UNIVERSITÄT LEIPZIG

Institut für Informatik

Studentenmitteilung

1. Semester - WS 2000/2001

Abt. Technische Informatik Gerätebeauftragter

Dr. rer.nat. Hans-Joachim Lieske

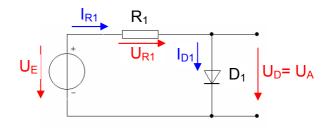
Tel.: [49]-0341-97 32213 Zimmer: HG 05-22

e-mail: lieske@informatik.uni-leipzig.de

www: http://tipc023.informatik.uni-leipzig.de/~lieske/

Aufgaben zu Übung Grundlagen der Technischen Informatik 1

3. Aufgabenkomplex - 1. Aufgabe


Bestimmung des Vorwiderstandes einer Halbleiterdiode

Gegeben ist folgende Schaltung:

$$U_E = 5V$$

Arbeitspunkt:
 $U_A = 1,5V$

Kennlinie der Diode 1

Aufgaben:

(Gesamtpunktzahl=10 Punkte)

- 1. Bestimmen Sie die mathematische Funktion der Kennlinie I_{D1} =f(U_{D1}) für beide Intervalle.
- 2. Bestimmen Sie die Leerlaufspannung für den Widerstand R₁.
- (1 Punkt)

3. Bestimmen Sie die Strom I_A des Arbeitspunktes.

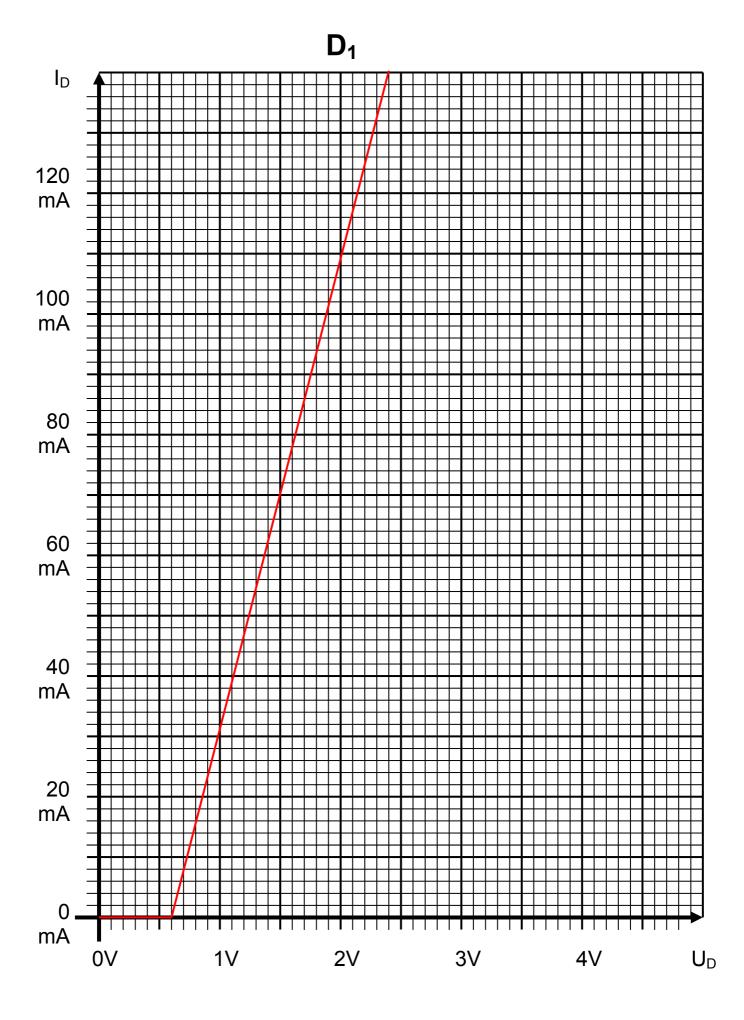
(1 Punkt)

4. Konstruieren Sie die Widerstandsgerade.

(2 Punkte)

(2 Punkte)

- 5. Bestimmen Sie den Kurzschlussstrom $I_K = U_E/R_1$ für den Widerstand R_1 .
- (1 Punkt)

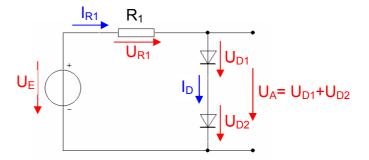

6. Bestimmen Sie den Widerstand R₁ aus I_K und U_E.

(2 Punkte)

7. Welche weitere Möglichkeit gibt es R₁ zu bestimmen.

(1 Punkt)

Bemerkung: Alle Werte sind auf 3 Stellen zu bestimmen. Beim Ablesen aus den Kennlinienfeldern auf den nächstliegenden Strich runden.

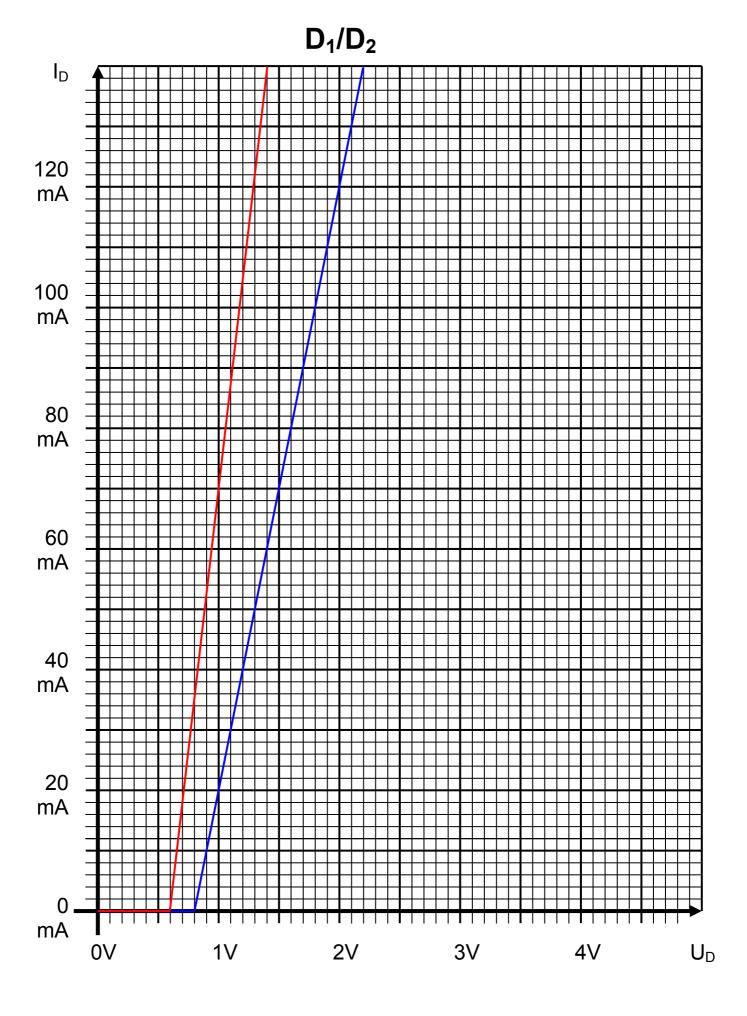


3. Aufgabenkomplex - 2. Aufgabe

Bestimmung des Arbeitspunktes einer Dioden-Reihenschaltung

Gegeben ist folgende Schaltung:

 $U_E = 5V$ $R_1 = 35,7\Omega$ Kennlinie der Diode 1 Kennlinie der Diode 2



Aufgaben:

(Gesamtpunktzahl=10 Punkte)

Konstruieren Sie die Ersatzkennlinie der Reihenschaltung der Dioden durch Addition der 1. Spannungen U_{D1} und U_{D2} für alle Ströme. (2 Punkte) Bestimmen Sie den Kurzschlussstrom des Widerstandes (I_K= U_E/R₁) 2. (1 Punkt) Konstruieren Sie die Widerstandsgerade. (1 Punkt) 3. 4. Bestimmen Sie die Spannung U_A des Arbeitspunktes der Reihenschaltung. (1 Punkt) Bestimmen Sie den Strom IA des Arbeitspunktes der Reihenschaltung. 5. (1 Punkt) 6. Bestimmen Sie den Strom I_{A-D1} durch die Diode 1. (1 Punkt) 7. Bestimmen Sie den Strom I_{A-D2} durch die Diode 2. (1 Punkt) Bestimmen Sie die Spannung U_{A-D1} über die Diode 1 8. (1 Punkt) Bestimmen Sie die Spannung U_{A-D2} über die Diode 2 (1 Punkt) 9.

Bemerkung: Alle Werte sind auf 3 Stellen zu bestimmen. Beim Ablesen aus den Kennlinienfeldern auf den nächsten Strich runden.

3. Aufgabenkomplex - 3. Aufgabe

Berechnung einer Transistorschaltung

Berechnung einer Transistorschaltung

Berechnen Sie folgende Schaltung.

Werte: $U_B = 5V$ $U_{CEA} = 3V$ $I_{CA} = 14mA$ $U_{BEA} = 0.7V$

Formeln:

$$U = I \cdot R$$

$$B = \frac{I_c}{I_B}$$

$$I_O = 5 \cdot I_B$$

$$U_{B} = U_{R1} + U_{R2} = U_{RL} + U_{CE}$$

 $R_{L} \\$ R_1 I_{C} I_B T_1 I_{Q} U_{CE} U_{BE} R_2 I_{E} 0

 $I_O + I_B$

(Gesamtpunktzahl=10 Punkte)

 $\circ + U_B$

Aufgabe:

Berechnen Sie die Widerstände der Schaltung.

1. Zeichnen Sie mithilfe des Arbeitspunktes (U_{CEA} und I_{CA}) und der Betriebsspannung U_B die Widerstandsgerade für R_L im Kennlinienfeld. **(0.5 Punkte)**

2. Bestimmen Sie mithilfe der Widerstandsgeraden den Kurzschlußstrom I_K im Kennlinienfeld.

(0,5 **Punkte**)

3. Berechnen Sie Wert des Widerstandes R_L aus der Betriebsspannung U_B und den Kurzschlußstrom (1 Punkt)

4. Berechnen Sie den Strom I_{RL} durch den Widerstand R_L. **(0,5 Punkte)**

5. Berechnen Sie die Spannung U_{RL} über den Widerstand R_L. **(0,5 Punkte)**

6. Bestimmen Sie mithilfe des Kennlinienfeldes den Basisstrom I_{BA} für den Arbeitspunkt.

(0,5 Punkte)

7. Berechnen Sie die Stromverstärkung B_A für den Arbeitspunkt. (1 Punkt)

8. Berechnen Sie Querstrom I_O. (0,5 **Punkte**)

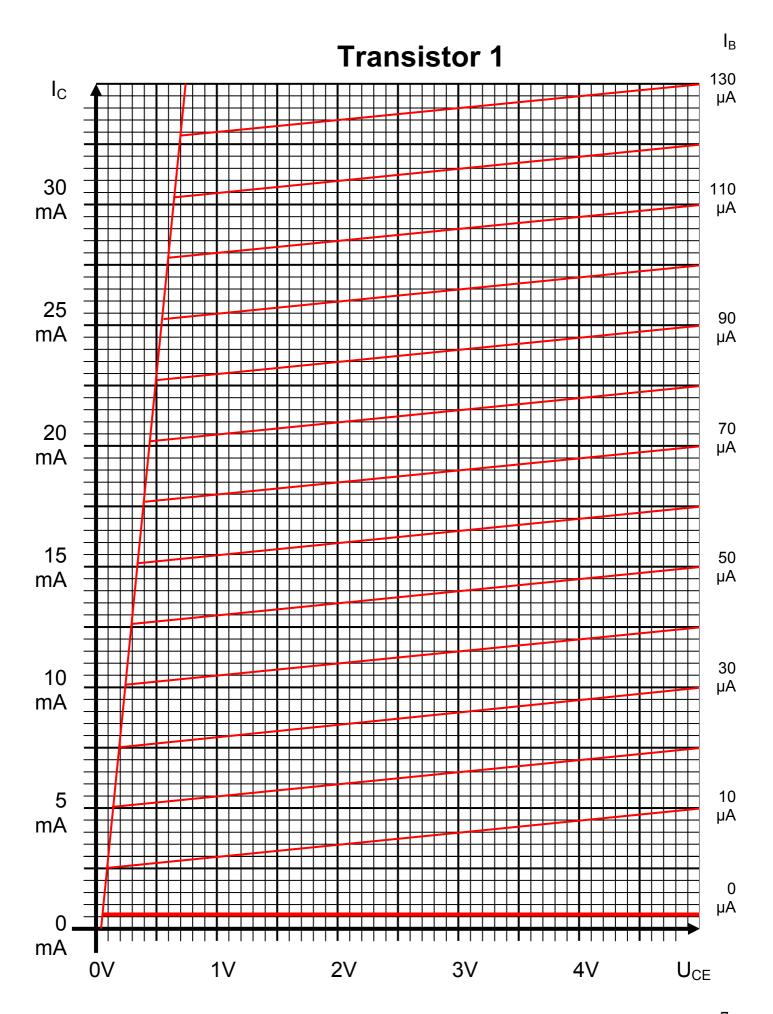
9. Berechnen Sie den Strom I_{R1} durch den Widerstand R_1 . **(0,5 Punkte)**

10. Berechnen Sie die Spannung U_{R1} über den Widerstand R_1 . **(0,5 Punkte)**

11. Berechnen Sie den Widerstand R₁. (1 Punkt)

(0,5 Punkte) 12. Berechnen Sie den Strom I_{R2} durch den Widerstand R₂.

13. Berechnen Sie die Spannung U_{R2} über den Widerstand R₂. **(0,5 Punkte)**


14. Berechnen Sie den Widerstand R₂. (1 Punkt)

15. Bestimmen Sie die Spannung U_{CE0} und den Strom I_{C0} für den nichtangesteuerten Transistor (I_B=0) mithilfe des Kennlinienfeldes. **(0,5 Punkte)**

16. Bestimmen Sie die Spannung U_{CEmax} den Strom I_{Cmax} und den Basisstrom I_{Bmax} für den **(0,5 Punkte)** vollausgesteuerten Transistor (I_C=max) mithilfe des Kennlinienfeldes.

Die Spannung unter Punkt 10 entspricht dem realen "high" - Ausgangspegel und die unter Punkt11 dem realen "low" - Ausgangspegel. Die Spannung U_{CEmax} ist gerade am kleinsten wenn der Strom I_{Cmax} am größten ist.

Bemerkung: Alle Werte sind auf 3 Stellen zu bestimmen. Beim Ablesen aus den Kennlinienfeldern auf den nächsten Strich runden.

Bemerkung:

Für alle Aufgaben gilt:

- 1. In allen Formeln sind die Maßeinheiten mitzuschleifen.
- 2. Bei den Endergebnissen sind die $10^{\pm 3}\,$ Präfixe konsequent zu verwenden.
- 3. Alle Aufgaben auf insgesamt 4 Stellen genau berechnen, wenn in Aufgabe nicht anders angegeben.
- 4. Die Aufgaben sind zu nummerieren, auch die Teilaufgaben.
- 5. Der Rechenweg muß ersichtlich sein. Gegebenenfalls das Schmierblatt anheften.

Nichtbeachtung wird mit Punktabzug geahndet!

Präfixe zu Kennzeichnung des Vielfachen von gesetzlichen Einheiten (dezimal)		
Zeichen	Faktor	Bezeichnung
Y	10 ²⁴	Yotta
${f Z}$	10^{21}	Zetta
E	10 ¹⁸	Exa
P	10 ¹⁵	Peta
T	10^{12}	Tera
G	109	Giga
M	10 ⁶	Mega
k	103	Kilo
m	10 ⁻³	Milli
μ	10 ⁻⁶	Mikro
n	10 ⁻⁹	Nano
p	10 ⁻¹²	Piko
f	10 ⁻¹⁵	Femto
a	10 ⁻¹⁸	Atto
Z	10 ⁻²¹	Zepto
y	10 ⁻²⁴	Yocto
	Nur zur Information	
d	10-1	Dezi
c	10 ⁻²	Zenti

Lösung

3. Aufgabenkomplex - 1. Aufgabe

Bestimmung des Vorwiderstandes einer Halbleiterdiode

Aufgaben:

(Gesamtpunktzahl=10 Punkte)

1. Bestimmen Sie die mathematische Funktion der Kennlinie I_{D1} = $f(U_{D1})$ für beide Intervalle.

(2 Punkte)

$$I = f(U) = a \cdot U + b$$

$$mit \quad a = \frac{I_2 - I_1}{U_2 - U_1} \quad und \quad b = I_1 - a \cdot U_1 = I_2 - a \cdot U_2$$

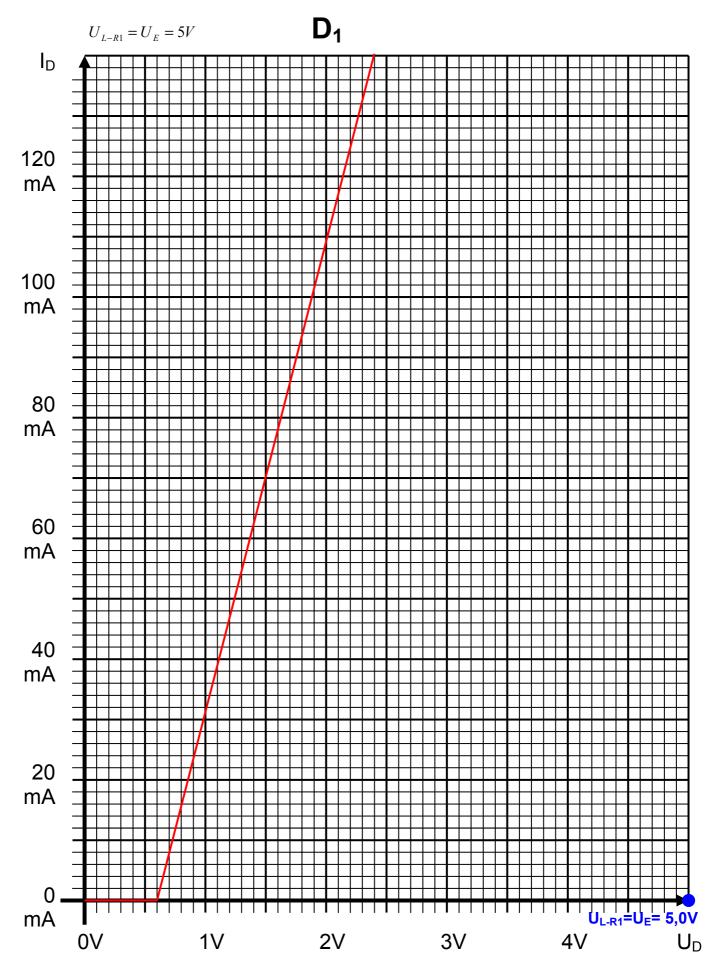
1.1. 1. Abschnitt

$$U_{1,1} = 0V$$
; $U_{1,2} = 0.6V$ $I_{1,1} = 0mA$; $I_{1,2} = 0mA$

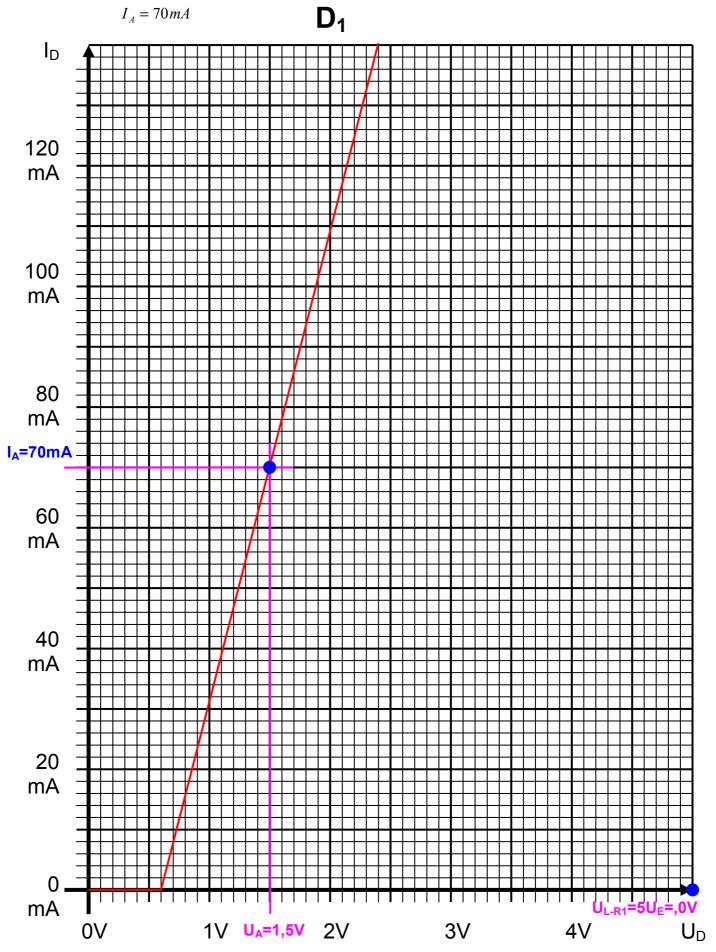
$$a = \frac{0mA - 0mA}{0.6V - 0V} = 0mS$$

$$b = 0mA - 0mS \cdot 0V = 0mA - 0mS \cdot 0.6V = 0mA$$

1.2. 2. Abschnitt


$$U_{2,1} = 0.6V$$
; $U_{2,2} = 2.4V$ $I_{2,1} = 0mA$; $I_{2,2} = 140mA$

$$a = \frac{140 \, mA - 0 \, mA}{2,4 \, V - 0,6 \, V} = \frac{140 \, mA}{1,8 \, V} = 77,778 \, mS = 77,8 \, mS$$


$$b = 0mA - 77,8mS \cdot 0,6V = -46,68mA$$
$$= 140mA - 77,8mS \cdot 2,4V = -46,72mA$$
$$\approx -46,7mA$$

1.3. 1. und 2. Abschnitt

$$I = f(U) = \begin{cases} 0mS \cdot U + 0mA & f\ddot{u}r & U \in [0;0,6]V\\ 77,8mS \cdot U - 46,7mA & f\ddot{u}r & U \in [0,6;2,4]V \end{cases}$$

3. Bestimmen Sie die Strom I_A des Arbeitspunktes. (1 Punkt) Der Strom I_A des Arbeitspunktes bekommt man durch Ablesen aus der Kennlinie für die Spannung des Arbeitspunktes U_A .

5. Bestimmen Sie den Kurzschlussstrom $I_K = U_E/R_1$ für den Widerstand R_1 .

 $I_{\scriptscriptstyle K}=100\,mA$ D_1 I_D 120 mA 100 – mA 80 mA I_A=70mA 60 mA 40 $\mathsf{m}\mathsf{A}$ 20 $\mathsf{m}\mathsf{A}$ mA 1V U_A=1,5V 2V 3V **0V** 4V U_D

Bestimmen Sie den Widerstand $R_1 \mbox{ aus } I_K \mbox{ und } U_E.$ 6.

$$R_{1} = \frac{U_{E}}{I_{K}} = ctg(\alpha)$$

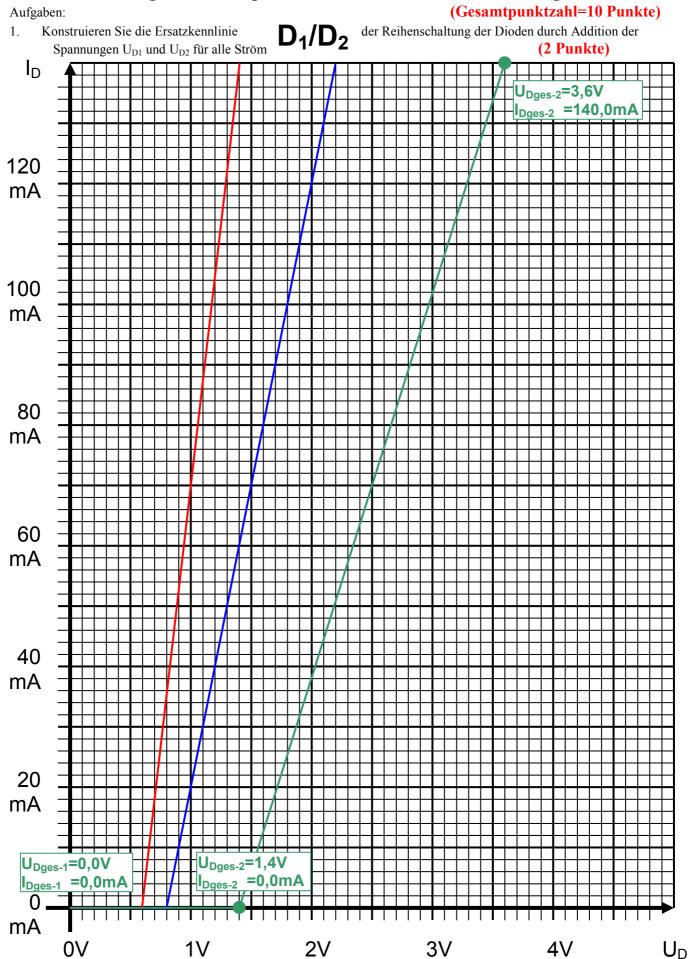
$$U_{E} = 5V \quad I_{K} = 100mA$$

$$R_{1} = \frac{5V}{100mA} = 50\Omega$$

$$U_E = 5V$$
 $I_K = 100 mA$

$$R_1 = \frac{5V}{100mA} = 50\Omega$$

7. Welche weitere Möglichkeit gibt es R₁ zu bestimmen.


$$R_1 = \frac{U_E}{I_K} = \frac{U_E - U_A}{I_A} = ctg(\alpha)$$

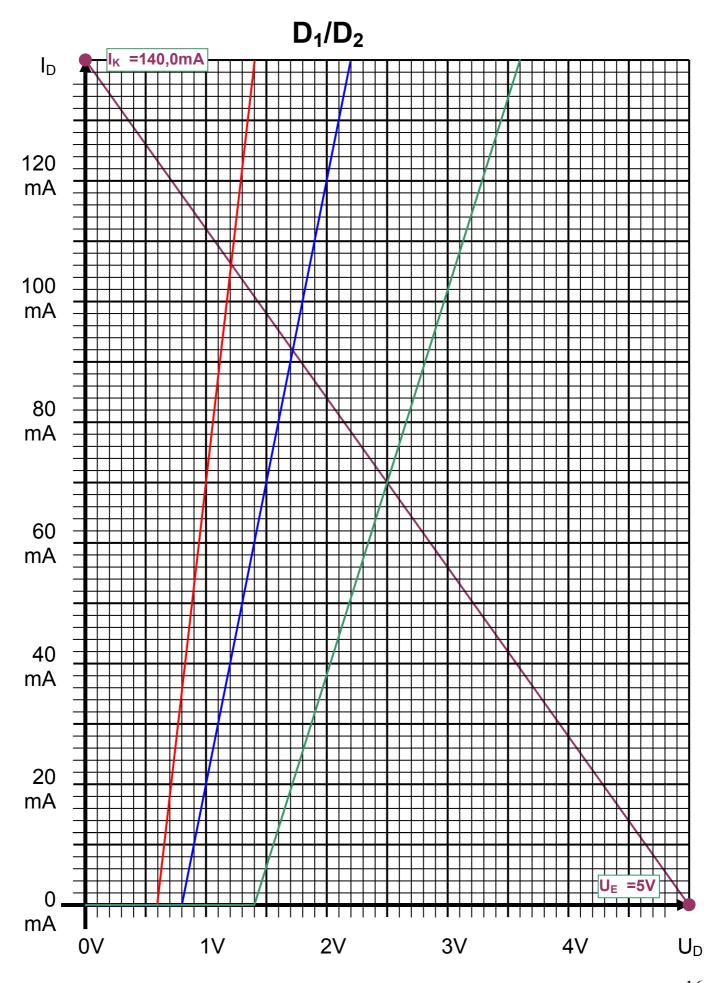
$$U_E = 5V \quad U_A = 1,5V \quad I_K = 70mA$$

$$R_1 = \frac{5V - 1.5V}{70mA} = \frac{3.5V}{70mA} = 50\Omega$$

3. Aufgabenkomplex - 2. Aufgabe

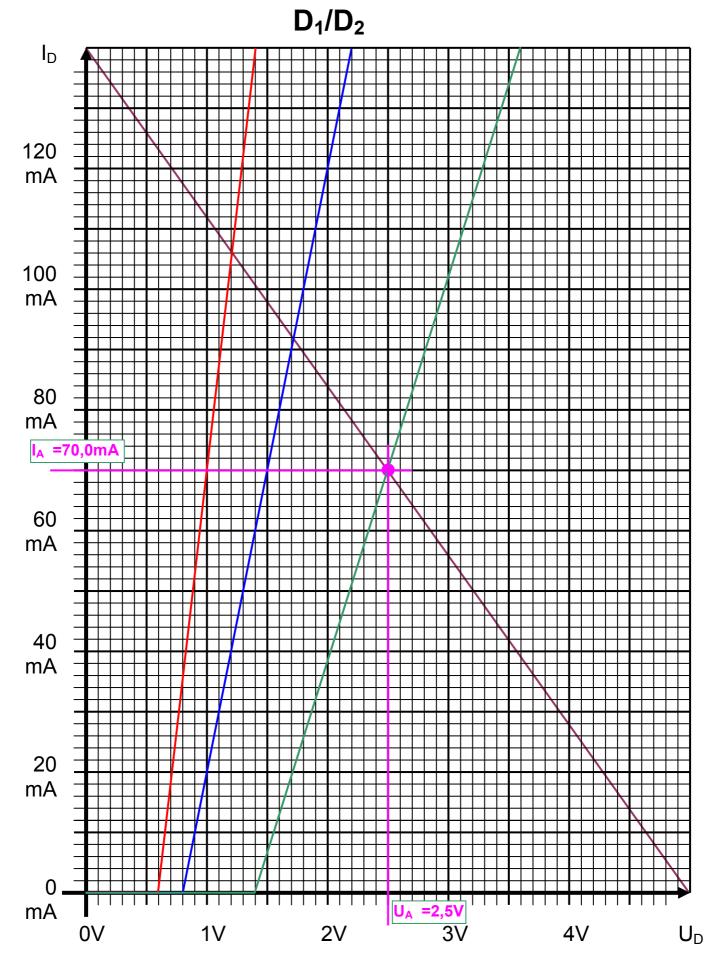
Bestimmung des Arbeitspunktes einer Dioden-Reihenschaltung

2. Bestimmen Sie den Kurzschlussstrom des Widerstandes (
$$I_K = U_E/R_1$$
)

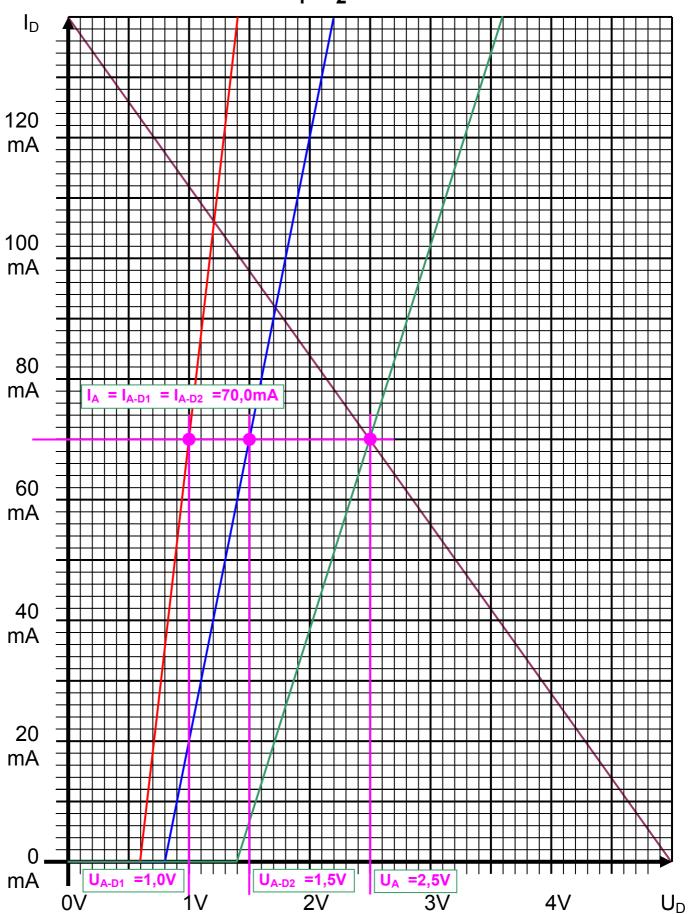

$$I_K = \frac{U_E}{R_1}$$

$$U_E = 5V \quad R_1 = 35,7\Omega$$

$$I_K = \frac{U_E}{R_1}$$


$$U_E = 5V \quad R_1 = 35,7\Omega$$

$$I_K = \frac{5V}{35,7\Omega} = 140mA$$



- Bestimmen Sie die Spannung U_A des Arbeitspunktes der Reihenschaltung. Bestimmen Sie den Strom I_A des Arbeitspunktes der Reihenschaltung. 4.
- 5.

(1 Punkt) (1 Punkt)

- Bestimmen Sie den Strom $I_{A\text{-}D1}$ durch die Diode 1. 6. (1 Punkt) Bestimmen Sie den Strom $I_{A\text{-}D2}$ durch die Diode 2. 7. (1 Punkt)
- Bestimmen Sie die Spannung $U_{A\text{-}D1}$ über die Diode 1 8. (1 Punkt)
- $U_{\text{A-D2}}$ über die Diode 2 Bestimmen Sie die Spannung 9. (1 Punkt) D_1/D_2

3. Aufgabenkomplex - 3. Aufgabe

Berechnung einer Transistorschaltung

Berechnung einer Transistorschaltung

Aufgabe:	(Gesamtpunktzahl=10 Punkte)		
Berechnen Sie die Widerstände der Schaltung.			
 Zeichnen Sie mithilfe des Arbeitspunktes (U_{CEA} und I_{CA}) und d Widerstandsgerade für R_L im Kennlinienfeld. Bestimmen Sie mithilfe der Widerstandsgeraden den Kurzschl 	(0,5 Punkte)		
 Berechnen Sie Wert des Widerstandes R_L aus der Betriebsspar I_K. Berechnen Sie den Strom I_{RL} durch den Widerstand R_L. Berechnen Sie die Spannung U_{RL} über den Widerstand R_L. Bestimmen Sie mithilfe des Kennlinienfeldes den Basisstrom I 	nnung U _B und den Kurzschlußstrom (1 Punkt) (0,5 Punkte) (0,5 Punkte)		
 Berechnen Sie die Stromverstärkung B_A für den Arbeitspunkt. Berechnen Sie Querstrom I_Q. Berechnen Sie den Strom I_{R1} durch den Widerstand R₁. Berechnen Sie die Spannung U_{R1} über den Widerstand R₁. Berechnen Sie den Widerstand R₁. Berechnen Sie den Strom I_{R2} durch den Widerstand R₂. Berechnen Sie die Spannung U_{R2} über den Widerstand R₂. Berechnen Sie den Widerstand R₂. Bestimmen Sie die Spannung U_{CE0} und den Strom I_{C0} für den mithilfe des Kennlinienfeldes. Bestimmen Sie die Spannung U_{CEmax} den Strom I_{Cmax} und den vollausgesteuerten Transistor (I_C=max) mithilfe des Kennlinienfeldes 	$(1 \text{ Punkt}) \\ (0,5 \text{ Punkte}) \\ (0,5 \text{ Punkte}) \\ (0,5 \text{ Punkte}) \\ (1 \text{ Punkt}) \\ (0,5 \text{ Punkte}) \\ (0,5 \text{ Punkte}) \\ (1 \text{ Punkt}) \\ \text{nichtangesteuerten Transistor } (I_B=0) \\ (0,5 \text{ Punkte}) \\ \text{Basisstrom } I_{Bmax} \text{ für den}$		

Zeichnen Sie mithilfe des Arbeitspunktes (U_{CEA} und I_{CA}) und der Betriebsspannung U_B die Widerstandsgerade für R_L im Kennlinienfeld. (0,5 Punkte)
 Bestimmen Sie mithilfe der Widerstandsgeraden den Kurzschluß-

3. Berechnen Sie Wert des Widerstandes R_L aus der Betriebsspannung U_B und den Kurzschlußstrom I_K . (1 Punkt)

$$R_{L} = \frac{U_{B}}{I_{K}}$$

$$U_{B} = 5V \quad I_{K} = 35mA$$

$$R_{1} = \frac{5V}{35mA} = 142,857\Omega \approx 143\Omega$$

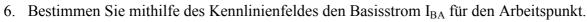
4. Berechnen Sie den Strom I_{RL} durch den Widerstand R_L.

(0,5 Punkte)

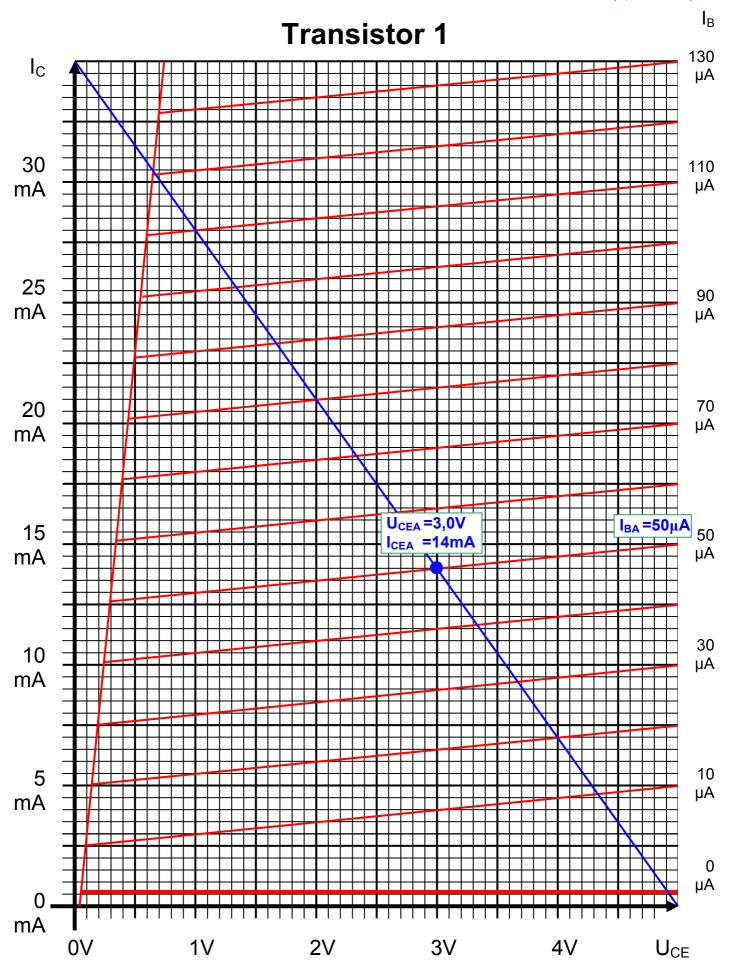
$$I_{RL} = I_{CA}$$

$$I_{CA} = 14mA$$

$$I_{RL} = I_{CA} = 14mA$$


5. Berechnen Sie die Spannung U_{RL} über den Widerstand R_L.

(0,5 Punkte)


$$U_{RL} = U_B - U_{CEA}$$

$$U_B = 5V \quad U_{CEA} = 3V$$

$$U_{RL} = 5V - 3V = 2V$$

(0,5 Punkte)

7. Berechnen Sie die Stromverstärkung B_A für den Arbeitspunkt. (1 Punkt)

$$B_A = \frac{I_{CA}}{I_{BA}}$$

$$I_{CA} = 14mA \quad I_{BA} = 50\mu A$$

$$B_A = \frac{I_{CA}}{I_{BA}}$$

$$I_{CA} = 14mA \quad I_{BA} = 50\mu A$$

$$B_A = \frac{14mA}{50\mu A} = 280$$

8. Berechnen Sie Querstrom I_Q.

(0,5 Punkte)

$$I_Q = 5 \cdot I_{BA}$$

$$I_{RA} = 50 \mu A$$

$$I_{Q} = 5 \cdot I_{BA}$$

$$I_{BA} = 50 \mu A$$

$$I_{Q} = 5 \cdot 50 \mu A = 250 \mu A$$

9. Berechnen Sie den Strom I_{R1} durch den Widerstand R_1 .

(0,5 **Punkte**)

$$I_{R1} = I_Q + I_{BA}$$

$$I_O = 250 \mu A$$
 $I_{BA} = 50 \mu A$

$$I_{R1} = I_Q + I_{BA}$$

$$I_Q = 250 \mu A \qquad I_{BA} = 50 \mu A$$

$$I_{R1} = 250 \mu A + 50 \mu A_{R1} = 300 \mu A$$

10. Berechnen Sie die Spannung U_{R1} über den Widerstand R_1 .

(0,5 **Punkte**)

$$U_{R1} = U_R - U_{RR}$$

$$U_R = 5V$$
 $U_{RE} = 0.7V$

$$U_{R1} = U_B - U_{BE}$$

$$U_B = 5V \quad U_{BE} = 0.7V$$

$$U_{R1} = 5V - 0.7V = 4.3V$$

11. Berechnen Sie den Widerstand R₁.

(1 Punkt)

$$R_1 = \frac{U_{R1}}{I_{R1}}$$

$$I_{R1}$$
 $U_{R1} = 4.3V$ $I_{R1} = 300 \mu A$

$$R_1 = \frac{4.3V}{300\,\mu A} = 14333.3\Omega \approx 14.3k\Omega$$

12. Berechnen Sie den Strom I_{R2} durch den Widerstand R₂.

(0,5 Punkte)

$$I_{R2} = I_Q$$

$$I_o = 250 \mu A$$

$$I_{R2} = I_{Q}$$

$$I_{Q} = 250 \,\mu A$$

$$I_{R2} = 250 \,\mu A$$

13. Berechnen Sie die Spannung U_{R2} über den Widerstand R_2 .

(0,5 Punkte)

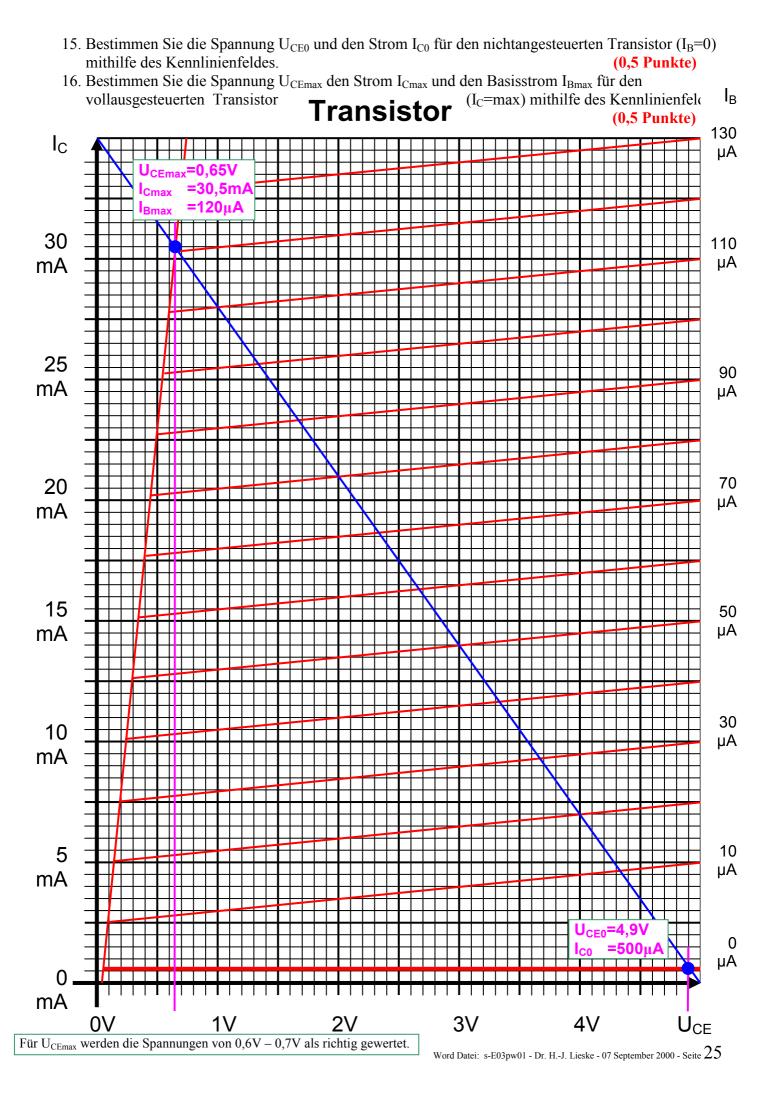
$$U_{R2} = U_{BE}$$

$$U_{BE} = 0.7V$$

$$U_{R2} = 0.7V$$

14. Berechnen Sie den Widerstand R₂.

(1 Punkt)


$$R_2 = \frac{U_{R2}}{I_{R2}}$$

$$U_{P1} = 0.7V$$
 $I_{P1} = 250 \mu A$

$$R_{2} = \frac{U_{R2}}{I_{R2}}$$

$$U_{R1} = 0.7V \quad I_{R1} = 250 \,\mu A$$

$$R_{1} = \frac{0.7V}{250 \,\mu A} = 2800 \,\Omega \approx 2.8k \,\Omega$$

