UNIVERSITÄT LEIPZIG

Institut für Informatik

Studentenmitteilung

2. Semester - SS 2008

Abt. Technische Informatik

Dr. rer.nat. Hans-Joachim Lieske Johannisgasse 26 04109 Leipzig

Postfach 10 09 20, 04009 Leipzig Tel.: [49]-0341-97 32213 Zimmer: Jo 04-47

e-mail: lieske@informatik.uni-leipzig.de

www: http://www.informatik.uni-leipzig.de/~lieske/

Datum: Montag, 7. Juli 2008

Aufgaben zu Übung Grundlagen der Technischen Informatik 2

5. Aufgabenkomplex - 1. Aufgabe

Berechnungen von mathematischen Ausdrücken mittels logischer Gleichungen und logischer Schaltungen

Es soll eine logische Schaltung entwickelt werden, die folgende mathematische Gleichung ausrechnet.

$$Q = -a^3 + a^2 + b^2 + 3$$

Dabei ist $a = (a_1, a_0), b = (b_1, b_0)$ jeweils eine 2-Bit Zahl (0 ... 3).

Bestimmen Sie die Gleichungen für Q_s als Vorzeichen Betragszahl.

Dabei bedeutet $Q_S = (S, Q_3, Q_2, Q_1, Q_0)$ und S=1 (Signum-Bit) das Minuszeichen. Signum-Bit ist 1, wenn die Zahl negativ ist. Dabei ist Q_D der dezimale Wert des Ergebnisses.

Gesamtpunktzahl: 10 Punkte

1. Bestimmen Sie die Tabelle für $Q_S = (S, Q_3, Q_2, Q_1, Q_0)$ 5 Punkte

2. Bestimmen Sie die disjunktiv minimierten Gleichungen und die Kosten für $Q_S = (S, Q_3, Q_2, Q_1, Q_0)$ mittels der KV-Diagramme

3 Punkte

3. Bestimmen Sie die Schaltung für S und Q_0

2 Punkte

Bemerkungen:

Es sind nur Flip-Flops, AND- OR- und NOT-Gatter zu verwenden. Die Gatter können beliebig viele Eingänge haben. Die logischen Gleichungen sind zu minimieren.

Nr		Eing	änge				Ausg	änge		
	$a_{\scriptscriptstyle D}$	a_1, a_0	$b_{\scriptscriptstyle D}$	b_{1},b_{0}	$Q_{\scriptscriptstyle D}$	S	Q_3	Q_2	Q_1	Q_0
0	0	00	0	00						
1	0	00	1	01						
2	0	00	2	10						
3	0	00	3	11						
4	1	01	0	00						
5	1	01	1	01						
6	1	01	2	10						
7	1	01	3	11						
8	2	10	0	00						
9	2	10	1	01						
10	2	10	2	10						
11	2	10	3	11						
12	3	11	0	00	-15	1	1	1	1	1
13	3	11	1	01						
14	3	11	2	10						
15	3	11	3	11						

		0	1	1	0		
a.	0	0	1	5	4	0	
	0	2	3	7	6	1	b_1
a_1	1	10	11	15	14	1	O _I
	1	8	9	13	12	0	
	7	0	0	1	1		
			a	0			

a₁ [/] a₁ ○ ○	a_0/a_0	b_1/b_1	b_0/b_0	1 0

5. Aufgabenkomplex - 2. Aufgabe

Entwurf eines 3-Bit-Zählers

Entwerfen Sie die Schaltung eines 3-Bit-Zählers mittels eines Moore-Automaten, der als Zustände die Zahlen z=6,4,2,0,7,5,3,1 durchzählt. Bei 1 soll wieder auf 6 gezählt werden (001B zu 110B). Die Variable Q soll dabei die Zahlen Q=0,5,10,15,20,25,30,0 ausgeben.

Es sind D-Flip-Flop und T-Flip-Flop zu verwenden.

Eine Eingangsvariable E soll folgendes Schaltverhalten erzeugen:

E=0 : vorwärts zählen, E=1 : rückwärts zählen

Eine Ausgangsvariable U=1 soll anzeigen, wenn es sich bei Q um eine durch Zahl größer als 12 handelt. Sie ist von Q abzuleiten.

Eine weitere Ausgangsvariable ZF=1 (Zero-Flag) soll anzeigen, dass der Zustand z=0 ist. Eine weitere Variable AZ=1 soll anzeigen, dass sich der Automat im Anfangszustand (z=6) befindet. Beide sind von z abzuleiten.

Die Ausgänge sind $Q=(Q_4, Q_3, Q_2, Q_1, Q_0)$.

Bei jedem Taktimpuls soll der Zähler um einen Wert weiterschalten.

Der Anfangszustand sei: $z=6=(z_2, z_1, z_0)=(1,1,0)$.

Dazu gehört der Wert $Q=0==(Q_4,\,Q_3,\,Q_2,\,Q_1,\,Q_0)=(0,0,0,0,0)$.

Aufgaben:

Gesamtpunktzahl: 20 Punkte

1. Bestimmen Sie die Zustände. 3 Punkte

2. Geben Sie das Übergangsdiagramm (Automatengraph) an. 3 Punkte

3. Erstellen Sie die Übergangs- und Funktionstabelle für die Realisation mit D-Flip-Flops.

3 Punkto

- **4.** Geben Sie die Ansteuergleichungen D und die Ausgangsgleichungen Q, U und ZF für die Realisation mit D-Flip-Flops an (disjunktiv minimiert).

 2 Punkte
- 5. Zeichnen Sie die entworfene Schaltung für die Realisation mit D-Flip-Flops. 1 Punkt
- **6.** Erstellen Sie die Übergangs- und Funktionstabelle für die Realisation mit T-Flip-Flops.

3 Punkte

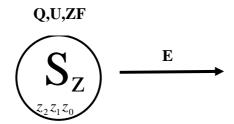
- 7. Geben Sie die Ansteuergleichungen T und die Ausgangsgleichungen Q, U und ZF für die Realisation mit T-Flip-Flops an (disjunktiv minimiert).

 2 Punkte
- 8. Zeichnen Sie die entworfene Schaltung für die Realisation mit T-Flip-Flops. 1 Punkt
- 9. Mit 3 kleinen Adapterschaltungen kann man eine der beiden FF-Ansteuerungen für RS-FF anpassen. Zeichnen Sie Ansteuerschaltungen.

 2 Punkte

Bemerkungen:

Die Gleichung für U kann auch don't care minimiert werden (keine Bedingung).

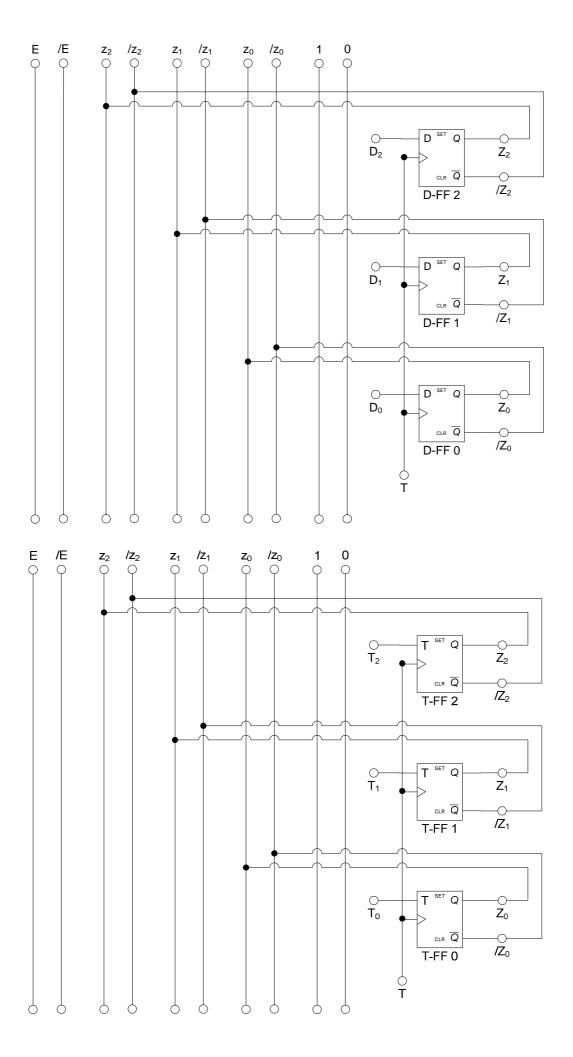

Es sind nur Flip-Flops, AND- OR- und NOT-Gatter zu verwenden.

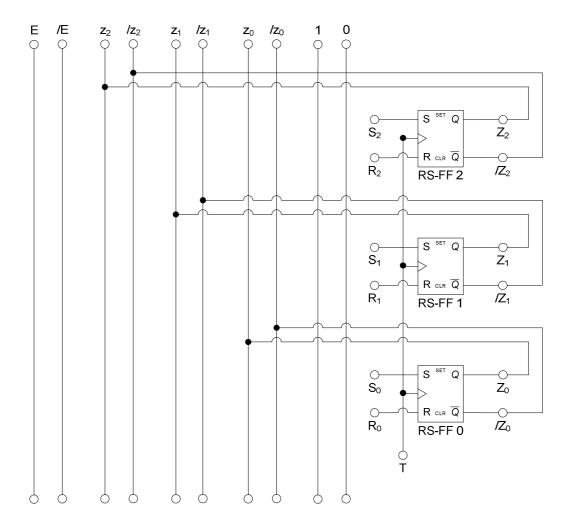
Die Gatter können beliebig viele Eingänge haben.

Die logischen Gleichungen sind zu minimieren.

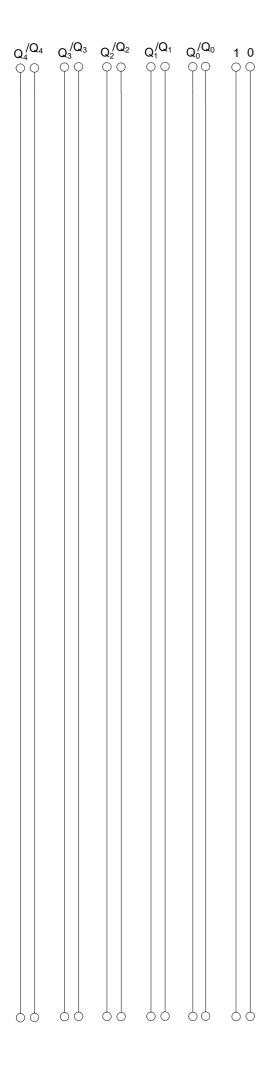
			W	Vertetabelle für 1	D-Flipflo	ps		
		Zust	ände	Aus				
Nr.	E	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_4Q_3Q_2Q_1Q_0$	U	ZF	AZ	$D_2D_1D_0$
0	0	000						
1	0	001						
2	0	010						
3	0	011						
4	0	100						
5	0	101						
6	0	110	100	00000	0	0	1	100
7	0	111						
8	1	000						
9	1	001						
10	1	010						
11	1	011						
12	1	100						
13	1	101						
14	1	110						
15	1	111						

			V	Vertetabelle für T	Γ-Flipflo	ps		
		Zust	ände	Aus				
Nr.	E	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_4Q_3Q_2Q_1Q_0$	U	ZF	AZ	$T_2T_1T_0$
0	0	000						
1	0	001						
2	0	010						
3	0	011						
4	0	100						
5	0	101						
6	0	110	100	00000	0	0	1	010
7	0	111						
8	1	000						
9	1	001						
10	1	010						
11	1	011						
12	1	100						
13	1	101						
14	1	110						
15	1	111						


Q_n	Q_{n+1}	Т	Funktion
0	0	0	speichern
0	1	1	wechseln
1	0	1	wechseln
1	1	0	speichern


			z_0					
		0	1	1	0			
E	0	0	1	5	4	0		
	0	2	3	7	6	1	7.	
	1	10	11	15	14	1	\mathbf{z}_1	
	1	8	9	13	12	0		
		0	0	1	1			
			Z	2				

		0	1	1	0		
E	0	0	1	5	4	0	
	0	2	3	7	6	1	7
	1	10	11	15	14	1	\mathbf{z}_1
	1	8	9	13	12	0	
		0	0	1	1		
			Z	2			


Q_4	=0	0	1	1	0		
	0	0	1	5	4	0	
Q_3	0	2	3	7	6	1	Q_1
Q 3	1	10	11	15	14	1	Q1
	1	8	9	13	12	0	
	7	0	0	1	1		
			Q	2			

Q_4	=1	0	1	1	0		
	0	16	17	21	20	0	
	0	18	19	23	22	1	
Q ₃	1	26	27	31	30	1	Q_1
	1	24	25	29	28	0	
		0	0	1	1		
			Q	2			

E /E	z_2/z_2	z_1/z_1	z_0/z_0	1 0 0 0

