

Übung und Seminar zur Vorlesung

"Grundlagen der Technischen Informatik 2"

5. Aufgabenkomplex

1. Aufgabe

1. Aufgabe

3-Bit-Zähler als Moore-Automat

Entwerfen Sie die Schaltung eines 3-Bit-Zählers mittels eines Moore-Automaten, der als Zustände die alternierenden Zahlen z=6,1,7,0,4,3,5,2 durchzählt. Bei 2 soll wieder auf 6 gezählt werden (010B zu 110B). Der Anfangszustand ist z=6

Die Variable Q sollen dabei die Primzahlen Q=2,3,5,11,13,17,19,23 ausgeben.

Es sind D-Flip-Flop und T-Flip-Flop zu verwenden.

Die Eingangsvariable E soll folgendes Schaltverhalten erzeugen:

E=0 : vorwärts zählen, E=1 : rückwärts zählen

Die Ausgangsvariable (Flag) U=1 soll anzeigen, wenn es sich bei Q um eine Zahl größer als 9 handelt. Sie ist von Q abzuleiten.

Die Ausgangsvariable (Flag) P=1 soll anzeigen, wenn es sich bei Q um eine gerade Anzahl von Einsen (ODD-Parity) handelt. Sie ist von Q abzuleiten.

Die Ausgangsvariable (Flag) AZ=1 soll anzeigen, wenn sich der Automat im Anfangszustand (Z=6) befindet. Sie ist von z abzuleiten.

Bei jedem Taktimpuls soll der Zähler um einen Wert weiterschalten.

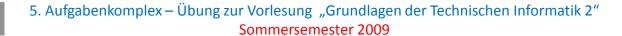
Die Variablen sind: $z=(z_2z_1z_0)_B$, $z^+=(z_2^+z_1^+z_0^+)_B$, $Q=(Q_4Q_3Q_2Q_1Q_0)_B$

1. Aufgabe

1. Aufgabe

3-Bit-Zähler als Moore-Automat

- 1.1. Bestimmen Sie die Folgezustände, $z^+=(z_2^+z_1^+z_0^+)_B$, in der Tabelle
- 1.2. Bestimmen Sie die Werte für $Q=(Q_4Q_3Q_2Q_1Q_0)_B$ in der Tabelle
- 1.3. Bestimmen Sie die Werte für U, P und AZ in der Tabelle
- 1.4. Bestimmen Sie die Steuer-Werte für $D=(D_2D_1D_0)_B$ in der Tabelle
- 1.5. Bestimmen Sie die Steuer-Werte für $T=(T_2T_1T_0)_B$ in der Tabelle
- 1.6. Geben Sie das Übergangsdiagramm (Automatengraph) an.
- 1.7. Bestimmen Sie die KV-Diagramme und die dis. min. Form für Q
- 1.8. Bestimmen Sie die KV-Diagramme und die dis. min. Form für U, P und AZ
- 1.9. Bestimmen Sie die KV-Diagramme und die dis. min. Form für $D=(D_2D_1D_0)_B$
- 1.10. Bestimmen Sie die KV-Diagramme und die dis. min. Form für $T=(T_2T_1T_0)_B$
- 1.11. Bestimmen Sie die Schaltung für die dis. min. Form für Q
- 1.12. Bestimmen Sie die Schaltung für die dis. min. Form für U, P und AZ
- 1.13. Bestimmen Sie die Schaltung für die dis. min. Form für $D=(D_2D_1D_0)_B$
- 1.14. Bestimmen Sie die Schaltung für die dis. min. Form für $T=(T_2T_1T_0)_B$
- 1.15. Durch eine einfache Schaltungserweiterung kann man aus einem RSein D-Flipflop machen. Zeichnen Sie die Schaltung.



2. Aufgabe

2. Aufgabe

Fragen zur Theorie

- 2.1. Was ist der Unterschied zwischen einem Schaltnetz und einem Schaltwerk?
- 2.2. Erklären Sie den Multiplexer und Demultiplexer.
- 2.3. Erklären Sie den Aufbau und die Funktionsweise des JK-Flipflops.
- 2.4. Was unterscheidet den Mealy-, Moore- und Medvedev-Automat?
- 2.5. Was ist der Unterschied beim RS-Flipflop aus NAND- und NOR-Gattern?

Punkteverteilung:

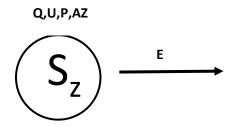
Gesamtpunktzahl: 30 Punkte

Aufgabe 1.1-1.10 je 2 Punkte

Aufgabe 1.11-1.15 je 1 Punkt

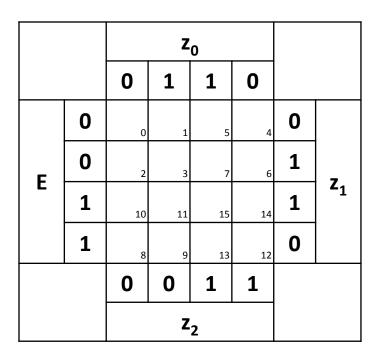
Aufgabe 2.1-2.5 je 1 Punkt

	Wertetabelle für D-Flipflops												
		Zus	tände	Ausgar	ngsvaria	ablen		D-FF					
Nr.	Е	$z_2 z_1 z_0$	z ₂ +z ₁ +z ₀ +	$Q_4Q_3Q_2Q_1Q_0$	U	Р	AZ	$D_2D_1D_0$					
0	0	000											
1	0	001											
2	0	010											
3	0	011											
4	0	100											
5	0	101											
6	0	110	001	00010	0	0	1	001					
7	0	111											
8	1	000											
9	1	001											
10	1	010											
11	1	011											
12	1	100											
13	1	101											
14	1	110											
15	1	111											

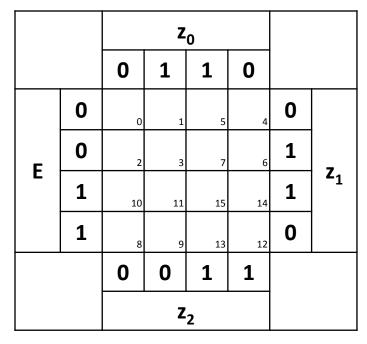


	Wertetabelle für T-Flipflops												
		Zus	tände	Ausgar	ngsvaria	ablen		T-FF					
Nr.	Е	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_4Q_3Q_2Q_1Q_0$	U	Р	AZ	$T_2T_1T_0$					
0	0	000											
1	0	001											
2	0	010											
3	0	011											
4	0	100											
5	0	101											
6	0	110	001	00010	0	0	1	111					
7	0	111											
8	1	000											
9	1	001											
10	1	010											
11	1	011											
12	1	100											
13	1	101											
14	1	110											
15	1	111											

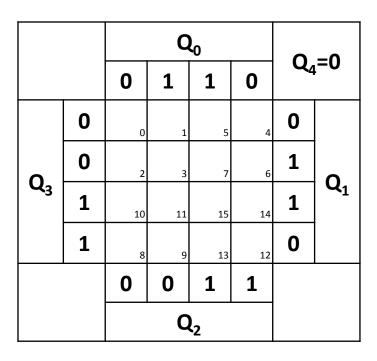
Übergangsdiagramm (Automatengraph)



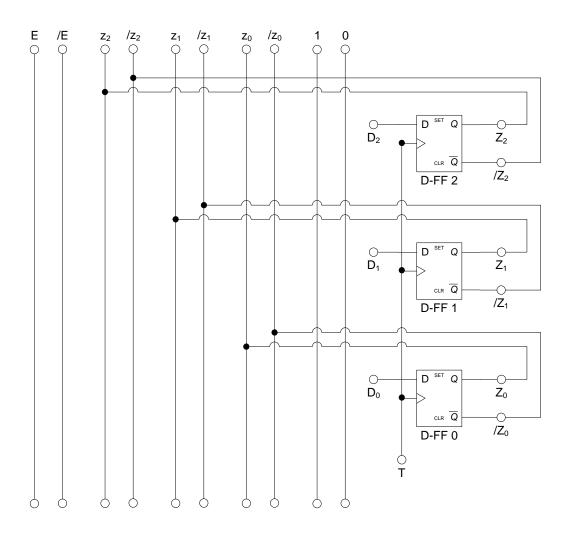
Schaltverhalten der T-Flipflops


	T- Flipflop										
Т	Q_n	Funktion									
0	0	0	speichern								
1	0	1	wechseln								
1	1	0	wechseln								
0	1	1	speichern								

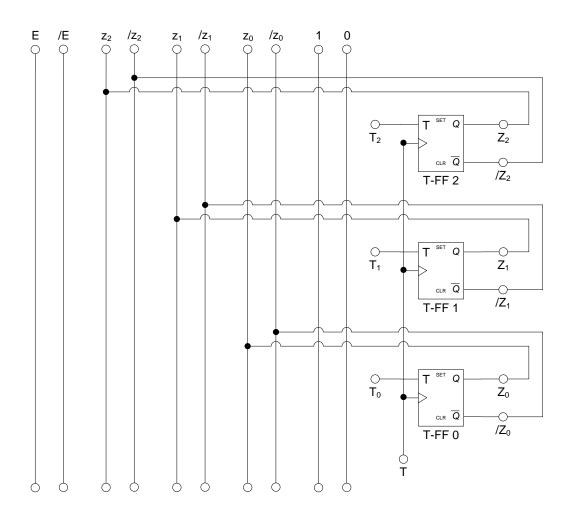
KV-Diagramm

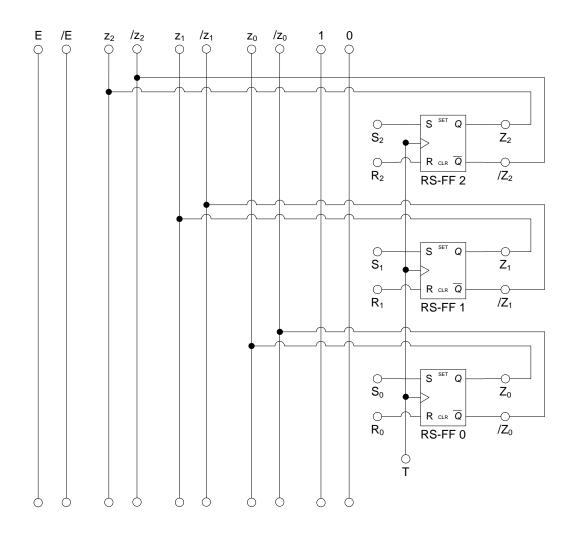

KV-Diagramm

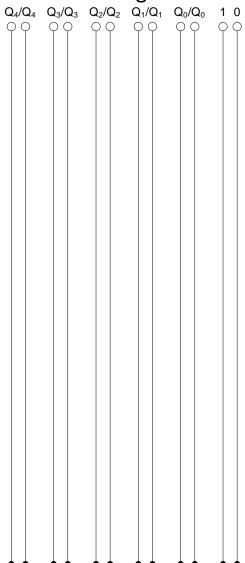
KV-Diagramm

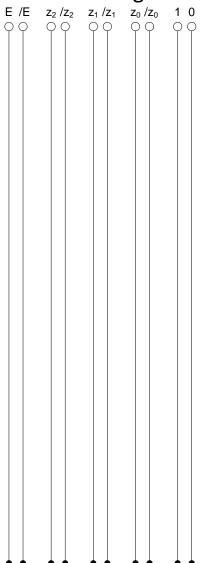


KV-Diagramm


			Q	^	_1		
			1	1	0	Q	₁ =1
	0	16	17	21	20	0	
	0	18	19	23	22	1	
Q ₃	1	26	27	31	30	1	Q ₁
	1	24	25	29	28	0	
		0	0	1	1		
			Q	2			







19.06.2009

5. Aufgabenkomplex – Übung zur Vorlesung "Grundlagen der Technischen Informatik 2" Sommersemester 2009

Hilfswerkzeuge:

19.06.2009

1. Aufgabe Lösung

3-Bit-Zähler als Moore-Automat

- 1.1. Bestimmen Sie die Folgezustände, $z^+=(z_2^+z_1^+z_0^+)_B$, in der Tabelle
- 1.2. Bestimmen Sie die Werte für $Q=(Q_4Q_3Q_2Q_1Q_0)_B$ in der Tabelle
- 1.3. Bestimmen Sie die Werte für U, P und AZ in der Tabelle
- 1.4. Bestimmen Sie die Steuer-Werte für $D=(D_2D_1D_0)_B$ in der Tabelle
- 1.5. Bestimmen Sie die Steuer-Werte für $T=(T_2T_1T_0)_B$ in der Tabelle

1.1.-1.5. Bestimmen Sie $z^+=(z_2^+z_1^+z_0^+)_B$, $Q=(Q_4Q_3Q_2Q_1Q_0)_B$, U, P und AZ, $D=(D_2D_1D_0)_B$ und $T=(T_2T_1T_0)_B$ in der Tabelle

			Werteta	abelle für D- un	d T-F	lipflop	os		
		Zust	ände	Ausgang	gsvari	ablen		D-FF	T-FF
Nr.	Е	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_4Q_3Q_2Q_1Q_0$	U	Р	AZ	$D_2D_1D_0$	$T_2T_1T_0$
0	0	000	100	01011	1			100	100
1	0	001	111	00011		1		111	110
2	0	010	110	10111	1	1		110	100
3	0	011	101	10001	1	1		101	110
4	0	100	011	01101	1			011	111
5	0	101	010	10011	1			010	111
6	0	110	001	00010			1	001	111
7	0	111	000	00101		1		000	111
8	1	000	111	01011	1			111	111
9	1	001	110	00011		1		110	111
10	1	010	101	10111	1	1		101	111
11	1	011	100	10001	1	1		100	111
12	1	100	000	01101	1			000	100
13	1	101	011	10011	1			011	110
14	1	110	010	00010			1	010	100
15	1	111	001	00101		1		001	110

1.6. Geben Sie das Übergangsdiagramm (Automatengraph) an.

	Q_0		Z				
4			1	1	0		
	0	1 0	1	1 5	1 4	0	
	_ 0		1 3	1 7	6	1] _
E	1	1	1	1	14	1	Z ₁
	1	1 8	1 9	1	1	0	
		0	0	1	1		
			Z	2			

	Q_1		Z				
			1	1	0		
	0	1 0	1	1 5	4	0	
_	0	1	3	7	1 6	1	_
E	1	1	11	15	1	1	Z ₁
	1		1 9	1	12	0	
			0	1	1		
		z ₂					

$$Q_0 = \overline{z}_2 \vee \overline{z}_1 \vee z_0$$

$$Q_1 = \overline{z}_2 \overline{z}_0 \vee \overline{z}_1 z_0 \vee z_1 \overline{z}_0$$

$$Kosten = 3$$

$$Kosten = 6$$

	Q ₂		Z				
u			1	1	0		
	0	0	1	5	1 4	0	
	0	1	3	1 7	6	1	_
E	1	1	11	1	14	1	Z ₁
	1	8	9	13	1	0	
		0	0	1	1		
			z	2			

	Q_3		Z				
4			1	1	0		
	0	1 0	1	5	1 4	0	
_	0	2	3	7	6	1	_
E	1	10	11	15	14	1	Z ₁
	1	1 8	9	13	1	0	
		0	0	1	1		
			Z	2			

$$Q_2 = \overline{z}_2 z_1 \overline{z}_0 \vee z_2 z_1 z_0 \vee z_2 \overline{z}_1 \overline{z}_0 \quad Kosten = 9$$

$$Q_3 = \overline{z}_1 \overline{z}_0$$

$$Kosten = 2$$

	Q_4		Z				
			1	1	0		
	0	0	1	1 5	4	0	
_	0	1 2	1 3	7	6	1	_
E	1	1	1	15	14	1	Z ₁
	1	8	9	1	12	0	
		0	0	1	1		-
			Z	2			

$$Q_4 = \overline{z}_2 z_1 \vee z_2 \overline{z}_1 z_0$$

$$Kosten = 5$$

$$Q_4 = \overline{z}_2 z_1 \vee z_2 \overline{z}_1 z_0$$

$$Kosten = 5$$

$$Q_3 = \overline{z}_1 \overline{z}_0$$

$$Kosten = 2$$

$$Q_2 = \overline{z}_2 z_1 \overline{z}_0 \vee z_2 z_1 z_0 \vee z_2 \overline{z}_1 \overline{z}_0$$

$$Kosten = 9$$

$$Q_1 = \overline{z}_2 \overline{z}_0 \vee \overline{z}_1 z_0 \vee z_1 \overline{z}_0$$

$$Kosten = 6$$

$$Q_0 = \overline{z}_2 \vee \overline{z}_1 \vee z_0$$

$$Kosten = 3$$

UNIVERSITÄT LEIPZIG

Lösung - 1. Aufgabe

1.8. Bestimmen Sie die KV-Diagramme und die dis. min. Form für U, P und AZ ohne don't care

	U _{ndc}		Q	0 =0			
l Or			1	1	0	$Q_4=0$	
	0		1	5	4	0	
	0	2	3	7	6	1	
Q_3	1	10	1	15	14	1	Q_1
	1	8	9	1	12	0	
		0	0	1	1		
			Q	2			

	U _{ndc}		C	Q ₄ =1			
l O			1	1	0	Q,	1—T
	0		1	21	20	0	
	0	18	1	1 23	22	1	
Q ₃	1	26	27	31	30	1	Q ₁
	1		25	29	28	0	
		0	0	1	1		
			C	 l ₂			

$$U_{ndc} = Q_4 \overline{Q}_3 \overline{Q}_2 Q_0 \vee Q_4 \overline{Q}_3 Q_1 Q_0 \vee \overline{Q}_4 Q_3 \overline{Q}_2 Q_1 Q_0 \vee \overline{Q}_4 Q_3 Q_2 \overline{Q}_1 Q_0$$

$$Kosten = 18$$

1.8. Bestimmen Sie die KV-Diagramme und die dis. min. Form für U, P und AZ mit don't care (nicht gefordert)

	11		Q	0	-0		
U_{dc}		0	1	1	0	Q ₄ =0	
	0	0	1	0 5	4	0	
	0	0 2	0 3	7	6	1	
Q_3	1	1	1	1	1	1	Q_1
	1	1 8	1 9	1	1	0	
		0	0	1	1		
			Q	l ₂			

11	=		C	l _o		Q ₄ =1	
U_{dc}		0	1	1	0	Q ₂	ı − ±
	0	1	1	1	1	0	
	0	1 18	1	1	1	1	
Q ₃	1	1	1	1	1 30	1	Q_1
	1	1	1 25	1 29	1 28	0	
		0	0	1	1		
			C	\ \2			

$$U_{dc} = Q_4 \vee Q_3$$

$$Kosten = 2$$

1.8. Bestimmen Sie die KV-Diagramme und die dis. min. Form für U, P und AZ ohne don't care

D	D		Q_0				-0
P_{ndc}		0	1	1	0	Q ₂	_i =0
	0	0	1	1 5	4	0	
	0	2	1 3	7	6	1	
Q_3	1	10	11	15	14	1	Q_1
	1	8	9	13	12	0	
		0	0	1	1		
			Q	2			

D	D		Q	0	-1		
P_{ndc}		0	1	1	0	Q	₁ =1
	0	16	1	21	20	0	
	0	18	19	1 23	22	1	
Q ₃	1	26	27	31	30	1	Q_1
	1	24	25	29	28	0	
		0	0	1	1		
			Q	l ₂			

$$\begin{split} P_{ndc} &= \overline{Q}_4 \overline{Q}_3 \overline{Q}_2 Q_1 Q_0 \vee \overline{Q}_4 \overline{Q}_3 Q_2 \overline{Q}_1 Q_0 \vee Q_4 \overline{Q}_3 \overline{Q}_2 \overline{Q}_1 Q_0 \vee Q_4 \overline{Q}_3 Q_2 Q_1 Q_0 \\ Kosten &= 20 \end{split}$$

UNIVERSITÄT LEIPZIG

Lösung - 1. Aufgabe

1.8. Bestimmen Sie die KV-Diagramme und die dis. min. Form für U, P und AZ mit don't care (nicht gefordert)

	D		Q		•		
P_{dc}		0	1	1	0	Q	_i =0
	0	1 0	1	1 5	1 4	0	
	0	0 2	1	1 7	1 6	1	
Q ₃	1	10	0	15	14	1	Q_1
	1	8	9	0	12	0	
		0	0	1	1		
			Q	2			

В	P _{dc}		Q	^	_1		
P			1	1	0	Q,	_i =1
	0	1	1	1	1	0	
	0	18	0	1	1	1	
Q ₃	1	26	27	31	30	1	Q_1
	1	24	25	29	28	0	
		0	0	1	1		
			Q				

$$P_{dc} = \overline{Q}_{3}\overline{Q}_{1} \vee \overline{Q}_{3}Q_{2} \vee \overline{Q}_{4}\overline{Q}_{3}Q_{0}$$

$$Kosten = 7$$

1.8. Bestimmen Sie die KV-Diagramme und die dis. min. Form für U, P und AZ

	AZ		Z				
A			1	1	0		
	0	0	1	5	4	0	
	0	2	3	7	1 6	1	_
E	1	10	11	15	1	1	Z ₁
	1	8	9	13	12	0	
		0	0	1	1		
			Z	2			

$$AZ = z_2 z_1 \overline{z}_0$$

$$Kosten = 3$$

1.9. Bestimmen Sie die KV-Diagramme und die dis. min. Form für $D=(D_2D_1D_0)_B$

	D ₀		Z				
			1	1	0		
	0	0	1	5	1 4	0	
	0	2	1 3	7	1 6	1	_
E	1	1	11	1	14	1	Z ₁
	1	1 8	9	1	12	0	
		0	0	1	1		
			Z	2			

			Z				
"	D_1		1	1	0		
	0	0	1	1 5	1 4	0	
E	0	1	3	7	6	1	_
-	1	10	11	15	1	1	Z ₁
	1	1 8	1 9	1	12	0	
		0	0	1	1		
			z ₂				

$$D_0 = \overline{E}\overline{z}_2 z_0 \vee \overline{E}z_2 \overline{z}_0 \vee E\overline{z}_2 \overline{z}_0 \vee Ez_2 z_0$$

$$Kosten = 12$$

$$D_1 = \overline{z}_1 z_0 \vee E \overline{z}_2 \overline{z}_1 \vee \overline{E} z_2 \overline{z}_1 \vee E z_2 \overline{z}_1 \overline{z}_0 \vee \overline{E} \overline{z}_2 z_1 \overline{z}_0$$

$$Kosten = 16$$

1.9. Bestimmen Sie die KV-Diagramme und die dis. min. Form für $D=(D_2D_1D_0)_B$

	D		Z				
D_2		0	1	1	0		
	0	1 0	1	5	4	0	
	0	1	1 3	7	6	1	_
E	1	1	1	15	14	1	Z ₁
	1	1 8	1 9	13	12	0	
		0	0	1	1		
			z ₂				

$$D_2 = \overline{z}_2$$

$$Kosten = 1$$

1.10. Bestimmen Sie die KV-Diagramme und die dis. min. Form für $T=(T_2T_1T_0)_B$

_	-		Z				
T ₀		0	1	1	0		
	0	0	1	1 5	1 4	0	
	0	2	3	1 ,	1 6	1	_
E	1	1	1	15	14	1	Z ₁
	1	1 8	1 9	13	12	0	
		0	0	1	1		
			Z	2			

_			Z				
T ₁		0	1	1	0		
	0	0	1	1 5	1 4	0	
_	0	2	1 3	1 7	1 6	1	_
E	1	1	1	1	14	1	Z ₁
	1	1 8	1 9	1	12	0	
		0	0	1	1		
			z	2			

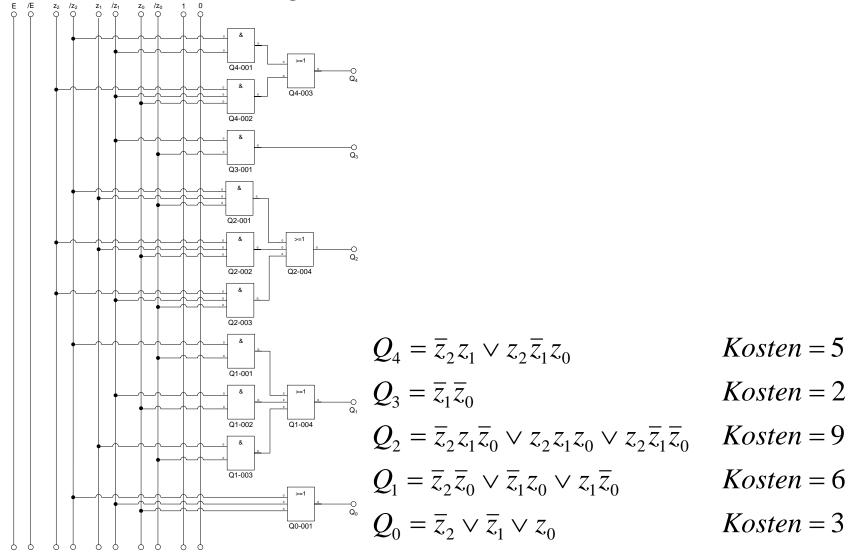
$$T_0 = \overline{E}z_2 \vee E\overline{z}_2$$

$$T_1 = \overline{E}z_2 \vee z_1 z_0 \vee E\overline{z}_2 \vee Ez_0$$

$$Kosten = 4$$

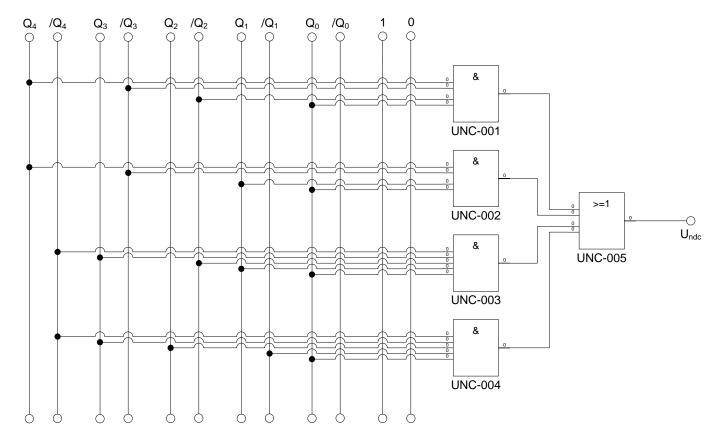
$$Kosten = 8$$

1.10. Bestimmen Sie die KV-Diagramme und die dis. min. Form für $T=(T_2T_1T_0)_B$


T ₂		z _o					
		0	1	1	0		
E	0	1 0	1	1 5	1 4	0	z ₁
	0	1	1 3	1 7	1 6	1	
	1	1	1	1	1	1	
	1	1 8	1 9	1	1	0	
		0	0	1	1		
		z ₂					

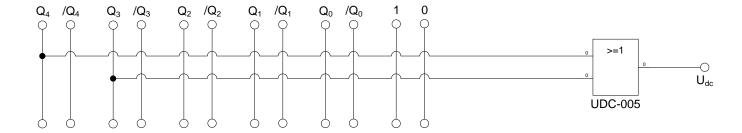
$$T_2 = 1$$

$$Kosten = 0$$



1.11. Bestimmen Sie die Schaltung für die dis. min. Form für Q

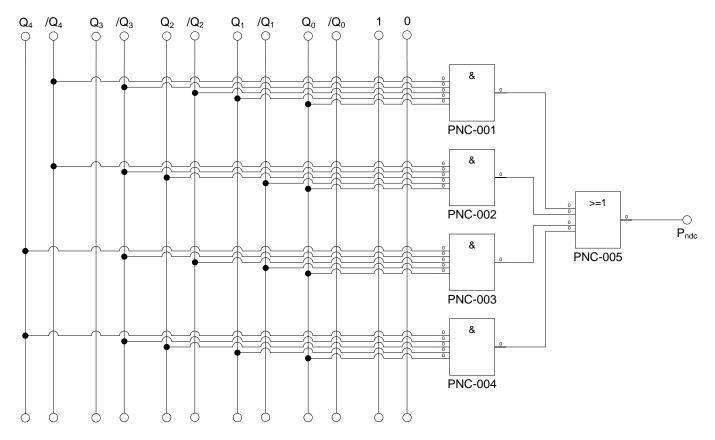
1.12. Bestimmen Sie die Schaltung für die dis. min. Form für U, P und AZ dis. min. Form für U – ohne don't care



$$U_{ndc} = Q_4 \overline{Q}_3 \overline{Q}_2 Q_0 \vee Q_4 \overline{Q}_3 Q_1 Q_0 \vee \overline{Q}_4 Q_3 \overline{Q}_2 Q_1 Q_0 \vee \overline{Q}_4 Q_3 Q_2 \overline{Q}_1 Q_0$$

Kosten = 18

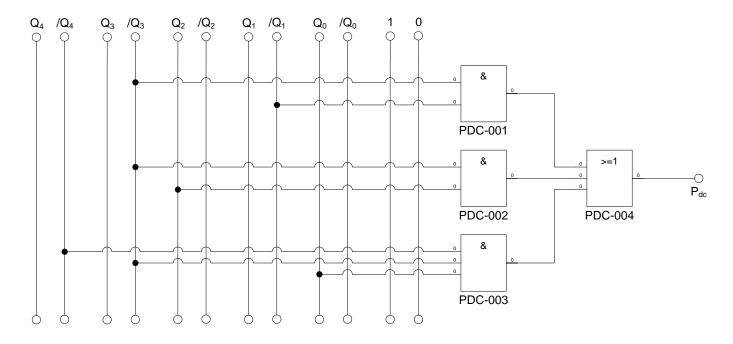
1.12. Bestimmen Sie die Schaltung für die dis. min. Form für U, P und AZ dis. min. Form für U – mit don 't care (nicht gefordert)



$$U_{dc} = Q_4 \vee Q_3$$

$$Kosten = 2$$

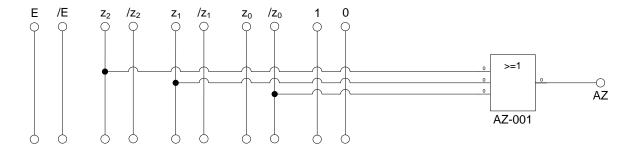
1.12. Bestimmen Sie die Schaltung für die dis. min. Form für U, P und AZ dis. min. Form für P – ohne don't care



$$P_{ndc} = \overline{Q}_4 \overline{Q}_3 \overline{Q}_2 Q_1 Q_0 \vee \overline{Q}_4 \overline{Q}_3 Q_2 \overline{Q}_1 Q_0 \vee Q_4 \overline{Q}_3 \overline{Q}_2 \overline{Q}_1 Q_0 \vee Q_4 \overline{Q}_3 Q_2 Q_1 Q_0$$

Kosten = 20

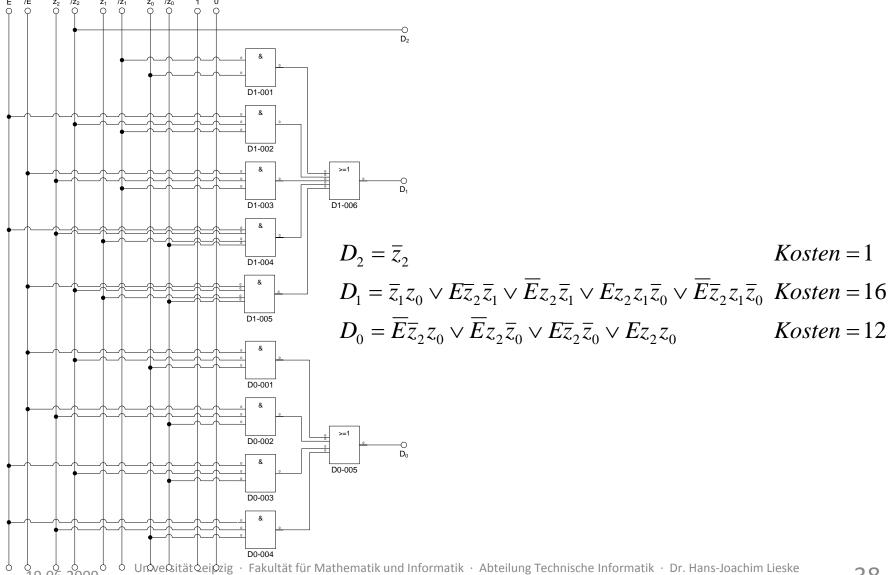
1.12. Bestimmen Sie die Schaltung für die dis. min. Form für U, P und AZ dis. min. Form für P – mit don 't care (nicht gefordert)



$$P_{dc} = \overline{Q}_{3}\overline{Q}_{1} \vee \overline{Q}_{3}Q_{2} \vee \overline{Q}_{4}\overline{Q}_{3}Q_{0}$$

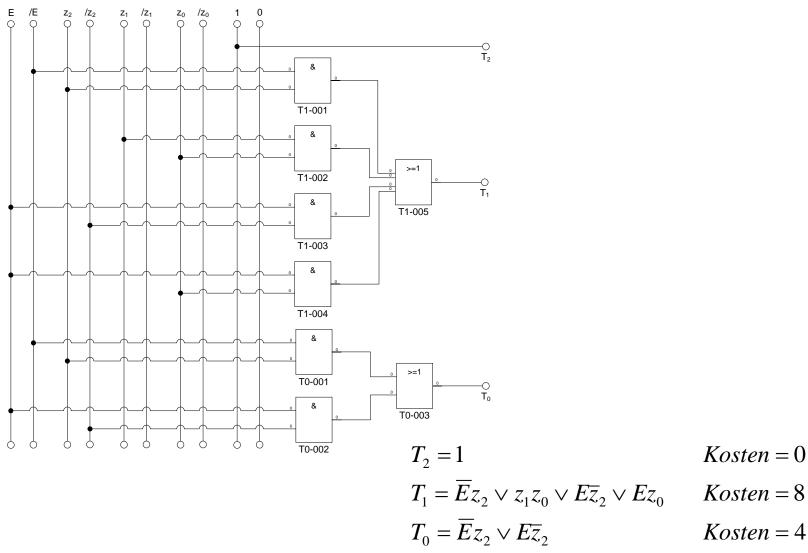
$$Kosten = 7$$

1.12. Bestimmen Sie die Schaltung für die dis. min. Form für U, P und AZ dis. min. Form für AZ

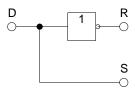


$$AZ = z_2 z_1 \overline{z}_0$$

$$Kosten = 3$$


1.13. Bestimmen Sie die Schaltung für die dis. min. Form für $D=(D_2D_1D_0)_B$

Johannisgasse 26 · 04103 Leipzig · Telefon: +49 (341) 97-32213 · Telefax: +49 (341) 97-32252



1.14. Bestimmen Sie die Schaltung für die dis. min. Form für $T=(T_2T_1T_0)_B$

1.15. Durch eine einfache Schaltungserweiterung kann man aus einem RSein D-Flipflop machen. Zeichnen Sie die Schaltung.

2. Aufgabe Lösung – Nicht ins Internet!

Fragen zur Theorie

- 2.1. Was ist der Unterschied zwischen einem Schaltnetz und einem Schaltwerk?
- 2.2. Erklären Sie den Multiplexer und Demultiplexer.
- 2.3. Erklären Sie den Aufbau und die Funktionsweise des JK-Flipflops.
- 2.4. Was unterscheidet den Mealy-, Moore- und Medvedev-Automat?
- 2.5. Was ist der Unterschied beim RS-Flipflop aus NAND- und NOR-Gattern?