UNIVERSITÄT LEIPZIG

Institut für Informatik

Studentenmitteilung

1. Semester - WS 2007

Abt. Technische Informatik Dr. rer.nat. Hans-Joachim Lieske

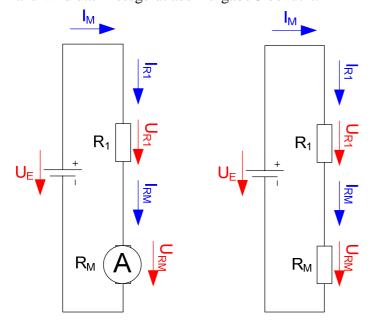
Tel.: [49]-0341-97 32213

Johannisgasse 26 - Zimmer: Jo 04-47 e-mail: lieske@informatik.uni-leipzig.de

www: http://www.informatik.uni-leipzig.de/~lieske

Freitag, 30. November 2007

Aufgaben zu Übung Grundlagen der Technischen Informatik 1


4. Aufgabenkomplex - 1. Aufgabe

Strommessung an einem Widerstand

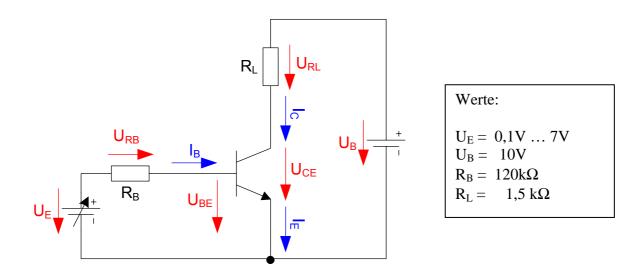
Auch bei Strommesungen kann es durch die Wechselwirkung des Messgerätes mit der Schaltung zu Fehlmessungen kommen.

Gegeben ist folgende Schaltung:

Der Strom durch den Widerstand R₁ soll gemessen werden. Dazu wird das Messgerät aus Aufgabe 3 benutzt.

Werte:	
$\begin{array}{c} U_E = \ 1V \\ R_1 = \ 10\Omega \end{array}$	
Messbereich	Innenwiderstand $R_{\rm M}$
100mA 500mA 1A 5A	$2,5\Omega$ 1Ω $0,25\Omega$ $0,05\Omega$

Gesamtpunktzahl: 10 Punkte


Aufgaben:

1.	Welchen Strom I _{M-0}	fliesst ohne das Messgerät (Leerlauf)	2 Punkte
2.	Welchen Strom I _{M-1}	misst das Messgerät im 100mA Messbereich	2 Punkte
3.	Welchen Strom I _{M-2}	misst das Messgerät im 500mA Messbereich	2 Punkte
4.	Welchen Strom I _{M-3}	misst das Messgerät im 1A Messbereich	2 Punkte
5.	Welchen Strom I _{M-4}	misst das Messgerät im 5A Messbereich	2 Punkte

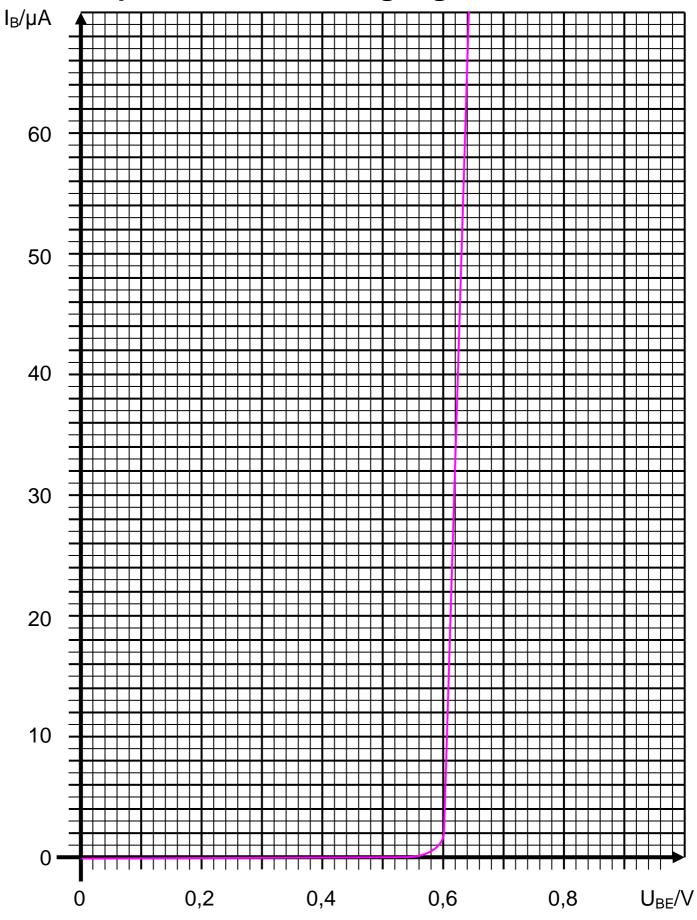
4. Aufgabenkomplex - 2. Aufgabe

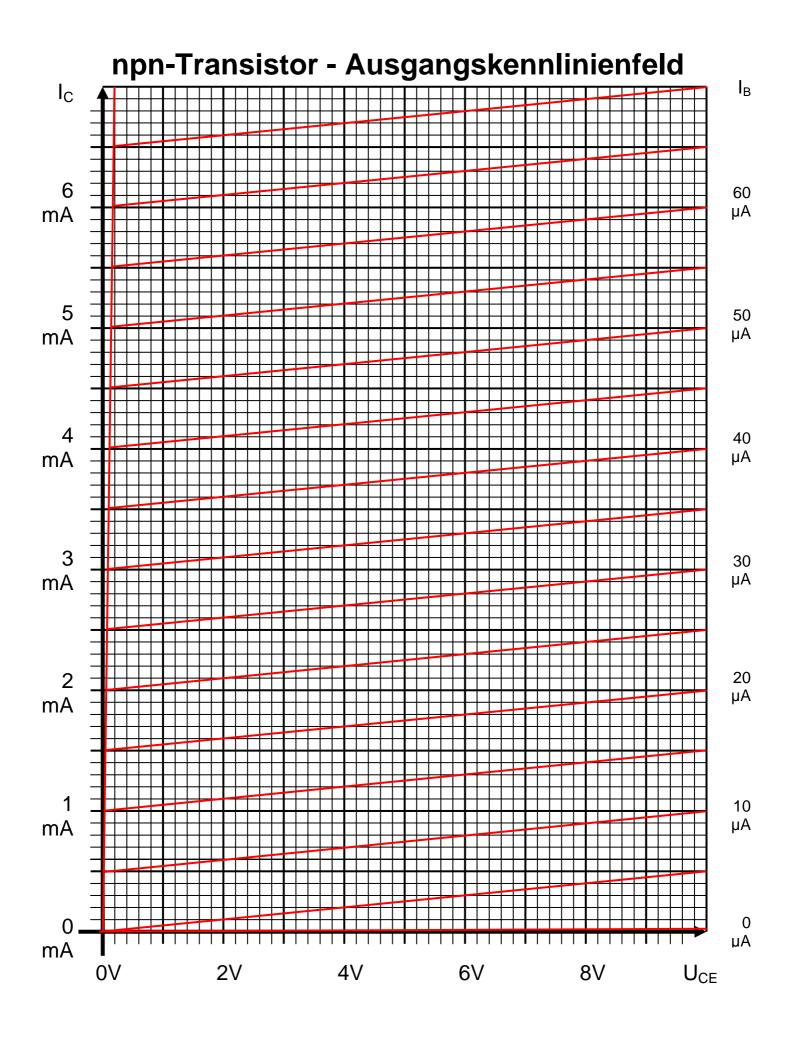
Berechnung einer Transistorschaltung

Gegeben ist folgende Inverterschaltung aus dem Praktikum:

Bestimmen Sie den Ströme I_B , I_C und I_E sowie die Spannung U_{CE} in Abhängigkeit von der Eingangsspannung U_E .

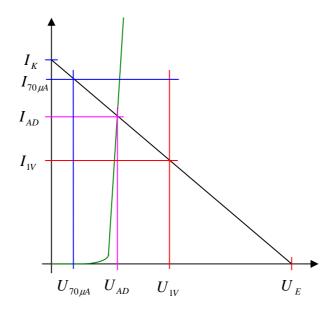
für
$$U_E$$
= 0.1V ... 1V in Schritten von 0,2V für U_E = 1V ... 7V in Schritten von 1V


Aufgaben:


Gesamtpunktzahl: 20 Punkte

- 1. Bestimmen Sie die Basis-Emitter Spannungen U_{BE} und Basisströme I_B mithilfe der Eingangswiderstandsgeraden aus den Eingangsspannungen U_E und dem Basiswiderstand R_B im Eingangskennlinienfeld 4 Punkte
- 2. Bestimmen Sie den Kurzschlussstrom I_{CK} und die Leerlaufspannung $U_L = U_B$ im Ausgangkennlinienfeld und zeichnen Sie die Widerstandsgeraden für R_L 4 Punkte
- 3. Bestimmen Sie den Kollektorstrom I_C , den Emitterstrom I_E und die Kollektor-Emitter Spannung U_{CE} aus den unter 1. ermittelten Basisströmen I_B 4 Punkte
- 4. Stellen Sie die Ergebnisse in einer Tabelle dar 4 Punkte
- 5. Berechnen Sie die Kollektor-Emitter Spannung U_{CE} aus der Betriebsspannung U_{B} , dem Kollektorstrom I_{C} und dem Lastwiderstand R_{L} Vergleichen Sie die Ergebnisse mit den abgelesenen Werten 4 Punkte

Bemerkung: Alle Werte sind auf 4 Stellen zu berechnen. Beim Ablesen aus den Kennlinienfeldern auf den halben Strich runden. Im Zweifelsfall auf den nächsthöheren. Die Genauigkeit ergibt sich hier aus der Ablesegenauigkeit. Bei den Basisströmen ist auf 0,5 μ A zu interpolieren. Die Basis-Emitter Spannungen U_{BE} differieren nur sehr gering.


npn-Transistor - Eingangskennlinienfeld

Inverterschaltung mit npn Bipolartransistor					
U _E /V			U _{CE} /V		
0,1					
0,2					
0,4					
0,6					
0,8					
1,0					
2,0					
3,0					
4,0					
5,0					
6,0					
7,0					

Oft sind die Bezugspunkte I_K und U_L=U_E außerhalb des Zeichenbereiches

Grenzwerte für das Datenblatt $U_{1V} = 1V / I_{70\mu A} = 70\mu A$

$$\begin{split} I_{K} &= \frac{U_{E}}{R_{B}} \\ R_{B} &= \frac{U_{E}}{I_{K}} = \frac{U_{E} - U_{AD}}{I_{AD}} = \frac{U_{E} - U_{1V}}{I_{1V}} \quad \Rightarrow \quad I_{1V} = \frac{U_{E} - U_{1V}}{R_{B}} \\ R_{B} &= \frac{U_{E} - U_{AD}}{I_{AD}} = \frac{U_{E} - U_{70\mu A}}{I_{70\mu A}} \quad \Rightarrow \quad U_{70\mu A} = U_{E} - I_{70\mu A} R_{B} \end{split}$$

Beispiel für $U_E = 2V$

 $Eingangskennlinie: \quad U_{\scriptscriptstyle E} = 2V \quad R_{\scriptscriptstyle B} = 25k\Omega$

$$U_E = 2V$$
 $I_K = \frac{U_E}{I_K} = \frac{2V}{25k\Omega} = 80\mu A$

Eingangskennlinie: $U_E = 2V$ $U_{1V} = 1V$ $R_B = 25k\Omega$

$$I_{1V} = \frac{U_E - U_{1V}}{R_B} = \frac{2V - 1V}{25k\Omega} = 40\mu A$$

Eingangskennlinie:
$$U_E = 2V$$
 $I_{70\mu A} = 70\mu A$ $R_B = 25k\Omega$ $U_{70\mu A} = U_E - I_{70\mu A} R_B = 2V - 70\mu A \cdot 25k\Omega = 2V - 1.75V = 0.25V$

Bemerkung:

Für alle Aufgaben gilt:

- 1. In allen Formeln mit Zahlen sind die Maßeinheiten mitzuschleifen.
- 2. Bei den Endergebnissen sind die Maßeinheiten zu verwenden, die, wenn vorhanden, aus einem Buchstaben bestehen. Während der Rechnung können Sie nach eigenem Ermessen verfahren.
- 3. Bei den Endergebnissen sind die $10^{\pm 3}\,$ Präfixe konsequent zu verwenden. Während der Rechnung können Sie nach eigenem Ermessen verfahren.

Präfixe nur verwenden, wenn eine Maßeinheit dahinter ist.

4. Alle Aufgaben auf insgesamt 4 Stellen genau berechnen, wenn in Aufgabe nicht anders angegeben.

In der Klausur ist kein Rechner erlaubt, dort sind es entsprechend weniger Stellen.

- 5. Die Aufgaben sind zu nummerieren, auch die Teilaufgaben.
- 6. Der Rechenweg muß ersichtlich sein. Gegebenenfalls das Schmierblatt anheften.
- 7. Jedes Blatt ist wie folgt zu nummerieren Seite/Gesamtzahl der Seiten (z.B. Seite 6/8)

Nichtbeachtung wird mit Punktabzug geahndet!

Präfixe zur Kennzeichnung des Vielfachen von gesetzlichen Einheiten (dezimal)

Zeichen	Faktor	Bezeichnung				
Y	10^{24}	Yotta				
Z	10^{21}	Zetta				
E	10^{18}	Exa				
P	10^{15}	Peta				
T	10^{12}	Tera				
G	10^{9}	Giga				
M	10^{6}	Mega				
k	10^{3}	Kilo				
m	10^{-3}	Milli				
μ	10^{-6}	Mikro				
n	10 ⁻⁹	Nano				
p	10^{-12}	Piko				
f	10^{-15}	Femto				
a	10^{-18}	Atto				
Z	10^{-21}	Zepto				
y	10^{-24}	Yokto				
-						
Wen	iger gebräuchl					
Information						
•	102	** 1.				
h	10^{2}	Hekto				
da	10^1	Deka				
.1	10-1	D:				
d	$10^{-1} \\ 10^{-2}$	Dezi				
С	10	Zenti				

Umgang mit den Präfixen am Beispiel einer 4 stelligen Genauigkeit:

---, - Präfix Maßeinheit

--, -- Präfix Maßeinheit

-, --- Präfix Maßeinheit

Beispiele:

 $216,4\mu F; 33,45kHz; 2,456M\Omega; 7,482A$

Lösung:

4. Aufgabenkomplex - 1. Aufgabe

Strommessung an einem Widerstand

1. Welchen Strom I_{M-0} fliesst ohne das Messgerät (Leerlauf)

$$I_{M} = I_{R1} = I_{RM} = \frac{U_{R1}}{R_{1}} = \frac{U_{E}}{R_{1}}$$

$$U_{E} = 1V \qquad R_{1} = 10\Omega$$

$$I_{M-0} = \frac{1V}{10\Omega} = 100mA$$

$$U_E = 1V$$
 $R_1 = 10\Omega$

$$I_{M-0} = \frac{1V}{10\Omega} = 100 \text{ mA}$$

2. Welchen Strom I_{M-1} misst das Messgerät im 100mA Messbereich

$$R_{1ers} = R_1 + R_M$$
 $I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{1ers}}$

100mA Messbereich

100mA Messbereich
$$U_E = 1V \qquad R_1 = 10\Omega \qquad R_M = 2,5\Omega$$

$$R_{\scriptscriptstyle M}=2,5\Omega$$

$$R_{1ers} = 10\Omega + 2.5\Omega = 12.5\Omega$$

$$R_{1ers} = 10\Omega + 2,5\Omega = 12,5\Omega$$

 $I_{M-1} = \frac{1V}{12,5\Omega} = 80mA$

3. Welchen Strom I_{M-2} misst das Messgerät im 500mA Messbereich

$$R_{1ers} = R_1 + R_M$$
 $I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{1ers}}$

500mA Messbereich

$$U_E = 1V R_1 = 10\Omega R_M = 1\Omega$$

$$R_{\text{larg}} = 10\Omega + 1\Omega = 11\Omega$$

$$R_{1ers} = 10\Omega + 1\Omega = 11\Omega$$
$$I_{M-1} = \frac{1V}{11\Omega} = 90,91mA$$

4. Welchen Strom I_{M-3} misst das Messgerät im 1A Messbereich

$$R_{1ers} = R_1 + R_M$$
 $I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{1ers}}$

1A Messbereich

$$U_E = 1V R_1 = 10\Omega R_M = 0.25\Omega$$

$$R_{1ers} = 10\Omega + 0.25\Omega = 10.25\Omega$$

$$I_{M-1} = \frac{1V}{10,25\Omega} = 97,56mA$$

5. Welchen Strom I_{M-4} misst das Messgerät im 5A Messbereich

$$R_{1ers} = R_1 + R_M$$
 $I_M = I_{R1} = I_{RM} = \frac{U_E}{R_{1ers}}$

5A Messbereich

$$U_E = 1V R_1 = 10\Omega R_M = 0.05\Omega$$

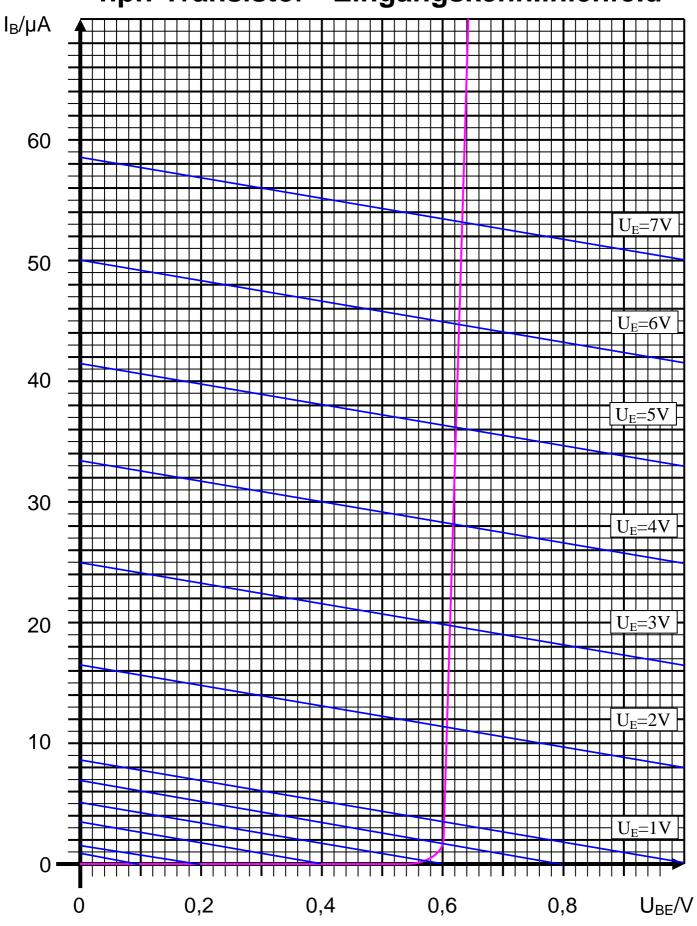
$$R_1 = 10\Omega + 0.05\Omega = 10.05\Omega$$

$$R_{1ers} = 10\Omega + 0.05\Omega = 10.05\Omega$$

 $I_{M-1} = \frac{1V}{10.05\Omega} = 99.5mA$

Lösung:

4. Aufgabenkomplex - 2. Aufgabe


Berechnung einer Transistorschaltung

1. Bestimmen Sie die Basis-Emitter Spannungen U_{BE} und Basisströme I_{B} mithilfe der Eingangswiderstandsgeraden aus den Eingangsspannungen U_{E} und dem Basiswiderstand R_{B} im Eingangskennlinienfeld

Bestimmung der Eckpunkte der Eingangswiderstandsgeraden

$$\begin{split} I_{K} &= \frac{U_{E}}{R_{B}} \qquad I_{IV} = \frac{U_{E} - U_{IV}}{R_{B}} \qquad U_{70\mu A} = U_{E} - I_{70\mu A} R_{B} \\ U_{E} &= 0, IV ... 7V \qquad R_{B} = 120 k\Omega \qquad U_{IV} = IV \qquad I_{70\mu A} = 70 \mu A \\ U_{E} &= 0, IV \qquad I_{K} = \frac{0, IV}{120 k\Omega} = 0,833 \mu A \\ U_{E} &= 0, 2V \qquad I_{K} = \frac{0, 2V}{120 k\Omega} = 1,667 \mu A \\ U_{E} &= 0, 4V \qquad I_{K} = \frac{0, 4V}{120 k\Omega} = 3,333 \mu A \\ U_{E} &= 0, 6V \qquad I_{K} = \frac{0, 6V}{120 k\Omega} = 5 \mu A \\ U_{E} &= 0, 8V \qquad I_{K} = \frac{0, 8V}{120 k\Omega} = 6,667 \mu A \\ U_{E} &= 1, 0V \qquad I_{K} = \frac{1,0V}{120 k\Omega} = 8,333 \mu A \\ U_{E} &= 2, 0V \qquad I_{K} = \frac{2,0V}{120 k\Omega} = 16,67 \mu A \qquad I_{IV} = \frac{2V - 1V}{120 k\Omega} = \frac{1V}{120 k\Omega} = 8,333 \mu A \\ U_{E} &= 3, 0V \qquad I_{K} = \frac{3,0V}{120 k\Omega} = 25 \mu A \qquad I_{IV} = \frac{3V - 1V}{120 k\Omega} = \frac{3V}{120 k\Omega} = 16,67 \mu A \\ U_{E} &= 4, 0V \qquad I_{K} = \frac{4,0V}{120 k\Omega} = 33,33 \mu A \qquad I_{IV} = \frac{4V - 1V}{120 k\Omega} = \frac{3V}{120 k\Omega} = 25 \mu A \\ U_{E} &= 5,0V \qquad I_{K} = \frac{5,0V}{120 k\Omega} = 41,67 \mu A \qquad I_{IV} = \frac{5V - 1V}{120 k\Omega} = \frac{4V}{120 k\Omega} = 33,33 \mu A \\ U_{E} &= 6,0V \qquad I_{K} = \frac{6,0V}{120 k\Omega} = 50 \mu A \qquad I_{IV} = \frac{6V - 1V}{120 k\Omega} = \frac{5V}{120 k\Omega} = 41,67 \mu A \\ U_{E} &= 7,0V \qquad I_{K} = \frac{7,0V}{120 k\Omega} = 58,33 \mu A \qquad I_{IV} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{K} = \frac{7,0V}{120 k\Omega} = 58,33 \mu A \qquad I_{IV} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{K} = \frac{7,0V}{120 k\Omega} = 58,33 \mu A \qquad I_{IV} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{K} = \frac{7,0V}{120 k\Omega} = 58,33 \mu A \qquad I_{IV} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{K} = \frac{7,0V}{120 k\Omega} = 58,33 \mu A \qquad I_{IV} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{K} = \frac{7,0V}{120 k\Omega} = 58,33 \mu A \qquad I_{IV} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{K} = \frac{7,0V}{120 k\Omega} = 58,33 \mu A \qquad I_{IV} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{E} = \frac{7}{120 k\Omega} = 58,33 \mu A \qquad I_{E} = \frac{7V - 1V}{120 k\Omega} = \frac{6V}{120 k\Omega} = 50 \mu A \\ U_{E} &= 7,0V \qquad I_{E} = \frac{7}{120 k\Omega} = 58,33 \mu A \qquad I_{E} = \frac{7V - 1V}{120 k\Omega} = \frac{7V}{120 k\Omega} = 50 \mu A \qquad I_{E} =$$

npn-Transistor - Eingangskennlinienfeld

$$R_{B} = \frac{U_{E} - U_{BE}}{I_{B}} \implies U_{BE} = U_{E} - R_{B} \cdot I_{B}$$

$$U_{E} = 0.1V \dots 7V \qquad R_{B} = 120k\Omega \qquad U_{1V} = 1V \qquad I_{65\mu A} = 65\mu A$$

$$U_{E} = 0.1V \qquad I_{B} = 0\mu A \qquad U_{BE} = U_{E} = 0.1V$$

$$U_{E} = 0.2V \qquad I_{B} = 0\mu A \qquad U_{BE} = U_{E} = 0.2V$$

$$U_{E} = 0.4V \qquad I_{B} = 0\mu A \qquad U_{BE} = U_{E} = 0.4V$$

$$U_{E} = 0.6V \qquad I_{B} = 0.2\mu A \qquad U_{BE} = 0.576V$$

$$U_{E} = 0.8V \qquad I_{B} = 1.5\mu A \qquad U_{BE} = 0.62V$$

$$U_{E} = 1.0V \qquad I_{B} = 3.5\mu A \qquad U_{BE} = 0.58V$$

$$U_{E} = 2.0V \qquad I_{B} = 11.5\mu A \qquad U_{BE} = 0.62V *$$

$$U_{E} = 3.0V \qquad I_{B} = 20\mu A \qquad U_{BE} = 0.64V$$

$$U_{E} = 4.0V \qquad I_{B} = 28\mu A \qquad U_{BE} = 0.64V$$

$$U_{E} = 5.0V \qquad I_{B} = 36\mu A \qquad U_{BE} = 0.66V *$$

$$U_{E} = 6.0V \qquad I_{B} = 44.5\mu A \qquad U_{BE} = 0.66V *$$

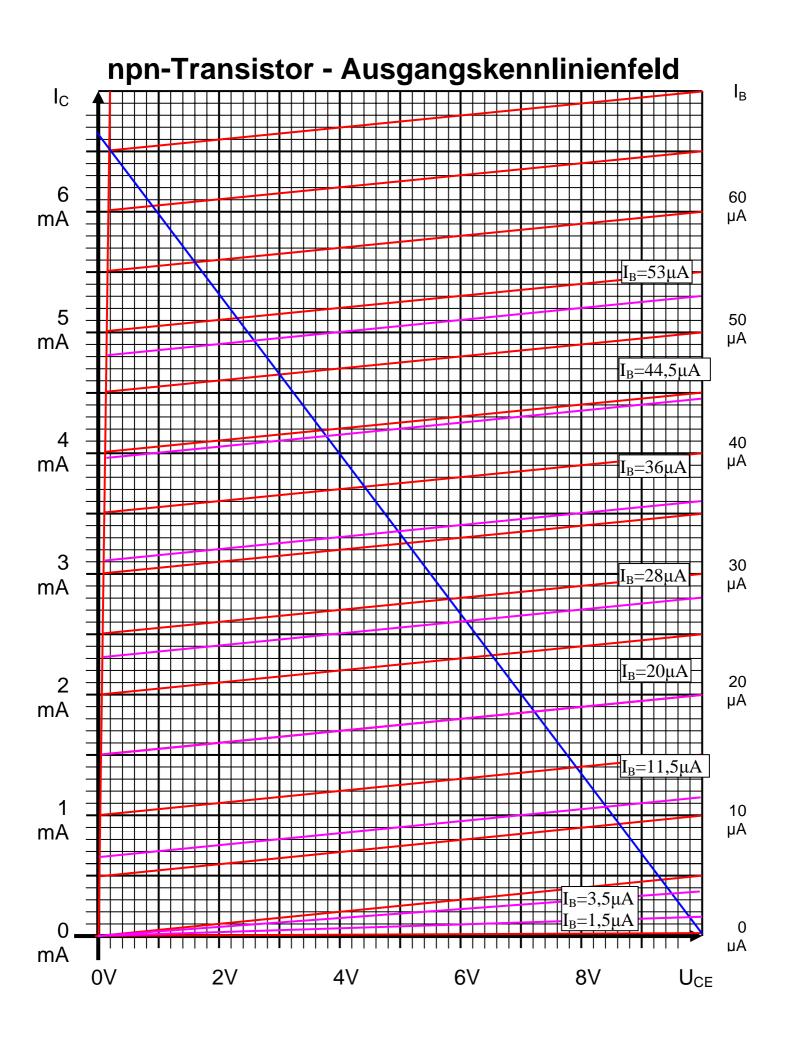
$$U_{E} = 7.0V \qquad I_{B} = 53\mu A \qquad U_{BE} = 0.64V$$

Kleine Abweichungen der R_B-Geraden und kleine Ablesefehler bei I_B wirken sich stark bei der Berechnung aus. So dass relativ grosse Abweichungen in der Berechnung von U_{BE} auftreten. Dies wird durch die steile Kennlinie hervorgerufen.

2. Bestimmen Sie den Kurzschlussstrom I_{CK} und die Leerlaufspannung $U_L = U_B$ im Ausgangkennlinienfeld und zeichnen Sie die Widerstandsgeraden für R_L

$$I_{K} = \frac{U_{B}}{R_{L}}$$

$$U_{B} = 10V \qquad R_{B} = 1.5k\Omega$$


$$I_{K} = \frac{10V}{1.5k\Omega} = 6.667mA$$

Bestimmen Sie den Kollektorstrom I_C , den Emitterstrom I_E und die Kollektor-Emitter Spannung U_{CE} aus den unter 1. ermittelten Basisströmen I_B Stellen Sie die Ergebnisse in einer Tabelle dar 3.

4.

$U_E = 0,1V7V$	$I_E = I_B +$	I_C		
$U_E = 0.1V$	$I_{\scriptscriptstyle B}=0\mu A$	$U_{CE} = 10V$	$I_C = 0mA$	$I_E = 0\mu A + 0mA = 0mA$
$U_E = 0.2V$	$I_{\scriptscriptstyle B}=0\mu A$	$U_{CE} = 10V$	$I_C = 0mA$	$I_E = 0\mu A + 0mA = 0mA$
$U_E = 0.4V$	$I_B = 0\mu A$	$U_{CE} = 10V$	$I_C = 0mA$	$I_E = 0\mu A + 0mA = 0mA$
$U_E = 0.6V$	$I_{\scriptscriptstyle B}=0,2\mu A$	$U_{CE} = 10V$	$I_C = 0mA$	$I_E = 0.2 \mu A + 0 mA = 200 nA$
$U_E = 0.8V$	$I_B = 1.5 \mu A$	$U_{cE} = 9.8V$	$I_C = 0,15mA$	$I_E = 1.5 \mu A + 0.15 mA = 151.5 \mu A$
$U_E = 1.0V$	$I_B = 3.5 \mu A$	$U_{CE} = 9,5V$	$I_C = 0.35 mA$	$I_E = 3.5 \mu A + 0.35 mA = 353.5 \mu A$
$U_E = 2,0V$	$I_{\scriptscriptstyle B}=11.5\mu A$	$U_{CE} = 8,4V$	$I_C = 1.1 mA$	$I_E = 11.5 \mu A + 1.1 mA = 1.1115 mA$
$U_E = 3.0V$	$I_{\scriptscriptstyle B}=20\mu A$	$U_{ce} = 7,2V$	$I_C = 1,85mA$	$I_E = 20\mu A + 1,85mA = 1,87mA$
$U_E = 4.0V$	$I_{\scriptscriptstyle B}=28\mu A$	$U_{CE} = 6,1V$	$I_C = 2,6mA$	$I_E = 28\mu A + 2,6mA = 2,628mA$
$U_E = 5.0V$	$I_{\scriptscriptstyle B}=36\mu A$	$U_{CE} = 5.0V$	$I_C = 3,35mA$	$I_E = 37\mu A + 3{,}35mA = 3{,}387mA$
$U_E = 6.0V$	$I_{\scriptscriptstyle B}=44,5\mu\!A$	$U_{CE} = 3.8V$	$I_C = 4,15mA$	$I_E = 45\mu A + 4,15mA = 4,195mA$
$U_E = 7.0V$	$I_B = 53 \mu A$	$U_{CE} = 2,6V$	$I_C = 4,95mA$	$I_E = 53\mu A + 4,95mA = 5,003mA$

Inverterschaltung mit npn Bipolartransistor					
U _E /V	U _{BE} /V	$I_B/\mu A$	U _{CE} /V	I _C /mA	I _E /mA
0,1	0,1	0	10	0	0
0,2	0,2	0	10	0	0
0,4	0,4	0	10	0	0
0,6	0,57	0,2	10	0	0,0002
0,8	0,6	1,5	9,8	0,15	0,1515
1,0	0,6	3,5	9,5	0,35	0,3535
2,0	0,608	11,5	8,4	1,1	1,112
3,0	0,618	20	7,2	1,85	1.87
4,0	0,62	28	6,1	2,6	2,628
5,0	0,628	36	5,0	3,35	3,387
6,0	0,632	44,5	3,8	4,15	4,195
7,0	0,64	53	2,6	4,95	5,003

5. Berechnen Sie die Kollektor-Emitter Spannung U_{CE} aus der Betriebsspannung U_{B} , dem Kollektorstrom I_{C} und dem Lastwiderstand R_{L} Vergleichen Sie die Ergebnisse mit den abgelesenen Werten

$$\begin{array}{c} U_B = U_{CE} + U_{RL} = U_{CE} + I_C \cdot R_L \quad \Rightarrow U_{CE} = U_B - I_C \cdot R_L \\ \\ U_E = 0, & 1V \quad abgelesen \quad U_{CE} = 10V \quad berechnet \quad U_{CE} = 10V - 0mA \cdot 1, & 5k\Omega = 10V - 0V \\ U_E = 0, & 2V \quad abgelesen \quad U_{CE} = 10V \quad berechnet \quad U_{CE} = 10V - 0mA \cdot 1, & 5k\Omega = 10V - 0V \\ U_E = 0, & 4V \quad abgelesen \quad U_{CE} = 10V \quad berechnet \quad U_{CE} = 10V - 0mA \cdot 1, & 5k\Omega = 10V - 0V \\ U_E = 0, & 6V \quad abgelesen \quad U_{CE} = 10V \quad berechnet \quad U_{CE} = 10V - 0mA \cdot 1, & 5k\Omega = 10V - 0V \\ U_E = 0, & 8V \quad abgelesen \quad U_{CE} = 9, & 8V \quad berechnet \quad U_{CE} = 10V - 0, & 15mA \cdot 1, & 5k\Omega = 10V - 0, & 225V = 9, & 75V \\ U_E = 1, & 0V \quad abgelesen \quad U_{CE} = 9, & 8V \quad berechnet \quad U_{CE} = 10V - 0, & 35mA \cdot 1, & 5k\Omega = 10V - 0, & 225V = 9, & 475V \\ U_E = 2, & 0V \quad abgelesen \quad U_{CE} = 8, & 4V \quad berechnet \quad U_{CE} = 10V - 1, & 1mA \cdot 1, & 5k\Omega = 10V - 1, & 65V = 8, & 35V \\ U_E = 3, & 0V \quad abgelesen \quad U_{CE} = 7, & 2V \quad berechnet \quad U_{CE} = 10V - 1, & 1mA \cdot 1, & 5k\Omega = 10V - 2, & 775V = 7, & 225V \\ U_E = 4, & 0V \quad abgelesen \quad U_{CE} = 6, & 1V \quad berechnet \quad U_{CE} = 10V - 2, & 6mA \cdot 1, & 5k\Omega = 10V - 3, & 9V = 6, & 1V \\ U_E = 5, & 0V \quad abgelesen \quad U_{CE} = 5, & 0V \quad berechnet \quad U_{CE} = 10V - 3, & 35mA \cdot 1, & 5k\Omega = 10V - 5, & 0.25V = 4, & 975V \\ U_E = 6, & 0V \quad abgelesen \quad U_{CE} = 5, & 0V \quad berechnet \quad U_{CE} = 10V - 4, & 15mA \cdot 1, & 5k\Omega = 10V - 6, & 225V = 3, & 775V \\ U_E = 7, & 0V \quad abgelesen \quad U_{CE} = 2, & 6V \quad berechnet \quad U_{CE} = 10V - 4, & 15mA \cdot 1, & 5k\Omega = 10V - 7, & 425V = 2, & 575V \\ U_E = 7, & 0V \quad abgelesen \quad U_{CE} = 2, & 6V \quad berechnet \quad U_{CE} = 10V - 4, & 15mA \cdot 1, & 5k\Omega = 10V - 7, & 425V = 2, & 575V \\ U_E = 7, & 0V \quad abgelesen \quad U_{CE} = 2, & 6V \quad berechnet \quad U_{CE} = 10V - 4, & 15mA \cdot 1, & 5k\Omega = 10V - 7, & 425V = 2, & 575V \\ U_E = 7, & 0V \quad abgelesen \quad U_{CE} = 2, & 6V \quad berechnet \quad U_{CE} = 10V - 4, & 15mA \cdot 1, & 5k\Omega = 10V - 7, & 425V = 2, & 575V \\ U_E = 7, & 0V \quad abgelesen \quad U_{CE} = 2, & 6V \quad berechnet \quad U_{CE} = 10V - 4, & 15mA \cdot 1, & 5k\Omega = 10V - 7, & 425V = 2, & 575V \\ U_E = 7, & 0V \quad abgelesen \quad U_{CE} = 2, & 6V \quad berechnet$$