UNIVERSITÄT LEIPZIG

Institut für Informatik

Seminaraufgaben

2.Semester – Sommersemester 2000

Abt. Technische Informatik Gerätebeauftragter

Dr. rer.nat. Hans-Joachim Lieske

Tel.: [49]-0341-97 32213 Zimmer: HG 05-22

e-mail: lieske@informatik.uni-leipzig.de

Aufgaben zur Übung Grundlagen der Technische Informatik 2

2. Aufgabenkomplex - 1. Aufgabe

Minimierung logischer Schaltungen

Gegeben ist folgendes KV-Diagramm:

		0	1	1	0		
	0	0	1	5	1	0	
X_3	0	2	1 3	7	6	1	\mathbf{X}_{1}
A 3	1	10	11	1 15	1 14	1	Λ_1
	1	1 8	1 9	1 13	1 12	0	
	,	0	0	1	1		
			X	2			

Aufgaben:

Minimieren Sie die Schaltung

(8 Punkte)

- 1. Bestimmen Sie die Minterme, Maxterme sowie die kanonisch disjunktive- und konjunktive Normalform der Funktion. (2 Punkte)
- 2. Bestimmen Sie das Zeitverhalten der Funktion

(2 Punkte)

3. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm.

(2 Punkte)

4. Zeichnen Sie den Schaltplan der minimierten Booleschen Funktion Q_{min}=f_{min}(x₃,x₂,x₁,x₀) streng nach der Gleichung. (2 Punkte)

2. Aufgabenkomplex - 2. Aufgabe

Minimierung logischer Schaltungen mit don't care Termen

Gegeben ist folgendes Karnaugh-Veitch-Diagramm:

			X				
		0	1	1	0		
	0	1	1	5	a	0	
X_3	0	1	1 3	7	a	1	X_1
A 3	1	a	a	a	14	1	Λ_1
	1	1 8	1 9	13	12	0	
	•	0	0	1	1		
X_2							

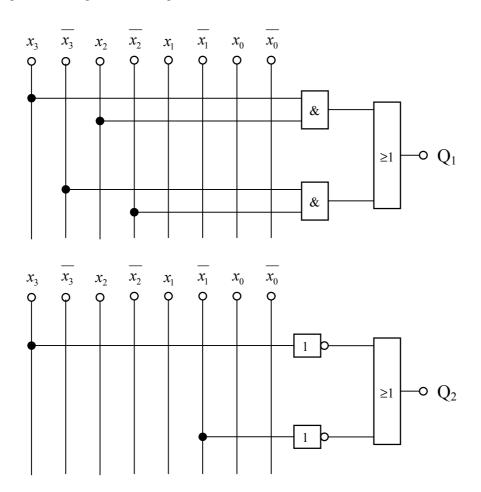
Aufgaben:

Minimieren Sie die Schaltung (12 Punkte)

- Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=0 . (1 Punkt)
 Bestimmen Sie die logische Gleichung Q₁=f₁(x₃,x₂,x₁,x₀). (1 Punkt)

 Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt)
 Zeichnen sie die Schaltung nach der Formel. (1 Punkt)
- Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=1 . (1 Punkt)
 Bestimmen Sie die logische Gleichung Q₂=f₂(x₃,x₂,x₁,x₀). (1 Punkt)
 Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt)
 Zeichnen sie die Schaltung nach der Formel. (1 Punkt)
- 3. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=beliebig (don't care Terme). (1 Punkt)

Bestimmen Sie die logische Gleichung $Q_3=f_3(x_3,x_2,x_1,x_0)$. (1 Punkt)


Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt)

Zeichnen sie die Schaltung nach der Formel. (1 Punkt)

2. Aufgabenkomplex - 3. Aufgabe

Bündelminimierung logischer Schaltungen

Gegeben sind folgende Schaltungen:

Aufgaben:

Minimieren Sie die Schaltung durch Bündelminimierung (10 Punkte)

- 1. Bestimmen Sie die Minterme und die kanonisch disjunktive Normalformen der Funktionen .
 - (2 Punkte)
- 2. Bestimmen Sie die Karnaugh-Veitch-Diagramme der Funktionen.

(2 Punkte)

3. Bestimmen Sie die Funktionen der optimalen Bündelminimierung mit den Karnaugh-Veitch-Diagrammen.

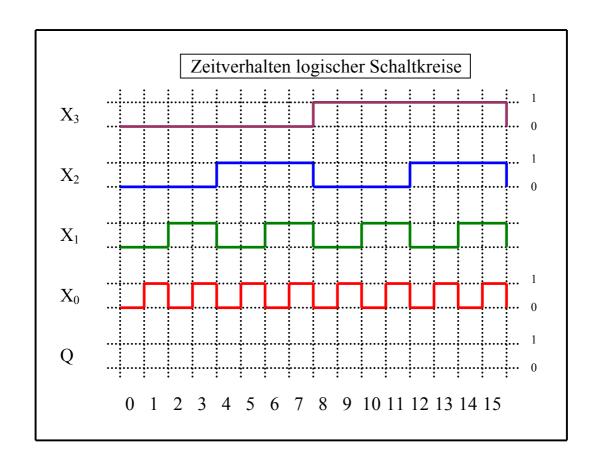
(2 Punkte)

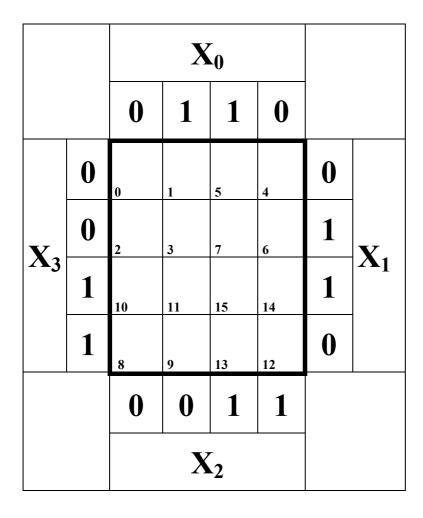
4. Zeichnen Sie die Schaltungen der minimierten Funktionen entsprechend der Bündelminimierung.

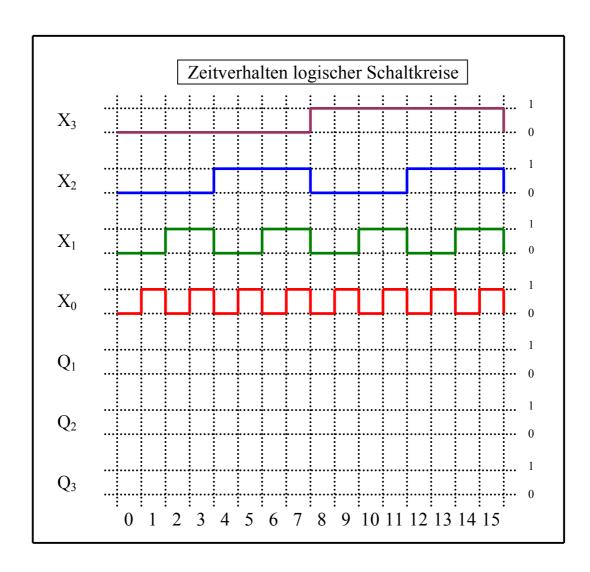
(2 Punkte)

5. Zeichnen Sie das Zeitverhalten für beide Funktionen.

(2 Punkte)


Bemerkung:


- 1. Sind zwischen den Variablen keine Operatoren, so ist das als UND-Verknüpfung zu lesen. Beispiel: $abc \equiv a \land b \land c$
- 2. Für bestimmte Fälle wird x_0 mit 2^0 =1, x_1 mit 2^1 =2, x_2 mit 2^2 =4 und später x_3 mit 2^3 =8 u.s.w. gewichtet, so das man sie als eine Zahl ansehen kann.
- 3. Die Gatter können beliebig viele Eingänge haben, ausgenommen der Inverter.
- 4. Leere Felder in Karnaugh-Veitch-Diagrammen sind immer null.


Datei: S-E02S01P – 04. Mai 2001 - Seite 5

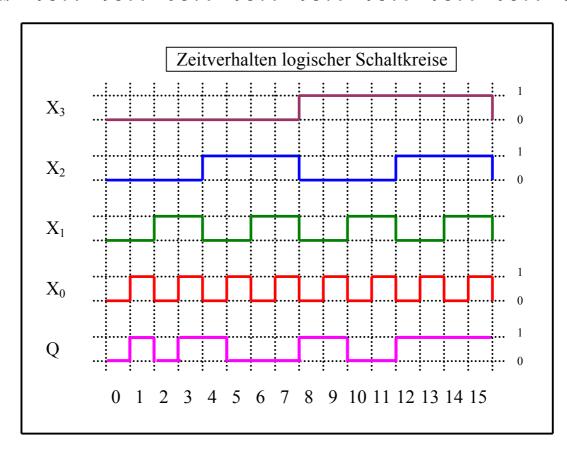
Hilfen:

	Normalformen									
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme							
0	0000									
1	0001									
2	0010									
3	0011									
4	0100									
5	0101									
6	0110									
7	0111									
8	1000									
9	1001									
10	1010									
11	1011									
12	1100									
13	1101									
14	1110									
15	1111									

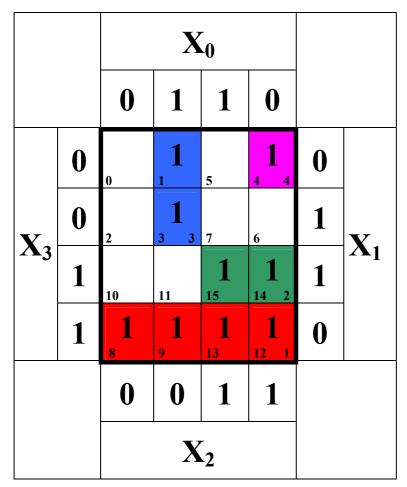
2. Aufgabenkomplex - 1. Aufgabe

Minimieren Sie die Schaltung

(8 Punkte)


1. Bestimmen Sie die Minterme, Maxterme sowie die kanonisch disjunktive- und konjunktive Normalform der Funktion. (2 Punkte)

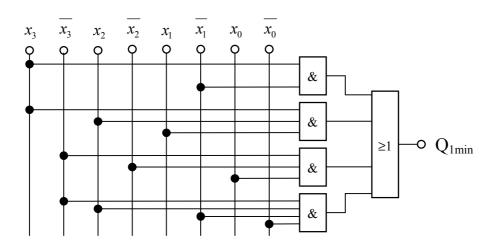
		Normalformen	
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme
0	0000		$x_3 \vee x_2 \vee x_1 \vee x_0$
1	0001	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$	
2	0010		$x_3 \vee x_2 \vee \overline{x}_1 \vee x_0$
3	0011	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$	
4	0100	$\overline{x}_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
5	0101		$x_3 \vee \overline{x}_2 \vee x_1 \vee \overline{x}_0$
6	0110		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee x_0$
7	0111		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee \overline{x}_0$
8	1000	$x_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
9	1001	$x_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$	
10	1010		$\overline{x}_3 \vee x_2 \vee \overline{x}_1 \vee x_0$
11	1011		$\overline{x}_3 \vee x_2 \vee \overline{x}_1 \vee \overline{x}_0$
12	1100	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
13	1101	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge x_0$	
14	1110	$x_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$	
15	1111	$x_3 \wedge x_2 \wedge x_1 \wedge x_0$	


 $Q_{\textit{KDNF}} = x_3 x_2 x_1 x_0 \lor x_3 x_2 x_1 \overline{x}_0 \lor x_3 x_2 \overline{x}_1 x_0 \lor x_3 x_2 \overline{x}_1 \overline{x}_0 \lor x_3 \overline{x}_2 \overline{x}_1 x_0 \lor x_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 x_1 x_0 \lor \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 \lor \overline{x}_$

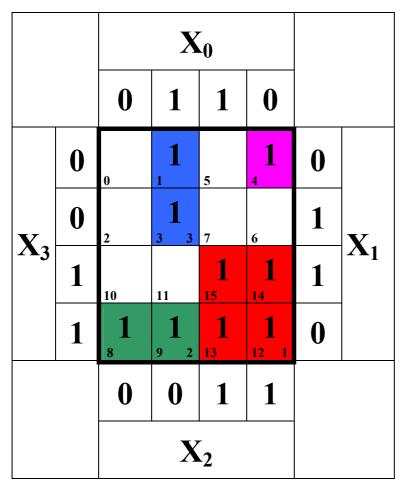
 $\begin{aligned} Q_{\textit{KKNF}} &= (x_3 \vee x_2 \vee x_1 \vee x_0) \wedge (x_3 \vee x_2 \vee \overline{x}_1 \vee x_0) \wedge (x_3 \vee \overline{x}_2 \vee x_1 \vee \overline{x}_0) \wedge (x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee x_0) \\ & \wedge (x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee \overline{x}_0) \wedge (\overline{x}_3 \vee x_2 \vee \overline{x}_1 \vee x_0) \wedge (\overline{x}_3 \vee x_2 \vee \overline{x}_1 \vee \overline{x}_0) \\ \text{Dr. H-J Lieske/Uni. Leipzig/1999-2000/Version 3} & \text{Datei: S-E02S01P-04. Mai 2001 - Seite} \end{9}$

 $Q_{\textit{KDNF}} = x_3 x_2 x_1 x_0 \lor x_3 x_2 x_1 \overline{x}_0 \lor x_3 x_2 \overline{x}_1 x_0 \lor x_3 x_2 \overline{x}_1 \overline{x}_0 \lor x_3 \overline{x}_2 \overline{x}_1 x_0 \lor x_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 x_1 x_0 \lor \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 \lor \overline{x}_$

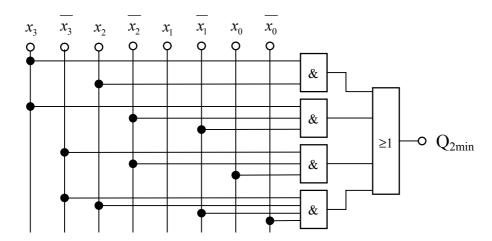
Variante 1 – Überlappungen verboten



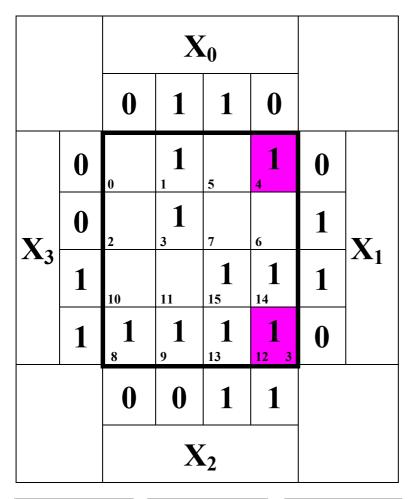
$$\begin{vmatrix} Q_{1-2} = x_3 x_2 x_1 \\ Kosten \quad K_{1-2} = 3 \end{vmatrix}$$


$$Q_{1-3} = \overline{x}_3 \overline{x}_2 x_0$$

$$Kosten \quad K_{1-3} = 3$$


$$\boxed{ \begin{aligned} Q_{1 \min} &= Q_{1-1} \vee Q_{1-2} \vee Q_{1-3} \vee Q_{1-4} = x_3 \overline{x}_1 \vee x_3 x_2 x_1 \vee \overline{x}_3 \overline{x}_2 x_0 \vee \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0 \\ Kosten & K_1 &= K_{1-1} + K_{1-2} + K_{1-3} + K_{1-4} = 2 + 3 + 3 + 4 = 12 \end{aligned} }$$

Variante 2 – Überlappungen verboten



$$\begin{bmatrix} Q_{2-1} = x_3 x_2 \\ Kosten \quad K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-2} = x_3 \overline{x}_2 \overline{x}_1 \\ Kosten \quad K_{2-2} = 3 \end{bmatrix} \begin{bmatrix} Q_{2-3} = \overline{x}_3 \overline{x}_2 x_0 \\ Kosten \quad K_{2-3} = 3 \end{bmatrix} \begin{bmatrix} Q_{2-4} = \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0 \\ Kosten \quad K_{2-2} = 4 \end{bmatrix}$$

Variante 3 – Überlappungen erlaubt

			X	Z 0				
		0	1	1	0			
	0	0	1	5	1	0		
V	0	2	1 3 4	7	6	1	v	
X_3	1	10	11	1 15	1	1	X_1	
	1	1	1	1	1 1 1 1 1 1	0		
		0	0	1	1			$Q_{3-1} = x_3 \overline{x}_1$ $Kosten K_{3-1}$
			X	Z ₂				$Q_{3-4} = \overline{x}_3 \overline{x}_2 x_0$ $Kosten K_{3-4}$
		X_0						
		0	1	1	0			
	0	0	1	5	1	0		
\mathbf{v}	0	2	1 3	7	6	1	X_1	
X_3	1	10	11	1 15	1	1	A 1	
	1	1 8	1	1 13	1 1 12 2	0		
		0	0	1	1			$Q_{3-2} = x_3 x_2$ $Kosten K_{3-2}$
			X	2				

$$Q_{3-3} = x_2 \overline{x}_1 \overline{x}_0$$

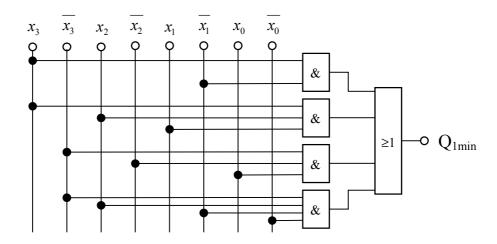
$$Kosten \quad K_{3-3} = 3$$

$$Q_{3-1} = x_3 \overline{x}_1$$

$$Kosten \quad K_{3-1} = 2$$

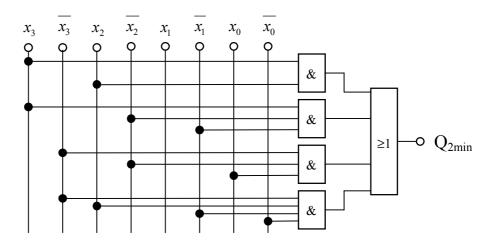
$$\begin{vmatrix} Q_{3-2} = x_3 x_2 \\ Kosten & K_{3-2} = 2 \end{vmatrix}$$

$$Q_{3-4} = \overline{x}_3 \overline{x}_2 x_0$$

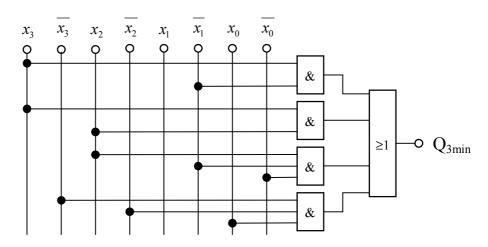

$$Kosten \quad K_{3-4} = 3$$

$$Q_{3\min} = Q_{3-1} \lor Q_{3-2} \lor Q_{3-3} \lor Q_{3-4} = x_3 \overline{x}_1 \lor x_3 x_2 \lor x_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 x_0$$

$$Kosten \quad K_3 = K_{3-1} + K_{3-2} + K_{3-3} + K_{3-4} = 2 + 2 + 3 + 3 = 10$$



4. Zeichnen Sie den Schaltplan der minimierten Booleschen Funktion Q_{min}=f_{min}(x₃,x₂,x₁,x₀) streng nach der Gleichung. (2 Punkte)

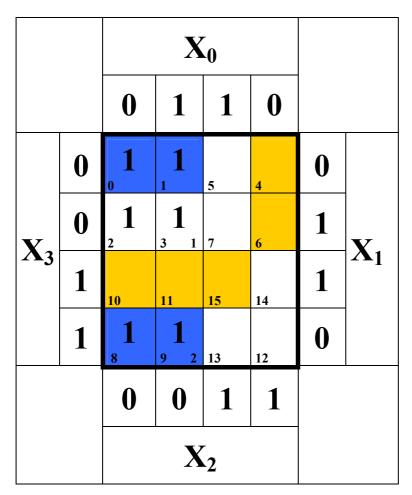

$$Q_{2\min} = Q_{2-1} \lor Q_{2-2} \lor Q_{2-3} \lor Q_{2-4} = x_3 x_2 \lor x_3 \overline{x}_2 \overline{x}_1 \lor \overline{x}_3 \overline{x}_2 x_0 \lor \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0$$

$$Kosten \quad K_2 = K_{2-1} + K_{2-2} + K_{2-3} + K_{2-4} = 2 + 3 + 3 + 4 = 12$$

$$Q_{3 \min} = Q_{3-1} \lor Q_{3-2} \lor Q_{3-3} \lor Q_{3-4} = x_3 \overline{x}_1 \lor x_3 x_2 \lor x_2 \overline{x}_1 \overline{x}_0 \lor \overline{x}_3 \overline{x}_2 x_0$$

$$Kosten \quad K_3 = K_{3-1} + K_{3-2} + K_{3-3} + K_{3-4} = 2 + 2 + 3 + 3 = 10$$

2. Aufgabenkomplex - 2. Aufgabe

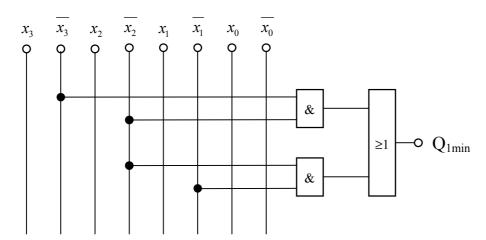

Minimierung logischer Schaltungen mit don't care Termen

Aufgaben:

Minimieren Sie die Schaltung (12 Punkte)

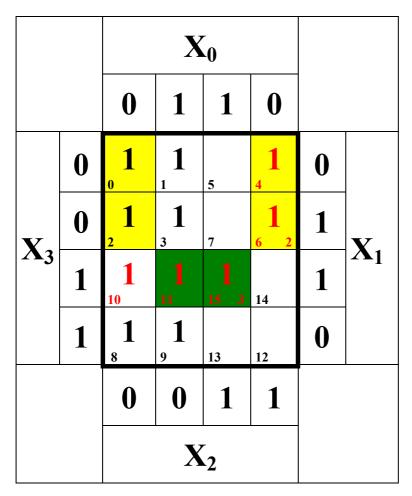
1. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=0. (1 Punkt) Bestimmen Sie die logische Gleichung $Q_1=f_1(x_3,x_2,x_1,x_0)$. (1 Punkt) Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt) Zeichnen sie die Schaltung nach der Formel. (1 Punkt)

			X	20			
		0	1	1	0		
	0	1	1	5	4	0	
V	0	1	1 3 1	7	6	1	\mathbf{V}
X_3	1	10	11	15	14	1	\mathbf{X}_1
	1	1 8	1	13	12	0	
	!	0	0	1	1		
			X	Z 2	,		


$$Q_{1-2} = \overline{x}_2 \overline{x}_1$$

$$Kosten \quad K_{1-2} = 2$$

$$Q_{1-1} = \overline{x}_3 \overline{x}_2$$


$$Kosten \quad K_{1-1} = 2$$

$$\begin{array}{|c|c|} \hline Q_{1-1} = \overline{x}_3 \overline{x}_2 \\ Kosten \quad K_{1-1} = 2 \\ \hline \\ Kosten \quad K_{1-2} = 2 \\ \hline \end{array}$$

Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=1 . (1 Punkt)
 Bestimmen Sie die logische Gleichung Q₂=f₂(x₃,x₂,x₁,x₀). (1 Punkt)
 Bestimmen Sie das Zeitverhalten der Funktion. (1 Punkt)
 Zeichnen sie die Schaltung nach der Formel. (1 Punkt)

			X	-0			
		0	1	1	0		
	0	1	1	5	1	0	
V	0	1	1 3 1	7	1	1	\mathbf{V}
X_3	1	10	1	1 15	14	1	X_1
	1	1 8	1	13	12	0	
		0	0	1	1		
			X	2	1		

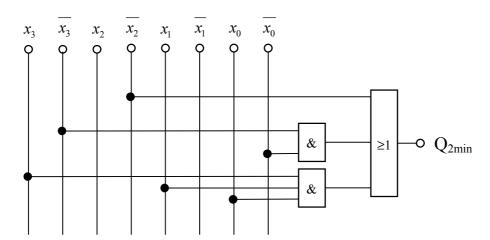
$$Q_{2-2} = \bar{x}_3 \bar{x}_0$$
Kosten $K_{2-2} = 2$

$$Q_{2-3} = x_3 x_1 x_0$$
Kosten $K_{2-3} = 3$

$$Q_{2-3} = x_3 x_1 x_0$$

$$Kosten \quad K_{2-3} = 3$$

$$Q_{2-1} = \overline{x}_2$$


$$Kosten \quad K_{2-1} = 1$$

$$Q_{2-3} = x_3 x_1 x_0$$

$$Kosten \quad K_{2-3} = 3$$

$$Q_{2\min} = Q_{2-1} \lor Q_{2-2} \lor Q_{2-3} = \overline{x}_2 \lor \overline{x}_3 \overline{x}_0 \lor x_3 x_1 x_0$$

$$Kosten \quad K_2 = K_{2-1} + K_{2-2} + K_{2-3} = 1 + 2 + 3 = 6$$

3. Minimieren Sie die Funktion mit dem Karnaugh-Veitch-Diagramm für a=beliebig (don't care Terme) . (1 Punkt)

Bestimmen Sie die logische Gleichung $Q_3=f_3(x_3,x_2,x_1,x_0)$.

(1 Punkt)

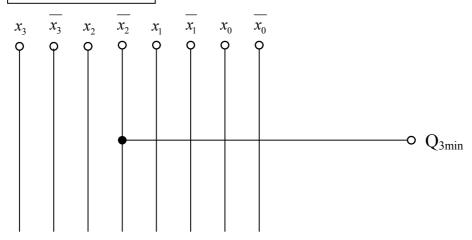
Bestimmen Sie das Zeitverhalten der Funktion.

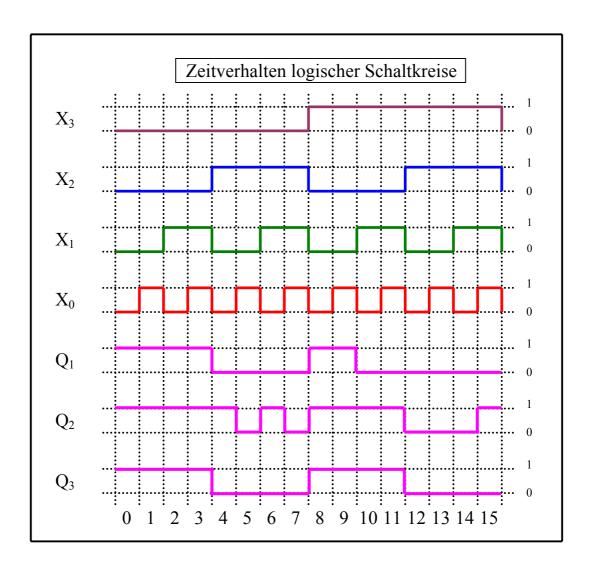
(1 Punkt)

Zeichnen sie die Schaltung nach der Formel.

(1 Punkt)

			X				
		0	1	1	0		
	0	1	1	5	4	0	
v	0	1	1	7	6	1	\mathbf{V}
X_3	1	10	1	15	14	1	X_1
	1	1 8	1	13	12	0	
		0	0	1	1		
			X	Z 2	,		

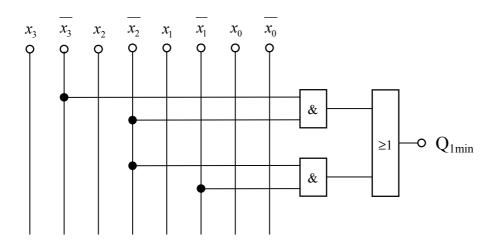

$$Q_{3-1} = \overline{x}_2$$

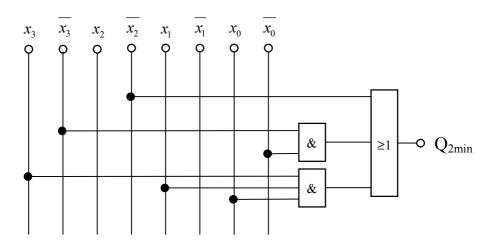

$$Kosten \quad K_{3-1} = 1$$

$$Q_{3-1} = \overline{x}_2$$

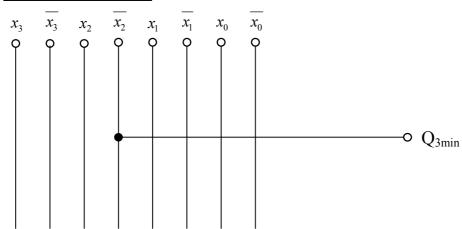
$$Kosten \quad K_{3-1} = 1$$

$$Q_{3\min} = Q_{3-1} = \overline{x}_2$$
Kosten $K_3 = K_{3-1} = 1$




Vergleich der Schaltungen

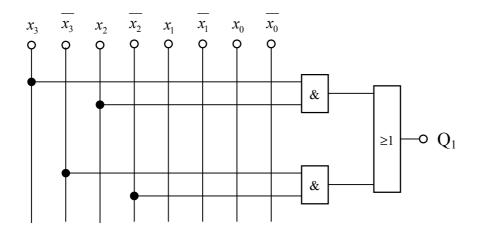
$$Q_{1 \min} = Q_{1-1} \lor Q_{1-2} = \overline{x}_3 \overline{x}_2 \lor \overline{x}_2 \overline{x}_1$$


$$Kosten \quad K_1 = K_{1-1} + K_{1-2} = 2 + 2 = 4$$

$$\boxed{ \begin{aligned} Q_{2 \min} &= Q_{2-1} \lor Q_{2-2} \lor Q_{2-3} = \overline{x}_2 \lor \overline{x}_3 \overline{x}_0 \lor x_3 x_1 x_0 \\ Kosten & K_2 &= K_{2-1} + K_{2-2} + K_{2-3} = 1 + 2 + 3 = 6 \end{aligned} }$$

$$Q_{3\min} = Q_{3-1} = \bar{x}_2$$
Kosten $K_3 = K_{3-1} = 1$

2. Aufgabenkomplex - 3. Aufgabe

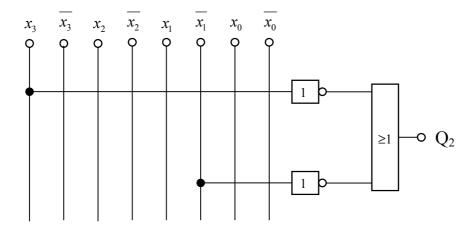

Bündelminimierung logischer Schaltungen

Aufgaben:

Minimieren Sie die Schaltung durch Bündelminimierung (10 Punkte)

1. Bestimmen Sie die Minterme und die kanonisch disjunktive Normalformen der Funktionen . (2 Punkte)

1. Schaltung:


$$Q_1 = x_3 x_2 \vee \overline{x}_3 \overline{x}_2 = x_3 x_2 \vee \overline{x}_3 \overline{x}_2 = x_3 x_2 ba \vee \overline{x}_3 \overline{x}_2 ba$$

$$Kosten \quad K_1 = 2 + 2 = 4$$

	Normalformen									
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme							
0	0000	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge \overline{x}_0$								
1	0001	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$								
2	0010	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge \overline{x}_0$								
3	0011	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$								
4	0100		$x_3 \vee \overline{x}_2 \vee x_1 \vee x_0$							
5	0101		$x_3 \vee \overline{x}_2 \vee x_1 \vee \overline{x}_0$							
6	0110		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee x_0$							
7	0111		$x_3 \vee \overline{x}_2 \vee \overline{x}_1 \vee \overline{x}_0$							
8	1000		$\overline{x}_3 \vee x_2 \vee x_1 \vee x_0$							
9	1001		$\overline{x}_3 \vee x_2 \vee x_1 \vee \overline{x}_0$							
10	1010		$\overline{x}_3 \vee x_2 \vee \overline{x}_1 \vee x_0$							
11	1011		$\overline{x}_3 \vee x_2 \vee \overline{x}_1 \vee \overline{x}_0$							
12	1100	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$								
13	1101	$x_3 \wedge x_2 \wedge \overline{x}_1 \wedge x_0$								
14	1110	$x_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$								
15	1111	$x_3 \wedge x_2 \wedge x_1 \wedge x_0$								

 $Q_{KDNF} = x_3 x_2 x_1 x_0 \vee x_3 x_2 x_1 \overline{x}_0 \vee x_3 x_2 \overline{x}_1 x_0 \vee x_3 x_2 \overline{x}_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 x_1 x_0 \vee \overline{x}_3 \overline{x}_2 x_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0$

2. Schaltung:

$$Q_2 = \overline{x}_3 \lor x_1 = \overline{x}_3 cba \lor dcx_1 a$$

$$Kosten \quad K_2 = 1 + 1 = 2$$

		Normalformen	
Zahl	Eingangsvariablen x_3, x_2, x_1, x_0	Minterme	Maxterme
0	0000	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
1	0001	$\overline{x}_3 \wedge \overline{x}_2 \wedge \overline{x}_1 \wedge x_0$	
2	0010	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge \overline{x}_0$	
3	0011	$\overline{x}_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$	
4	0100	$\overline{x}_3 \wedge x_2 \wedge \overline{x}_1 \wedge \overline{x}_0$	
5	0101	$\overline{x}_3 \wedge x_2 \wedge \overline{x}_1 \wedge x_0$	
6	0110	$\overline{x}_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$	
7	0111	$\overline{x}_3 \wedge x_2 \wedge x_1 \wedge x_0$	
8	1000		$\overline{x}_3 \vee x_2 \vee x_1 \vee x_0$
9	1001		$\overline{x}_3 \vee x_2 \vee x_1 \vee \overline{x}_0$
10	1010	$x_3 \wedge \overline{x}_2 \wedge x_1 \wedge \overline{x}_0$	
11	1011	$x_3 \wedge \overline{x}_2 \wedge x_1 \wedge x_0$	
12	1100		$\overline{x}_3 \vee \overline{x}_2 \vee x_1 \vee x_0$
13	1101		$\overline{x}_3 \vee \overline{x}_2 \vee x_1 \vee \overline{x}_0$
14	1110	$x_3 \wedge x_2 \wedge x_1 \wedge \overline{x}_0$	
15	1111	$x_3 \wedge x_2 \wedge x_1 \wedge x_0$	

$$\begin{aligned} Q_{\textit{KDNF}} &= x_3 x_2 x_1 x_0 \vee x_3 x_2 x_1 \overline{x}_0 \vee x_3 \overline{x}_2 x_1 x_0 \vee x_3 \overline{x}_2 x_1 \overline{x}_0 \vee \overline{x}_3 x_2 x_1 x_0 \vee \overline{x}_3 x_2 x_1 \overline{x}_0 \\ & \vee \overline{x}_3 x_2 \overline{x}_1 x_0 \vee \overline{x}_3 x_2 \overline{x}_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 x_1 x_0 \vee \overline{x}_3 \overline{x}_2 x_1 \overline{x}_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 x_0 \vee \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 \end{aligned}$$

			X	0			
		0	1	1	0		
	0	1	1	5	4	0	
V	0	1	1 3	7	6	1	\mathbf{V}
X_3	1	10	11	1 15	1	1	\mathbf{X}_1
	1	8	9	1 13	1	0	
	!	0	0	1	1		
			X	2	•		

			X				
		0	1	1	0		
	0	1	1	1 5	1	0	
X_3	0	1	1 3	1	1	1	X_1
A 3	1	1	1	1 15	1	1	$oxed{\Lambda_1}$
	1	8	9	13	12	0	
		0	0	1	1		
			X	Z ₂			

3. Bestimmen Sie die Funktionen der optimalen Bündelminimierung mit den Karnaugh-Veitch-Diagrammen. (2 Punkte)

			X				
		0	1	1	0		
	0	1	1	5	4	0	
\mathbf{v}	0	1	1 3 B1	7	6	1	\mathbf{V}
X_3	1	10	11	1 15	1 14 B2	1	X_1
	1	8	9	1 13	1	0	
		0	0	1	1		
	X_2						

$Q_{B1} = \overline{x}_3 \overline{x}_3$	\overline{x}_2
Kosten	$K_{B1} = 2$

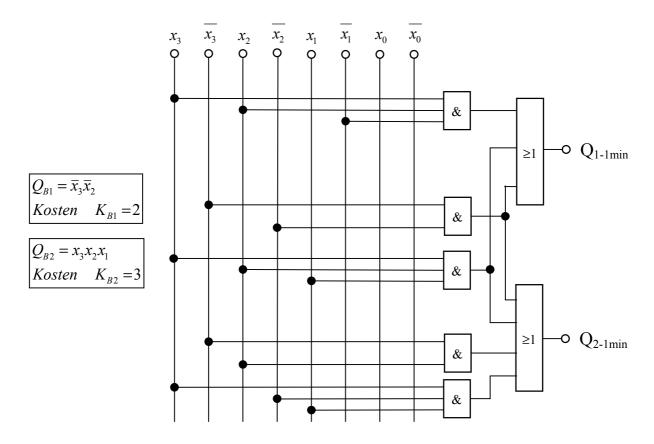
$$Q_{B2} = x_3 x_2 x_1$$

$$Kosten \quad K_{B2} = 3$$

			X				
		0	1	1	0		
	0	1	1	1 5	1	0	
v	0	1	1 3 B1	1	1	1	\mathbf{V}
X_3	1	10	1	1 15	1 14 B2	1	X_1
	1	8	9	13	12	0	
		0	0	1	1	•	
X_2							

		X_0					
		0	1	1	0		
	0	1	1	5	4	0	
X_3	0	1	1 3 B1	7	6	1	\mathbf{X}_1
A 3	1	10	11	1	1 14 B2	1	Λ_1
	1	8	9	1 13	1 12 1-1	0	
		0	0	1	1		
	X_2						

$Q_{1-1}=x_3.$	$x_2\overline{x}_1$
Kosten	$K_{1-1} = 3$


			X				
		0	1	1	0		
	0	1	1	1 5	1	0	
\mathbf{v}	0	1	1 3 B1	1 7	1 6 2-1	1	\mathbf{V}
X_3	1	1	1 11 2-2	1 15	1 14 B2	1	X_1
	1	8	9	13	12	0	
		0	0	1	1		
	\mathbf{X}_{2}						

$$Q_{2-1} = \overline{x}_3 x_2$$

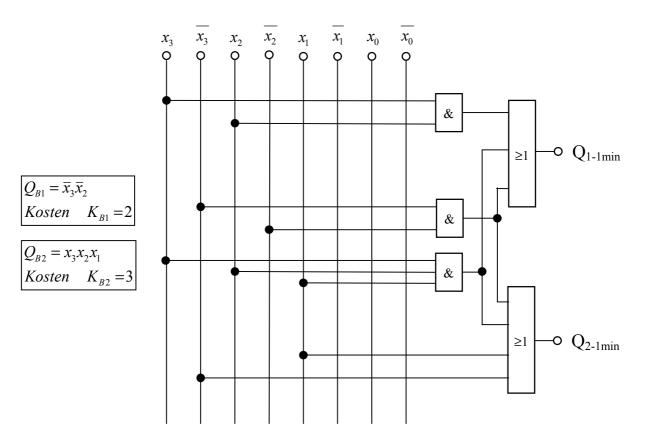
$$Kosten \quad K_{2-1} = 2$$

$$Q_{2-2} = x_3 \overline{x}_2 x_1$$

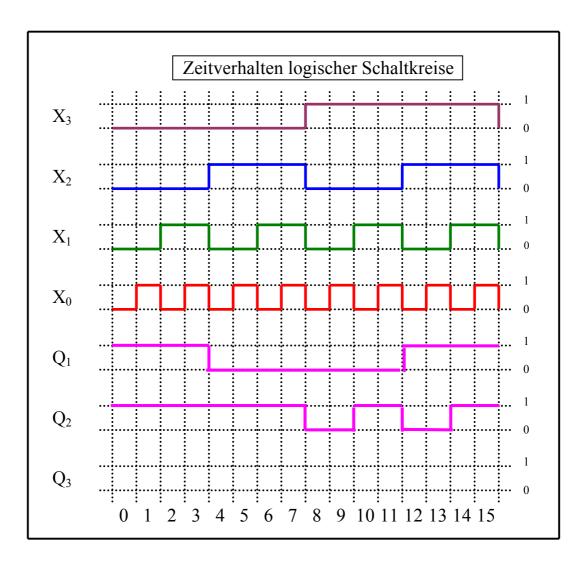
$$Kosten \quad K_{2-2} = 3$$

$$\begin{bmatrix} Q_{1-1 \min} = Q_{B1} \vee Q_{B2} & \vee Q_{2-1} \vee Q_{2-2} = \overline{x}_3 \overline{x}_2 \vee x_3 x_2 x_1 & \vee \overline{x}_3 x_2 \vee x_3 \overline{x}_2 x_1 \\ Kosten & K_{2-1 \min} = K_{B1} + K_{B2} & + K_{2-1} = 2 + 3 & + 2 + 3 = 10 \end{bmatrix} \begin{bmatrix} Q_{2-1} = \overline{x}_3 x_2 \\ Kosten & K_{2-1} = 2 \end{bmatrix} \begin{bmatrix} Q_{2-2} = x_3 \overline{x}_2 x_1 \\ Kosten & K_{2-2} = 3 \end{bmatrix}$$

			X				
		0	1	1	0		
	0	1	1	5	4	0	
X 7	0	1	1 3	7	6	1	\mathbf{v}
X_3	1	10	11	1 15	1	1	X_1
	1	8	9	1 13	1 12 1-1	0	
		0	0	1	1		
			X				


 $Q_{1-1} = x_3 x_2$ $Kosten \quad K_{1-1} = 2$

			X				
		0	1	1	0		
	0	1	1	1	1	0	
v	0	1	1	1	1	1	v
X_3	1	1	1	1 15	1 14 2-1	1	X_1
	1	8	9	13	12	0	
		0	0	1	1		
X_2							


$$\begin{bmatrix} Q_{2-1} = x_1 \\ Kosten & K_{2-1} = 1 \end{bmatrix}$$

		$\mathbf{X_0}$					
		0	1	1	0		
	0	1	1	1	1	0	
N/	0	1	1	1 7	1 6 2-2	1	\mathbf{V}
X_3	1	1	1	1 15	1	1	X_1
	1	8	9	13	12	0	
		0	0	1	1		
$\mathbf{X_2}$							

$$Q_{2-2} = \overline{x}_3$$
Kosten $K_{2-2} = 1$

$$\begin{bmatrix} Q_{1-1 \min} = Q_{B1} \vee Q_{B2} & \vee Q_{2-1} \vee Q_{2-2} = \overline{x}_3 \overline{x}_2 \vee x_3 x_2 x_1 & \vee x_1 \vee \overline{x}_3 \\ Kosten & K_{2-1 \min} = K_{B1} + K_{B2} & + K_{2-1} + K_{2-2} = 2 + 3 & +1 + 1 = 7 \end{bmatrix} \begin{bmatrix} Q_{2-1} = x_1 \\ Kosten & K_{2-1} = 1 \end{bmatrix} \begin{bmatrix} Q_{2-2} = \overline{x}_3 \\ Kosten & K_{2-1} = 1 \end{bmatrix}$$

