

UNIVERSITÄT LEIPZIG

Institut für Informatik

Seminaraufgaben

2.Semester - Sommersemester 2000

Abt. Technische Informatik *Gerätebeauftragter* Dr. rer.nat. Hans-Joachim Lieske Tel.: [49]-0341-97 32213 Zimmer: HG 05-22

e-mail: lieske@informatik.uni-leipzig.de

Aufgaben zur Übung Grundlagen der Technische Informatik 2

2. Aufgabenkomplex - 1. Aufgabe

Minimierung logischer Schaltungen

Gegeben ist folgendes KV-Diagramm:

		X_0					
		0	1	1	0		
V	0	0	1	5	1	0	
	0	2	1	7	6	1	V
X_3	1	10	11	1 15	1	1	X_1
	1	1 8	1 9	1 13	1	0	
	•	0	0	1	1		
			X	2			

Aufgaben:

Minimieren Sie die Schaltung

(8 Punkte)

- Bestimmen Sie die Minterme, Maxterme sowie die kanonisch disjunktive- und konjunktive Normalform der Funktion. (2 Punkte)
- 2. Bestimmen Sie das Zeitverhalten der Funktion (2 Punkte)
- 3. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm. (2 Punkte)
- 4. Zeichnen Sie den Schaltplan der minimierten Booleschen Funktion $Q_{min}=f_{min}(x_3,x_2,x_1,x_0)$ streng nach der Gleichung. (2 Punkte)

2. Aufgabenkomplex - 2. Aufgabe

Minimierung logischer Schaltungen mit don't care Termen

Gegeben ist folgendes Karnaugh-Veitch-Diagramm:

			\mathbf{X}_{0}				
		0	1	1	0		
V	0	1	1	5	a 4	0	
	0	1	1 3	7	a	1	X_1
X_3	1	a	a	a	14	1	Λ_1
	1	1 8	1	13	12	0	
		0	0	1	1		
			X	2	ı		

Aufgaben:

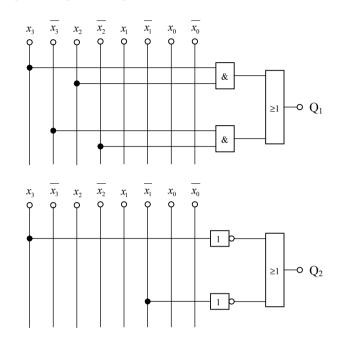
Minimieren Sie die Schaltung (12 Punkte)

1. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=0. (1 Punkt) Bestimmen Sie die logische Gleichung $Q_1=f_1(x_3,x_2,x_1,x_0)$. (1 Punkt) Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt) Zeichnen sie die Schaltung nach der Formel. (1 Punkt)

2. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=1. (1 Punkt) Bestimmen Sie die logische Gleichung $Q_2=f_2(x_3,x_2,x_1,x_0)$. (1 Punkt) Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt)

Zeichnen sie die Schaltung nach der Formel. (1 Punkt)

3. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=beliebig (don't care Terme). (1 Punkt) Bestimmen Sie die logische Gleichung $Q_3=f_3$ (x_3,x_2,x_1,x_0). (1 Punkt)


Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt) (1 Punkt)

Zeichnen sie die Schaltung nach der Formel.

2. Aufgabenkomplex - 3. Aufgabe

Bündelminimierung logischer Schaltungen

Gegeben sind folgende Schaltungen:

Aufgaben:

Minimieren Sie die Schaltung durch Bündelminimierung (10 Punkte)

1. Bestimmen Sie die Minterme und die kanonisch disjunktive Normalformen der Funktionen .

(2 Punkte)

2. Bestimmen Sie die Karnaugh-Veitch-Diagramme der Funktionen.

(2 Punkte)

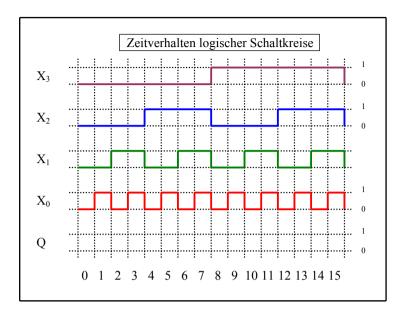
3. Bestimmen Sie die Funktionen der optimalen Bündelminimierung mit den Karnaugh-Veitch-Diagrammen.

(2 Punkte)

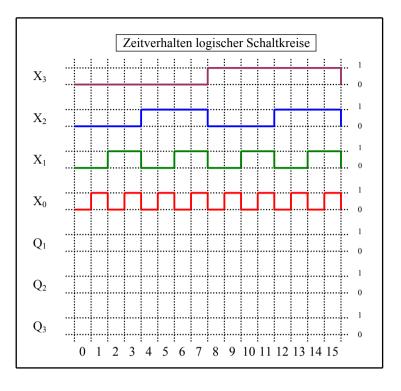
4. Zeichnen Sie die Schaltungen der minimierten Funktionen entsprechend der Bündelminimierung.

(2 Punkte)

5. Zeichnen Sie das Zeitverhalten für beide Funktionen.


(2 Punkte)

Bemerkung:


- Sind zwischen den Variablen keine Operatoren, so ist das als UND-Verknüpfung zu lesen. Beispiel: abc ≡ a∧b∧c
- 2. Für bestimmte Fälle wird x_0 mit 2^0 =1, x_1 mit 2^1 =2, x_2 mit 2^2 =4 und später x_3 mit 2^3 =8 u.s.w. gewichtet, so das man sie als eine Zahl ansehen kann.
- 3. Die Gatter können beliebig viele Eingänge haben, ausgenommen der Inverter.
- 4. Leere Felder in Karnaugh-Veitch-Diagrammen sind immer null.

Hilfen:

	Normalformen							
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme					
0	0000							
1	0001							
2	0010							
3	0011							
4	0100							
5	0101							
6	0110							
7	0111							
8	1000							
9	1001							
10	1010							
11	1011							
12	1100							
13	1101							
14	1110							
15	1111							

			X_0				
		0	1	1	0		
	0	0	1	5	4	0	
X_3	0	2	3	7	6	1	X_1
A 3	1	10	11	15	14	1	
	1	8	9	13	12	0	
		0	0	1	1		
			X	Z ₂	-1		

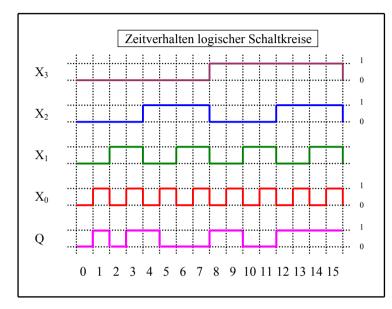
2. Aufgabenkomplex - 1. Aufgabe

Minimieren Sie die Schaltung

(8 Punkte)

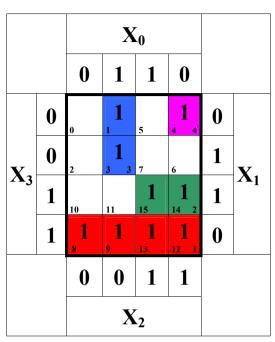
 Bestimmen Sie die Minterme, Maxterme sowie die kanonisch disjunktive- und konjunktive Normalform der Funktion. (2 Punkte)

		Normalformen	
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme
0	0000		$x_3 \vee x_2 \vee x_1 \vee x_0$
1	0001	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$	
2	0010		$x_3 \vee x_2 \vee \overline{x}_1 \vee x_0$
3	0011	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$	
4	0100	$\overline{x}_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
5	0101		$x_3 \vee \overline{x}_2 \vee x_1 \vee \overline{x}_0$
6	0110		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee x_0$
7	0111		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee \overline{x}_0$
8	1000	$x_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
9	1001	$x_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$	
10	1010		$\overline{x}_3 \lor x_2 \lor \overline{x}_1 \lor x_0$
11	1011		$\overline{x}_3 \vee x_2 \vee \overline{x}_1 \vee \overline{x}_0$
12	1100	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
13	1101	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge x_0$	
14	1110	$x_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$	
15	1111	$x_3 \wedge x_2 \wedge x_1 \wedge x_0$	


 $Q_{KDNF} = x_3x_2x_1x_0 \vee x_3x_2x_1\overline{x}_0 \vee x_3x_2\overline{x}_1x_0 \vee x_3x_2\overline{x}_1\overline{x}_0 \vee x_3\overline{x}_2\overline{x}_1x_0 \vee x_3\overline{x}_2\overline{x}_1\overline{x}_0 \vee \overline{x}_3\overline{x}_2\overline{x}_1\overline{x}_0 \vee \overline{x}_3\overline{x}_1\overline{x}_0 \vee \overline{x}_3\overline{x}_1\overline{x}_0 \vee \overline{x}_3\overline{x}_1\overline{x}_1\overline{x}_0 \vee \overline{x}_3\overline{x}_1\overline{x}_1\overline{x}_0 \vee \overline{x}_3\overline{x}_1\overline{x}_1\overline{x}_0 \vee \overline{x}_3\overline{x}_1\overline{$

$$\begin{aligned} &Q_{\text{KKNF}} = (x_3 \vee x_2 \vee x_1 \vee x_0) \wedge (x_3 \vee x_2 \vee \overline{x_1} \vee x_0) \wedge (x_3 \vee \overline{x_2} \vee x_1 \vee \overline{x_0}) \wedge (x_3 \vee \overline{x_2} \vee \overline{x_1} \vee x_0) \\ & \wedge (x_3 \vee \overline{x_2} \vee \overline{x_1} \vee \overline{x_0}) \wedge (\overline{x_3} \vee x_2 \vee \overline{x_1} \vee x_0) \wedge (\overline{x_3} \vee x_2 \vee \overline{x_1} \vee \overline{x_0}) \\ & \text{Dr. H-J Lieske/Uni. Leipzig/1999-2000/Version 3} & \text{Datei: S-E02S01P - 04. Mai 2001 - Seite 9} \end{aligned}$$

2. Bestimmen Sie das Zeitverhalten der Funktion.


(2 Punkte)

 $Q_{KDNF} = x_3 x_2 x_1 x_0 \vee x_3 x_2 x_1 \overline{x}_0 \vee x_3 x_2 \overline{x}_1 x_0 \vee x_3 x_2 \overline{x}_1 \overline{x}_0 \vee x_3 \overline{x}_2 \overline{x}_1 x_0 \vee x_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 \vee \overline{x}_$

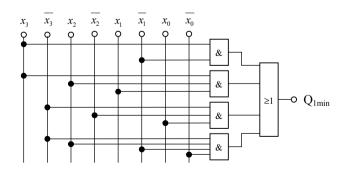
3. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm. Variante 1 – Überlappungen verboten

(2 Punkte)

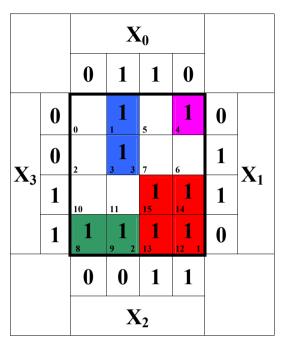
$$Q_{l-1} = x_3 \overline{x}_1$$

$$Kosten \quad K_{l-1} = 2$$

$$Q_{1-2} = x_3 x_2 x_1 Kosten K_{1-2} = 3$$


$$Q_{1-3} = \overline{x}_3 \overline{x}_2 x_0$$

$$Kosten \quad K_{1-3} = 3$$


$$Q_{1-4} = \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0$$

$$Kosten \quad K_{1-4} = 4$$

$$\boxed{ \begin{aligned} &Q_{\text{lmin}} = Q_{\text{l-l}} \vee Q_{\text{l-2}} \vee Q_{\text{l-3}} \vee Q_{\text{l-4}} = x_{3}\overline{x}_{1} \vee x_{3}x_{2}x_{1} \vee \overline{x}_{3}\overline{x}_{2}x_{0} \vee \overline{x}_{3}x_{2}\overline{x}_{1}\overline{x}_{0} \\ &Kosten \quad K_{1} = K_{\text{l-l}} + K_{\text{l-2}} + K_{\text{l-3}} + K_{\text{l-4}} = 2 + 3 + 3 + 4 = 12 \end{aligned} }$$

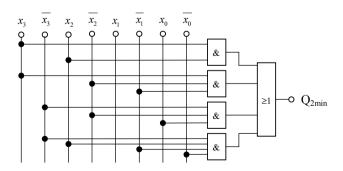
Variante 2 – Überlappungen verboten

$$Q_{2-1} = x_3 x_2$$

$$Kosten \quad K_{2-1} = 2$$

$$Q_{2-2} = x_3 \overline{x}_2 \overline{x}_1$$

$$Kosten \quad K_{2-2} = 3$$


$$Q_{2-3} = \overline{x}_3 \overline{x}_2 x_0$$

$$Kosten \quad K_{2-3} = 3$$

$$Q_{2-4} = \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0$$

$$Kosten \quad K_{2-2} = 4$$

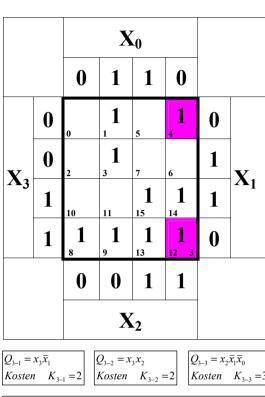
$$\boxed{ \begin{aligned} &Q_{2\min} = Q_{2-1} \vee Q_{2-2} \vee Q_{2-3} \vee Q_{2-4} = x_3 x_2 \vee x_3 \overline{x}_2 \overline{x}_1 \vee \overline{x}_3 \overline{x}_2 x_0 \vee \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0 \\ &Kosten \quad K_2 = K_{2-1} + K_{2-2} + K_{2-3} + K_{2-4} = 2 + 3 + 3 + 4 = 12 \end{aligned} }$$

Variante 3 – Überlappungen erlaubt

			X				
		0	1	1	0		
	0	0	1	5	1	0	
v	0	2	1 3 4	7	6	1	v
X_3	1	10	11	1	1	1	\mathbf{X}_{1}
-	1	1	1	1	1 1 12 1	0	
		0	0	1	1		
			X	Z 2			

$$Q_{3-1} = x_3 \overline{x}_1$$

$$Kosten \quad K_{3-1} = 2$$


$$Q_{3-4} = \overline{x}_3 \overline{x}_2 x_0$$

$$Kosten \quad K_{3-4} = 3$$

			X_0				
		0	1	1	0		
	0	0	1	5	1	0	
v	0	2	1	7	6	1	v
X_3	1	10	11	1 15	1	1	X_1
	1	1 8	1	1 13	1	0	
		0	0	1	1		
			X	X ₂	•		

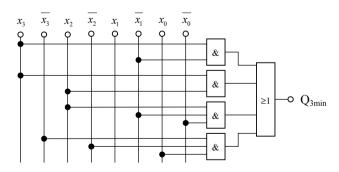
$$Q_{3-2} = x_3 x_2$$

$$Kosten \quad K_{3-2} = 2$$

$$Q_{3-3} = x_2 \overline{x}_1 \overline{x}_0$$

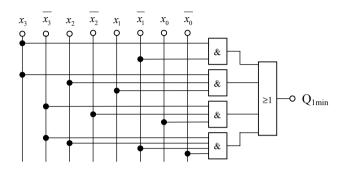
$$Kosten \quad K_{3-3} = 3$$

$$Q_{3-3} = x_2 \overline{x}_1 \overline{x}_0$$

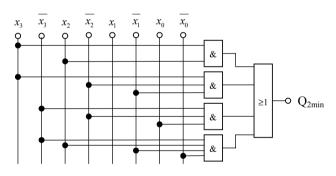

$$Kosten \quad K_{3-3} = 3$$

$$Q_{3-4} = \overline{x}_3 \overline{x}_2 x_0$$

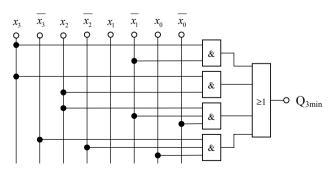
$$Kosten \quad K_{3-4} = 3$$


$$Q_{3\min} = Q_{3-1} \lor Q_{3-2} \lor Q_{3-3} \lor Q_{3-4} = x_3 \overline{x}_1 \lor x_3 x_2 \lor x_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 x_0$$

$$Kosten \quad K_3 = K_{3-1} + K_{3-2} + K_{3-3} + K_{3-4} = 2 + 2 + 3 + 3 = 10$$



4. Zeichnen Sie den Schaltplan der minimierten Booleschen Funktion Q_{min}=f_{min}(x₃,x₂,x₁,x₀) streng nach der Gleichung. (2 Punkte)


$$Q_{1\min} = Q_{1-1} \lor Q_{1-2} \lor Q_{1-3} \lor Q_{1-4} = x_3 \overline{x}_1 \lor x_3 x_2 x_1 \lor \overline{x}_3 \overline{x}_2 x_0 \lor \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0$$
Kosten $K_1 = K_{1-1} + K_{1-2} + K_{1-3} + K_{1-4} = 2 + 3 + 3 + 4 = 12$

$$\begin{array}{l} Q_{2\,\text{min}} = Q_{2-1} \lor Q_{2-2} \lor Q_{2-3} \lor Q_{2-4} = x_3 x_2 \lor x_3 \overline{x_2} \overline{x_1} \lor \overline{x_3} \overline{x_2} x_0 \lor \overline{x_3} x_2 \overline{x_1} \overline{x_0} \\ \textit{Kosten} \quad K_2 = K_{2-1} + K_{2-2} + K_{2-3} + K_{2-4} = 2 + 3 + 3 + 4 = 12 \end{array}$$

$$\begin{array}{l} Q_{3 \min} = Q_{3-1} \vee Q_{3-2} \vee Q_{3-3} \vee Q_{3-4} = x_3 \overline{x}_1 \vee x_3 x_2 \vee x_2 \overline{x}_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 x_0 \\ Kosten \quad K_3 = K_{3-1} + K_{3-2} + K_{3-3} + K_{3-4} = 2 + 2 + 3 + 3 = 10 \end{array}$$

2. Aufgabenkomplex - 2. Aufgabe

Minimierung logischer Schaltungen mit don't care Termen

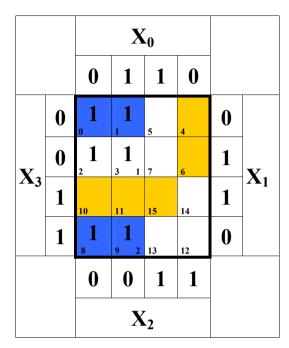
Aufgaben:

Minimieren Sie die Schaltung

(12 Punkte)

1. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=0. Bestimmen Sie die logische Gleichung $Q_1=f_1(x_3,x_2,x_1,x_0)$. Bestimmen Sie das Zeitverhalten der Funktion.

(1 Punkt) (1 Punkt) (1 Punkt)

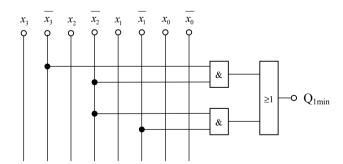

Zeichnen sie die Schaltung nach der Formel.

(1 Punkt)

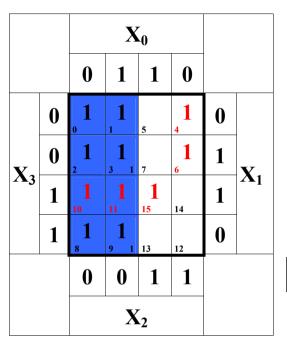
			X				
		0	1	1	0		
v	0	1	1	5	4	0	
	0	1	1 3 1	7	6	1	V
X_3	1	10	11	15	14	1	X_1
	1	1 8	1	13	12	0	
	'	0	0	1	1		
			X	5			

$$Q_{1-1} = \overline{x}_3 \overline{x}_2$$

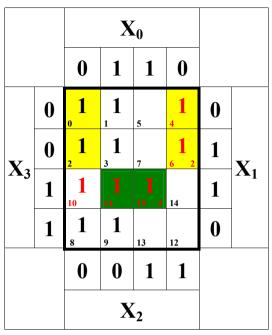
$$Kosten \quad K_{1-1} = 2$$



$$Q_{1-2} = \overline{x}_2 \overline{x}_1$$

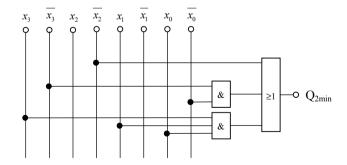

$$Kosten \quad K_{1-2} = 2$$

$$Q_{1\min} = Q_{1-1} \lor Q_{1-2} = \overline{x}_3 \overline{x}_2 \lor \overline{x}_2 \overline{x}_1$$

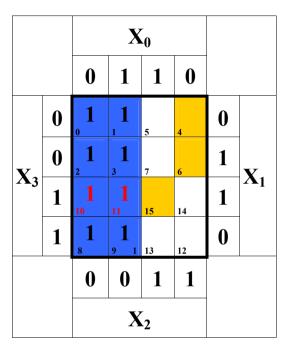

$$Kosten \quad K_1 = K_{1-1} + K_{1-2} = 2 + 2 = 4$$

2. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=1 . (1 Punkt) Bestimmen Sie die logische Gleichung $Q_2=f_2(x_3,x_2,x_1,x_0)$. (1 Punkt) Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt) Zeichnen sie die Schaltung nach der Formel. (1 Punkt)

Dr. H-J Lieske/Uni. Leipzig/1999-2000/Version 3 Datei: S-E02S01P – 04. Mai 2001 - Seite 17 Dr. H-J Lieske/Uni. Leipzig/1999-2000/Version 3 Datei: S-E02S01P – 04. Mai 2001 - Seite 18



$$Q_{2-2} = \overline{x}_3 \overline{x}_0$$
Kosten $K_{2-2} = 2$


$$Q_{2-3} = x_3 x_1 x_0$$
Kosten $K_{2-3} = 3$

$$Q_{2\min} = Q_{2-1} \lor Q_{2-2} \lor Q_{2-3} = \overline{x}_2 \lor \overline{x}_3 \overline{x}_0 \lor x_3 x_1 x_0$$

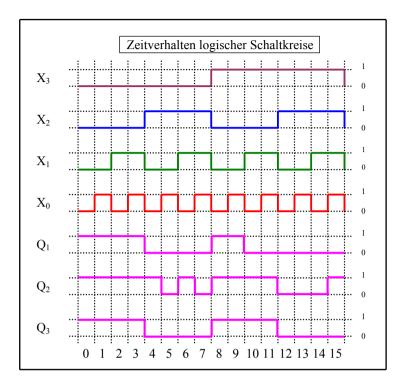
$$Kosten \quad K_2 = K_{2-1} + K_{2-2} + K_{2-3} = 1 + 2 + 3 = 6$$

3. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=beliebig (don't care Terme).
 (1 Punkt)
 Bestimmen Sie die logische Gleichung Q₃=f₃ (x₃,x₂,x₁,x₀).
 (1 Punkt)
 Bestimmen Sie das Zeitverhalten der Funktion.
 (1 Punkt)

Zeichnen sie die Schaltung nach der Formel.

$$Q_{3-1} = \overline{x}_2$$

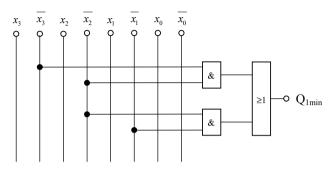

$$Kosten \quad K_{3-1} = 1$$


(1 Punkt)

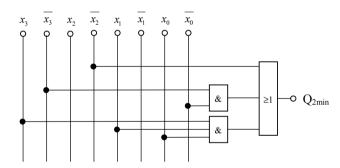
$$Q_{3-1} = \overline{x}_2$$

$$Kosten \quad K_{3-1} = 1$$

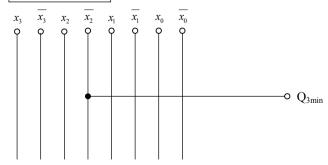
$$Q_{3 \min} = Q_{3-1} = \overline{x}_{2}$$
Kosten $K_{3} = K_{3-1} = 1$



Vergleich der Schaltungen


$$Q_{1\min} = Q_{1-1} \lor Q_{1-2} = \overline{x}_3 \overline{x}_2 \lor \overline{x}_2 \overline{x}_1$$

$$Kosten \quad K_1 = K_{1-1} + K_{1-2} = 2 + 2 = 4$$

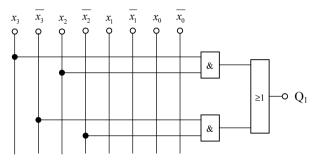


$$Q_{2\min} = Q_{2-1} \lor Q_{2-2} \lor Q_{2-3} = \overline{x}_2 \lor \overline{x}_3 \overline{x}_0 \lor x_3 x_1 x_0$$

$$Kosten \quad K_2 = K_{2-1} + K_{2-2} + K_{2-3} = 1 + 2 + 3 = 6$$

$$Q_{3 \min} = Q_{3-1} = \bar{x}_2$$
Kosten $K_3 = K_{3-1} = 1$

2. Aufgabenkomplex - 3. Aufgabe

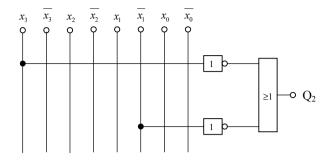

Bündelminimierung logischer Schaltungen

Aufgaben:

Minimieren Sie die Schaltung durch Bündelminimierung (10 Punkte)

1. Bestimmen Sie die Minterme und die kanonisch disjunktive Normalformen der Funktionen . (2 Punkte)

1. Schaltung:



$$Q_1 = x_3 x_2 \vee \overline{x}_3 \overline{x}_2 = x_3 x_2 \vee \overline{x}_3 \overline{x}_2 = x_3 x_2 ba \vee \overline{x}_3 \overline{x}_2 ba$$
Kosten $K_1 = 2 + 2 = 4$

	Normalformen								
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme						
0	0000	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge \overline{x}_0$							
1	0001	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$							
2	0010	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge \overline{x}_0$							
3	0011	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$							
4	0100		$x_3 \vee \overline{x}_2 \vee x_1 \vee x_0$						
5	0101		$x_3 \vee \overline{x}_2 \vee x_1 \vee \overline{x}_0$						
6	0110		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee x_0$						
7	0111		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee \overline{x}_0$						
8	1000		$\overline{x}_3 \lor x_2 \lor x_1 \lor x_0$						
9	1001		$\overline{x}_3 \lor x_2 \lor x_1 \lor \overline{x}_0$						
10	1010		$\overline{x}_3 \lor x_2 \lor \overline{x}_1 \lor x_0$						
11	1011		$\overline{x}_3 \lor x_2 \lor \overline{x}_1 \lor \overline{x}_0$						
12	1100	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$							
13	1101	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge x_0$							
14	1110	$x_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$							
15	1111	$x_3 \wedge x_2 \wedge x_1 \wedge x_0$							

 $Q_{KDNF} = x_3 x_2 x_1 x_0 \vee x_3 x_2 x_1 \overline{x}_0 \vee x_3 x_2 \overline{x}_1 x_0 \vee x_3 x_2 \overline{x}_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 x_1 x_0 \vee \overline{x}_3 \overline{x}_2 x_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0$

2. Schaltung:

$$Q_2 = \overline{x}_3 \lor x_1 = \overline{x}_3 cba \lor dcx_1 a$$

$$Kosten \quad K_2 = 1 + 1 = 2$$

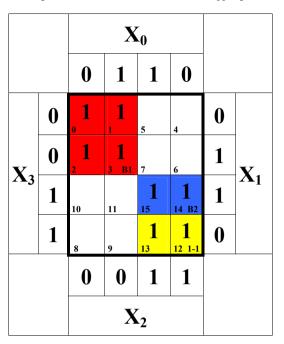
	Normalformen							
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme					
0	0000	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge \overline{x}_0$						
1	0001	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$						
2	0010	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge \overline{x}_0$						
3	0011	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$						
4	0100	$\overline{x}_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$						
5	0101	$\overline{x}_3 \wedge x_2 \wedge \overline{x}_1 \wedge x_0$						
6	0110	$\overline{x}_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$						
7	0111	$\overline{x}_3 \wedge x_2 \wedge x_1 \wedge x_0$						
8	1000		$\overline{x}_3 \vee x_2 \vee x_1 \vee x_0$					
9	1001		$\overline{x}_3 \lor x_2 \lor x_1 \lor \overline{x}_0$					
10	1010	$x_3 \wedge \overline{x}_2 \wedge x_1 \wedge \overline{x}_0$						
11	1011	$x_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$						
12	1100		$\overline{x}_3 \vee \overline{x}_2 \vee x_1 \vee x_0$					
13	1101		$\overline{x}_3 \vee \overline{x}_2 \vee x_1 \vee \overline{x}_0$					
14	1110	$x_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$						
15	1111	$x_3 \wedge x_2 \wedge x_1 \wedge x_0$						

 $Q_{KDNF} = x_3 x_2 x_1 x_0 \lor x_3 x_2 x_1 \overline{x}_0 \lor x_3 \overline{x}_2 x_1 x_0 \lor x_3 \overline{x}_2 x_1 \overline{x}_0 \lor \overline{x}_3 x_2 x_1 x_0 \lor \overline{x}_3 x_2 x_1 \overline{x}_0$ $\lor \overline{x}_3 x_2 \overline{x}_1 x_0 \lor \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 x_1 x_0 \lor \overline{x}_3 \overline{x}_2 x_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 \lor \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0$

2. Bestimmen Sie die Karnaugh-Veitch-Diagramme der Funktionen.

(2 Punkte)

			X				
		0	1	1	0		
	0	1	1	5	4	0	
v	0	1	1 3	7	6	1	v
X_3	1	10	11	1	1	1	X_1
	1	8	9	1	1	0	
		0	0	1	1		
			X	2	-1	-	


			\mathbf{X}_{0}				
		0	1	1	0		
W/	0	1	1	1 5	1	0	
	0	1	1 3	1	1	1	\mathbf{X}_{1}
X_3	1	1	1	1	1	1	Λ_1
	1	8	9	13	12	0	
		0	0	1	1		
X_2							

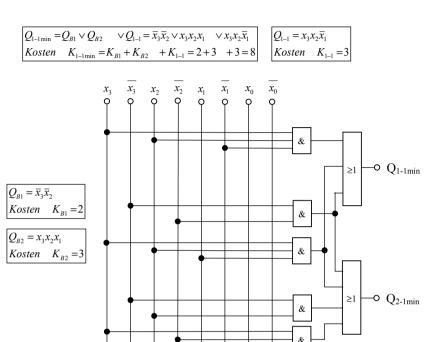
 Bestimmen Sie die Funktionen der optimalen Bündelminimierung mit den Karnaugh-Veitch-Diagrammen. (2 Punkte)

Diagram			X				
		0	1	1	0		
	0	1	1	5	4	0	
X_3	0	1	1 3 B1	7	6	1	\mathbf{X}_{1}
	1	10	11	1	1 14 B2	1	Λ_1
	1	8	9	1	1	0	
		0	0	1	1		
			X	S 2			

$Q_{B1} = \overline{x}_3 \overline{x}$	2
Kosten	$K_{B1} = 2$
$Q_{B2} = x_3 x_3$	$x_2 x_1$
Kosten	

			X				
		0	1	1	0		
X_3	0	1	1	1 5	1	0	
	0	1	1 3 B1	1	1	1	v
	1	1	1	1	1 14 B2	1	X_1
	1	8	9	13	12	0	
		0	0	1	1	•	
			X				

$$Q_{1-1} = x_3 x_2 \overline{x}_1$$

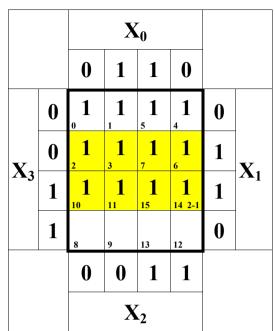

$$Kosten \quad K_{1-1} = 3$$

			X				
		0	1	1	0		
	0	1	1	1	1	0	
v	0	1	1 3 B1	1	1 6 2-1	1	v
X_3	1	1	1 11 2-2	1	1 14 B2	1	X_1
	1	8	9	13	12	0	
		0	0	1	1		
		X_2					

$$Q_{2-1} = \overline{x}_3 x_2$$
Kosten $K_{2-1} = 2$

$$Q_{2-2} = x_3 \overline{x}_2 x_1$$

$$Kosten \quad K_{2-2} = 3$$



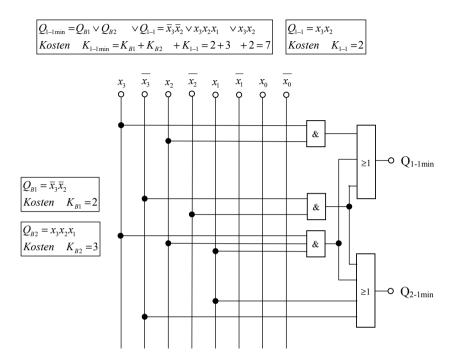
$$\begin{bmatrix} Q_{1-1\min} = Q_{B1} \lor Q_{B2} & \lor Q_{2-1} \lor Q_{2-2} = \overline{x}_3 \overline{x}_2 \lor x_3 x_2 x_1 & \lor \overline{x}_3 x_2 \lor x_3 \overline{x}_2 x_1 \\ Kosten & K_{2-1\min} = K_{B1} + K_{B2} & + K_{2-1} = 2 + 3 & + 2 + 3 = 10 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-2} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten$$

Bestimmung der Einzelterme – Variante 2 – Überlappungen erlaubt

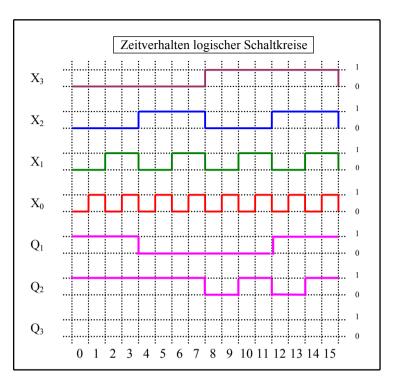
			X				
		0	1	1	0		
	0	1	1	5	4	0	
v	0	1	1 3	7	6	1	v
X_3	1	10	11	1 15	1	1	$\mathbf{X_1}$
	1	8	9	1 13	1 12 1-1	0	
		0	0	1	1		
			X				

$$Q_{1-1} = x_3 x_2$$
Kosten $K_{1-1} = 2$

$$Q_{2-1} = x_1$$


$$Kosten \quad K_{2-1} = 1$$

			X				
		0	1	1	0		
	0	1	1	1	1	0	
v	0	1	1 3	1	1 6 2-2	1	v
X ₃	1	1	1	1	1	1	\mathbf{X}_1
	1	8	9	13	12	0	
		0	0	1	1		
		X_2					


Dr. H-J Lieske/Uni. Leipzig/1999-2000/Version 3

$$Q_{2-2} = \overline{x}_3$$

$$Kosten \quad K_{2-2} = 1$$

$$\begin{bmatrix} Q_{1-1\min} = Q_{B1} \vee Q_{B2} & \vee Q_{2-1} \vee Q_{2-2} = \overline{x}_3 \overline{x}_2 \vee x_3 x_2 x_1 & \vee x_1 \vee \overline{x}_3 \\ Kosten & K_{2-1\min} = K_{B1} + K_{B2} & + K_{2-1} + K_{2-2} = 2 + 3 & +1 + 1 = 7 \end{bmatrix} \begin{bmatrix} Q_{2-1} = x_1 \\ Kosten & K_{2-1} = 1 \end{bmatrix} \begin{bmatrix} Q_{2-2} = \overline{x}_3 \\ Kosten & K_{2-2} = 1 \end{bmatrix}$$

