Comment s

! Logi cal negation

&& Logi cal AND
|] Logi cal OR

B.1.2.5.5Bitwise Operators

Bitwise operators operate on the bits of the operand or operands. For example, the result of A
& B isthe AND of each corresponding bit of A with B. Operating on an unknown (x) bit
results in the expected value. For example, the AND of an x withaFALSE isan x. The OR of

an x withaTRUE isaTRUE.
Operator Nanme

Comment s

~ Bi twi se negation

Bitwi se OR

Bi t wi se XOR
~& Bi t wi se NAND
~ Bi twi se NOR

& Bitw se AND
|
N

~N or "~ Equival enceBitwi se NOT XOR

B.1.2.5.6Unary Reduction Operators

Unary reduction operators produce a single bit result from applying the operator to al of the
bits of the operand. For example, & A will AND all the bits of A.

Qperator Nanme Comments

& AND r eduction
| OR reduction

N XOR reduction
~& NAND r educti on

~ NOR reducti on

~N XNOR reduction

B.1.2.5.70ther Operators

The conditional operator operates much like in the language C.

Operator Nanme
=== Case equality

Comment s

The bitw se conparison includes conparison
of x and z values. Al bits nust match for
equality. Returns TRUE or FALSE.

l== Case inequality The bitw se conparison includes conparison

{ ., 1} Concat enat i on

Multisim 2001 User Guide

of x and z values. Any bit difference
produces inequality. Returns TRUE or FALSE.
Joins bits together with 2 or nore

comma- separ at ed expressions, e, g.

B.1-13

Jawid Bojuap

Verilog Primer

Verilog Primer

{A[0], B[1:7]} concatenates the zeroth bit
of Ato bits 1 to 7 of B.

<< Shift left Vacated bit positions are filled with zeros,
e.g., A=A << 2; shifts Atw bits to |eft
with zero fill.

>> Shift right Vacated bit positions are filled with zeros.

?: Condi ti onal Assigns one of two val ues dependi ng on the
condi tional expression. e.g.,
A=C>D?2B+3 : B2
neans if C greater than D, the value of A
is B+3 ot herw se B-2.

B.1.2.5.80perator Precedence

The precedence of operatorsis shown below. The top of the table is the highest precedence
and the bottom is the lowest. Operators on the same line have the same precedence and asso-
ciateleft toright in an expression. Parentheses can be used to change the precedence or clarify
the situation. We strongly urge you to use parentheses to improve readability.

unary operators: ! & ~& | ~| ~ ~~ + - (hi ghest precedence)

B.1.2.62.6 Control Constructs

B.1-14

Verilog HDL has arich collection of control statements which can used in the procedural sec-
tions of code, i.e., withinani ni ti al oral ways block. Most of them will be familiar to the
programmer of traditional programming languages like C. The main difference is instead of
C's{ } brackets, Verilog HDL usesbegi n and end. In Verilog, the{ } brackets are used for
concatenation of bit strings. Since most users are familiar with C, the following subsections
typically show only an example of each construct.

Electronics Workbench

The Verilog Language

B.1.2.6.1Selection - if and case Statements

Thei f statement iseasy to use.
if (A== 4)
begin
B = 2;
end
el se
begin
B = 4,
end
Unlikethe case statement in C, the first <value> that matches the val ue of the <expression>
is selected and the associated statement is executed then control is transferred to after the
endcase, i.e, nobr eak statements are needed asin C.

case (<expression>)
<val uel>: <statenent>
<val ue2>: <statenent>
defaul t: <statenent>
endcase
The following example checks a 1-bit signal for its value.
case (sigQ)
1'bz: $display(“Signal is floating”);
1' bx: $display(“Signal is unknown”);
default: $display(“Signal is %", sig);
endcase

B.1.2.6.2Repetition - for, while and repeat Statements

Thef or statementisvery closeto C'sf or statement except that the ++ and -- operators do
not exist in Verilog. Therefore, weneedtousei =i + 1.

for(i =0; i <10; i =i + 1)
begi n
$di splay(“i= 9%0d”, i);
end
Thewhi | e statement actsin the normal fashion.
i =0;
while(i < 10)
begin
$di splay(“i= 9®0d", i);
i =i + 1;
end

Multisim 2001 User Guide B.1-15

Jawid Bojuap

Verilog Primer

Verilog Primer

Ther epeat statement repeats the following block a fixed number of times, in this example,
five times.

repeat (5)
begi n
$di splay(“i= %®0d”, i);
=0+ 1
end

B.1.2.7 Other Statements

B.1-16

B.1.2.7.1Parameter Statement

Thepar anet er statement allowsthe designer to give a constant aname. Typical uses areto
specify width of registers and delays. For example, the following allows the designer to
parameterized the declarations of a model.

parameter byte_size = 8;

reg [byte_size - 1:0] A B;

B.1.2.7.2Continuous Assignment

Continuous assignments drivewi r e variables and are evaluated and updated whenever an
input operand changes value. The following ands the values on the wiresinl and in2 and
drivesthe wire out. The keyword assi gn is used to distinguish the continuous assignment
from the procedural assignment. See “B.1.2.3 Program Structure” on page B.1-7 for more
discussion on continuous assignment.

assign out = ~(inl & in2);

B.1.2.7.3Blocking and Non-blocking Procedural Assign-
ments

The Verilog language has two forms of the procedural assignment statement: blocking and
non-blocking. The two are distinguished by the = and <= assignment operators. The blocking
assignment statement (= operator) acts much like in traditional programming languages. The
whole statement is done before control passes on to the next statement. The non-blocking (<=
operator) evaluates all the right-hand sides for the current time unit and assigns the | eft-hand
sides at the end of the time unit. For example, the following Verilog program

/1 testing blocking and non-bl ocki ng assi gnnment

nodul e bl ocki ng;

reg [0:7] A B

Electronics Workbench

The Verilog Language

initial begin: initl

A= 3;

#1 A= A+ 1, /1 bl ocking procedural assignment
B=A+1;
$di spl ay(“Bl ocki ng: A= % B= %", A B);

A=3;

#1 A <= A+ 1; [// non-blocking procedural assignment
B<=A+1;

#1 $di spl ay(“Non-bl ocking: A= % B= %", A B);

end

endnmodul e

produces the following output:

Bl ocki ng: A= 00000100 B= 00000101

Non- bl ocki ng: A= 00000100 B= 00000100

The effect isfor all the non-blocking assignments to use the old values of the variables at the
beginning of the current time unit and to assign the registers new values at the end of the cur-
rent time unit. This reflects how register transfers occur in some hardware systems.

B.1.2.8 Tasks and Functions

Tasks are like procedures in other programming languages, e.g., tasks may have zero or more

arguments and do not return a value. Functions act like function subprograms in other lan-

guages. Except:

1. A Verilog function must execute during one simulation time unit. That is, no time control-
ling statements, i.e., no delay control (#), no event control (@) or wai t statements,
allowed. A task may contain time controlled statements.

2. A Verilog function cannot invoke (call, enable) atask; whereas atask may call other tasks
and functions.

The definition of atask isthe following:

task <task name>; // Notice: no paraneter list or ()s
<argument ports>
<decl ar ati ons>
<st at enent s>
endt ask

Multisim 2001 User Guide B.1-17

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1-18

An invocation of atask is of the following form:
<nane of task> (<port list>);

where <port list> isalist of expressions which correspond by position to the <argument
ports> of the definition. Port argumentsin the definition may bei nput , i nout or out put .
Since the <argument ports> in the task definition look like declarations, the programmer must
be careful in adding declares at the beginning of atask.

/1 Testing tasks and functions
/1 Dan Hyde, Aug 28, 1995
nodul e t asks;

task add; /1 task definition
input a, b; /1 two input argunment ports
out put c; /1 one output argunent port
reg R /'l register declaration
begi n
R =1;
if (a ==Db)
c=1&R
el se
c = 0;
end
endt ask

initial begin: initl
reg p;
add(1, 0, p); [// invocation of task with 3 arguments
$di splay(“p= %", p);

end

endnodul e

i nput andi nout parameters are passed by valueto thet ask and out put andi nout
parameters are passed back to invocation by value on return. Call by reference is not avail-
able.

Allocation of al variablesis static. Therefore, atask may call itself but each invocation of the
task uses the same storage, i.e., thelocal variables are not pushed on a stack. Since concurrent
threads may invoke the same task, the programmer must be aware of the static nature of stor-
age and avoid unwanted overwriting of shared storage space.

The purpose of afunction isto return avalue that isto be used in an expression. A function
definition must contain at least onei nput argument. The passing of arguments in functions
is the same as with tasks (see above). The definition of afunction isthe following:

function <range or type> <function name>;// Notice: no paraneter |ist
or ()s

Electronics Workbench

The Verilog Language

<argument ports>

<decl arati ons>

<st at enent s>
endf uncti on
where <range or type> is the type of the results passed back to the expression where the func-
tion was called. Inside the function, one must assign the function name avalue. Below is a
function which is similar to the task above.

/1 Testing functions
/1 Dan Hyde, Aug 28, 1995
nodul e functi ons;

function [1:1] add2; // function definition

i nput a, b; /1 two input argument ports
reg R /1 register declaration
begin
R =1
if (a==Db)
add2 = 1 & R
el se
add2 = 0O;
end

endf unction

initial begin: initl
reg p;
p = add2(1, 0); // invocation of function with 2 argunents
$di splay(“p= %", p);

end

endnodul e

B.1.2.9Timing Control

The Verilog language provides two types of explicit timing control over when simulation time
procedural statements are to occur. The first typeisadelay control in which an expression
specifies the time duration between initially encountering the statement and when the state-
ment actually executes. The second type of timing control is the event expression, which
allows statement execution. The third subsection describes the wait statement which waits for
a specific variable to change.

Verilog is adiscrete event time simulator, i.e., events are scheduled for discrete times and
placed on an ordered-by-time wait queue. The earliest events are at the front of the wait queue
and the later events are behind them. The simulator removes all the events for the current sim-

Multisim 2001 User Guide B.1-19

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1-20

ulation time and processes them. During the processing, more events may be created and
placed in the proper place in the queue for later processing. When all the events of the current
time have been processed, the simulator advances time and processes the next events at the
front of the queue.

If there is no timing control, simulation time does not advance. Simulated time can only
progress by one of the following:

1. gateor wire delay, if specified.

2. adelay control, introduced by the # symbol.

3. anevent control, introduced by the @ symbol.

4. thewait statement.

The order of execution of eventsin the same clock time may not be predictable.

B.1.2.9.1Delay Control (#)
A delay control expression specifies the time duration between initially encountering the
statement and when the statement actually executes. For example:

#10 A = A + 1;

specifies to delay 10 time units before executing the procedural assignment statement. The #
may be followed by an expression with variables.

B.1.2.9.2Events
The execution of a procedural statement can be triggered with a value change on awire or
register, or the occurrence of a named event. Some examples:

@ begin /1 controlled by any val ue change in
A = B&C; /1 the register r
end

@ posedge clock2) A = B&C; // controlled by positive edge of clock2

@ negedge clock3) A = B&C; // controlled by negative edge of clock3

forever @negedge cl ock) /1 controlled by negative edge
begin
A = B&GC;
end
In the forms using posedge and negedge, they must be followed by a 1-bit expression,
typically aclock. A negedge is detected on the transition from 1 to O (or unknown). A
posedge isdetected on the transition from 0 to 1 (or unknown).

Electronics Workbench

The Verilog Language

Verilog also provides features to name an event and then to trigger the occurrence of that
event. We must first declare the event:

event event6;
To trigger the event, we use the -> symbol :

-> event 6;
To control ablock of code, we usethe @ synbol as shown:

@event6) begin

<sonme procedural code>
end

We assume that the event occursin onethread of contral, i.e., concurrently, and the controlled
code isin another thread. Several events may to or-ed inside the parentheses.

B.1.2.9.3wait Statement

The wait statement allows a procedural statement or a block to be delayed until a condition
becomes true.

wait (A == 3)

begin

A = B&GC;

end
The difference between the behavior of await statement and an event is that the wait state-
ment islevel sensitivewhereas @(posedge cl ock); istriggered by asignal transition or is
edge sensitive.

B.1.2.9.4fork and join Statements

By using the fork and join construct, Verilog allows more than one thread of control inside an
initial or always construct. For example, to have three threads of control, you fork the thread
into three and merge the three into one with ajoin as shown:

fork: three //split thread into three; one for each begin-end

begi n
/! code for thread 1
end
begi n
// code for thread 2
end
begin
/! code for thread 3
end
join /1 merge the three threads to one

Multisim 2001 User Guide B.1-21

Jawid Bojuap

Verilog Primer

Verilog Primer

Each statement between the fork and join, in this case, the three begin-end blocks, is executed
concurrently. After all the threads complete, the next statement after the join is executed.

You must be careful that there is no interference between the different threads. For example,
you can't change aregister in two different threads during the same clock period.

B.1.2.9.5Traffic Light Example

To demonstrate tasks as well as events, we will show ahardware model of atraffic light.

/! Digital nodel of a traffic Iight

/1 By Dan Hyde August 10, 1995

nodul e traffic;

paraneter on = 1, off =0, red_tics = 35,
anber _tics = 3, green_tics = 20

reg clock, red, anber, green;

/1 will stop the sinulation after 1000 tine units
initial begin: stop_at

#1000; $stop;
end

/1 initialize the lights and set up nonitoring of registers
initial begin: Init

red = off; anber = off; green = off;

$di spl ay(*“ Ti me green anber red”);

$noni t or (“%8d % % %", $tinme, green, anber, red);
end

/1 task to wait for 'tics' positive edge clocks
/1 before turning light off
task light;
out put col or;
input [31:0] tics;
begi n
repeat(tics) // wait to detect tics positive edges on clock
@ posedge cl ock);
color = off;
end
endt ask

/1 waveformfor clock period of 2 time units

al ways begin: cl ock_wave
#1 clock = 0;
#1 clock = 1;

end

B.1-22 Electronics Workbench

The Verilog Language

al ways begi n: mai n_process

red = on;

light(red, red_tics);

green = on;

I'ight(green,

anmber = on;

I'i ght (anber,
end

endnodul e

/1 call

green_tics);

anber _tics);

task to wait

The output of the traffic light simulator is the following:
Ti me green anber red

0
70
110
116
186
226
232
302
342
348
418
458
464
534
574
580
650
690
696
766
806
812
882
922
928
998

0

OO0OPrPOOPFRPOOPFRPOOPFRPROOPFRPOOPFRPOOPFRPOOFR

1

OO0OPFrRPOOPFPOOFRPOOPFPOOPFRPOOPRPOOPRFRPOORFROO

Stop at sinulation tine 1000

Multisim 2001 User Guide

1

OrPO0OO0OFrRPROO0OFrRPROOFrRPROOFrRPROOFrRPROOFR,ROOPRF,L OO

B.1-23

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1.3 Using the VeriWell Simulator

B.1.3.1 Creating the Model File

Enter the Verilog code using your favorite editor. We recommend that you use “.v" asthe
extension on the sourcefile.

B.1.3.2 Starting the Simulator

Veriwell is run from the UNIX shell window. Type “veriwell” followed by the names of the
files containing the models and the options. The options can appear in any order and any-
where on the command line. For example:

host - nane% veriwel|l cpu.v bus.v top.v -s
Thiswill load each of the files into memory, compile them, and enter interactive mode.
Removing the “-s” option would cause the simulation to begin immediately. Options are pro-

cessed in the order that they appear on the command line. Files are processed in the order that
they appear after the options are processed.

B.1.3.3How to Exit the Simulator?

To exit the simulator, you can type $f i ni sh; or press Control-D.

To stop the simulation, you press Control-C. Executing a$st op; system task in the code will
also stop the simulation.

B.1.3.4 Simulator Options

B.1-24

Commonly used options typed on the command line are shown below. One should consult the
VeriWell User’s Guide for the others.

-i <inputfil ename>
Specifies afile that contains interactive commands to be executed as soon as interactive com-

mand mode is entered. This option should be used with the “-s” option. This can be used to
initialize variables and set time limits on the simulation.

-S
Causes interactive mode to be entered before the simulation begins.

Electronics Workbench

Using the VeriWell Simulator

-t
Causes all statements to be traced. Trace mode may be disabled with the $cl eartr ace
system task.

B.1.3.5Debugging Using VeriWell's Interactive Mode

VeriWell isinteractive. Once invoked, the simulation can be controlled with simple com-
mands. Also, VeriWell accepts any Verilog statement (but new modules or declarations cannot
be added).

Interactive mode is entered in one of three ways:

1. Whenthe“-s" optionis used on the command line (or in a command file), interactive
mode is entered before the simulation begins,

2. When the smulation encounters the $st op system task, or,

3. When the user types Control-C during simulation (but not during compilation).

B.1.3.5.1Interactive Commands

Continue ('.') [period]
Resunme execution fromthe current |ocation.

Single-step with trace (',') [conma]
Execute a single statenent and display the trace for that
stat enment .

Singl e-step without trace (';') [sem colon]
Execute a single statenent w thout trace.

Current location (':') [colon]
Di splay the current |ocation.

Control -d or $finish;
Exit VeriWell sinulator.

Typically, the kinds of Verilog statements executed interactively are used for debugging and
information-gathering. $di spl ay and $showar s can be typed at the interactive prompt
to show the values of variables. Notice the complete system task statement must be typed
including parameters and semicolon. $scope(<nane>) ; and $showscopes; can be
typed to traverse the model hierarchy. $set t r ace; and $cl ear t r ace; will enter and exit
trace mode. Typing “#100; $st op; " will stop the execution after 100 simulation units.

Multisim 2001 User Guide B.1-25

Jawid Bojuap

Verilog Primer

Verilog Primer

B.1.4 System Tasks and Functions

System tasks are not part of the Verilog language but are build-in tasks contained in alibrary.
A few of the more commonly used one are described below. The Verilog Language Reference
Manual has many more.

B.1.4.1 $cleartrace

The $cl ear t r ace system task turns off the trace. See “B.1.4.6 $settrace” on page B.1-28
to set the trace.

$cl eartrace;

B.1.4.2%display

B.1-26

Displaystext to the screen much likethe pri nt f statement from the language C. The gen-
eral formis

$di spl ay(<paraneter>, <paranmeter>, ... <paraneter>);

where <parameter > may be a quoted string, an expression that returns avalue or anull
parameter. For example, the following displays a header.

$di spl ay(“Regi sters: A B C);
The special character % indicates that the next character is aformat specification. For each %

character that appearsin the string, a corresponding expression must be supplied after the
string. For exampl e, the following prints the value of A in binary, octal, decimal and hex.

$di spl ay(“A=% binary % octal %l decimal % hex", A A A A;
produces the following output
A=00001111 binary 017 octal 15 decinmal Of hex
The commonly used format specifiers are

% display in binary format

% display in ASCII character format
%l display in decinmal fornmat

% display in hex format

% display in octal fornat

% display in string format

A 0 between the % and format specifier allocates the exact number of characters required to
display the expression result, instead of the expression's largest possible value (the default).
For example, thisisuseful for displaying the time as shown by the difference between the fol-
lowing two $di spl ay statements.

Electronics Workbench

System Tasks and Functions

$di splay(“Time = %", $tine);
$di splay(“Time = 9%9d”, $tinme);
produces the following output
Tine = 1
Tine = 1
Escape sequences may be included in a string. The commonly used escape sequences are the
following:

\n the new ine character

\'t the tab character

\\ the \ character

\" the “ character

%% the percent sign
A null parameter produces a single space character in the display. A null parameter is charac-
terized by two adjacent commas in the parameter list.

Notethat $di spl ay automatically adds a newline character to the end of its output. See
$wr i t e in Verilog Language Reference Manual if you don't want a newline.

B.1.4.3$finish

The $f i ni sh system task exits the simulator to the host operating system. Don't forget to
type the semicolon while in interactive mode.

$f i ni sh;

B.1.4.4$monitor

The$noni t or system task provides the ability to monitor and display the values of any
variable or expression specified as parameters to the task. The parameters are specified in
exactly the same manner asthe $di spl ay system task. When you invoke the $noni t or
task, the simulator sets up a mechanism whereby each time a variable or an expression in the
parameter list changes value, with the exception of $t i me, the entire parameter list isdis-
played at the end of the time step as if reported by the $di spl ay task. If two or more param-
eters change values at the same time, however, only one display is produced. For example, the
following will display aline anytime one of the registers A, B or C changes.

$monitor(“ %d % % “%, $tine, A B, O;

Multisim 2001 User Guide B.1-27

Jawid Bojuap

Verilog Primer

Verilog Primer

Only one $noni t or statement may be active at any one time. The monitoring may be turned
off and on by the following:

$noni t or of f;
<sone code>
$noni t or on;

B.1.4.5%scope

The $scope system task lets the user assign a particular level of hierarchy as the interactive
scope for identifying objects. $scope is useful during debugging as the user may change the
scope to inspect the values of variablesin different modules, tasks and functions.

$scope(<nanme>);

The <name> parameter must be the complete hierarchical name of amodule, task, function or
named block. See “B.1.4.7 $showscopes’ on page B.1-28 to display the names.

B.1.4.6 $settrace

The$set t r ace system task enables tracing of simulation activity. The trace consists of var-
ious information, including the current simulation time, the line number, the file name, mod-
ule and any results from executing the statement.

$settrace;
You can turn off the trace using the $cl ear t r ace system task.

B.1.4.7 $showscopes

The $showscopes system task displays acomplete lists of al the modules, tasks, functions
and named blocks that are defined at the current scope level.

$showscopes;

B.1-28 Electronics Workbench

References

B.1.4.8%showvars

The $showar s system task produces status information for register and net (wires) vari-
ables, both scalar and vector. When invoked without parameters, $showar s displaysthe
status of al variables in the current scope. When invoked with alist of variables, it shows
only the status of the specified variables.

$showars;
$showvars(<list of variabl es>);

B.1.4.9 $stop

The $st op system task puts the simulator into a halt mode, issues an interactive command
prompt and passes control to the user. See“B.1.3.5 Debugging Using VeriWell's Interactive
Mode” on page B.1-25.

$st op;

B.1.4.10%time

The $t i me system function returns the current simulation time as a 64-bit integer. $t i ne
must be used in an expression.

B.1.5 References

1. Cadence Design Systems, Inc., Verilog-XL Reference Manual.

2. Open Verilog International (OV1), Verilog HDL Language Reference Manual (LRM),
15466 L os Gatos Boulevard, Suite 109-071, Los Gatos, CA 95032; Tel: (408)353-8899,
Fax: (408) 353-8869, Email: OVI@netcom.com, $100.

3. Sternheim, E. , R. Singh, Y. Trivedi, R. Madhaven and W. Stapleton, Digital Design and
Synthesiswith Verilog HDL, published by Automata Publishing Co., Cupertino, CA, 1993,
ISBN 0-9627488-2-X, $65.

4. Thomas, Donald E., and Philip R. Moorby, The \erilog Hardware Description Language,
second edition, published by Kluwer Academic Publishers, Norwell MA, 1994, ISBN 0-
7923-9523-9, $98, includes DOS version of VeriWell simulator and programs on diskette.

5. Bhasker, J., A Verilog HDL Primer, Star Galaxy Press, 1058 Treeline Drive, Allentown,
PA 18103, 1997, ISBN 0-9656277-4-8, $60.

Multisim 2001 User Guide B.1-29

Jawid Bojuap

Verilog Primer

Verilog Primer

6. Wellspring Solutions, Inc., Veriwell User’s Guide 1.2, August, 1994, part of free distribu-
tion of Veriwell, available online.

7. World Wide Web Pages:
FAQ for comp.lang.verilog - http://www.comit.com/~rajesh/verilog/fag/alt FAQ.html
comp.lang.verilog archives - http://www.siliconl ogic.com/Verilog/
Cadence Design Systems, Inc. - http://www.cadence.com/
Wellspring Solutions, Inc. - ftp://iii.net/pub/pub-site/well spring
Verilog research at Cambridge, England - http://www.cl.cam.uk/users/mjcg/Verilog/

B.1-30 Electronics Workbench

Appendix B.2

B.2.1 Verilog HDL Extensions

B.2.1.1SILOS Il PLI Interface

SILOS 11 dynamically interfaces the user written or vendor supplied Programming Language
Interface (PL1) routines with the SILOS |11 executable at runtime. Interfacing the PLI rou-
tines at run time has the following advantages.

» Theuser does not haveto create anew SILOS |11 executable or have adifferent executable
for each set of vendor supplied PLI routines.

» Dynamicaly linking the PLI routines at runtime is faster than having to recompile and
create anew executable each time.

» Upgrading to new versions of SILOS I11 is simple because there is no need to recompile
and create a new executable.

B.2.1.1.1 SILOS Ill PLI Interface on the PC

The PLI can be used with SILOS 111 on Windows NT version 4.0 and greater, and on Win-
dows 95 and Windows 98. Contact Simucad for an updated list of supported platforms. You
may also need a"C" compiler, such asthe MS Visual C++ compiler, to compile any user writ-
ten PLI routines and to create a“.dll” fileto link with SILOS I11. To use PLI on the PC plat-
form:

e Createoneor more“.dll” filesthat contain the object code for the PLI. The object code
must have been compiled for the type of platform you are using. For example, object code
from the Sun will not work on the PC.

Multisim 2001 User Guide B.2-1

suoisualx3 1aH Bojusa

Verilog HDL Extensions

B.2-2

e TheSILOSIII “pliload” command is used to specify the “.dII” filesfor SILOS 11 at runt-
ime. The “pliload” command is cumulative so that one or more “pliload” commandsis
allowed before starting simulation. The “pliload” command can be entered in the Com-
mand window for the Main toolbar, from the SILOS I1l command line, or from afile.

pliloadmypli.dll Example for entering the pliload command in the Command
window for the Main toolbar.

silos.exe myfile.v-“Ipliloadmypli.dIl” Example for entering the pliload command at the command
line.

module foo; Entering the pliload command from a file.

endmodule

“ifdef silos

Ipliload

“endif

* For moreinformation, see the "README.TXT" filein the PLI subdirectory for the
SILOS 111 installation.

» For an example of using PLI with SILOS 111, seefile "pliO1.spj" in the PLI subdirectory
for the SILOS 111 installation, or contact Simucad.

B.2.1.1.2 SILOS Ill PLI Interface on the Workstation

ThePLI can be used with SILOS 11 on the Sun and HP workstations supported by SILOS 1.
Contact Simucad for an updated list of supported platforms. To use PLI on the workstation:

« Create one or more ".s0" files that contain the object code for the PLI. For example, to
create a".s0" file on Solaris, enter the following load command.

Id -o nylib.so -dy -G *.o0

e TheSILOSIII "pliload" command is used to specify the ".so" filesfor SILOS 111 at runt-
ime. The "pliload" command is cumulative so that one or more "pliload" commandsis
allowed before starting simulation. The "pliload" command can be entered at thein the
Command window for the Main toolbar, from the SILOS |11 command line, or from afile.

pliload mypli.so example of entering the pliload command at the in the Com-
mand window for the Main toolbar.

silos.exe myfile.v -"Ipliload mypli.so "example of entering the pliload command at the command line.

Electronics Workbench

Verilog HDL Extensions

pliload mypli.so example of entering the pliload command at the in the Com-
mand window for the Main toolbar.

module foo; entering the pliload command from a file.

endmodule

“ifdef silos
Ipliload mypli.so
“endif

» For moreinformation, see the "README.TXT" filein the PLI subdirectory for the
SILOS 111 installation.

» For an example of using PLI with SILOS 11, seefile"pliOLl.spj" PLI subdirectory for the
SILOS 1l installation, or contact Simucad.

B.2.1.1.3 List of Implemented PLI Routines

The Silos Simulation Environment uses the | EEE 1364 " Standard Hardware Description Lan-
guage Based on the Verilog Hardware Description Language" manual as the specification for
the PL1. Many of the"tf_" PLI routinesfor linking user "C" programsto SILOS |11 have been
implemented. The user "C" programs could be used for modeling a circuit or for creating test
vectors. Selected "acc " PLI routines have also been implemented. Contact Simucad for the
list of implemented PLI routines.

B.2.1.2 Standard Delay Format

SILOS |1 supports the Standard Delay File (SDF) format. SDF isatext file that contains the
instance names and delay values necessary to back-annotate delaysinto a Verilog HDL
description. SDF is usually generated by another tool such as a place and route tool.

The $sdf_annotate system task is used to specify the SDF file (do not input the SDF file). The
format specification for the $sdf_annotate system task is:

$sdf _annotate("file_nanme", nodul e_i nstance);

Multisim 2001 User Guide B.2-3

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-4

where:

file_name represents any valid file path and file name specification.

module_instance represents the name of the module instance. The hierarchy of
this instance is used for back annotation. The names in the SDF
file are relative paths to the module_instance or full paths with
respect to the entire Verilog HDL description. For example, if you
use the module_instance name "top.dff1" then the instance
names in the SDF file are relative to "top.dff1". If you omit
module_instance, SILOS Il uses the module containing the call
to the $sdf_annotate system task as the module_instance for
annotation.

For examples on using SDF, see the example on the next page, and see project fltsim.spj
(fault simulation example) in the examples subdirectory for the installation.

For the below example and diagram, if the SDF file contained the following instance name:

(1 NSTANCE nane2. nane4)

(DELAY

(ABSOLUTE
(1OPATH INO OUT (2420:2420: 2420) (2420: 2420: 2420))

then the $sdf _annotate system task to specify the SDF file and itsrelative position in the
design's hierarchy would be:
modul e t est bench;

initial $sdf_annotate("filenane.sdf", testbench. nanmel);
When SILOS 111 reads file "filename.sdf* to update the design, the path "testbench.namel” is
concatenated with path "name2.name4" to form path "testbench.namel.name2.name4”. Sig-
nals"INQO" and "OUT" are then updated as specified in the above example.

Electronics Workbench

Verilog HDL Extensions

Diagram of the Design Hierarchy for the SDF Example

Test bench

\(module testbench >

Top level of design L (design namel(ports); >

[
[|
Cmodl name2(ports); > <mod2 name3(ports); >
[|

Cmodz name4 (INO, OUT); > <modl name5(ports); >

SDF file is updating this instance.

B.2.1.3Expected Values and Stimulustable

The |EEE Verilog specification does not describe any syntax for tabular representation of
input data, nor expected value information. The stimulustable statement isa SILOS 111
enhancement which provides tabular format for input data. The stimulustable statement also
can combine expected value information with the tabular format for input data.

B.2.1.3.1 BNF

sti mul ust abl e <i d>
tabl e <# del ay- expressi on>? <probe> <, <probe>>* ;
<del ay- const ant >? <dat a>+ ;

<del ay- const ant >? <dat a>+ ;

endt abl e
endst i nul ust abl e

Multisim 2001 User Guide B.2-5

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-6

pr obe 1= <dat a-format >? <vari abl e> <(vari abl e) ?@ <st r obe>>?
if <data-format> is onmtted then % is assuned.

data-format::= %
|]= %
|[|= %

For replacing an existing stimulus table after prep:

stimulustable <id> ;
tabl e <# del ay- expressi on>? ;
<del ay- const ant >? <dat a>+ ;
<del ay- const ant >? <dat a>+ ;

endt abl e
endsti nul ust abl e

B.2.1.3.2 Stimulustable

"stimulustable” is a behaviora statement and can be located anywhere any statement can be
placed, e.g.
for (i=1; i<=8; i =1i+1) // repeat 8 tinmes the input pattern
stinul ustabl e

endsti nul ust abl e

Thereis no limit to the number of stimulustable statements. They are not required to be
located in top-level modules. The syntax for the stimulustable keywords must be lower case.
Such as, the keyword "table" must be lower case. Variable names are upper/lower case sensi-
tive.

Any number of input or expected value columns may appear in a stimulustable. Each input
column isidentified by avariable which is driven by the datain the column. Each expected
value column isidentified by an @ sign. The variable on theleft side of an @ signis verified
against the datain the column. The variable on theright side of the @ signisused asa strobe.
Variables used in the table can be awire, register, memory element, integer or real variable of
any width and they can have any valid Verilog name.

In the example below for stimulustable s1, register variableinl and memory element in2 are
driven by the datain thetable. Wire outl isverified against the datain the table whenever the
variable strobel is high. To prevent possible race conditions, the rising or the falling edge of
the strobe signal "strobel" should not coincide with achangein the expected output for "out1"
in the stimulustable.

lcontrol .ext=stim
“tinescal e 1ns/ 100ps

Electronics Workbench

Verilog HDL Extensions

nodul e test;
reg [7:0] inl, in2[1:0];
wire[7:0] outl = ~inl | in2[0];
reg strobel;
initial strobel = 0;
al ways @ut1 begin #0.1 strobel = 1; #0.1 strobel = 0; end
initial
begi n
#5;
stinmul ustabl e s1;
table #1.2 inl, in2[0], outl@trobel;

00 00 ff;
Oe Oa f6;
ff ff 00;
endt abl e
endst i nul ust abl e
end
endnodul e

B.2.1.3.3 Radix

Datain the table can be in hexadecimal (%h isthe default), octal (%0), or binary (%b) for reg-
ister data-types, and integer or floating point for integer and real datatypes. There must be
one or more blank spaces between the radix symbol and the variable name it refersto, such as
%h in2. Each row of values inthetableisterminated by asemicolon";". Blank spacesand
tabs (not carriage returns) can be used to delineate the values between different variables,
however, white space is not allowed between the valuesfor avector variable. An examplefor
specifying the radix is shown below:
table #1.2% inl,in2, out @trobe;

00000000 00 ff

00001110 Oa f6

11111111 ff 00
For single bit wires, SILOS state symbols may be used to enter states other than 1, 0, x, z. See
“B.2.2.26 Symbol Modification For Output”.

B.2.1.3.4 Delay Time

The delay time for a constant increment of time (delta time) between application of subse-
guent table lines can be specified as a single expression:

table #delta ;

When the delta delay is specified on the table header, then the first table lineis applied imme-
diately upon execution of the stimulustable statement.

Multisim 2001 User Guide B.2-7

suoisualx3 JaH Bojusa

Verilog HDL Extensions

The delay time can also be specified on each table line. When no # sign is specified on the
table header, then the delay values are added to the simulation time as the stimulustable is
read. The delay isapplied prior to the application of the table line. The time units for the
delay value can be specified by preceding the module containing the stimulustable statement
with a “timescale statement. Below is an example:

“timescale 1ns / 1ns

#10 /1 tinme=10
table inl,in2, out @trobe;

1.2 00 00 ff; /] tinme=11.2
1.6 Oe Oa f6; /]l tine=12.8
2.1 ff ff 00; /1l tine=14.9

If two ## signs are specified on the table header, then the delay values are relative to the time
the stimulustable is started (very much like delay valuesin afork/join statement). For exam-
ple

#10 /1 tinme=10
table ## inl,in2, out @t robe;
1.2 00 00 ff; /[l tinme=11.2
1.6 Oe Oa f6; [/ tine=11.6
2.1 ff ff 00; /1l tinme=12.1

To have each delay value represent absolute time, start the stimulustable at time=0. For
example:
initial begin
stimul ustabl e s1;

table ## inl,in2, out @t robe;
1.2 00 00 ff; /1 time=1.2
1.6 Oe Oa f6; /] tine=1.6
2.1 ff ff 00; /[l time=2.1

Note that mixing of both delay styles in the same stimulus is not allowed.

B.2.1.3.5 Memory Utilization

Data specified in tables is not stored in RAM, so as to reduce memory used when thereisa
large pattern.

Electronics Workbench

Verilog HDL Extensions

B.2.1.3.6 Strobe

Expected value information is conditioned by a strobe. When the strobe is high, the variable
must agree with the datain the column as follows:

1 <==>1
0 <==>0
X <==> don't care

z <==> Hi gh inpedance strength (0,1, or Xx)
The expected value check is engaged when the stimulustabl e statement begins execution, and
persists through one strobe cycle following the conclusion of the stimulustable statement.
During engagement of the expected value check, a high (positive) strobe is required to check
that the variable agrees with the expected value data. To prevent possible race conditions, the
rising or the falling edge of the strobe signal should not coincide with a changein the
expected output signal in the stimulustable.

For example, in stimulustable s1 (shown below) variable strobel strobes out1 every 0.2 nano
seconds. Thisisfaster than the input values change (every 1.2 nano seconds) for variablesinl
and in2. When the second entry in the table is executed the calculated value for out1 (f6) does
not equal its expected value. The violation isrecorded at the next high pulse for variable
strobel and then is not recorded again until after the next entry in the table occurs.

lcontrol .ext=stim
“timescal e 1ns/100ps
nodul e test;
reg [7:0] inl, in2[1:0];
wire[7:0] outl = ~inl | in2[0];
reg strobel;
initial strobel = 0;
al ways @ut1 begin #0.1 strobel = 1; #0.1 strobel = 0; end
initial
begi n
#5;
stinul ustabl e s1;
table #1.2 inl, in2[0], outl@trobel;

00 00 ff;
Oe Oa f6;
ff ff 00;
endt abl e
endst i nul ust abl e
end

endnodul e

Multisim 2001 User Guide B.2-9

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-10

Using the disable statement to disable the block containing the stimulustable statement imme-
diately terminates expected value checking.

Each expected val ue column has one strobe, however multiple columns may each have differ-
ent strobes.

B.2.1.3.7 1/0 Pad

The stimulustable can be used to model a bi-directional 1/0 pad. In the example below for
stimulustabl e s1, variable enable controls the bi-directional I/0 pin bi_pad. When enableis
high (1), pin bi_pad acts as an output pin and expected value checking is performed every
time strobel goes high. The stimulustable also ignores any valuesin the table for pin
"bi_pad" when "enable" is high. When enableislow (0), pin bi_pad acts as an input pin and
the stimulustable applies the values in the table for pin bi_pad asinput stimulus. Expected
value checking isignored for pin bi_pad when enable is low.

lcontrol .ext=stim
“tinescal e 1ns/ 100ps
nodul e test;
wi re chipside, bi_pad, enable, out;
buf (chi psi de, bi_pad); /1 buf(out, in);
bufif1(bi _pad, chipside, enable); // bufifl(out, in, enable);
buf (out, chi pside);
reg strobel;
initial strobel = 0;
al ways @i _pad begin #8 strobel = 1; #1 strobel = 0; #1; end
initial
begin
#5;
stimul ust abl e s1;
table #10 chipside, enable, out @trobel,
bi _pad(enabl e) @t robel;

1 1 1 1, // output cycle
0 1 0 0; // output cycle
1 0 1 1; // input cycle
0 0 0 0 /'l input cycle
endt abl e
endsti mul ust abl e
end
endnodul e

Electronics Workbench

Verilog HDL Extensions

B.2.1.3.8 Expected Value Error

Expected value errors trigger a global register named ExpectedValueError. Thisregister is
simultaneously set with specific information about the expected value violated.

» The ExpectedValueError variable can be accessed either:
fromthe data file to cause imedi ate interaction with the sinulation,
e.g.

al ways @xpect edVal ueError $stop;

fromthe $nonitor systemtask or the SILOS Il probe comand the vari -
able prints a terse string indicating the stinmulus name and col um
name viol ated, e.g.

$noni tor ($ti me, , Expect edVal ueError);
To obtain al violations at a single time-point:
probe iter ExpectedVal ueError

To obtain time points for which there is at least one violation:
pr obe Expect edVal ueError

Note other variables may simultaneously be probed, e.g.

probe out,, Expect edVal ueError

When the ExpectedVal ueError signal is displayed in the Data Analyzer, value for the Expect-
edValuekError signal is"none" when there is no violation, and "x" when there is a violation.
The"Scan T1 Right" and the "Scan T1 Left" buttons on the Analyzer Toolbar can be used to
scan to expected value violations. If the ExpectedValueError signal shows a series of contig-
uous "none" values, then the rising and falling edge of the strobe signal may be coincident
with the changes for the expected value signal in the stimulustable. For example, the rising
and falling edge of the strobe signal "strobel" does not coincide with expected output signal
"outl" in the next example.

The below example shows how to use the ExpectedValueError variable with $monitor:

lcon .ext=stim
//title exanple with $nonitor
“timescal e 1ns/ 100ps
nodul e test;

reg [7:0] inl, in2[1:0];

Multisim 2001 User Guide B.2-11

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-12

wire[7:0] outl = ~inl | in2[0];
reg strobel;
initial strobel = O;
al ways @utl begin #0.1 strobel = 1; #0.1 strobel = 0; end
initial
begin
$tineformat (-9, 3,"ns", -15);
$rmonitor ("% ", $realti me,, ExpectedVal ueError);
#5;
stimul ust abl e s1;
table #1.2 inl, in2[0], outl@trobel;

00 00 ff;
Oe Oa f6;
ff ff 00;
endt abl e
endsti nul ust abl e
#10 $finish;
end
endnodul e

The output from the $monitor is shown below:

6.300ns :sl1 outl fb !'= f6:
6. 400ns
7.500ns :s1 outl ff !'= 00:
7.600ns

For thefirst line:
6.300ns :s1 outl fb !'= f6:

The "6.300ns" is the time the difference occurred, the "s1" is the instance name for the stimu-
lustable, the "fb" isthe simulation value for variable "out1", and the "f6" isthe expected value
for "out1".

B.2.1.3.9 Expected Value Error Storage

The expected values are stored in variables that use the root name of the variable whose value
is checked with an <expected><number> appended to the name. These variables can be
accessed with the probe or print commands, or viewed in the Data Analyzer.

B.2.1.3.10Incremental Update

"stimulustable" data can be incrementally replaced without having to re-input al thefilesin
the design. Thisallows quick iteration of different stimulus/expected-value patterns. The
incremental stimulustables can be specified at any time after preprocessing (the "!prep" com-

Electronics Workbench

Verilog HDL Extensions

mand). When specifying the incremental stimulustables, each incremental stimulustable must
be specified outside of any module, and the variable names can not be put on the table line.
The name of the stimulustable is used to determine which stimulustable is updated.

Thefile below, "test.v", shows the top level module with a stimulustable that is simulated
until the "$finish" is encountered:

File "test.v":
lcon .ext=stim
“timescal e 1ns/ 100ps
nodul e mai n;
reg [8:0] r9;
reg ri;
initial
begi n
stimul ustabl e s1;
table #10 % r9, ri;
000000000
000010000
111111111
100000001

oOXopRr

endt abl e
endsti nul ust abl e
#10 $finish;
end
endnodul e
I'sim
“include "test1.v"

The next file, "test1.v" shows the new stimulustable values. To simulate the new values, use
“include to input file "test1.v". Notice that the delta delay value was changed from "#10" for
the first version of stimulustable "s1" to "#20" for the second version of stimulustable "s1".
The command "!sim 0 2100m" will restart the simulation at time=0 and simulate until the
"$finish" infile test.v:
File "testl.v":

stinul ustable si;

tabl e #20;
001100000 0;
011010000 X;
111111111 X;
100010001 1;

endt abl e

endst i nul ust abl e
IsimO0 2100m

Multisim 2001 User Guide B.2-13

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-14

B.2.1.3.11Changing Behavioral Stimulus to a "stimulust-
able" Format
Using a stimulustable statement instead of behavioral stimulus has the following advantage:

e Thestimulustable isinput in chunks so it requires less memory.

To change behavioral stimulus to a stimulustable format, you can simulate the behavioral
stimulus with SILOS I11 and then store the results from the "probe’ command as afile of tab-
ular ones and zeros. The file can then be edited to remove the title for the "probe’ command
report. Each line of tabular valuesin the file must end with asemicolon";". To add a semico-
lon at the end of each line, put a";" at the end of the probe state, i.e.:

Istore probe inl,,in2,,bil ,,bi2_,";"

For example, for file "stimulus.v":

“tinmescale 1ns / 100ps
modul e foo;
reg inl, in2;
reg bil , bi2_;
wire bil =bil_; // bi-directional inputs

wire bi2 bi2_; // bi-directional inputs
initial

begin

i n1=0; in2=0;

bi 1_=0; bi2_=0;
#10 inl=1; bil_=1;
#10 bi 2_=1' bz;
#10 $fi ni sh;
end

endnodul e

The following commands would be used from afile to simulate the stimulus:

“include "stinmulus.v"
lcontrol .savsinm2

I'sim
Idisk stimyv
I scope foo

Istore probe inl,,in2,,bil_,,bi2_,";"
Next, edit file "stim.v" and remove the report header for the probe report and any messages
from the probe report.

Then, include file "stim.v" into a stimulustabl e statement:

lcontrol .ext=stim
“tinmescale 1ns / 100ps
modul e foo;

Electronics Workbench

Verilog HDL Extensions

reg inl, in2;
reg bil , bi2_;

wire bil =bil_; // bi-directional inputs
wire bi2 = bi2_; // bi-directional inputs
initial

begin

“timescal e 100ps / 100ps // tinescale for stimlustable
stimul ustabl e s1;
table ## inl, in2, bil_, bi2_;
“include "stimyv"
endt abl e
endsti mul ust abl e
“timescale 1ns / 100ps // respecify the circuit's tinescale
#10 $fini sh;
end
endnodul e
When converting behaviora stimulus to tabular stimulus, you need to ensure that timescale
for the tabular stimulusis correct. The units for the time values from the "probe” command
are equal to the smallest resolution for the smulation. This may require a “timescale compiler
directive before the stimulustabl e statement so that the delay values are scaled correctly. In
the above example, the resolution of the " “timescale 1ns/100ps’ compiler directive for the cir-
cuit is"100ps', so a" timescale 100ps/100ps" compiler directive must be used before the
stimulustabl e statement.

Notice that the stimulustable for the above example also uses the "##"' delay notation, so that
the time values are relative to the time that the stimulustable statement is started.

Notice also that you may need to be careful when applying the stimulus for "inout™ (bi-direc-
tional) pinsinthecircuit. The"inout" pins"bi1l" and "bi2" are defined as theleft hand side of
continuous assignments. For this circuit, the stimulustable values should be applied to the
registers"bil " and "hi2_". Otherwise, registers"bil " and "bi2 " will remain at an
Unknown level and will continue to drive wires"bil" and "hi2" to an Unknown level dueto
the continuous assignments.

B.2.1.3.12Analog Behavioral Modeling (AHDL)

This example demonstrates analog behavioral modeling using the SILOS Simulation Envi-
ronment (SSE) (for more information, see“B.2.1.4 Analog Extensions’).

Skills presented in this section are;
e Setting up aproject for analog simulation.
e Using analog behavioral modeling in agate level simulation.

» Viewing analog and digital waveformsin the Data Analyzer Window.
» Thefileused for this exampleislisted below:

Multisim 2001 User Guide B.2-15

suoisualx3 JaH Bojusa

Verilog HDL Extensions

analog.v: Shows a simple example of an A/D converter modeled with analog behavioral
modeling and gate level logic.

B.2.1.3.13Specifying the Analog Behavioral Modeling
Project

For this example, file "analog.v" shows an A/D converter with comments. For additional
information, see“B.2.1.4 Analog Extensions’. The essential ideas for analog behavioral
modeling are:

« Y SILOS I has the ahility to pass real variables and integer variablesin module ports.
There is no need to convert reals or integersto bit vectors. Thisisan extension to the
|EEE standard for Verilog HDL. If you need thereal or integer variables to behave as
wiresyou can usethe"wirerea" or "wireinteger" declaration. (For moreinformation, see
“B.2.1.4.1 Real and Integer Data Types')

« Y SILOS I supports analog extensions that allow you to put most of the standard math
functions, such as"sine", "cosine", "log", "power", directly in your Verilog HDL code.
Thisis an extension to the |EEE standard for Verilog HDL (“B.2.1.4.2 Utility Transcen-
dental Functions”).

The project for analog behavioral modeling is already set up. To open the project, select the

"Project/Open" menu selection. Then change to the "examples' subdirectory of the installa-

tion directory, select project "analog.spj" and then click-on the "OK" button to close the dia-

log box.

B.2.1.3.14Running the Analog Behavioral Modeling Sim-
ulation

Click-on the "Go" button on the Toolbar to load the input file and run logic simulation. The
logic simulation will run until it encounters the $finish system task in file "analog.v".

To display the logic simulation results, click-on the "Open Analyzer" button on the Toolbar to
open the Analyzer Window. You should see both analog and digital waveforms displayed in
the Waveform Display Window.

You can double-click on the analog signal names "top:feedback” and "top:analog_in" to tog-
gle between a piece-wise linear or analog display (see“B.3.10.6.1 Digital and Analog Signal
Display”). Theinteger "top:counter_value" can also be displayed as an analog waveform by
selecting the "Options/Analog Integer Display" menu selection. You can use the timing mark-
ersto display the analog values.

This concludes the analog behavioral modeling example. To run the other examples for the
Tutorial, see “Design, Simulation and Debug with Multisim’s Verilog HDL".

Electronics Workbench

Verilog HDL Extensions

B.2.1.4 Analog Extensions

Simucad has added extensions to the Verilog Hardware Description Language (HDL) that
allow SILOS I11 to model analog circuits at the behavioral level.

B.2.1.4.1 Real and Integer Data Types

SILOS 11 supportsreal and integer data types as defined by the |IEEE P1364 Standard Verilog
HDL Language Reference Manual. To facilitate analog behavioral modeling, SILOS 111 also
supports the following unique extension to the Verilog language:

» Red (floating point) and integer variables can be passed between module ports.
The advantages of directly passing real and integer variables between modules are:
» ease of programming style;

» nolossof information (as occurs with other Verilog simulators).

Passing numerical values between behavioral modules is particularly useful when modeling
analog behavior for circuits such as analog to digital converters, phase lock loops, charge
pumps, etc. For an example of an analog to digital converter, seefile "analog.v" in the "exam-
ples' subdirectory of the installation directory.

B.2.1.4.2 Utility Transcendental Functions

To simplify the implementation of analog models, SILOS I11 supportsafull range of transcen-
dental math functions. The following functions accept a single floating-point argument x and
return a floating-point value (except for pow, which has two floating point arguments x and

y):
Function Name Description
sin(x) sine
cos(x) cosine
tan tangent
asin(x) inverse sine
acos(x inverse cosine
atan(x) inverse tangent
sinh(x) hyperbolic sine
cosh(x) hyperbolic cosine

Multisim 2001 User Guide B.2-17

suoisualx3 JaH Bojusa

Verilog HDL Extensions

Function Name Description
tanh(x) hyperbolic tangent
sqrt(x) square root

exp(x) exponential
log10(x) common logarithm
log(x) natural logarithm
pow(x,y) power xy

B.2.1.4.3 Examples for Transcendental Math Functions

The transcendental functions are used in the same way as any other Verilog function. The
module below illustrates a simple use of displaying values for the math functions:

modul e nmat h03;

initial

begin

real pi;

pi = 3.14159;

$display ("sin(0.0) =0:", sin(0.0));

$display ("sin(0.5 * pi - 0.01) = 0.99995:", sin(0.5* pi -
0.01));

$di splay ("cos(0.00234) = 0.999997:", cos(0.00234));

end
endnodul e

The next example shows how to generate a sine wave using the "sin" function:

/1title exanple for generating a sine wave
/1 The exanpl e bel ow generates a sine wave "y" based on the val ue of
"X
nmodul e si ne_wave;
real x, vy;
initial
begin
x = 0;
#1000 $fi ni sh;
end
al ways
begin
#1 x =x + 0.1;

B.2-18 Electronics Workbench

Verilog HDL Extensions

y =sin(x);// Built-in SILCS I'll "sin" function
end
endnodul e

B.2.1.5"silos" and "sse" keywords

SILOS |1 hasareserved keyword "silos' that isalwaystrue. The"silos" keyword allows the
user to enclose Silos specific code or commands within a“ifdef / “else/ “endif compiler direc-
tive so that it will be available for SILOS I11 but not other Verilog smulators, e.g.:

“ifdef silos

initial $stopsave();

initial #1000000 $resetstartsave();
“endif

When running the SSE, the reserved keyword "sse" is always true so that the user can enclose
code or commandsthat is specific to the GUI within a ifdef / “else/ “endif compiler directive.

B.2.1.6 Extensions to Turn-off, Reset, and Turn-on Saving

When running a simulation that creates a large save file, the $stopsave system task can be
used to turn off saving to the savefile. This can be used to keep the savefile size fixed during
the portion of the simulation that is of no interest for the designer.

The $resetstartsave system task can be used to reset the save file and then start saving the sim-
ulation history. After the simulation is complete, the simulation history that has been saved
after resetting the save file will be available for display with the Data Analyzer.

The below example stops saving at time=0, and starts saving at time=1000000:

“ifdef silos

initial $stopsave();

initial #1000000 $resetstartsave();
“endif

Multisim 2001 User Guide B.2-19

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.1.7 SILOS Ill Extensions to Verilog HDL

SILOS 11 has a switch to issue syntax errors for extensions to the |IEEE P1364 Standard Ver-
ilog HDL Language Reference Manual. The default setting for the switch isto check for
IEEE compliance. To allow all extensions, enter "!control .ext=all" before inputting your
model. The parametersto allow individual extensions are reported in the syntax error for each
extension. On the pages that follow is a sample list of extensions that will be flagged as syn-
tax errors:

B.2.1.7.1 Global Variables:

example:
wire xx;
nodul e ... endnodul e
SILOS Il comuand to allow this extension:

Icontrol .ext=gvar

B.2.1.7.2 Global tasks and functions:

example:
function

endf unction
nodul e
endnodul e

SILCS Il command to allow this extension:
lcontrol .ext=gft

B.2.1.7.3 Functions with multiple outputs:

example:
function xx(in, out2);
i nput in;
out put out 2;
SILOS Il comuand to allow this extension:

lcontrol . ext=fnout

B.2-20 Electronics Workbench

Verilog HDL Extensions

B.2.1.7.4 Functions without any inputs:

example:

x = funct();
SILOS 11l command to allow this extension:

lcontrol .ext=fzero
(For nore information, see section 9.3.4 of the Verilog HDL Reference
on-line help file)

B.2.1.7.5 Tasks and functions with ports declared like a
module:

exanpl e:
task foo(inl,in2);

SILOS Il command to allow this extension:
lcontrol .ext=fornals

B.2.1.7.6 Procedural assignment to wires:

example:
nodul e foo;
wre w
initial w= 1;
SILOS Il command to allow this extension:

lcontrol .ext=paw
477

B.2.1.7.7 Continuous assignments to register and mem-
ory variables:

example:
reg r;
assignr =in;
SILCS Il comand to allow this extension:

lcontrol .ext=aar

(For more information, see sections 5.1 and 11.1 of the Verilog HDL Reference on-line help
file)

Multisim 2001 User Guide B.2-21

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-22

B.2.1.7.8 Continuous assignments using intra-assign-
ment/non-blocking delays:
example:

nodul e foo;
wire o, ol;
assign o = #4 i;
assign ol <= #4 i;
SILOS Il comuand to allow this extension:
Icontrol .ext=assign

(For more information, see section 5.1 of the Verilog HDL Reference on-line help file)

B.2.1.7.9 Default state value for UDP:

The "default” keyword for the UDP specifies the state value for the UDP's output when UDP
input levels and transitions do not match any of the entriesin the UDP table. When the
"default" keyword is not used, the UDP default output stateis "x".

example:

primtive udpl (out, in);
out put out;

i nput in;

tabl e

/] in out
o : 1

default: O;

endt abl e

endprimtive
SILOS I11 command to allow this extension:
Icontrol .ext=udpdefault
(For more information, see section 7.1 of the Verilog HDL Reference on-line help file)

B.2.1.7.10UDP additional states for High-Z on inputs or

OUtpUt:
example:
for row states other than "0, x, 1", such as:
Z . 1,
<?HV> . 1,
SILOS Il comuand to allow this extension:

Icontrol .ext=udpstate
(For more information, see section 7.1 of the Verilog HDL Reference on-line help file)

Electronics Workbench

Verilog HDL Extensions

B.2.1.7.11UDP edge for High-Z:

example:
for edges to H gh-Z, such as
(02) : 1;
SILOS Il command to allow this extension:

lcontrol .ext=udpstate
(For more information, see section 7.1 of the Verilog HDL Reference on-line help file)

B.2.1.7.12UDP Multiple Edges in a Row:

example:
(01) (01): 1;
SILOS Il command to allow this extension:

lcontrol .ext=udpstate
(For more information, see section 7.5 of the Verilog HDL Reference on-line help file)

B.2.1.7.13Non-Constant Specify Block Delays:

example:

for non-constant specify block delay, such as
(in => out) = delay_var;

SILOS Il command to allow this extension:
lcontrol .ext=ncsd

(For more information, see section 13.1 of the Verilog HDL Reference on-line help file)

B.2.1.7.14Parameter for Specify Block Delays:

example:

for paraneter used for specify block delay, such as
par anet er dl y=8
(in = out) =dly;
SILCS Il command to allow this extension:
lcontrol .ext=psd

(For more information, see section 13.1 of the Verilog HDL Reference on-line help file)

Multisim 2001 User Guide B.2-23

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-24

B.2.1.7.15Stimulustable Extension:

example:
for using the stinmulustable statenment, such as
stinmulustable ... endstinulustabl e statenent
SILCS Il command to allow this extension:

lcontrol .ext=stim

B.2.1.7.16"input/output/inout" declarations after the
variable's declaration:

example:
nmodul e foo (in);
wre in;
i nput in;
SILCS Il command to allow this extension:

Icontrol .ext=inout
(For more information, see section 12.1 of the Verilog HDL Reference on-line help file)

B.2.1.7.17Using registers as module inputs:

example:

modul e xx(in);
i nput in;
reg in;"
SILCS IIl command to allow this extension:
lcontrol .ext=rsink

(For more information, see section 12.4.6 of the Verilog HDL Reference on-line help file)

B.2.1.7.18Duplicate variable definitions:

example:

modul e foo;
wire a;
wire a;
SILOS Il comuand to allow this extension:
lcontrol .ext=dvd

(For more information, see section 3.1 of the Verilog HDL Reference on-line help file)

Electronics Workbench

Verilog HDL Extensions

B.2.1.7.19Parameter used for sizing numbers:

example:

nodul e foo;
reg[7: 0] xx;
par aneter size=8;
initial
XX = size' b010;
SILOS Il command to allow this extension:
lcontrol .ext=psize

(For more information, see section 2.3 of the Verilog HDL Reference on-line help file)

B.2.1.7.20Null statements:

example:
nodul e foo;
initial
begin ;
SILCS Il comand to allow this extension:
lcontrol .ext=nstnt

(For more information, see sections 8.7.1 of the Verilog HDL Reference on-line help file)

B.2.1.7.21Timing checks without edge specifications for
selected variables:

example:

$recovery(CLR
SILOS Il command to allow this extension:
l'control .ext=neref

(For more information, see section B.9.6 of the Verilog HDL Reference on-line help file)

B.2.1.7.22More precision in "$timeformat" than " ‘times-
cale":

SILOS Il command to alow this extension:
Icontrol .ext=tfmt
(For more information, see section B.5.2 of the Verilog HDL Reference on-line help file)

Multisim 2001 User Guide B.2-25

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.1.7.23Missing port connections are set to ground for
VCS compatibility:
HyperFault command to allow this extension:
Icontrol .skip=.gnd
Note: Wires which are otherwise floating still remain HiZ, regardless of "!control .skip".

B.2.1.7.24VCS compatibility extension for comma at the
end of the port list, i.e.. module (xx(a,):

HyperFault command to allow this extension:
Icontrol .ext=portcomma

B.2.2 Silos Il Command Line Usage

B.2.2.1 Commands Overview

B.2-26

The Commands section contains a short overview on command syntax, inputting commands
from the in the Command window for the Main toolbar and inputting commands from a data
file.

B.2.2.1.1 Command Syntax

Usually, only the first two characters are required when specifying acommand. A few com-
mands (e.g. FAN, PRE, PRO) require three |etters to prevent ambiguity.

B.2.2.1.2 Inputting SILOS Commands

Most commands are a part of the menu structure. However, a Command window has been
provided in the Main Toolbar for SILOS 111 to enter any command. On Unix, an additional
SILOS 11 executable, "silos', isalso provided that run SILOS I11 from the "Ready" prompt.

B.2.2.1.3 Stopping Processes

To discontinue or stop an interactive process when running SILOS 111, such as during alarge
report that is output to the terminal, enter:

e "Ctrl-C": simultaneously hold down the "Ctrl" key and the "C" key on the keyboard for
the Unix command-line version of HyperFault.

Electronics Workbench

Silos 1l Command Line Usage

» "Esc" key on the keyboard for all Windows versions.
» "STOP" button on Toolbar for all Windows versions.

B.2.2.2 Activity Report For Nodes

The ACTIVITY command pre-grades the test vectors for fault simulation by reporting nodes
that have no activity (level transitions) during alogic-simulation for the test vectors. The
logic simulation is much faster to run than fault simulation.

The ACTIVITY command can also be used as an HDL code coverage report. This section of
the Activity report lists the number of times that each line of HDL code was executed as spec-
ified by the MXTRAN and MNTRAN keywords.

To obtain a node activity report, enter:

TYPE

STORE ACTIVITY [t1 TOt2] [/ keywd=val, keywd..]

WI'YPE

NSTORE

wher e:
TYPE optionally directs the activity report to standard output or to a disk file.
STORE

ACTIVITY generates a node activity report.

t1 TOt2 represent the minimum and maximum time point values for reporting
node activity. This time point range must be within the logic simulation
time point range. If the time points are not specified, the logic simulation
times are used. (The TO keyword is optional).

keywrd represents an optional keyword used to define a condition or specify a
value. The first keyword must be preceded by a slash.

Al | owed keywords are:

BLOCK reports the activity only for nodes that are included within fault
blocking.
MNTRAN=val specifies the lower limit for reporting node activity. Only nodes

which have known level transitions greater than or equal to this
minimum limit will be reported. (Default: MNTRAN=0)

Multisim 2001 User Guide B.2-27

suoisualx3 JaH Bojusa

Verilog HDL Extensions

MXTRAN=val specifies the upper limit for reporting node activity. Only nodes
which have known level transitions less than or equal to this
maximum limit will be printed. (Default: MXTRAN=0)

val represents the user-specified numerical value for MNTRAN or
MXTRAN.

NOHIST suppresses output of the activity versus time histogram.

NOSUM suppresses output of the activity summary.

NOTAB suppresses output of the node activity table.

Application Notes:

1. AnACTIVITY report can be very useful for developing input test patternsto detect circuit
faults for fault simulation. The number of level transitions at anode indicates an input test
pattern's effectiveness. Faults at nodes which make no level transitions cannot be
detected.

2. The"t/sACTIVITY" command can be used to generate the following reports:

« An activity table that lists the node names and their number of level transitions.
Either single output nodes or wired nodes are listed whose level transition count falls
between the ACTIVITY report "MNTRAN" and "MXTRAN" values.

* Anactivity summary that liststotals for the number of nodes at each level of activity
count.

* An activity histogram that shows known and potential level transitions versus time.

3. A "known" transition is defined as a change from a Low to High level or High to Low
level, evenif it goes through an intermediate Unknown level. A "possible" transition is
defined as a change from aHigh or Low level to the Unknown level or from the Unknown
level back to aHigh or Low level.

Examples:

ST ACT

ST ACTIV 400 TO 2000

store act O to 10000 / MXT=1

STO AC .5K 2.5K /NOTAB
ty ac [/ nos nxt ran=10 mt r an=3

Electronics Workbench

Silos 1l Command Line Usage

B.2.2.3Bus Contention Report

The BUSCON command reports the logic simulation time points at which more than one
“tri", "triand”, “trior", “trireg", "tri0", or "tril" net types, or an enabled unidirectional device
("bufif1", "bufif0", "notif1", "notif0", "nmos’, "pmos’, "rnmos’, and "rpmos" devices) are

simultaneously driving a node (a bus contention).
To obtain a bus contention report, enter:

TYPE
STORE BUSCON [t1 TO t2]
WYPE
NSTORE
Where:
TYPE (optional) Directs the bus contention report to standard output, or to a disk
STORE file.
BUS- Generates a summary table of any contentions that have occurred
CON between two time points.

t1 TOt2 Represent the minimum and maximum time point values over which con-
tention is to be checked. These time values must be within the logic simu-
lation time point range. If not specified, the simulation time points will be
used. The keyword "TO" is optional.

Application Notes:
1. Contentions are reported only for nodes where two or more enabled unidirectional

devices, or "tri", "triand", "trior", "trireg", "tri0", and "tril" net types, form awired con-
nection (often used to form abus). Bi-directional transistors, non-enabled gates and gates

without enable lines are ignored by the BUSCON report.

2. For each contention, the BUSCON command reports the starting and ending time points,
the starting and ending node states, and the names of the enabled unidirectional devices or

"tri", "triand", "trior", "trireg", "tri0", and "tri1" net types connected to the node.
Examples:

TYPE BUSCON 2K 100K
nst busco

Multisim 2001 User Guide B.2-29

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.2.4Encrypting Library Files

The CHGLIB command changes files of Verilog HDL modules and SILOS |11 macro defini-
tions from sequential access libraries to random access libraries. The CHGLIB command can

B.2-30

also be used to encrypt and secure library files.

CHGALIB [/ ENCRYPT] [/ SECURE=feature] [/ NODEMOLIM T] output_file

infilel ...

CHGLIB

ENCRYPT

SECURE-=fea-
ture

NODEMOLIMIT

output_file

infilel ...

Application Note;

converts or encrypts library files to random access.

the resulting library file is unreadable except by the SILOS Il pro-
gram. Readable comments can be added by editing the encrypted
library file before the first "#" character. Use of this option is con-
trolled by a security license feature issued by Simucad.

the resulting library file is unreadable except by the SILOS Il pro-
gram. When SILOS Il attempts to access the resulting library file,
the user must have the "feature” listed in the license file "silos.lic"
for SILOS Ill. The "SECURE" option does not require the
"ENCRYPT" option to encrypt the file. The "SECURE" option can
also be used with the "NODEMOLIMIT" option.

the resulting library file is unreadable except by the SILOS Il pro-
gram. This is a special option that allows the demo version of
SILOS lll to read a library file of more than 200 gates. Use of this
option is controlled by a security license feature issued by Simucad.

name of the output library file to be created by the CHGLIB com-
mand.

name(s) of one or more input files to be converted to random
access and encrypted.

1. Using the CHGLIB command will not necessarily result in aincrease in speed, as SILOS
111 automatically indexes alibrary file that is sequential access the first timeit is used.

Exanpl es:
chglib cnosl2.1ib

cnosl12. dat cnosl13.dat cnopsl4. dat

chglib /encode chip.library chi p. dat

Electronics Workbench

Silos 1l Command Line Usage

B.2.2.5Control Parameters For Logic Simulation

The "CONTROL" command enabl es you to nodify the parameters that con-
trol logic sinulation.
The general format of the CONTROL conmmand is:

CONTRCL . COMVENT=c . CUSTREPORT . DI SK=val
+ . DI SABLECACHE .DM N . DMAX
+ . EUNK=val . MXI TR=val . MXDCl =val
+ . NONCON . SAVCELL=val . SAVSI M=val
+ . SYNONYM=val . TPS=qual . XL_ORDER=val
+ . SKI P=val
val represents the numerical value assigned to the control parame-
ter.
[« represents a single character.
string represents the prompt string.
control indicates that the default simulation control parameters are to
be modified.
.COMMENT specifies the comment character. (Default: .COMMENT=$)
.CUSTREPORT specifies that the save-file will be used in a Custom Report.

(Default: not specified)

.DISABLECACHE turns off the caching mechanism for the Data Analyzer. Turning
off the caching may reduce the RAM memory used by SILOS
11l, however, it may make the Data Analyzer slower. The cache
is used to "remember" in RAM memory the simulation data that
you have viewed with the Data Analyzer. For example, if you do
a zoom full, then every change for the displayed signals is
stored in memory. If you then zoom in or zoom out for these
signals, the redraw time is much faster. If you add additional
signals to the Data Analyzer, then the simulation data for the
new signals has to be read from the simulation history save file
on disk.

.DISK assigns the approximate limit of disk storage in bytes that the
simulation save-file can use. When the disk storage limit is
exceeded, the simulation will terminate (see note 1). (Default:
.DISK=100M)

.DMAX Specifies that the maximum delay value will be used when pars-
ing the netlist (see note 2).

Multisim 2001 User Guide B.2-31

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-32

.DMIN

.EUMK

.NONCON

.MXDCI

MXITR

.SAVCELL

.SAVSIM

.SAVISM=0

.SAVISM=1

.SAVISM=2

Specifies that the minimum delay value will be used when pars-
ing the netlist (see note 2).

Defines the conductance for bi-directional transistors and unidi-
rectional transfer gates when there is an Unknown level on the
enable: "on" when .EUNK=1, "off" when .EUNK=0 or
"Unknown" when .EUNK=*. (See note 3) (Default: . EUNK=*)

When nonconvergence is detected, the default is for SILOS Ill
to issue a warning message, pick a possible solution if this is
possible, and continue simulation. If the "CONTROL .NON-
CON" command is entered before logic initialization begins,
then if nonconvergence is detected, SILOS IIl will issue an error
message and stop the logic simulation.

Assigns the maximum allowed iterations for each pass during
LINIT. (See note 4) (Maximum: .MXDCI=9999) (Default:
.MXDCI=100)

Assigns the iteration limit to reach convergence for each logic
simulation time point. (See note 4) (Maximum: .MXITR=999)
(Default: .MXITR=300)

Causes SILOS Il to not save (".SAVCELL=0") or to save
(".SAVCELL=1") the simulation history for variables listed
between the 'celldefine and 'endcelldefine compiler directives.
Caution: Saving all variables between 'celldefine and 'endcell-
define compiler directives may slow down simulation and cre-
ate larger save files on disk. (Default: . SAVCELL=0)

Sets the logic simulation save option to determine which simula-
tion node state changes are saved on the "SAVE" disk file. The
.savsim option must be specified before simulation begins.
(Default: .SAVSIM=0)

Specifies that no simulation node values are to be saved. This
has limited use, as no data is available.

Specifies that node simulation values (logic-type, integer-type
and double-type) are to be saved only for nodes named in the
TABLE, PLOT, GNAME, TESTER, KEEP, MKEEP, HEX and
OCT commands. Output results can be obtained only for the
saved nodes. This option decreases simulation disk file size
and reduces execution time.

Specifies that all logic-type simulation node states are to be
saved for all nodes in the circuit. This option prevents saving
integer and floating-point values.

Electronics Workbench

Silos 1l Command Line Usage

.SAVSIM=3 Specifies that all (logic-type, integer-type and double-type) sim-
ulation node values are to be saved. Output values can be
retrieved for any network node.

.SYNONYM Causes SILOS Il to retain the hierarchical node names (syn-
onyms) in addition to the "real" node name for the upper-most
level that the node is connected to in the hierarchy. When all
synonyms are saved, SILOS III will recognize the hierarchical
name as well as the "real" name to each node in the design.
Caution: Saving all synonyms may slow down input parsing and
memory usage may go up. (Default: . SYNONYM=1)
.SYNONYM=0 Don't save synonyms.

.SYNONYM=1 Save all synonyms.

.SKIP Causes SILOS Il to set a skipped port to a level. The default
level is High-Z unknown. An allowed level is ground for compat-
ibility with VCS (!control .skip=.gnd). . (Default: .SKIP=.gnd)

TPS Specifies the default command for redirecting report outputs to
standard output or disk file. Allowed qualifiers are: TYPE,
WTYPE, STORE, NSTORE

XL_ORDER=val Specifies a switch so that the order of evaluation for always
blocks is the same order as for Verilog-XL, where "val" is "1" for
"x|_order" being "on" (the same as Verilog-XL) and "0" for
xI_order being "off" (default). This switch may be useful for
obtaining the same simulation results as Verilog-XL. This
option must be parsed before any modules are parsed. An
example would be the order of evaluation for:
always @posedge clock
always @posedge clock

Application Notes:

1. When the disk storage limit (set by ".CONTROL .DISK") is exceeded during logic, the
simulation will stop. A message will be displayed showing thelast simulation time point.
To continue the simulation, you can increase the disk limit and re-enter the"SIMULATE"
command. Another method would be to report the simulation results, enter "RESET
SAVFILE" to clear the disk file "save.sm" (saves the smulation history) and then con-
tinue from the last simulation time point. "RESET ERRORS" must be entered before con-
tinuing the simulation.

2. .DMAX and .DMIN will not both affect the same simulation. The one that is specified
last will remain in effect for all netlist parsing and subsequent SIMUL ATE commands.
The .DMAX or .DMIN scaling factor should be specified before inputting the netlist so
that the netlist is parsed correctly.

Multisim 2001 User Guide B.2-33

suoisualx3 JaH Bojusa

Verilog HDL Extensions

3.

If ".CONTROL .EUNK=*" has been defined and there is an Unknown level on the gate's
enable, MOS transistors will have an uncertain conductance and interval logic will be used
to resolve their source and drain (see Interval Logic: Resolving Uncertain Strength at a
Nodein the Logic Simulation chapter). Transfer gates al so have an uncertain conductance
and their output will be resolved using interval logic. For tri-state gates, the output level
will be set to Unknown. The output strength will be defined by the gate definition for atri-
state gate.

When the iteration limit is exceeded for ".CONTROL .MXDCI" or ".CONTROL
.MXITR", anonconvergence error stops execution. Nonconvergence may be due either
to circuit path length or problems with designs involving feedback. To eliminate oscilla-
tions caused by problems involving feedback, the circuit design must be corrected. When
nonconvergence is due to path length, increasing the iteration limit should enable the cir-
cuit to converge. In general, each node in the serial path length requires one iteration to
propagate asignal. Arbitrarily increasing the iteration limitsis not recommended asit may
dramatically increase the execution time necessary to identify oscillating nodes.

The "NONCONV" command can be used to identify which parts of the circuit have
caused alogic initialization or logic simulation to stop executing.

Examples:

I con . mxd=200 . nxp=200
CON . DI SK=2M .MXOSC=30 .EUNK=*

B.2.2.6 Default Device Delay Times

B.2-34

Normally, if adevice has no delay specification, the delay times default to zero. The DELAY
command allows you to globally redefine the default values.

Default delay times are specified as follows:

DELAY . DEFAULT = dl, d2
DELAY Indicates a default delay time specification.
.DEFAU Indicates that the default times for all unspecified delays are to be
LT assigned. Normally, the default delays are d1=d2=0.
dl Represents the nominal rise delay time where: "d1" must be an integer

between 0 and 10000.

d2 represents the nominal fall delay where:"d2" must be an integer between 0
and 10000.

Electronics Workbench

Silos 1l Command Line Usage

Examples:
!DEL .DEF = 16,5

I del .default=0, O
DI SK

B.2.2.7 Disk File Name Reassignment

The DISK command enables you to change the default file name for the "STORE"/"
NSTORE" commands.

To change the "STORE/NSTORE" disk file name, enter:

DI SK fil enanme

DISK Changes the "STORE/NSTORE" disk file name.
If no file name is specified, the program will tell you the name of the
present default disk file name.

filename Represents the name of the disk file to which STOREd output will be writ-
ten.filename= "store.out")

Application Notes:

1. Whenever aDISK command is specified, any STOREd data will be written to that disk
file until another file nameis specified.

2. Eachtime a STORE or NSTORE command is specified, any existing data on the "DISK"
filein effect may be overwritten (default), appended or a new cycle will be created.

3. Thefile name can be unlimited in length, but must conform to the file name syntax of your
operating system. For the UNIX operating system, the file name is case sensitive.

4. The"FILE .STO=" command can also be used to change the default file name.
Examples:

DISK simresults
DI PATTERN. | NP
ERRCORS

Multisim 2001 User Guide B.2-35

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.2.8 Error Summary

B.2-36

When the program indicates that errors occurred during read-in, preprocessing or simulation,
you should enter the "t/s ERRORS' command to determine their error level and type. For
input errors, the line number and the input file name will also be reported.

To check the errors, enter:

TYPE

STORE ERRORS [/ LEVEL=val ue]

W'YPE

NSTORE
TYPE (optional)Ddirects the error messages to standard outputor to a disk file.
STORE
ERRORS Reports any error and warning messages.
LEVEL (optional)lindicates that only those errors with a severity level equal to

"value" are to be output. If not specified, all errors will be output.

value Represents a value from 1 to 5.

Examples:

STOR ERROR / LEVEL=2

ty er

Electronics Workbench

Silos 1l Command Line Usage

B.2.2.9 Exclude Saving Simulation Node States

The EXCLUDE command specifies nets whose state values will not be saved during simula-
tion. To exclude registers, see “B.2.2.13 Exclude Saving Module Instance Variable Values’

The format for the EXCLUDE command is:

EXCLUDE nane nane L. nane

EXCLUDE Specifies nets whose state values will not be saved during simulation.

name Represents the name of a net whose state changes will not be saved
during simulation.

Application Notes:

1. The KEEP command can be used to specify nets whose simulation states are to be saved.
The MKEEP and MEXCLUDE commands will keep and exclude al variables (including
registers and memory variables) within amodule or macro instance.

2. The effectsto the KEEP and EXCLUDE commands are cumulative. When an identical
net name is specified in more than one KEEP or EXCLUDE command, the last KEEP or
EXCLUDE command will determine if the simulation states for that net are saved.

3. The KEEP, EXCLUDE, MKEEP and MEXCLUDE commands can be used with the
"CONTROL .SAVSIM=1" command option to save simulation state values.

Examples:

CONTRCL . SAVSI MF1

EXCLUDE (REGL5(QBAR Al5

.exclude (ml(bitO (ml(bitl

+ (mLl(bit4 (nl(bit5 (nil(bit6 (nml(bit7 (driver
+ (i obuf (pin34

Multisim 2001 User Guide B.2-37

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.2.10Exiting The Program

The"EXIT" command is used for normal exit of SILOSIII.
To exit the program, enter:
EXIT

EXIT commands the SILOS Il program to stop execution and exit normally.

Example:

EXI
FI LE

B.2.2.11File Name Specification

The FILE command enables you to redefine the default file names used for the SAVE,
STORE and BATCHFILE commands.

The format for the FILE command is:

FILE [.SAv=fil enane] [.STO=fi | enane] [. BAT=fi | enane]
+ [. MODE=. APPEND] [. MODE=. OVERVRI TE]
FILE redefines the file name defaults.
.SAV changes the file name prefix "save" to a user specified name for all of the

save files, including the save.dictionary file.
.STO changes the file name for subsequent STORE and NSTORE commands.
.BAT changes the default BATCHFILE command file name.

.MODE specifies whether a report STOREd will either append to the existing
.STO file (or DISK command file) or overwrite the .STO file. (Default:
.MODE=.0VERWRITE)

filename represents the redefined name of the file. A file name can be unlimited in
length. However, the name must conform to the syntax of your operating
system.

B.2-38 Electronics Workbench

Silos 1l Command Line Usage

Application Notes:

1. The"FILE .SAV" command must be entered before using a FSIM command. Do not
specify afile name extension; the program will automatically provide the correct exten-
sions. (Default: filename=SAVE)

2. The"FILE .STO" command is equivaent to the DISK command. (Default: file-
name=STORE.OUT or STORE OUTPUT)

3. A file name specified on a subsequent BATCHFILE command will override the "FILE
.BAT" command.

Example:
file .sav=runb

B.2.2.12Keeping Simulation Node States

The KEEP command specifies wires whose state values will be saved during smulation. To
save state valuesto registers, see “B.2.2.14 Keeping Module Instance Simulation Variable
Values'.

The format for the KEEP command is;

KEEP nane nane e nane
KEEP specifies wires whose state values will be saved during simulation.
name represents the name of a wire whose state changes will be kept during
simulation.

Application Notes:

1. The EXCLUDE command can be used to specify wires to be excluded from the saved
simulation results.

2. The MKEEP and MEXCLUDE commands will keep and exclude al variables (including
registers and memory variables) within amodule or macro instance.

3. The effects to the KEEP and EXCLUDE commands are cumulative.

4., The KEEP, EXCLUDE, MKEEP and MEXCLUDE commands can be used with the
"CONTROL .SAVSIM=1" option.

Examples:
CONTRCL . SAVSI M=1

Multisim 2001 User Guide B.2-39

suoisualx3 JaH Bojusa

Verilog HDL Extensions

KEEP (MAC15(REQ08 (MAC1(MEM ADDRO1

. keep (mL(bit0 (ni(bitl (mLl(bit2 (nl(bit3
+ (mi(bit4 (nl(bith (ml(bité (m(bit7

+ (i obuf (pin34

B.2.2.13Exclude Saving Module Instance Variable Values

B.2-40

The MEXCLUDE command excludes the internal variable values from being saved during
logic simulation for module instances and macro expansions and any variable that is hierar-
chically below the excluded module instance or macro expansion.

The format for the MEXCLUDE command is:
MEXCLUDE mane mane - maimne

MEXCLUDE Specifies module instances and macro expansions that will not have
their internal variables and any variable that is hierarchically below the
excluded module instance or macro expansion saved during logic sim-
ulation.

mname represents the name of a module instance or macro expansion.

Application Notes:

1. The MKEEP command can be used to specify module instances and macro expansions for
which the simulation state values to all variables are saved.

2. The effectsto the MKEEP and MEXCLUDE commands are cumul ative.

3. The KEEP, EXCLUDE, MKEEP and MEXCLUDE commands can be used with the
"CONTROL .SAVSIM=1" option.

Examples:

CONTROL . SAVSI M1
MKEEP (macl(a
MEXCLUDE (nmacl(a(c

I mexclude (mi(bitO (mi(bitl (mi(bit2 (mi(bit3

+ (mi(bitd (nml(bit5 (nml(bit6 (nml(bit7 (driver
+ (i obuf(pin34

Electronics Workbench

Silos 1l Command Line Usage

B.2.2.14Keeping Module Instance Simulation Variable
Values

The MKEEP command savesthelogic simulation state valuesfor all variablesin the specified
modul e instances and macro expansions, and the state values for all variables hierarchically
below each specified modul e instance and macro expansion.

The format for the MKEEP command is:

MKEEP mane mane L. mane

MKEEP specifies module instances and macro expansions whose logic simulation
state values will be saved for all variables in the specified module instance
and macro expansion, and for all variables hierarchically below each spec-
ified module instance and macro expansion.

mname represents the name of a module instance or macro expansion.

Application Notes:

1. The MEXCLUDE command can be used to specify module instances and macro expan-
sions whose internal variables will not be saved during logic simulation.

2. The effectsto the MKEEP and MEXCLUDE commands are cumulative.

3. The KEEP, EXCLUDE, MKEEP and MEXCLUDE commands can be used with the
"CONTROL .SAVSIM=1" option.

Exanpl es:

CONTROL . SAVSI M1
MKEEP (macl(a(b

.mkeep (ml(bitO (mi(bitl (mi(bit2 (mi(bit3

+ (ml(bit4 (nl(bit5 (ml(bit6é (nml(bit7 (driver
+ (i obuf (pin34

Multisim 2001 User Guide B.2-41

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.2.15Nonconvergence Summary

The"t/sNOCONV" command generates a report of any nonconverged nodes and their oscil-
lating states for the time point that nonconvergence occurred.

To obtain a nonconvergence summary for nodes and devices, enter:

TYPE
STORE NOCONV [/ INPUT | TER=val]
WIYPE

NSTORE

TYPE. . .

TYPE (optional) directs the nonconvergence table to standard output
STORE STOREor to a disk file.

NOCONV reports the oscillating states for nonconverged nodes.

INPUT (optional) reports the states for all inputs of devices which drive the oscil-
lating nodes.

ITER=val (optional) specifies the iteration number to the 1st of eight states for each
node reported for nonconvergence. The default iteration for 'val' is com-
puted such that the last of the eight states reported corresponds to the
last iteration simulated before no convergence halted the simulation.

Application Notes:

1. The"t/sNOCONV" command can be used to identify which parts of the circuit have
caused alogic initialization or logic simulation to nonconverge.

2. The"t/sNOCONV" command reports the following information:

* names of the unresolved devices and nodes.

e the"type" of device and node as either a".type" data keyword, "NODE" for awired
connection with at least one bi-directional device or "BUS" for awired connection
between two or more unidirectional enabled gates.

« the node state values for the nonconvergence time point. State values reported are
preceded by a"..." to indicate possible previous states.

3. Nonconvergence only occurs when gate delays are zero. Zero-delays occur during logic
initialization , which forces delays to be zero; or, during zero-delay logic simulation ; or,
when either zero delay or no delay is specified for devices (the default delay for Verilog
HDL devicesis zero).

B.2-42 Electronics Workbench

Silos 1l Command Line Usage

4. When the iteration limit is exceeded while resolving node states at a time point, a noncon-
vergence error stops execution. Nonconvergence may be due either to the circuit path
length or problems with designsinvolving feedback. The circuit design must be corrected
to eliminate oscillations caused by problems involving feedback. When nonconvergence
isdueto path length, increasing the iteration limit should enable the circuit to converge. In
general, each node in the serial path length requires one iteration to propagate a signal .

5. The maximum iterations per pass for logic initialization can be redefined by the "CON-
TROL .MXDCI" command. The maximum iterations at atime point for logic simulation
can be redefined by the "CONTROL .MXITR" command. Arbitrarily increasing these
parameters is not recommended as it may dramatically increase the execution time neces-
sary to identify oscillating nodes.

6. The maximum number of passes for logic initialization is defined by the "CONTROL
.MXPAS" command. When thislimit is exceeded, the error message specifies the required
number of passes to complete logic initialization. To reduce the number of passes and exe-
cution time, use ".INIT" to preset the state for critical nodes. Although arbitrarily setting
"CONTROL .MXPAS'to alarge value will very likely converge acircuit that is theoreti-
cally solvable, thisis not recommended as the problem is usually due to incorrect circuit
design.

Examples:

ty noc

nocon /iter=43

B.2.2.16Narrow Storing Outputs

When a command that generates areport is preceded by the NSTORE command, the report
output will be directed to adisk file.

To specify the NSTORE command, enter:
NSTOREconmand

NSTORE directs the output to a 79 column disk file. As a default, this file is named
"store.out".

command represents a command structure which defines the type of data to be out-
put. These commands are described within this section of the manual.

Multisim 2001 User Guide B.2-43

suoisualx3 JaH Bojusa

Verilog HDL Extensions

Application Notes:

1. If acommand that generates areport is not preceded by the NSTORE command, then the
default output deviceis specified by the CONTROL command.

2. To respecify the page width for the NSTORE command, use the "FORMAT .NSTORE"
command.

3. The default file name for the NSTORE command may be redefined using the DISK com-
mand or the "FILE .STO=" command.

Examples:
nstore output on change

NSTO NETWORK /FDD
PREPRCC

B.2.2.17Preprocessing Data

B.2-44

Normally, data preprocessing is automatically performed prior to initialization or simulation
(i.e., when the SIMULATE command are entered). However, you may wish to use the PRE-
PROC command to check for syntax errors without simulating.

To preprocess data, enter:

PREPROC

Application Notes:

1. During data preprocessing, the program resolves and checks all gate input connections,
calculates fan-out connections and creates implicit nodes. Generaly, the datais reformat-
ted for more efficient ssimulation.

2. Once preprocessing has been performed, additional topological data cannot be entered.
3. Notethat at least the first three letters of this command must be specified (i.e. PRE).

4. If serious errors occur during a phase of the preprocessing, you should correct the errors
before proceeding. If the errors were corrected interactively, enter "RESET ERRORS"
and then reissue the PREPROC command to continue preprocessing.

pr obe

Electronics Workbench

Silos 1l Command Line Usage

B.2.2.18Probing Node States

The probe command reports the value of variables and expressions in tabular format.
The format for the probe command is:

STORE probe

si on

STORE probe |ITER

si on

STORE probe STEP dt

sion
STORE
probe
STEP dt
ITER
t1t2
format
expression

Multisim 2001 User Guide

t1t2 "format" (expression), expres-
tl1t2 "format" (expression), expres-
t1t2 "format" (expression), expres-

(optional) directs the probe output to a disk file. Use the DISK command
to specify the file name for thestored output.

reports the value of variables and expressions in tabular format.
(Default: report the "on change" values)

(optional) causes the values to be reported between time "t1" to time "t2"
at intervals of "dt".

(optional) causes values of variables and expressions to be reported for
each iteration at a time point.

(optional) represents an optional time point range over which the values
will be reported. When "t1" and "t2" are not specified the probe com-
mand will use the simulation time values or the time values specified on
the last probe command.

(optional) specifies the format for reporting the expressions. Any of the
format specifications for $display and $monitor are allowed (Default
radix: %h)

specifies any legal Verilog HDL expression. The parentheses around the
first specified expression are not required when it is just a single variable.
Full hierarchical path names can be used, otherwise the module instance
selected by the "SCOPE" command will be used. A",," can be used
instead of a name to insert a blank column in the report. When an "@"
sign is used in front of any expression, then values are reported when
those expressions change.

B.2-45

suoisualx3 JaH Bojusa

Verilog HDL Extensions

Examples:

A typical way the probe command can be used is to declare the scope for a module instance,
and then list variables in the module that you want to report on. Using two commas between
variables would leave a blank column between variables:

scope mai n// decl are nodul e i nstance "main".
pro a,,b,,c// blank columm between vari abl es.

The probe command can be used to report the value for any expression, such as, you could
use the following probe command to report the value for the assignment "out= (a+b) | (c+d)"
for each change of variable "clock":

probe @l ock,, "out=", (at+b) | (c+d)

The STORE command can be used to store the probe report to afile:

store probe a,b// stores the probe report to a file.

Some additional examples for the probe command are listed below:

pr obe main.il.a// report variable "a" inside instance "min.il"
probe "output result = %", out// use string and octal radix formats.
probe 0 100 %w{a,b,c}// report concatenated variables as octal
store probe % a[0:2], % a[3:6]// vary the radix for reporting val -
ues.

B.2.2.19Quitting Execution

B.2-46

The QUIT command enables you to terminate an unwanted session without that session
affecting any active SAVE files.

To quit program execution, enter:

QT

Application Notes:

1. The QUIT command aborts execution of the program and all program results since the last
SAVE command are lost.

Electronics Workbench

Silos 1l Command Line Usage

B.2.2.20Resetting Selected Data

The RESET command can be used to reset (i.e. delete) selected data information for the com-
mand line version of SILOS I11. For the graphical interface version, the Silos Simulation
Environment, use the L oad/Reload Files button.

The form of the command is:

ALL
ERRORS
RESET QUTPUTS
PATTERN
SAVFI LE

RESET
ALL

ERRORS

SAVFILE

Application Notes:

Resets selected program counters and/or flags as specified by the below
options.

Resets everything (as if you just began execution). The program will not
issue a warning.

Deletes data error flags and messages up through level 4. This can be
used to continue a simulation after errors have been corrected, and to
clear unnecessary warning and error messages.

Resets the logic simulation save file data to eliminate disk storage.

1. For RESET OUTPUTS, new output commands can be entered from the menu selections

or input from afile.

2. Beforeusing "RESET SAVFILE", reports should be generated and/or the SAVE files
should be copied to tape. After "RESET SAVFILE", logic simulation can be continued
from the last simulation time point but output reports are not available for simulation
results prior to the last simulation time point.

Examples:

RES ERR

res savfile

Multisim 2001 User Guide

B.2-47

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.2.21scope For Printing Module Variables

The SCOPE command declares the modul e instance used when the PRINT or probe com-
mands reports the values for variables and expressionsin amodule.

The format for the SCOPE command is:

SCOPE i nstance_namne

SCOPE Declares the module instance used by the PRINT or probe com-
mand

instance_name Represents the instance name for the module whose variables will
be reported by the PRINT or probe commands

Example:

SCOPE nmi n. cpu. cache

B.2.2.22Logic Simulation Specification

Logic simulation can be performed by entering the SIMULATE command.
To initiate the logic simulation, enter:

SIMILLATE t1[TOt2]

SIMULATE Performs time-response logic simulation that can use both finite and
zero delay specifications. Preprocessing (PREPROC) and logic initial-
ization will be automatically performed if they have not been previously.

t1 TO t2 Represent the values of the first and last simulation time points (see
note 1 below). The keyword "TO" is optional.
Application Notes:
1. When specifying the simulation time point range, the following items apply:

« Specifying neither t1 nor t2 or setting t2 to an arbitrary large number will cause
SILOS 111 to simulate until "$stop” or "$finish" isencountered in the netlist. You can

B.2-48 Electronics Workbench

Silos 1l Command Line Usage

stop the simulation by clicking-on the "STOP" button or pushing the "Escape" key
(Esc) on the keyboard for the PC and " Ctrl-C" on Unix.

» Specifying a single time point indicates that simulation will be incrementally contin-
ued for that amount of time. At time=0, thiswill start the simulation from time=0 for
the specified amount of time.

» Y Specifying t1 and t2, with t1=0, runs the simulation from time=0 to time=t2.

» Specifying t1andt2, with t1 greater than zero, continues the simulation from the last
specified time point.

e Specifying "TO t2" will continue the simulation until time=t2. This can be useful to
continue a simulation that was halted due to a breakpoint.

2. The SIMULATE command will automatically invoke the PREPROC command (if PRE-
PROC has not already been performed) and no further topological data can be entered.

3. Simulation can either be continued from the last time point or restarted from time=0.

4. The SIMULATE command usesinertial delays, which do not propagate level changes that
occur faster than the gate output can change (spike condition).
Examples:

simul 0 to 22k
SIM 5KGG 10K
SIM 5K

sim 0 15k

SI TO 5K

B.2.2.23Size-Of-Data Reprint

The SIZES command reports the memory usage for SILOS 1.
To report the network size information, enter:

TYPE
STORESI ZES
WI'YPE
NSTORE

TYPE (optional) directs the size information to standard output

STORE STOREor to a disk file.

SIZES Generates memory usage information

Multisim 2001 User Guide B.2-49

suoisualx3 JaH Bojusa

Verilog HDL Extensions

Application Notes:

1
2.
3.

Items reported include the total number of devices, network names, etc.
The memory usage may be different after read-in, preprocessing and simulation.
The memory usage is also reported in the "Help/About” box.

Examples:

NSTO SIZ
TY SIZ

B.2.2.24Spike Summary Output

B.2-50

The "t/s SPIKES' command allows you to view all the nodes on which spikes were made
observable during logic simulation (see “B.2.2.22 Logic Simulation Specification™).

To generate a node spike summary, enter:

TYPE

STORE SPIKES [tl1 TO t2]
WI'YPE

NSTORE

TYPE (optional) Directs the spike summary to standard output or to a disk file.
STORE

SPIKES Lists a summary table of all spikes between two time points.

t1 TO t2 Represent the minimum and maximum time point values over which the
spike output is to be generated. This time point range must be within the
logic simulation time point range. If the time points are not specified, the
logic simulation times are used. (The "TO" keyword is optional.)

Application Notes:

1
2.

A spike occurs when the gate input level changes faster than the gate output can change.

Setting the criteriafor spike conditionsis controlled by the +pulse e, +pulse r, and +path-
pulse command line arguments.

To enable spike recording during logic simulation for the SPIKE report, use the
+silos_spike command line option.

Electronics Workbench

Silos 1l Command Line Usage

Examples:

ty spikes
NSTO SPIKES 4.2K 4.8K
STORE

B.2.2.25Storing Outputs

When acommand that generates areport is preceded by the STORE command, the report out-
put will be directed to adisk file.

To specify the STORE command, enter:
STORE command

STORE Directs the output to a 132 column disk file.
As a default, this file is named "store.out".

command Represents a command structure which defines the type of data to be
output.These commands are described within this section of the manual.

Application Notes:

1. If acommand that generates areport is not preceded by the STORE command, then the
default output deviceis specified by the CONTROL command.

2. To respecify the page width for the STORE command, use the "FORMAT .STORE" com-
mand.

3. The default file name for the STORE command may be redefined using the "DISK" com-
mand or the "FILE .STO" command.

Examples:

store output on change

STO NETWORK / FDD

Multisim 2001 User Guide B.2-51

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2.2.25.1Strength Specification For Gates

The STRENGTH command allows you to modify the default strength types.
To respecify default strength types for gate devices, use:

STRENGTH . devicel/strg .device/strg ...DEFAULT/strg

STRENGTH Indicates that default strength-types are to be assigned to unidirectional
gate devices.

.device Represents a device keyword (see note 1 below). If no “device/P” or
device/strg” is specified for an individual gate device, the program
defaults to a “CMOS” strength type.

DEFAULT Sets the strength for all devices that do not have the strength explicitly
specified. The default is "CMOS" strength type.

strg Represents any combination of "D", "R" or "Z". The first character indi-
cates the strength of the Low level. The second character indicates
the strength of the Unknown level. The third character indicates the
strength of the High level. "D" represents Strong strength, "R" repre-
sents Pull strength, and "Z" represents High-Z strength.
Alternatively, the characters "N", "P" or "C" can be used by themselves
to indicate NMOS-type (DRR), PMOS-type (RRD) or CMOS-type
(DRD) defaults.

Application Notes:

1. The"device" keyword can be any of the combinatorial gate devices.
2. Supply-strength cannot be defined.

Examples:

Istrength .nor/n .nand/n .not/c

I'strength def aul t/ ddd

B.2.2.26Symbol Modification For Output

The SYMBOL command allows you to use a unique symbol for each possible logic state.
To modify the output state symboals, use:
SYMBCL sc=char sc=char sc=char

B.2-52 Electronics Workbench

Silos 1l Command Line Usage

state symobols
SO0
S*
S1
SHV
DO
D*
D1
DHV
RO
R*
R1
RHV
Z0
Z*
Z1

ZHV

Multisim 2001 User Guide

SYMBOL

SC

(sc)

Specifies that the state code symbols are to be redefined.

Represents one of the state-type codes for the OUTPUT, POUTPUT and
probe reports and for the .CLK and .PATTERN stimulus specifications:

state

Supply Low

Supply Unknown
Supply High

Supply High-Voltage
Driving Low

Driving Unknown
Driving High

Driving High-Voltage
Resistive Low
Resistive Unknown
Resistive High
Resistive High-Voltage
High-Z Low

High_Z Unknow
High-Z High

High-Z High-Voltage

default report symbol default stimulus char

0 0

* *

The following symbols are used only in the output reports.
No symbol can be defined to input these states for .CLK
or .PATTERN stimulus:

B.2-53

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-54

State Symbols

State

Default Report Symbol

Default Stimulus Char

*0 Uncertain Low *
** Uncertain Unknown *
*1 Uncertain High *
HV Uncertain High-Voltage *
ob Decaying Low D
*D Decaying Unknown D
1D Decaying High D
HVD Decaying High-Voltage D
*S Spike S
char Represents the single character you want to be used to

indicate the state. The comment character (default a "$")
cannot be used as a "char" symbol.

Application Notes:

1. Enter the SYMBOL command before the".PATTERN" and ".CLK" specifications are
entered to redefine symbols used for stimulus state values.

2. The SYMBOL command can redefine node state symbols either before or after simulation
for the "t/sOUTPUT", probe, and "t/s POUTPUT" reports.

3. When the same symbol is used to represent the different states (asin the defaults of
0,*,1) for the input stimulusfor a.CLK or .PATTERN specification, the program resolves
the ambiguity in the following order:

e The most recent symbol specified by the most recently entered SY MBOL command
isused.
e For the default symbols not specified by a SYMBOL command, the higher strength
is used and within a strength, the higher level is used.
For example, if "SYMBOL D1=+ RO=+" is entered, then the symbol "+" would mean
ResistiveLow. If "SYMBOL D1=+ D*=+" isentered, then the symbol "+" would mean
Driving Unknown.

4. Note that the Unset state symbol cannot be changed; it will always be a question mark "7?".

Electronics Workbench

Silos 1l Command Line Usage

Examples:

SYMBOL Z0=- Z*=# Zl=+

.synbol r*=U z*=U d*=U rl=H 2z1=H dl1=H dO=L
+ rO0=L zO=L

SYM 0D=L *D=U 1D=H S0=0 S*=X Sl=|

!SYM DO=O Dr=X D1=I *S="

B.2.2.27Batch Execution Overview

SILOS 111 can be run on the host computer as:

» Aninteractive session for debugging adesign;

» A batch session for running regression tests.

Running SILOS |11 as a batch execution may be useful for:

* Running regression tests.

This section explains how to run SILOS |11 as abatch execution in the Windows 95, Windows
98 operating system, Windows NT operating system or the Unix operating system. Examples

are provided for common tasks such asusing SILOS 111 commands from afile to input and
simulate the netlist, and report simulation results.

Before reading the sections on running as a batch execution, you may want to review the sec-
tionon“B.2.2.1 Commands Overview” to gain a better understanding of how to use SILOS
[l commands.

B.2.2.27.1Commands in Files

SILOS 111 commands can be entered in the Command window for the Main toolbar (for more
information, see“B.2.2.1 Commands Overview”) or from afile. Commands entered from a
file must be directly preceded (without any white space) by a"!" or a".". Preceding acom-
mand by "!" will cause the command to be echoed to standard output asit is executed. Usu-
ally, only thefirst two characters are required when specifying acommand. A few commands
(e.g. PRE, PRO) require three letters to prevent ambiguity. For more information on the

commands available for SILOS |1, seethe“B.2.2 Silos |1l Command Line Usage”.

Anisshown below. For thisexample, file "test.v" will automatically simulate to the $finish
and report any error messages. Enclosing SILOS 111 commandswith a" 'ifdef silos" compiler
directive allows you to maintain Verilog compatibility (the keyword "silos" is defined astrue
by defaultin SILOS11).

File "test.v":
//title sinple circuit
nodul e foo;

Multisim 2001 User Guide B.2-55

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-56

reg cl ock;

initial
begin
clock = 0;
#10 clock = 1;
#10 $finish;
end
endnodul e
"ifdef silos
I'sim
lerrors
"endi f

Commands are executed immediately upon being encountered in the data. Therefore, the
order in which the commands are placed may be important (e.g., |PREP before ISIM).

You should use the 'include compiler directive when inputting afile from another file. Inthe
previous example, remove the SILOS |11 commands from the file "test.v" and put themin file
"testl.v" (shown below) with an 'include compiler directive to include file "test.v" (for addi-
tional information see 'include in the Verilog HDL Reference on-line help file).

File "test1.v"
"include "test.v"
"ifdef silos
I'sim 200

lerrors

"endif

B.2.2.27.2Command-line Options

You can use Verilog style command line arguments for SILOS I11. The command line argu-
ments can be entered from the Command Line Arguments box in the Project Settings dialog
box (see “B.3.5.8 Project/Project Settings’), or, from the command line if you are running a
batch simulation. Available command line arguments are:

e -c: Thisoption compiles the source files and then exits.

« -f file_nane: Thisoptioninstructs SILOSIII to get the command line arguments
from afile. SILOS I1I hasthe ability to nest the command files. For example, command
file"logicsim”, silos -f | ogicsim couldcontainthe name of another com-
mand file "logicsm1" that has additiona "-" command line arguments.

SIL OS style commands can be entered in acommand file by enclosing the command with
double quotes -"!silos command”,i.e. -"!control .sav=2".

« -k file_nane: Thisoption savesthetext that has been entered from standard input
to afile.

e - file_nane: Thisoption writesthe standard output from SILOS 11 to alog file.
An"exit" or "quit" command must be encountered for SILOS Il to terminate.

Electronics Workbench

Silos 1l Command Line Usage

- | a: Thisoption appends the standard output from SILOS 111 to alog file instead of over
writing the log file, and also to standard output. This option must appear before the "-I
<fn>" option.

-r save_fil e_name: Thisoptionrestores SILOS 11 to the last saved simulation
state from a previous SILOS |11 save command.

-s: Thisoption causes SILOS 11 to enter the interactive mode after executing any com-
mands that have been input to SILOS 111.

- u : Thisoption converts every name to upper case.

-v file_name: Thisoption specifiesalibrary file name.

-w : Specifying -w meansthat SILOS Il will not display any warning messages.

-y directory_path: Thisoption specifiesadirectory of library files.

+l i bext +ext ensi onl+ext ensi on2... Thisoption namesthefile name extensions
for library filesin the directory specified by the "-y" option. An example of specifying the
library path and extensonwouldbe: -y c:\sil os3\ exanpl es\I|ibrary

+l i bext +. v

+l i bnonanehi de: This option causes SILOS 111 to read in the module and UDP defi-
nition names as they are written in the file without appending character strings.

+l i brescan: Search al thelibrary files again for undefined modules.

+l i bver bose: Thisoption printsinformation about the opening of files and the resolu-
tion of module and UDP definitions during the scanning of libraries.

+def i ne+t ext _nmacro_nanme=macro_t ext : Thisoption allowsyou to specify
“define macros from the command line. The "text_macro_name" is the macro identifier,
and the"macro_text" isthetext substitution. Double quotes (" ") must be used around the
macro_text if the macro_text contains whitespace. For example: si | 0s. exe

+def i ne+sdf =t est. sdf, isequivaentto:" define sdf test.sdf and:
si |l 0s. exe +defi ne+decl are="reg a;"isequivaentto: defi ne
declare reg a;.

+del ay_node_di st ri but ed: Command line argument specifies the distributed
delay mode for all modules in the source description. This means that the distributed
delays for gates connecting the module input to the modul e output will always be used as
the pin-to-pin delay for the module input to output. For examples of distributed delays,
see Chapter 13 on specify blocks in the Verilog LRM on-line help file.

+del ay_nopde_pat h: Command line argument specifies the path delay mode for all
modulesin the source description. This meansthat the path delays specified in the specify
blocks for delays from the module input to the module output will always be used as the
pin-to-pin delay for the module input to output. For examples of path delays, see Chapter
13 on specify blocksin the Verilog LRM on-line help file.

+del ay_nopde_uni t :Command line argument sets all gate and specify block delaysto
one.

+del ay_nopde_zer o: Command line argument sets all gate and specify block delays
to zero.

Multisim 2001 User Guide B.2-57

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-58

+i ncdi r+di rect oryl+di rectory2... If SILOSIII can not find afile namethat is
specified on the user's “include in the current directory, then SILOS 111 will search the
directories specified by the +incdir command line option for the file.

+i gnor e_sdf _i nt erconnect _del ay: specifiesthat SDF INTERCONNECT
delayswill not be used. This can be useful for reducing the runtime and memory usage for
fault ssimulation.

+i gnore_sdf _port _del ay: specifiesthat SDF PORT delayswill not be used. This
can be useful for reducing the runtime and memory usage for fault simulation.

+m ndel ays: Thisoption selects the minimum delay specification for delays
(min:typ:max).

+t ypdel ays: Thisoption selects the typical delay specification for delays
(min:ityp:max). (Default: +typdelays)

+maxdel ays: Thisoption selects the maximum delay specification for delays
(min:typ:max).

+nodol di spl ay: Thisoption suppresses all messages from $display, $write, etc. sys-
tem tasks to standard output. This can be used to prevent these messages from cluttering
the log file during logic simulation.

+nol i bf aul t s: Automatically inserts “suppress_faults and “enable_portfaults, and
“nosuppress_faults and “disable_portfaults around every module in alibrary file. The
library file can be specified using the -y and -v command line options, the !library com-
mand, or the "Project Files' dialog box.

+no_pul se_mnsg: The command line option "+no_pulse msg" turns off the +pulse
messages. This does the same thing as the "+pulse_quiet" command line option.

+not i m ngchecks: Thisoption disables all timing checks, improving speed and
reducing memory used.

+no_t chk_nsg: Thisoption suppresses timing check violation messages. Timing
checks are still processed, but no messages are printed to standard output if thereisatim-
ing check violation.

+nowar nt f npc: This option suppresses the warning message for a mismatch in the
number of port connections.

+pl usar gs: You can enter "+" command-line arguments that are project specific, such
"+compare’, "+sdf", .etc. For example, suppose you wanted to specify the SDF file only
when you entered "+sdf" in the "plusargs' box for the Project Settings dialog box. Then
your test bench may look like:

nodul e test _bench;initial
if ($test$plusargs("sdf"))

$sdf _annotate("test.sdf");// only execute if "+sdf" is an
ar gunent

endnodul e

Electronics Workbench

Silos 1l Command Line Usage

 +pul se_r/<n> and +pul se_e<n>command line arguments specify arange of
pulse widths that will propagate to the path destination. For +pulse_r<n>, "n" specifiesa
number in the range 0-100. Thiswill reject any pulse whose width islessthan "n" percent
of the module path delay. For +pulse_e/<n>, "n" specifies a number in the range 0-100.
Thiswill flag as an error and drive unknown ("x") any path pulse whose width isless than
"n" percent of the module path delay, but whose width is greater than pulse r. For more
information, see PATHPUL SE$ in the |EEE 1364 Verilog HDL manual.

» +pul se_qui et command line argument suppresses warning messages generated by
pulse_e command line argument.

» +suppressredef : Thisoption will suppress the warning message for redefinition of
“define macros.

e +suppressfl oat: Thisoptionwill suppressthe warning message for floating nodes,
which may be caused by a gateinput not having adriver, or by declaring avariable asa
wire and then never assigning avalueto it.

e +tim ng_checks: Thisoptionturnson al timing checks for fault simulation. This
will slow down the fault simulation and increase the memory used by fault simulation.

« +x| _order: Specifies aswitch so that the order of evaluation for always blocksisthe
same order as for Verilog-XL. Thisswitch may be useful for obtaining the same simula-
tion results as Verilog-XL. This option must be parsed before any modules are parsed.
This option automatically enters " define xI_order 1". An example would be the order of
evaluation for:

al ways @osedge cl ock
al ways @osedge cl ock

SILOS |1 aso supports the following SILOS command-line option:.
* -nospec

The -nospec command-line option eliminates all specify blocks. Eliminating the specify
blocks will reduce the memory used and increase the simulation speed. However, eliminat-
ing the specify block delays may cause race conditions and non-convergence due to zero
delays. If this happens, therise and fall delaysfor all gates (whose delays are not explicitly
specified) can be set to " 1" with the following SILOS |11 command:

e -"ldelay .default =1,1"

SILOS 11 aso allows system commands to be entered from the command line, i.e. -"!system
\"ls-It\""

For library searching, SILOS |11 also supports the "uselib compiler directive. The format for
‘usdibis:
“uselib file=filenane di r=di rectory_nane

Multisim 2001 User Guide B.2-59

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-60

where:
« filenameisthe full path name for afile containing one or more module definitions
that are searched to complete unresolved instantiations.
« directory_nameisthe full path name for a directory of files whose names are a con-
catenation of the name of amodule definition and a file extension, such as "dff.v".
Some examples of “usdlib are:

The below example uses “define to specify macros for the “uselib. This makesit easier to
change the library paths.

“define asicl dir=c:\actel\lib\vlog |I|ibext=.v

“define asic2 file=d:\library\udp.v

‘uselib Tasicl Tasic2
The below example uses specifies the same “uselib without using a "define. Notice that the
"libext" keyword for the library file name extensions is required when specifying a directory
"dir" specification for adirectory of library files.

“uselib file=\test\lib\udp.v dir=\test\lib2 i bext=.v

B.2.2.27.3Windows Batch Execution

SILOS 11 can be run as a batch execution from the Windows 95, Windows 98, and Windows
NT, operating systems.

The command-line syntax for running SILOS |11 as a batch execution on the Windows 95,
Windows 98, and Windows NT operating systemis:

sil os. exe -options +pl usar gs filenameq ... filenane, -
lcommandy ... -1 command,,
where:

"si | os. exe" isthe path to the "silos.exe" executable on Windows.

"-options" isoneor more Verilog HDL style command-line options. An example of
using command line options would be:

silos.exe -v exanl.udp -v exanl.lib -y library +libext+.v
examl. v examl. t st

For the above example, SILOS 111 will scan library files exam1.udp and examl.lib and the
".v" filesin directory library, and then input files examl.v and examl.tst. Then SILOSII|
will automatically simulate the circuit, report any errors, and exit when there are no fur-
ther commands to be executed from the command line or from afile (the "sim", "error",
and "exit" commands do not have to be specified).

The above examples could also have used the "-f" command-line option to specify thefile
that has the command-line options. For example:

Electronics Workbench

Silos 1l Command Line Usage

sil os. exe -f design.vc

File"design.vc" would then contain the following commands and file names for the above
example:

-v examl. udp

-v exantl.lib

-y library

+l i bext _.v

examtl. v

examt. t st

" +pl usar gs" isoneor more"+" arguments for the $testplusargs system task in Verilog
HDL.

"filename; ... filenanme," isthename of oneor moreinput filesfor SILOS

I11. Thefilescan contain Verilog HDL at the behavioral, gate, and switch levels. Thefiles
can aso contain SILOS Il commands. Any SILOS Il commandsin the files will be exe-
cuted as they are encountered.

“-lcomand; ... -!conmand," isoneor moreoptional SILOSIII commands.
For information on how to use SILOS Il commands in afile, which may be simpler than
from the command line. The"!" isrequired for al SILOS |1l commands that are on the
command line. There must be no whitespace between the "!" and the SILOS 111 com-
mand. SILOSIII commandsthat contain an embedded space must be enclosed by quotes,
such as:

-"lbat examl.!| og"

B.2.2.27.4Unix Batch Execution

SILOS 11 can be run as a batch execution from the Unix operating system.
The command-line syntax for running SILOS 111 as a batch execution on the Unix operating
systemis:

silos -options +plusargs filenamel ... filenamen -\!commuandl
-\l conmandn

where:

"silos" isthe path to the "silos" executable on Unix. If you are running from a directory
other than the installation directory you can set alink to silos on Unix:

In -s installation_path/silos

"-options" isoneor more command-line options supported by SILOS I11 (for more
information). An example of using command line options would be:

Multisim 2001 User Guide B.2-61

suoisualx3 JaH Bojusa

Verilog HDL Extensions

B.2-62

silos -v examl.udp -v examl.lib -y library +libext+.v
exanml. v exantl. t st

For the above example, SILOS 11 will scan library files exam1.udp and examl.lib and the
".v" filesin directory library, and then input files examl.v and examl.tst. Then SILOSIII
will automatically simulate the circuit, report any errors, and exit when there are no fur-
ther commands to be executed from the command line or from afile (the"sim", "error",
and "exit" commands do not have to be specified).

" +pl usar gs" isoneor more"+" arguments for the $testplusargs system task in Verilog
HDL.

"filename, ... filenane," isthename of oneor moreinput filesfor SILOS

I11. Thefilescan contain Verilog HDL at the behavioral, gate, and switch levels. Thefiles
can also contain SILOS 1l commands. Any SILOS 111 commandsin the files will be exe-
cuted as they are encountered.

"-\lcomuand; ... -\l conmand," isoneor more optional SILOSIII com-
mands. For information on how to use SILOS Il commands in afile, which may be sim-
pler than from the command line. The"\!I" isrequired for all SILOS 111 commandsthat are
on the command line, however, the "!" has a special meaning on UNIX and must be
escaped as"\!". There must be no whitespace between the "!" and the SILOS |1l com-
mand. SILOS |11 commands that contain an embedded space must be enclosed by quotes,
such as:

-"\I'batch exantl. | og"

In Unix, thereis an additional method for running SILOS 111 in the batch mode that is similar
to the interactive mode. To setup a batch session, edit afile and enter the same SILOS 111
commands as you would have used for an interactive session. Next, submit the file asa batch
run on your computer. The following filewould run SILOS |11 as a batch session on a UNIX
operating system using "C" shell:

#/ bi n/ csh

silos << mark
batch exanl.log // redirects standard output to file "exanml. | og"
library examl.lib exanl.udp library{.v}
i nput examl. v examd. t st
sim
di sk run01. out
store probe q[4: 1]
exit
mar k

Electronics Workbench

Verilog Libraries

B.2.3 Verilog Libraries

B.2.3.1Overview

Simucad provides many of the popular TTL library models for the SN74LS series. The
behavioral source for these partsis provided as four libraries:

* SN74LS series without timing (subdirectory "library\sn741s").

e SN74LS series with timing (subdirectory "library\sn74lst").

e SN74BCT serieswithout timing (subdirectory "library\sn74bct").
e SN74BCT serieswith timing (subdirectory "library\sn74bctt").

B.2.3.2Library Command

SILOS 1 will search library files when module definitions are not found for the module
instancesin the design. The LIBRARY command can be used to specify library file names
and file name extensions for library files.

To specify the library file names, enter:

LI BRARY [fil enane] [{.ext}]

LIBRARY Defines disk file names for external libraries.

Represents the name of one or more additional library disk

filename .
files.

{.ext} Represents the file name extension.

When searching a directory for library files, SILOS Il searches for
a file whose root name is the same as the module name on the
module instance, and whose extension matches the extension
specified for the library search.

Application Notes:

1. Library files can contain module defin