UNIVERSITÄT LEIPZIG

Institut für Informatik

Studentenmitteilung

2. Semester - SS 2003

Abt. Technische Informatik *Gerätebeauftragter* Dr. rer.nat. Hans-Joachim Lieske

Tel.: [49]-0341-97 32213 Zimmer: HG 02-37

e-mail: <u>lieske@informatik.uni-leipzig.de</u> www: <u>http://www.ti-leipzig.de/~lieske/</u> Sprechstunde:Mi. 14⁰⁰ – 15⁰⁰ (Vorlesungszeit)

Aufgaben zu Übung Grundlagen der Technischen Informatik 2

5. Aufgabenkomplex - 1. Aufgabe

Entwurf eines 3 Bit Zählers

(Gesamtpunktzahl=30 Punkte)

Entwerfen Sie die Schaltung eines 3-Bit-Zählers mittels eines Mealy-Automaten. Es sind D-Flip-Flop und T-Flip-Flop zu verwenden. Eine Eingangsvariable E soll folgendes Schaltverhalten erzeugen:

E=0 : Q=4,7,3,0,1,2,5 E=1 : Q=5,7,0,3,1,2,4

Eine Ausgangsvariable A=1 soll anzeigen, wenn es sich bei Q um eine gerade Zahl handelt. Bei Q=0 soll A=0 sein. Eine weitere Ausgangsvariable N=1 soll anzeigen, dass der Ausgangswert Q=0 ist.

Die Ausgänge sind $Q=(Q_2, Q_1, Q_0)$.

Bei jedem Taktimpuls Soll der Zähler um einen Wert weiterschalten. Der Anfangszustand sei: $z=(z_2, z_1, z_0)=(0,0,0)$

Aufgaben:

1. Bestimmen Sie die Zustände. 4 Punkte

2. Geben Sie das Übergangsdiagramm (Automatengraph) an. 4 Punkte

3. Erstellen Sie die Übergangs- und Funktionstabelle für die Realisation mit D-FlipFlops.

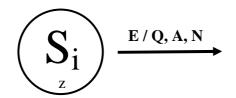
4 Punkte

- **4.** Geben Sie die Ansteuergleichungen und die Ausgangsgleichungen für die Realisation mit D-FlipFlops an.

 4 Punkte
- 5. Zeichnen Sie die entworfene Schaltung für die Realisation mit D-FlipFlops. 3 Punkte
- **6.** Erstellen Sie die Übergangs- und Funktionstabelle für die Realisation mit T-FlipFlops.

4 Punkte

- 7. Geben Sie die Ansteuergleichungen und die Ausgangsgleichungen für die Realisation mit T-FlipFlops an.


 4 Punkte
- 8. Zeichnen Sie die entworfene Schaltung für die Realisation mit T-FlipFlops. 3 Punkte

Bemerkungen:

Es sind nur Flip-Flops, AND- OR- und NOT-Gatter zu verwenden. Die Gatter können beliebig viele Eingänge haben.

				Wert	tetabelle			
		Zust	ände	Aus	gangsvari	ablen		
Nr.	E	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_2Q_1Q_0$	A	N	$D_2D_1D_0$	Nächster Zustand / Nr.
0	0	000						
1	0	001						
2	0	010						
3	0	011						
4	0	100						
5	0	101						
6	0	110						
7	0	111						
8	1	000						
9	1	001						
10	1	010						
11	1	011						
12	1	100						
13	1	101						
14	1	110						
15	1	111						

				Wert	etabelle			
		Zust	ände	Aus	gangsvari			
Nr.	E	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_2Q_1Q_0$	\boldsymbol{A}	N	$T_2T_1T_0$	Nächster Zustand / Nr.
0	0	000						
1	0	001						
2	0	010						
3	0	011						
4	0	100						
5	0	101						
6	0	110						
7	0	111						
8	1	000						
9	1	001						
10	1	010						
11	1	011						
12	1	100						
13	1	101						
14	1	110						
15	1	111						

Q_n	Q_{n+1}	T	Funktion
0	0	0	speichern
0	1	1	wechseln
1	0	1	wechseln
1	1	0	speichern

			Z	0					
		0	1	1	0				
	0	0	1	5	4	0			
E	0	2	3	7	6	1	7.		
L	1	10	11	15	14	1	\mathbf{z}_1		
	1	8	9	13	12	0			
	·		0	1	1				
			Z	2					

Lösung:

5. Aufgabenkomplex - 1. Aufgabe

Entwurf eines 3 Bit Zählers

Aufgaben:

Das Problem kann durch viele verschiedene Varianten gelöst werden. Hier zwei davon.

Erste Variante (nur angerissen.):

1. Bestimmen Sie die Zustände.

Man setzt die Zustände gemäß einem der Ergebnisse Q, (hier nach Q(E=0)) und bestimmt Q(E=1) sowie A und N mittels der Logik. Dies macht man meist, wenn man nur einen definierte Reihenfolge oder –Ring von Zuständen hat. Man hat dann die einfachste logische Funktion von Q.

Am einfachsten ist es die Flipflops die Zustände z von 0 ... 6 durchzählen zu lassen und die Ergebnisse von Q, A und N mittels der Logik errechnen zu lassen (Variante 2).

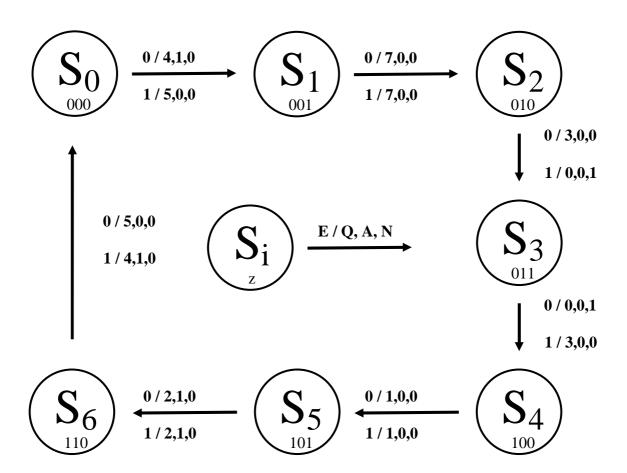
Zustand (Z)	0	1	2	5	4	7	3	0	1	2	•••
Q (E = 0)	0	1	2	5	4	7	3	0	1	2	•••
Q (E =1)	3	1	2	4	5	7	0	3	1	2	•••

Für Q=0 sind die Ergebnisse gleich der Zustände. Für Q=1 muß eine entsprechende Logik die entsprechende Reihenfolge herstellen.

					Wertetabelle				
		7	Zustände		Ausg	gangsva	riablen		
Nr.	E	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	Z	$Q_2Q_1Q_0$	Q	A	N	Nächster Zustand / Nr.
0	0	000	001	0	000	0		1	1/1
1	0	001	010	1	001	1			2/2
2	0	010	101	2	010	2	1		5/5
3	0	011	000	3	011	3			0/0
4	0	100	111	4	100	4	1		7/7
5	0	101	100	5	101	5			4/4
6	0	110		6					
7	0	111	011	7	111	7			3/3
8	1	000	001	0	011	3			1/9
9	1	001	010	1	001	1			2/10
10	1	010	101	2	010	2	1		5/13
11	1	011	000	3	000	0		1	0/8
12	1	100	111	4	101	5			7/15
13	1	101	100	5	100	4	1		4/12
14	1	110		6					
15	1	111	011	7	111	7			3/11

Zweite Variante Variante (voll):

1. Bestimmen Sie die Zustände.


Da hier der Zustand 8 nicht genutzt wird Kann man die Minterme 7 und 15 als don't care Terme in den KV-Diagrammen ansehen. Es wurde hier jedoch keine derartige Minimierung vorgesehen, da in der Aufgabenstellung nicht gefordert. Don't care ergebnisse werden aber als richtig bewertet.

Am einfachsten ist es die Flipflops die Zustände z von 0 ... 6 durchzählen zu lassen und die Ergebnisse von Q, A und N mittels der Logik errechnen zu lassen (Variante 2).

Zustand (Z)	0	1	2	3	4	5	6	0	1	2	•••
Q(E=0)	4	7	3	0	1	2	5	4	7	3	•••
Q(E=1)	5	7	0	3	1	2	4	5	7	0	•••

					Wertetabelle				
		7	Zustände		Ausg	gangsva	riablen		
Nr.	Е	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	z	$Q_2Q_1Q_0$	Q	A	N	Nächster Zustand / Nr.
0	0	000	001	0	100	4	1		1/1
1	0	001	010	1	111	7			2/2
2	0	010	011	2	011	3			3/3
3	0	011	100	3	000	0		1	4/4
4	0	100	101	4	001	1			5/5
5	0	101	110	5	010	2	1		6/6
6	0	110	000	6	101	5			0/0
7	0								
8	1	000	001	0	101	5			1/9
9	1	001	010	1	111	7			2/10
10	1	010	011	2	000	0		1	3/11
11	1	011	100	3	011	3			4/12
12	1	100	101	4	001	1			5/13
13	1	101	110	5	010	2	1		6/14
14	1	110	000	6	100	4	1		0/8
15	1								

2. Geben Sie das Übergangsdiagramm (Automatengraph) an.

3. Erstellen Sie die Übergangs- und Funktionstabelle für die Realisation mit D-FlipFlops.

	Wertetabelle												
		Zust	ände	Aus	gangsvari	ablen	D_2D_1D	$z_0 = z_2^+ z_1^+ z_0^+$					
Nr.	Е	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_2Q_1Q_0$	A	N	$D_2D_1D_0$	Nächster Zustand / Nr.					
0	0	000	001	100	1		001	1/1					
1	0	001	010	111			010	2/2					
2	0	010	011	011			011	3/3					
3	0	011	100	000		1	100	4/4					
4	0	100	101	001			101	5/5					
5	0	101	110	010	1		110	6/6					
6	0	110	000	101			000	0/0					
7	0												
8	1	000	001	101			001	1/9					
9	1	001	010	111			010	2/10					
10	1	010	011	000		1	011	3/11					
11	1	011	100	011			100	4/12					
12	1	100	101	001			101	5/13					
13	1	101	110	010	1		110	6/14					
14	1	110	000	100	1		000	0/8					
15	1												

4. Geben Sie die Ansteuergleichungen und die Ausgangsgleichungen für die Realisation mit D-FlipFlops an.

Da die Ausgangsgleichungen für Q, A und N nur vom derzeitigen Zustand und der Eingabe abhängig sind, gelten sie für beide FF-Typen.

	1		Z	0			
Q	2	0	1	1	0		
	0	1 0	1	5	4	0	
E	0	2	3	7	1	1	7.
L	1	10	11	15	1 14	1	\mathbf{z}_1
	1	1 8	1 9	13	12	0	
·		0	0	1	1		
		\mathbf{z}_2					

 $Q_2 = \overline{z}_2 \overline{z}_1 \vee z_2 z_1 \overline{z}_0$

			Z	0			
Ç) 1	0	1	1	0		
	0		1	1 5	4	0	
E	0	1 2	3	7	6	1	\mathbf{z}_1
L	1	10	1	15	14	1	L
	1	8	1	1 13	12	0	
		0	0	1	1		
		\mathbf{z}_2					

 $Q_1 = \overline{z}_1 z_0 \vee E \overline{z}_2 z_0 \vee \overline{E} \overline{z}_2 z_1 \overline{z}_0$

 $Q_0 = \overline{z}_2 \overline{z}_1 z_0 \vee \overline{E} z_2 \overline{z}_0 \vee z_2 \overline{z}_1 \overline{z}_0 \vee E \overline{z}_2 \overline{z}_1 \vee E \overline{z}_2 z_0 \vee \overline{E} z_1 \overline{z}_0$

	Q_0		Z	0			
۷	0	0	1	1	0		
	0	0	1	5	1 4	0	
E	0	1 2	3	7	1	1	\mathbf{z}_1
	1	10	1	15	14	1	Z ₁
	1	1 8	1	13	1 12	0	
		0	0	1	1		
			Z	2			

$A = z_2 \overline{z}_1 z_0 \vee E z_2 z_1 \overline{z}_0 \vee E \overline{z}_2 \overline{z}_1 \overline{z}$	<i>A</i> :	$=z_2\overline{z}_1z_0$	$\vee Ez_2z_1\overline{z}_0$	$\vee \overline{E}\overline{z}_{2}\overline{z}_{1}\overline{z}_{0}$
--	------------	-------------------------	------------------------------	---

A			Z				
		0	1	1	0		
	0	1 0	1	1 5	4	0	
E	0	2	3	7	6	1	\mathbf{z}_1
	1	10	11	15	1 14	1	L
	1	8	9	1 13	12	0	
		0	0	1	1		
			Z	2			

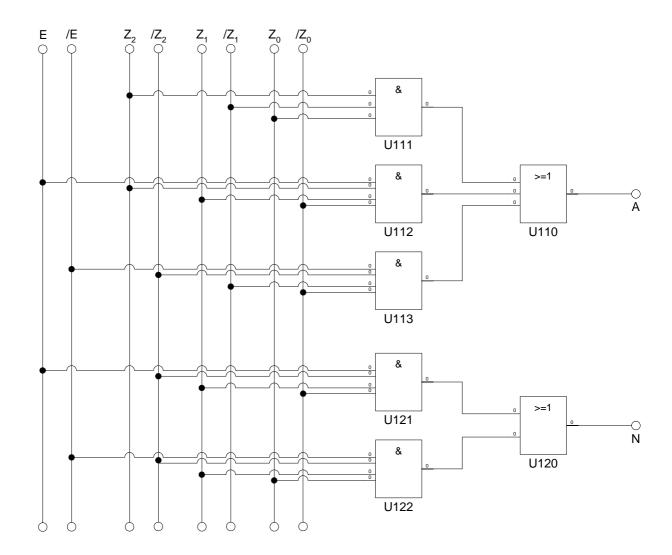
$N = E\overline{z}_2 z_1 \overline{z}_0$	$\vee \overline{E}\overline{z}_2$	$z_{1}z_{0}$
--	-----------------------------------	--------------

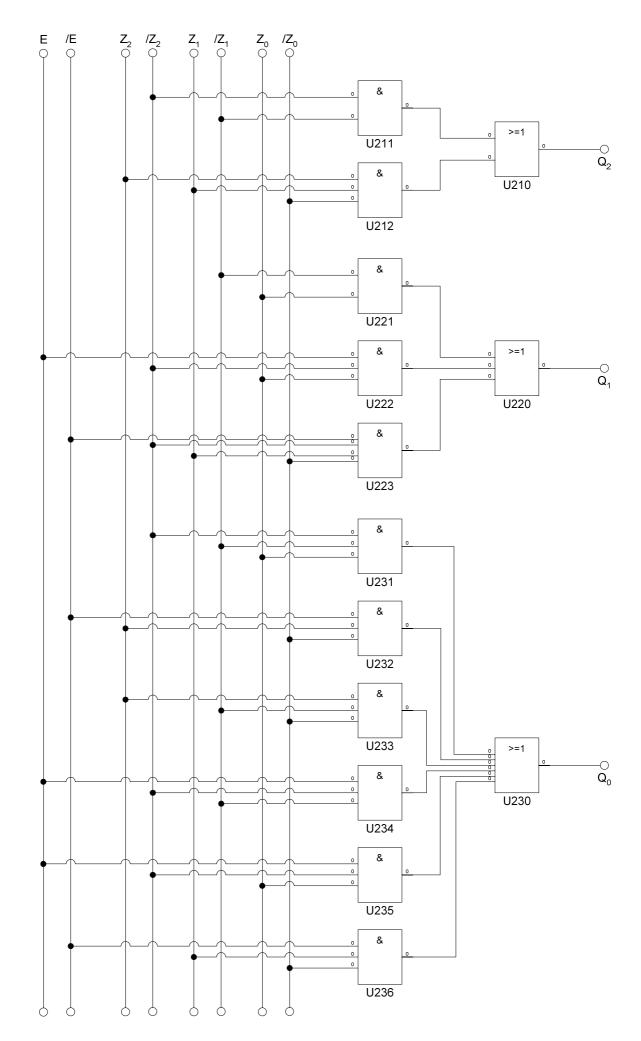
N			Z				
		0	1	1	0		
	0	0	1	5	4	0	
E	0	2	1 3	7	6	1	\mathbf{z}_1
	1	1 10	11	15	14	1	L
	1	8	9	13	12	0	
·		0	0	1	1		
			Z	2			

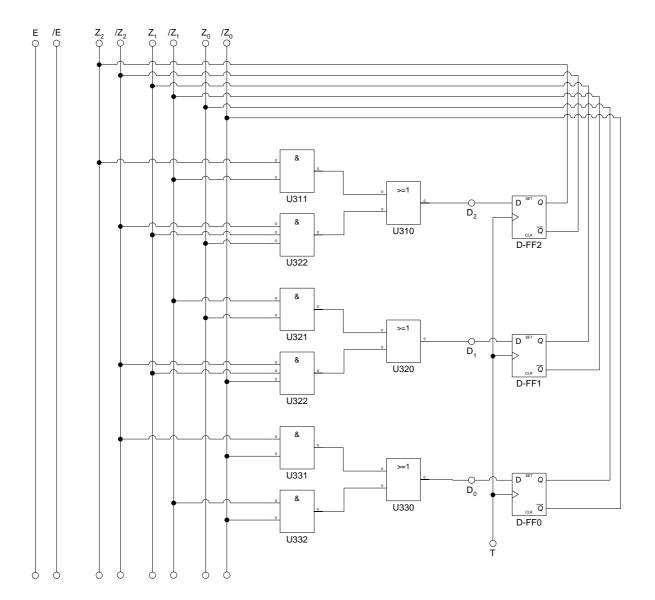
Für das D-Flipflop gilt:

$D_2 = z_2^+$			Z				
		0	1	1	0		
0		0	1	1 5	1 4	0	
E	0	2	1 3	7	6	1	\mathbf{z}_1
	1	10	1	15	14	1	L
	1	8	9	1 13	1 12	0	
		0					
			Z	2			

$$D_2 = z_2^+ = z_2 \overline{z}_1 \vee \overline{z}_2 z_1 z_0$$


D .	$D_1 = z_1^+$		Z				
D_1			1	1	0		
	0	0	1	1 5	4	0	
E	0	1 2	3	7	6	1	7.
	1	1	11	15	14	1	\mathbf{z}_1
	1	8	1 9	1 13	12	0	
		0	0	1	1		
			Z	2			


$$D_1 = z_1^+ = \overline{z}_1 z_0 \vee \overline{z}_2 z_1 \overline{z}_0$$


$D_0 = z_0^+$			Z				
		0	1	1	0		
	0	1 0	1	5	1 4	0	
E	0	1 2	3	7	6	1	\mathbf{z}_1
	1	1	11	15	14	1	
	1	1 8	9	13	1 12	0	
		0	0				
			Z	2			

5. Zeichnen Sie die entworfene Schaltung für die Realisation mit D-FlipFlops.

Die Ansteuerung für Q, A und N ist für Beide Varianten gleich!

3. Erstellen Sie die Übergangs- und Funktionstabelle für die Realisation mit T-FlipFlops.

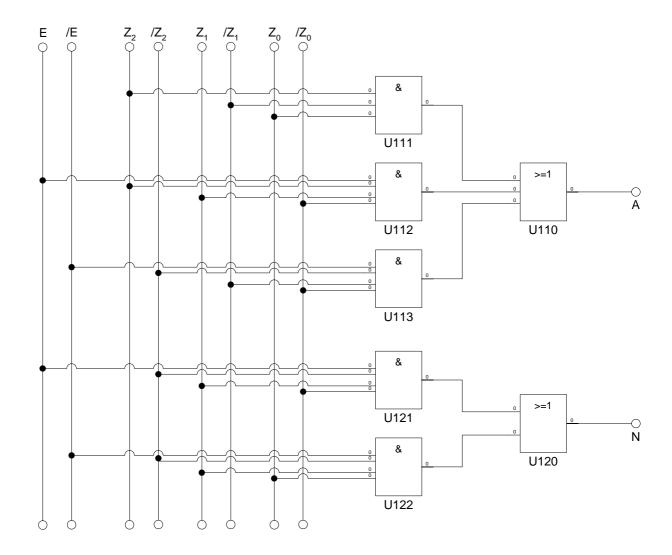
				Wert	tetabelle			
		Zust	ände	Aus	gangsvari	ablen		
Nr.	Ε	$z_2 z_1 z_0$	$z_2^+ z_1^+ z_0^+$	$Q_2Q_1Q_0$	A	N	$T_2T_1T_0$	Nächster Zustand / Nr.
0	0	000	001	100	1		001	1/1
1	0	001	010	111			011	2/2
2	0	010	011	011			001	3/3
3	0	011	100	000		1	111	4/4
4	0	100	101	001			001	5/5
5	0	101	110	010	1		011	6/6
6	0	110	000	101			110	0/0
7	0							
8	1	000	001	101			001	1/9
9	1	001	010	111			011	2/10
10	1	010	011	000		1	001	3/11
11	1	011	100	011			111	4/12
12	1	100	101	001			001	5/13
13	1	101	110	010	1		011	6/14
14	1	110	000	100	1		110	0/8
15	1							

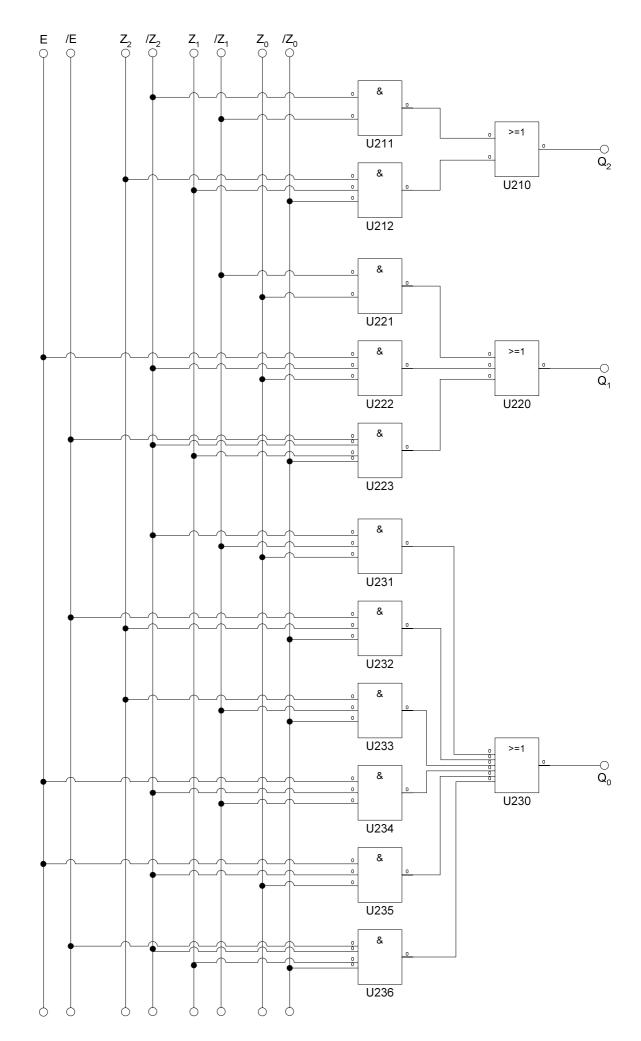
4. Geben Sie die Ansteuergleichungen und die Ausgangsgleichungen für die Realisation mit T-FlipFlops an.

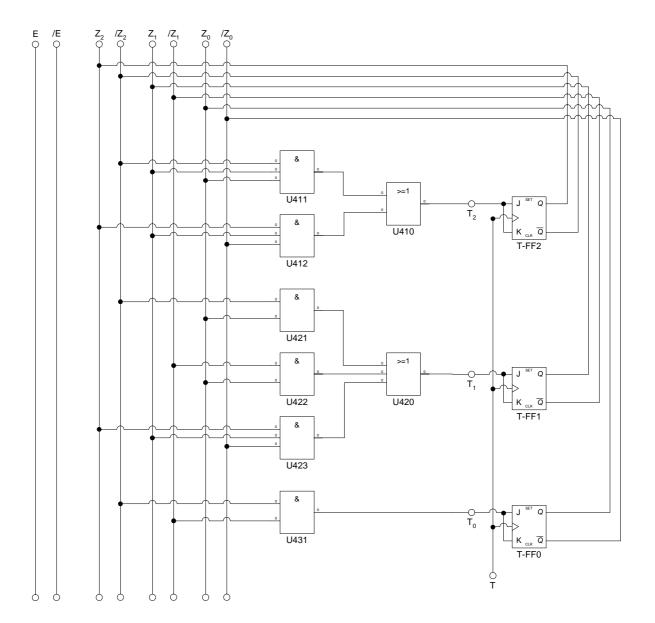
	-rapr	lops an.				1	
7	T		Z				
T_2		0	1	1	0		
	0	0	1	5	4	0	
E	0	2	1 3	7	1 6	1	\mathbf{z}_1
	1	10	1 11	15	1 14	1	L_1
	1	8	9	13	12	0	
	·	0	0	1	1		
			Z	2			

$T_2 = \overline{z}_2 z_1 z_0 \vee z_2 z_1 \overline{z}$
--

		1					
T_1			Z				
		0	1	1	0		
	0	0	1	1 5	4	0	
E	0	2	1 3	7	1	1	7.
	1	10	1 11	15	1	1	\mathbf{z}_1
	1	8	1 9	1 13	12	0	
		0	0	1	1		
			\mathbf{Z}_{j}	2			


$$T_1 = \overline{z}_2 z_0 \vee \overline{z}_1 z_0 \vee z_2 z_1 \overline{z}_0$$


7	T		Z	0			
T_0		0	1	1	0		
	0	1	1	1 5	1 4	0	
E	0	1 2	1 3	7	6	1	\mathbf{z}_1
	1	1	1	15	14	1	Z]
	1	1 8	1 9	1 13	1	0	
		0	0	1	1		
			Z	2			


 $T_0 = \overline{z}_2 \vee \overline{z}_1$

5. Zeichnen Sie die entworfene Schaltung für die Realisation mit T-FlipFlops.

Die Ansteuerung für Q,A und N ist für Beide Varianten gleich!

