
UNIVERSITÄT LEIPZIG
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Selbstständigkeitserklärung
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Abstract

The topic of the thesis is content-based retrieval of 3D-models by shape-similarity.
In our 3D model retrieval system a model, a polygonal mesh, serves as a query and
similar objects are retrieved from a collection of 3D-objects. Algorithms proceed
first by a normalization step in which models are transformed into a canonical
coordinate frame. Second, feature vectors (descriptors) are extracted and compared
with those derived from normalized models in the search space. Using a metric in
the feature vector space nearest neighbors are computed and ranked. Objects thus
retrieved are displayed for inspection, selection, and processing.

Objects represented as polygonal meshes are given in arbitrary orientation, scale,
and position in the 3D-space. If the invariance of descriptor with respect to simi-
larity transforms is not provided by the representation of a feature, pose estimation
(normalization) is necessary as a step preceding the feature extraction. The pose
normalization procedure is a transformation of a 3D-mesh model into a canoni-
cal coordinate frame by translating, rotating, scaling, and reflecting (flipping) the
original set of vertices. We regard a triangle mesh model as a union of triangles,
whence the point set of the model consists of infinitely many points. In contrast to
pose normalization techniques based on sums over weighted vertices, we work with
sums of integrals over triangles which makes our approach more complete taking
into account all points of the model with equal weight.

The main objective of this thesis is construction, analysis, and testing of new
techniques for describing 3D-shape of polygonal mesh models. Since a solid formal
framework that could be used for defining optimal 3D-shape descriptors does not
exist, we develop a variety of descriptors capturing different features of 3D-objects
and using different representation methods. We consider a variety of features for
characterizing 3D-shape such as extents of a model in certain directions, contours
of 2D projections of a model, depth buffer images of a model, artificially defined
volumes associated to triangles of a mesh, voxel grids attributed by fractions of
the total surface area of a mesh, rendered perspective projections of a model on an
enclosing sphere, and layered depth spheres. The used representation techniques
include the 1D, 2D, and 3D discrete Fourier transforms, the Fourier transform on a
sphere (spherical harmonics), and moments for representing the extent function. We
also introduce two approaches for merging appropriate feature vectors, by defining a
complex function on a sphere, and by crossbreeding (hybrid descriptors). We present
a variety of original feature extraction algorithms and give complete specifications
for forming feature vector components for each of presented approaches. A Web-
based 3D model retrieval system is implemented and serves as a proof-of-concept.

We compare two techniques for achieving invariance of descriptors with respect
to rotation of the polygonal mesh, the Principal Component Analysis (PCA) vs. a
property of spherical harmonics. Several tests show that the first approach (PCA)



is better method for attaining rotation invariance of descriptors.
The retrieval performance of our feature vectors is carefully studied and com-

pared to effectiveness of techniques proposed by other authors. We compare 12 dif-
ferent types of 3D-descriptors defined by ourselves to 7 types of descriptors defined
by other authors using six ground truth classifications of 3D-models. The results
unambiguously show that our best descriptor, a hybrid feature vector, outperforms
the state-of-the-art.
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Introduction

Since the ubiquitous Internet makes the world an increasingly networked place,
effective access to information is becoming more and more important. An object
from a database can traditionally be accessed using attached structural data. Other
forms of data access include search in collections of textual documents and search in
collections of audiovisual data (images, audio sequences, movies, and 3D-objects).
Solutions for searching collections of textual documents are reasonably effective.
Search in collections of multimedia objects can be performed by using textual an-
notations or by analyzing content of objects. Content-based search for multimedia
objects is more challenging form of accessing audiovisual information. When we
started our work in autumn 1999, solutions for content-based search were mostly
aimed at retrieving still images, audio sequences, and movies, while only a few tech-
niques for 3D model retrieval were reported. Our goal was to create a variety of
3D-shape descriptors in order to fill in the gap.

Appropriate 3D-shape features are automatically extracted and represented us-
ing suitable data structures (e.g., vectors, octrees, graphs). The resulting repre-
sentation of a feature is regarded as a descriptor. Usually, features are represented
by vectors with real-valued components, whence such descriptors are regarded as
feature vectors. Descriptors should be defined in such a way that similar 3D-models
are attributed feature vectors that are close in the search space. In our 3D model
retrieval system a model, a polygonal mesh, serves as a query and similar objects
are retrieved from a collection of 3D-objects. Algorithms proceed first by a nor-
malization step (pose estimation) in which models are transformed into a canonical
coordinate frame. Second, feature vectors are extracted and compared with those
derived from normalized models in the search space. Using a metric in the feature
vector space nearest neighbors are computed and ranked. Objects thus retrieved
are displayed for inspection, selection, and processing. Shape-similarity retrieval of
3D-objects is not a “toy” problem, because designers of virtual worlds, creators of
mechanical parts, scientist studying molecule docking, and authors of copyrighted
models need to find 3D-models of particular shapes. Having in mind that recent
development of 3D-scanners, visualization techniques, and CAD tools continuously
increase the number of available 3D-models, there is a need for content-based 3D
model retrieval systems.

The main objective of this thesis is construction, analysis, and testing of new
techniques for describing 3D-shape of polygonal mesh models. Since there is no
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2 Introduction

theory that specifies how to analyze low-level features of polygonal meshes in order
to describe the 3D-shape in the optimal way, we developed a variety of descriptors
capturing different features of 3D-objects and using different representation meth-
ods. The best feature vectors possess high discriminant power. Besides defining
3D-shape descriptors, the retrieval performance of our feature vectors is carefully
studied and compared to effectiveness of techniques proposed by other authors. A
variety of tools are implemented for efficient experimental analysis and verification
of results. A Web-based 3D model retrieval system serves as a proof-of-concept.
The results unambiguously show that our best descriptors outperform the state-of-
the-art.

This thesis is organized as follows:

• Introduction;

• Chapter 1: Multimedia Retrieval;

• Chapter 2: Related Research Work;

• Chapter 3: Pose Estimation;

• Chapter 4: 3D-Shape Feature Vectors;

• Chapter 5: Experimental Results;

• Chapter 6: Conclusion;

• Bibliography;

• Appendix: CCCC.

The first chapter has an introductory character and consists of five sections.
The motivation and general concept of multimedia retrieval is presented in sec-
tion 1.1. An overview of MPEG-7, a standard that provides tools and methods
to describe the content of audiovisual data, is given in section 1.2. Section 1.3,
which consists of four subsections, focuses on the topic of the thesis, content-based
retrieval of 3D-models. Since polygonal mesh is the most common way of represent-
ing 3D-objects, the polygonal mesh representation is explained in subsection 1.3.1.
A general 3D-model retrieval algorithm is presented in subsection 1.3.2. In con-
trast to image retrieval, where color and texture can be used for searching similar
object, the main challenge in the area of 3D-model retrieval is to describe shape of
a 3D-object. Types of features, which are considered for characterizing shape, are
discussed in subsection 1.3.3. 3D-shape descriptors should fulfill certain criteria,
which are defined and discussed in subsection 1.3.4. Methods for measuring simi-
larity (or dissimilarity) between feature vectors are addressed in section 1.4. Tools
that are used in order to evaluate retrieval performance of 3D-shape descriptors are
described in section 1.5.

The second chapter is dedicated to 3D-shape descriptors proposed by other
authors. Since more and more researchers are attracted by the topic, a variety
of approaches for describing 3D-shape have recently been reported. Besides, there
is a significant work in the area of Computer Vision, which can be regarded as a
somewhat similar topic. However, we do not need to infer all the information about
3D-shape from one or more 2D-images, because we deal with objects represented
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as polygonal meshes. The criteria for selecting the descriptors that are presented in
this chapter are historical reasons and the impact on the area of retrieval of polyg-
onal mesh models. A selection of 9 techniques proposed by five groups of authors is
described in details. In section 2.1, cords and moments-based descriptors proposed
by Paquet et al. are described. A descriptor based on equivalence classes proposed
by Suzuki et al. is presented in section 2.2. Section 2.3 is dedicated to the MPEG-7
shape spectrum descriptor, which is a histogram of curvature indices. An interesting
technique, called topology matching, which uses graphs as 3D-shape descriptors, is
explained in section 2.4. Section 2.5 is subdivided into 4 parts describing techniques
proposed by the Princeton Shape Analysis and Retrieval Group. A concept of shape
distributions (subsection 2.5.1) is based on randomized computation of certain geo-
metric properties. A descriptor based on binary voxel grids (subsection 2.5.2) uses
an original representation technique that secures invariance of the descriptor with
respect to rotations of a 3D-model. The reflective symmetry descriptor (subsection
2.5.3 relies upon the assumption that a measure of similarity between parts of a
model laying on the opposite sides of a cutting plane can be used for capturing 3D-
shape. A descriptor based on exponentially decaying Euclidean distance transform
(subsection 2.5.4) uses almost identical representation as the descriptor based on
binary voxel grids. However, the considered feature, a voxel grid attributed by ex-
ponentially decaying Euclidean distance transform (EDT), describes the 3D-shape
in a more effective way. Based on our evaluation as well as on results presented
in the literature, we regard the descriptor based on negatively exponentiated EDT
[58] as the state-of-the-art-descriptor.

Objects represented as polygonal meshes are given in arbitrary orientation, scale,
and position in the 3D-space R

3. 3D-shape descriptors can be defined in such a way
that invariance with respect to translation, rotation, scaling, and reflection of a
mesh model is provided. Examples of such descriptors are the shape spectrum
descriptor (section 2.3), topology matching (section 2.4), and shape distributions
(section 2.5.1). If the invariance of descriptor with respect to similarity transforms
is not provided by the representation of a feature, pose estimation (normalization)
is necessary as a step preceding the feature extraction. The pose normalization
procedure is a transformation of a 3D-mesh model into a canonical coordinate frame
by translating, rotating, scaling, and reflecting (flipping) the original set of vertices.
In the third chapter, details about our original pose estimation approach are given.
In section 3.1, we describe the problem of finding the canonical coordinates of a
mesh. The most prominent tool for solving the problem is the Principal Component
Analysis (PCA) [51], also known as the discrete Karhunen-Loeve transform, or the
Hotelling transform, which is described in details in section 3.2. Since applying the
PCA to the set of vertices of a mesh model can produce undesired normalization
results, two modifications of the PCA are given in section 3.3. Both modifications
approximate the application of the PCA to the point set of a 3D-object (union of
polygons). In section 3.4, we present our original method for analytical computation
of various parameters needed to analyze the set of infinitely many points. This
computation enables application of the PCA to an infinite point set represented as
a union of triangles. We called the approach the Continuous Principal Component
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Analysis (CPCA). Examples as well as an evaluation of the continuous approach
are given in section 3.5.

In the fourth chapter, we present our original methods for describing 3D-shape.
Since the optimal way of encoding information about 3D-shape is not prescribed, we
consider a variety of different features to define shape descriptors (feature vectors).
The approaches include: ray-based feature vector in the spatial domain (section
4.1), silhouette-based descriptor (section 4.2), depth buffer-based feature vector
(section 4.3), descriptor based on artificial volumes associated to triangles (section
4.4), and descriptor based on voxel grids attributed by fractions of the total surface
of a polygonal mesh (section 4.5). Certain features aimed at describing 3D-shape
of a polygonal mesh can be considered as samples of a function on a sphere (section
4.6). A suitable tool for representing samples of functions on a sphere is the fast
Fourier transform on a sphere. In the frequency (spectral) domain, the samples are
represented by spherical harmonic coefficients. In subsection 4.6.1, a brief presenta-
tion of spherical harmonics as well as our original approach for forming descriptors
with spherical harmonic representation are given. As far as we know, spherical
harmonics as a tool for 3D model retrieval are introduced by ourselves in [147]. A
set of descriptors with spherical harmonic representation include: ray-based fea-
ture vector with spherical harmonic representation (section 4.6.2), descriptor based
on rendered perspective projection on an enclosing sphere (section 4.6.4), complex
feature vector (section 4.6.5), descriptor based on layered depth spheres (section
4.6.6), and rotation invariant descriptor based on layered depth spheres (section
4.6.6). We also defined a moments-based feature vector (section 4.6.3), to compare
different representations of samples of functions on a sphere, spherical harmonics
vs. moments. Finally, a concept of hybrid feature vectors is introduced in section
4.7. We follow a typical 3D-model algorithm (pose estimation→ feature extraction
→ similarity search) and most of our feature vectors are extracted in the canon-
ical coordinate frame of a 3D-model. Our techniques are not restricted to closed
or orientable polygonal mesh models. In order to be able to verify the results of
feature extraction procedure, we usually implement at least two extraction tools for
each approach. The forming of feature vector components as well as specifications
of feature extraction methods are described in details, in order to provide sufficient
information to a reader who wants to implement and test our methods.

A set of 19 implemented types of feature vectors (12 ours and 7 proposed by
other authors) is evaluated in the fifth chapter. Firstly, in section 5.1, we present
available 3D-model collections and classifications, which are used as ground truth for
experiments. We use two classifications of our 3D-model collection, which is mostly
collected on the Internet (e.g., www.3dcafe.com), two classifications of the MPEG-7
set of 3D-models, and two 3D-model databases (training and test) provided by the
Princeton Shape Analysis and Retrieval Group [108]. In section 5.2, we examine
different variants and parameter settings of our descriptors, and test a variety of
dissimilarity measures. Similar test are performed for descriptors proposed by other
authors. After the best version, parameter settings, and dissimilarity measure are
determined for each descriptor, a global comparison is performed. The results show
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that our hybrid descriptor significantly outperform all other descriptors, including
the state-of-the-art descriptor, which is extracted using original tools provided by
the authors [108]. Experiments aimed at testing dimension reduction using the
Principal Component Analysis (PCA) are presented in section 5.3. A summary of
experimental results (section 5.4) concludes the chapter. Some authors object the
use of the PCA for orienting a model in the pose estimation step. However, our
results show that the best approach relies upon the PCA. Moreover, we modified
certain techniques (including our implementation of the state-of-the-art) that avoid
the use of the PCA by utilizing a property of spherical harmonics. The modification
consists of applying the PCA instead of the property of spherical harmonics. Thus,
we compared the competing techniques for achieving rotation invariance, the PCA
vs. the property of spherical harmonics, on three types of feature vectors. Each
time the result was the same, the descriptors relying upon the PCA outperformed
descriptor relying upon the competing approach for attaining rotation invariance.

In the sixth chapter, we summarize the contribution, stress the most important
results, and suggest directions for future work.

A list of directly used or cited works (bibliography), which contains 153 refer-
ences, is located at the end of the thesis.

Our Web-based 3D model retrieval system, called CCCC, is presented in the
appendix. Besides serving as a proof-of-concept, the CCCC 3D search engine
is useful for obtaining an impression about effectiveness of different descriptors,
by inspecting retrieved models as well as by using provided tools for comparing
descriptors at three levels (models, classes, and the whole collection).

Our contributions to the area of 3D model retrieval are the following:

• Introduction of spherical harmonics as a tool for 3D model retrieval [147];

• Introduction of the concept of hybrid descriptors (original result in the thesis);

• Introduction of the Continuous Principal Component Analysis (CPCA) as a tool
for 3D model retrieval [147];

• Introduction of the ray-based approach as a 3D-model retrieval technique [143,
141];

• Definition and evaluation of different variants of the silhouette-based feature vec-
tor (original result in the thesis). We proposed the first variant of the silhouette-
based approach in [46, 47];

• Definition and evaluation of different variants of the depth buffer-based feature
vector (original result in the thesis). We proposed the first variant of the depth
buffer-based approach in [46, 47];

• Definition and evaluation of different variants of the volume-based feature vector
(original result in the thesis). We proposed the first variant of the volume-based
approach in [46, 47];

• Definition and evaluation of different variants of the voxel-based feature vector
(original result in the thesis). We proposed the first variant of the voxel-based
approach in [46, 47];
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• Introduction of the discrete 3D Fourier transform as a tool for 3D model retrieval
[144];

• Definition of the moments-based descriptor [117];

• Consideration of a rendered perspective projection as a feature aimed at describ-
ing 3D-shape of polygonal mesh models (shading-based descriptor) [146];

• Introduction of the concept of complex feature vectors [146];

• Introduction of layered depth spheres as a new data structure suitable for char-
acterizing 3D-shape of polygonal meshes (original result in the thesis);

• Comparison of two approaches for achieving invariance with respect to rotations
of a polygonal mesh model, the CPCA vs. a property of spherical harmonics
[142];

• Pointing out that 3D-shape descriptors should be robust with respect to outliers.
As far as we know, the requirement is mention in [144] for the first time;

• Creation of a variety of original and very efficient algorithms for computing
certain geometrical properties of polygonal meshes (original result in the thesis);

• Comparison of 19 different types of descriptors using 6 different ground truth
classifications (original result in the thesis);

• Implementation of a Web-based retrieval system [140].



Chapter 1

Multimedia Retrieval

In this chapter, we first present the motivation and general concept of multimedia
retrieval. Then, we give a brief overview of MPEG-7, a standard that provides
tools and methods to describe the content of audiovisual data. Next, we focus
on the topic of the thesis, shape-similarity search for 3D-objects. We describe
the polygonal-mesh representation of 3D-models, present the algorithm that we
use to search in 3D-shape collections, discuss types of features that are used for
describing 3D-content, and set criteria for defining 3D-shape descriptors. We also
address methods for measuring similarity (or dissimilarity) between feature vectors.
Finally, we describe tools that are applied in order to evaluate retrieval performance
of 3D-shape descriptors.

1.1 Content-Based Retrieval of Audiovisual Data

The “Space Odyssey”, “Star Trek ”, and other science fiction movies that appeared
more than three decades ago, besides interesting stories and action scenes with
special effects, offered talking computers, which were able to accept a command
by recognizing voice and to use an image-based query to retrieve similar images.
Three decades ago it was just an interesting idea. Nowadays, the amount of unique
information produced in the world is rapidly increasing. Recent studies (like [74])
suggest that this production exceeds 1 exabyte (i.e., 1018 bytes) of new information
per year, which is roughly 250 megabytes for every human on earth. Magnetic
storage is becoming the universal medium for information storage. At the same
time, much data are available on-line to a broad range of users. In order to use a
document or an audiovisual object, it has to be located first. Therefore, the actual
need for efficient data-access has led to the development of different search tools.
The role of multimedia is increasingly important in many real-world applications
such as e-commerce, communication, education, biomedicine, digital library, and
journalism. In this section, we present the general concept of multimedia retrieval
and emphasize the importance of content-based search.

7



8 Multimedia Retrieval

An object from a database can traditionally be accessed using attached struc-
tural data. Solutions for searching collections of textual documents are very effi-
cient and effective (e.g., Google or AltaVista). Collections of multimedia objects
are mostly searched by using textual annotations, which can be effective when
consistency of annotation exists. Since textual annotations are usually manually
generated, they are subject to a person who creates them. Thus, the question
of consistency arises, when annotations are created by different persons. Besides,
only high-level information of audiovisual data can be annotated manually. For in-
stance, an image of a landscape can be described by several words, e.g., “landscape”,
“mountains”, “valley”, “river”, etc., while the information about color structure
and shapes of objects on the image cannot be described by text, in general. Other
drawbacks of retrieval techniques that use manual annotations are time-consuming
creation and the fact that not all multimedia data contain attached textual in-
formation. The other approach is to analyze appropriate low-level features of a
multimedia object (an image, movie, audio sequence, or 3D-model) and describe
the content automatically, without interaction of human being. Features that are
analyzed depend on a type of the object. In this case, generated descriptions are
used for content-based retrieval of database objects.

As a contrast to text-based searching techniques in which a string of words serves
as a query, content-based retrieval uses a multimedia object as a search key (query).
Examples of content based search for multimedia data are:

• Audio: humming or whistling can be recorded and used for retrieving similar
melodies;

• Images: graphs and logos can be retrieved by using a sketch of few lines as a
query;

• Video: a video clip of goals scored in a football match serves as a key for retrieving
video clips of other football matches;

• 3D-model: one has a 3D-model and wants to retrieve other models similar by
shape.

The concept of multimedia retrieval is depicted in figure 1.1. A typical retrieval
algorithm possesses three modules: feature extraction, description generation, and
search engine.

Feature extraction. The features capture important properties of specific
multimedia data. Abstract (high-level) descriptions of an audiovisual object can be
either created using certain interactive annotation tools or found as textual data
contained in the object itself. Automatic feature extraction from sounds, images,
videos, or 3D-models is a more attractive and challenging problem than creation of
textual annotations. Consequently, a significant number of techniques for describing
multimedia content have been reported. First content-based multimedia retrieval
systems were dedicated to images.

A variety of methods for describing content of an image can be found in [138, 4,
29, 81, 76, 79, 109, 133, 134, 90, 112, 16, 119, 20, 73, 62, 88, 26, 121, 136, 90, 17]. Con-
sidered image features are color histogram, color structure (layout), color moments,
color sets, texture homogeneity, texture coarseness, texture regularity, texture con-
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Image Movie Music 3D model

↓ ↓ ↓ ↓
↓

FEATURE EXTRACTION
. . . . . . . . .

↓
DESCRIPTION GENERATION

↓
SEARCH ENGINE

Figure 1.1: Concept of multimedia retrieval.

trast, region-shape, contour-shape, edge distribution, etc. Besides general feature
such as color, texture, and, shape, domain specific features, e.g., face and finger-
print recognition, are considered, as well. Tools that are used to represent features
include discrete cosine transform, Fourier analysis, principal component analysis,
and wavelets. For shape-based features, automatic segmentation of an image is very
important. Image segmentation techniques are based on expectation maximization,
Delaunay triangulation, fuzzy entropy, fractals, edge flow, etc.

Features of an audio sequence are also studied in depth. Acoustical character-
istics, e.g, loudness, pitch, bandwidth, harmonicity, are the most commonly used
features for searching audio databases. Some techniques also include periodicity and
concentration of energy in a certain area of a sequence. A different kind of problem
is retrieval of spoken content or music notes (tone interval), where we encounter
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the problem of recognizing words and notes. A general problem in audio analysis
is to simply discriminate speech from non-vocal music, silence, or other sounds.
Automatic speech recognition deals with keyword spotting, sub-word indexing, and
speaker identification. Tools for describing high-level features, timbre and melody,
are developed, as well. For more details about audio features and methods, which
are used for content-based retrieval, we refer to [82, 32, 149, 70, 71, 31, 66].

A video retrieval system can be created by combining audio and image retrieval
techniques. Also, there are features specific to videos such as spatial and tempo-
ral characteristics. Purely spatial features are color space, luminance, shape, size,
texture, and orientation, while object motion and camera operation belong to tem-
poral features. A spatio-temporal feature is, e.g., motion trajectory. Segmentation
of videos as well as detection of shots and key frames are important steps of feature
extraction procedure. High-level video features contain motion of objects, motion
activity (slow or fast), recognition of an important person, recognition of an event,
etc. Video retrieval literature is also very rich, e.g., [94, 114, 111, 123, 135, 50, 137].

Several techniques for retrieval of 3D-mesh models have recently been proposed.
All reported features capture the 3D-shape of models (objects). The area of shape
similarity search for 3D objects is addressed in section 1.3, while the related work is
reviewed in chapter 2. Our original contribution to the topic is presented in chapter
4.

Description generation. According to [85], we refer to a representation of
a feature as a descriptor. A structure containing an identifier of the object (e.g.,
a name in local database or a URL) and at least one descriptor is called a de-
scription. As an example, for an image, we can generate a description consisting of
image name, a few keywords (annotations), and representations of color histograms,
texture contrast, and contour shape. Content-based retrieval systems usually store
descriptions in an internal format, whence other systems cannot use the descriptions
without proper transcoding tools and/or specification about the internal description
format. One of the objectives of the MPEG-7 standard is to standardize content-
based description for various types of audiovisual information. More details about
MPEG-7 are given in section 1.2.

Search engine. A search engine for certain type of audiovisual data is an
application that accepts a specific input as query (e.g., text or multimedia content),
and retrieves objects ranked by the degree of similarity to the query. Descriptions
of two “similar” audiovisual object contain descriptors, which should be attributed
values that are “close” in a space of descriptors D. The degree of similarity (or
dissimilarity) between two descriptors is computed using a suitable measure d :
D × D → R. Suppose Q ∈ D is a descriptor of a query object of certain type
(e.g., an image) and {D1, . . . , DN} ⊂ D is a collection of descriptors associated to
objects of the same type as the query. For simplicity, the objects in the collection
are enumerated (identified) by a set of indices {1, . . . , N}. If d is a measure of
dissimilarity, the object with descriptor Dm1

is the best match (nearest neighbor)
to the query, where

d(Q,Dm1
) = min

1≤i≤N
d(Q,Di), m1 ∈ {1, . . . , N}.
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Finding the best match to a query is a typical pattern recognition problem. In
information retrieval, we retrieve K ≤ N ranked objects for inspection, selection,
and processing. The retrieved objects (matches), which are the most similar to the
query object, are ranked so that their descriptors Dm1

, . . . , DmK
(m1, . . . ,mK ∈

{1, . . . , N}, i 6= j ⇒ mi 6= mj) satisfy

d(Q,Dmi
) ≤ d(Q,Dmi+1

), 1 ≤ i ≤ K − 1,

where Dmi
is a descriptor of the object (match) with identifier mi, which is regarded

as the i-th match. The number of retrieved models, K, depends on the application.
A user can specify how many models should be retrieved or a threshold value t can
be set to retrieve all objects whose descriptors satisfy d(Q,Dmi

) ≤ t.
The metric d depends on the type of descriptor. If we use textual annotations as

descriptors, then d(Q,Di) can be, e.g., the total number of words that are contained
in both descriptors Q and Di. For multimedia retrieval applications, it is more
common that descriptors are stored as vectors with real-valued components and
fixed dimensions. Various choices of metric d are addressed in section 1.4.

If the size N of the collection of multimedia objects is relatively small (e.g.,
N < 10000) and the computation of distance d is fast enough (e.g., less than 200µs),
then the search can be done sequentially, i.e., we calculate all distances d(Q,Di)
(1 ≤ i ≤ N) and sort them. However, if the order of magnitude of N is higher (e.g.,
106), then it is necessary to include techniques for accelerating the search [131, 130].

1.2 MPEG-7 Context

The MPEG-7 standard [86, 85], also known as “Multimedia Content Description
Interface”, provides a standardized set of tools for describing multimedia content.
The standard addresses a broad range of multimedia applications and requirements,
and provides a flexible and extensible framework for describing audiovisual data.
The goal of the standard is to enable fast and efficient content searching, filter-
ing and identification of various types of audiovisual information, such as music,
speech, moving video, still pictures, graphics, and 3D models. Also, information on
how objects are combined in scenes is inside the scope of MPEG-7. The MPEG-7
describes several aspects of the content, e.g., low-level features, structure, seman-
tic, models, collections, creation, etc. Moreover, descriptions are independent of
the data support, i.e., MPEG-7 descriptions can reference and describe multimedia
documents in analogue format (e.g., temporal references to sequences recorded on
a VHS tape).

The main elements of the standard are [86, 85, 82, 88, 83, 89, 84]:

• Description tools: descriptors and description schemes;

• Description definition language;

• System tools.

A descriptor defines syntax and semantics of the feature representation. A descrip-
tion scheme specifies the structure and semantics of the relationships between its
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components, which may be both descriptors and description schemes. Description
definition language [83] is a language to specify descriptors and description schemes,
and to allow the extension and modification of existing description schemes. Sys-
tem tools are used for encoding descriptions in order to fulfill requirements such as
transport and storage efficiency, error resilience, random access, and synchroniza-
tion between content and descriptions.

The description tools are presented on the basis of the functionality they pro-
vide. In practice, they are combined into meaningful sets of description units. An
appropriate subset of descriptors and description schemes needs to be selected for
each specific application. Description definition language can be used to handle
specific needs of the application.

The MPEG-7 does not standardize neither the feature extraction step (analy-
sis) nor the search engine (application), which are parts of the multimedia retrieval
chain depicted in figure 1.1. Both areas are left to the creativity and innovation of
researchers. Only description generation is standardized, in order to enable inter-
operability.

The MPEG-7 standard is subdivided into the following parts:

1. Systems: tools to encode descriptions;

2. Description Definition Language: a language for specifying the standard set
of description tools and for defining new description tools;

3. Visual: description tools aimed at characterizing visual content (images, movies,
and 3D-models);

4. Audio: description tools dedicated to audio content;

5. Multimedia Description Schemes: generic description tools related to both
visual and audio content;

6. Reference Software: a software implementation of the standard;

7. Conformance: guidelines and procedures for testing conformance of imple-
mentations of the standard.

8. Extraction and Use: guidelines and examples of the extraction and use of
descriptions.

Application domains of the MPEG-7 include: storage and retrieval of audiovisual
databases (e.g., image, movie, audio, and 3D-model collections), multimedia direc-
tory services (e.g., yellow pages), journalism (e.g., searching speeches, paper clips),
tourist information and cultural services, entertainment (e.g., searching a game,
karaoke), investigation services (e.g., fingerprint and face recognition), surveillance
(e.g., traffic control), e-commerce and tele-shopping (e.g., finding clothes that you
like), social services (e.g., dating), etc.

The MPEG-7 has set a wide spectrum of evaluation criteria for description tools
and description definition language. For complete specifications we refer to [85].
Requirements for descriptors include:



MPEG-7 Context 13

• Cross-modality – to allow queries based on visual descriptions to retrieve audio
data and vice versa;

• Language of text-based descriptions – to support all natural languages;

• Linking – to locate source data in space and in time;

• Unique identification – to support a mechanism for uniquely identifying data.

• Types of features – to support multimedia descriptions using various types of
features;

• Abstraction levels for multimedia material – to support hierarchical mechanisms
for describing multimedia objects at different levels of abstraction;

• Application domain – to cover a broad range of real-world applications;

• Retrieval effectiveness – to characterize an important property of an audiovisual
object;

• Scalability – the size of descriptor is determined only by its definition and not by
the size of multimedia content;

To fully exploit the possibilities of MPEG-7 descriptions, automatic extraction
of features is very desirable. However, interactive extraction tools can also be of use,
in particular when information cannot be deduced from the content, e.g, recording
date and conditions, title, author, copyright, coding format, classification, parental
rating, links to other relevant material, etc. The higher the level of abstraction, the
more difficult automatic extraction is. Information that is present in the content
can be categorized in low-level features (e.g., for an image, color, texture, size,
position, etc.) and high-level (semantic) features, which are related to a human
interpretation of the content and are attached as metadata to the content (e.g.,
“this is a scene with a guy talking to a girl at a sidewalk and a tram passing by on
Augustusplatz in Leipzig”).

The set of visual descriptors consists of 25 techniques (classified in 7 categories)
for characterizing various properties of images, movies, and 3D-models. The cate-
gorization of visual descriptors, which are part of the standard, is the following:

• Basic structures: grid layout, time series (regular and irregular), 2D/3D multiple
view, spatial 2D coordinates, and temporal interpolation;

• Color: color space, color quantization, dominant color, scalable color, color lay-
out, color structure, and group of frames / group of pixels color;

• Texture: homogeneous texture, texture browsing, and edge components his-
togram

• Shape: region shape, contour shape, and shape 3D.

• Motion: camera motion, motion trajectory, parametric motion, and motion ac-
tivity;

• Localization: region locator and spatio-temporal locator;

• Others: face recognition.

Descriptors that can be engaged for shape similarity 3D-model retrieval are
2D/3D multiple view and shape 3D. The latter technique is described in section
2.3. Descriptor 2D-3D multiple view analyzes 2D projections of a 3D object seen
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from several viewpoints. Each projection is rasterized to an image, which can be
described using any 2D visual descriptor, e.g, contour-shape, region-shape, color, or
texture. The descriptor allows matching of 3D objects by comparing their views, as
well as by comparing pure 2D views (images) to views of 3D objects. The multiple
view descriptor can also be associated to a video segment [88, 89].

All description tools are implemented in the part 6 of the standard, reference
software, and the latest version of this implementation can be obtained as described
in [84]. The reference software, known as the eXperimentation Model (XM), cre-
ates standard audio descriptions, visual descriptions, and multimedia description
schemes. The software also includes a parser and validator for the description defi-
nition language. The reference software is normative in the sense that any conform-
ing implementation of the software, taking the same conformant bit streams and
using the same output file format, should output the same file. Complying MPEG-
7 implementations are not expected to follow the algorithms or the programming
techniques used by the reference software. The decoding software is considered
normative, whilst the techniques used for extracting descriptors are informative,
and the quality and complexity of these extraction tools have not been optimized.
The experimentation model serves as a proof-of-concept for description techniques
included in the MPEG-7 standard.

An account of a multi-object multi-feature content-based search using MPEG-7
is given in [122], while 3D model retrieval in the context of MPEG-7 is addressed
in [102, 152, 145].

1.3 Shape-Similarity Retrieval of 3D Objects

In this section, we address content-based retrieval of 3D-models. Since polygonal
mesh is the most common way of representing 3D-objects, we explain the repre-
sentation in subsection 1.3.1. A general 3D-model retrieval algorithm is presented
in subsection 1.3.2. In contrast to image retrieval, where color and texture can be
used for searching similar object, the main challenge in the area of 3D-model re-
trieval is to describe shape of a 3D-object. Types of features, which are considered
for characterizing shape, are discussed in subsection 1.3.3. 3D-shape descriptors
should fulfill certain criteria, which are defined in subsection 1.3.4.

1.3.1 Polygonal Mesh Models

Polygonal meshes are used for representing boundary surfaces (both inner and outer)
of an arbitrary 3D-object. Boundary surface is approximated by a union of 3D
polygons, whose vertices are coplanar. If all polygons are triangles, then we have
a triangle mesh. Because of the simplicity as well as rendering purposes, polygonal
mesh models are frequently converted into triangle meshes. For example, a polygon
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Ω with k vertices v1, . . . ,vk, can be treated as union of k − 2 triangles,

Ω =
⋃k−2

i=1 4v1vk+1vk+2. (1.1)

Since certain feature extraction algorithms deal with triangles and not with polygons
(e.g., ray-triangle intersection), we iterate through all polygons splitting them into
triangles as necessary.

We regard a given triangle mesh as consisting of a set of triangles

T = {T1, . . . , Tm}, Ti ⊂ R
3, (1.2)

given by a set of vertices (geometry)

P =
{
pi | pi = (xi, yi, zi) ∈ R

3, 1 ≤ i ≤ n
}
, (1.3)

and a list of indices of three vertices for each triangle (topology)

A1 B1 C1

...
Am Bm Cm

(1.4)

where Ai, Bi, Ci ∈ {1, . . . , n}, 1 ≤ i ≤ m. The vertices of the triangle Ti are
denoted by pAi

, pBi
, and pCi

. We consider each triangle to be a set of infinitely
many points, i.e.,

Ti = { v | v = αpAi
+ βpBi

+ (1− α− β)pCi
, α, β ∈ R, α, β ≥ 0, α+ β ≤ 1 }

Then,

I =

m⋃

i=1

Ti =

m⋃

i=1

4pAi
pBi

pCi
(1.5)

is the point set of all triangles, i.e., our given object.
As an example of representing 3D-models by triangle meshes, we give lists of

geometry and topology as well as a visualization of an icosahedron (n = 12, m = 20)
in figure 1.2.

In what follows, we denote the surface area of triangle Ti by Si, while the total
area of the mesh is denoted by S,

Si =
1

2
|(pCi

− pAi
)× (pBi

− pAi
)| , S =

m∑

i=1

Si. (1.6)

A polygonal mesh model is analogously defined. Instead of triangles (1.2), we
have polygons,

Ω = {Ω1, . . . ,Ωm}, Ωi ⊂ R
3.
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p1 1 0 0
p2 a b 0
p3 a c d
p4 a −e f
p5 a −e −f
p6 a c −d
p7 −1 0 0
p8 −a −b 0
p9 −a −c −d
p10 −a e −f
p11 −a e f
p12 −a −c d

a = 1/
√

5

b = 2/
√

5

c = (
√

5− 1)/(2
√

5)

d =
√

5 +
√

5/
√

10

e =
√

3 +
√

5/
√

10

f =
√

5−
√

5/
√

10

T1 1 2 3
T2 1 3 4
T3 1 4 5
T4 1 5 6
T5 1 6 2
T6 2 6 10
T7 3 2 11
T8 4 3 12
T9 5 4 8
T10 6 5 9
T11 7 9 8
T12 7 10 9
T13 7 11 10
T14 7 12 11
T15 7 8 12
T16 8 4 12
T17 9 5 8
T18 10 6 9
T19 11 2 10
T20 12 3 11

A visualization of the icosahedron defined
by the lists of geometry and topology (left).

Figure 1.2: An icosahedron represented as a triangle mesh model.

The list of indices (1.4) contains an additional field for specifying the number of
vertices for each polygon.

Besides geometry and topology, a mesh model may contain additional informa-
tion about a 3D-object, e.g., list of normals, list of colors, textures, etc. However,
the additional information is mostly used for rendering, while geometry and topol-
ogy are sufficient to represent the 3D-shape.

Let E be the list of edges of all triangles T1, . . . , Tm (1.2), where the edges of
triangle Ti are pAi

pBi
, pBi

pCi
, and pCi

pAi
,

E = {pA1
pB1

,pB1
pC1

,pC1
pA1

, . . . ,pAm
pBm

,pBm
pCm

,pCm
pAm
} (1.7)

For certain applications, it is necessary to determine whether a mesh model is
closed and orientable, or not. A mesh containing a “hole” is, obviously, not closed
(figure 1.3). Closedness of a mesh can formally be defined as follows.

Definition 1.1 A triangle mesh is closed if for any pair of vertices pi and pj

(i, j ∈ {1, n}), the total number of occurrences of edges pipj and pjpi in E (1.7)
is either even or zero.

The orientation of a triangle is determined by the sequence of its vertices. Let
pa, pb, pc be the vertices of a triangle. Although triangles Ti ≡ 4papcpb and
T ′

i ≡ 4papbpc coincide in the 3D-space R
3, they have different orientations (figure

1.3). If Tj ≡ 4pdpcpb, then a mesh containing Ti and Tj is not orientable, because
we have two occurrences of the edge pcpb and no occurrence of the edge pbpc. If
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T ′
i is combined with Tj , then the orientability exists, because the edges pcpb and

pbpc occur once both.

Definition 1.2 A triangle mesh is orientable if for any pair of vertices pi and pj

(i, j ∈ {1, n}), the number of occurrences of the edge pipj in E (1.7) is equal to the
number of occurrences of the edge pjpi in E.

not closed closed not orientable orientable

Figure 1.3: Closedness and orientability of triangle mesh models.

Ideally, a triangle mesh should be closed and orientable. However, 3D-models
available on the Internet (e.g., www.3dcafe.com) are not necessarily represented by
closed and/or orientable meshes. Moreover, there are some other irregularities of
the representation (1.3, 1.4) such as

• Multiple vertices, (∃i, j ∈ {1, . . . , n}) pi ≡ pj ∧ i 6= j;

• Floating (non-connected) vertices, (∃i ∈ {1, . . . , n}) (∀j ∈ {1, . . . ,m}) i 6= Aj ∧
i 6= Bj ∧ i 6= Cj ;

• Multiple triangles, (∃i, j ∈ {1, . . . ,m}) Ai = Aj ∧ Bi = Bj ∧ Ci = Cj ;

• Degenerated triangles, (∃i ∈ {1, . . . ,m}) (∃α ∈ R) pAi
= αpBi

+(1−α)pCi
, i.e.,

pAi
, pBi

, and pCi
are collinear;

Outlying floating vertices may affect dimensions of bounding boxes or spheres.
Multiple vertices and triangles have influence on determination of closedness and
orientability. In special cases, degenerated triangles are inserted in order to provide
orientability of the mesh. Relatively simple algorithms can be used to filter floating
and multiple vertices, and to rearrange the topology (1.4). However, filling holes to
close a mesh by inserting triangles, or inserting and re-orienting triangles to obtain
an orientable mesh, are difficult problems, in general [8, 23, 67]. In our research,
we filter multiple vertices and triangles, floating vertices, and degenerated triangles.
We neither fill holes nor re-orient triangles.

Mesh models available on the Internet can be found in various 3D file formats.
The most popular formats are: VRML (Virtual Reality Modeling Language) [44,
14], DXF (Autodesk Drawing eXchange Format) [5], 3DS (3D Studio file format)
[96], OFF (Object File format) [96], OBJ (Wavefront Object files) [96], SMF (Simple
Model Format) [37], PLY (Polygon File Format) [132], etc.
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1.3.2 3D Model Retrieval Algorithm

A general concept of 3D-model retrieval is summarized in figure 1.4. Each 3D-model
is attributed a descriptor (feature vector), which is represented in an appropriate
way (e.g., an array), and is used for retrieving K nearest neighbors or all 3D-objects
whose descriptors are within a given range (ε-search) from the descriptor of a query.
Retrieval of 3D-models fits into the multimedia retrieval chain (compare figures 1.4
and 1.1). A 3D-model, in an appropriate 3D file format, serves as a query (search
key). Content descriptors are automatically extracted, and used as points in a
search space.

Figure 1.4: Concept of 3D-model retrieval.

The feature extraction step of a 3D-model retrieval algorithm consists of several
sub-steps. Firstly, a file storing a 3D-model needs to be parsed. As a result, the
lists of geometry (1.3) and topology (1.4) are populated. As mentioned in the
previous subsection, a mesh model may contain multiple vertices and triangles,
floating vertices, and degenerated triangles, whence a filtering step is desirable.
After the filtering, the 3D-mesh can be processed further.

3D models are given in arbitrary units of measurement and in unpredictable
positions and orientations in 3D-space. In certain cases, it is necessary to transform
the model into a canonical coordinate frame. We regard to this step as the pose
normalization (estimation) step. The goal of this procedure is that if one chose a
different scale, position, rotation, or orientation of an original model, then the repre-
sentation in the canonical coordinate frame would still be the same. Moreover, since
objects may have different levels-of-detail (e.g., after a mesh simplification to re-
duce the number of polygons), their normalized representations should be the same
as much as possible. The normalization step ensures that models can be retrieved
regardless of the choices their authors have made for their mesh representation.

Next, we proceed with the feature extraction step. The features capture the 3D
shape of the objects. Proposed features range from simple bounding box parameters
[105] to complex image-based representations [46, 47]. Usually, the features are
stored as vectors with real-valued components and fixed dimension. There is a
trade-off between the required storage, computational complexity, and the resulting
retrieval performance. The outcome of the extraction procedure are descriptors.
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Since features are stored as vectors, and descriptors are regarded as representations
of features, we use terms descriptors and feature vectors interchangeably throughout
this thesis. A variety of 3D-model feature vectors are presented in chapters 2 and
4.

Extracted descriptors are used in the description generation step. Ideally, de-
scriptions should be generated using some standard, e.g., MPEG-7 (section 1.2), in
order to provide interoperability between applications. For instance, a search engine
might rely upon standardized descriptions only, without engaging feature extraction
tools. We use a simple internal format for generating descriptions. A description
consists of a model identifier (a string of constant length) and an array of N float-
ing point numbers, where N is the dimension of the feature vector. A module for
description management organizes and stores descriptions. In our retrieval system,
for a given feature type and parameter settings, descriptions of the whole 3D-model
collection are stored in a single file. This file starts with a header, containing infor-
mation about the feature type and parameter settings, followed by descriptions for
each model. The descriptions can easily be represented using MPEG-7 description
definition language [83], and encoded using standardized MPEG-7 tools.

Finally, an interactive application performs similarity search for 3D-objects by
processing the stored descriptions. The features are designed so that similar 3D-
objects are attributed vectors that are close in feature vector space. Using a suitable
metric (see section 1.4) nearest neighbors are computed and ranked. A variable
number of objects are thus retrieved by listing the top ranking items.

All the steps, which are present in a typical 3D model retrieval application, are
summarized in algorithm 1.1 (compare to figure 1.1).

Algorithm 1.1 A typical 3D model retrieval algorithm proceeds in the following
steps:

1. Parsing,
2. Filtering,
3. Pose normalization,
4. Feature extraction,







Feature extraction

↓
5. Description generation,
6. Description management, and

}

Description generation

↓
7. Similarity search.

}
Search engine

A block-diagram of our 3D-model retrieval system is given in figure 1.5. The
system serves as an intermediary between available collections of 3D-objects and
users who want to find specific shapes. All available models are processed by apply-
ing steps 1-6 of algorithm 1.1. The search engine with a Web-based interface can
be used for browsing as well as retrieval. A user can upload a query model, whose
description is automatically generated (steps 1-6 of algorithm 1.1), and used for
matching procedure. The browsing enables a user to identify a model for querying,
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which is reasonably similar to a desired one. Our Web-based retrieval system, called
CCCC [140], is presented in appendix.

Figure 1.5: The architecture of our 3D model retrieval system.

1.3.3 Types of 3D-Shape Features

As mentioned in section 1.3, in retrieval applications, features of 3D-mesh models
are usually analyzed in order to characterize shape. Information about normal
vectors, colors of triangles or vertices, as well as texture, may also be associated to
a polygonal mesh. However, all reported 3D-model retrieval techniques (chapters
2 and 4) consider shape as the crucial property of a 3D-object, used for similarity
search.

Considered features can be classified as:

• image-based,

• 3D-geometry-based,

• functions on a sphere,

• statistical, and

• topological.

Image-based features rely upon 2D-projections of a 3D-geometry model. The
projections are usually rasterized into rectangular 2D-images (sections 4.2 and 4.3).
The number of projections of a model depends on the definition of a feature vector.
Rectangular 2D-images of the model, generated from different viewpoints, represent
silhouettes, depth-buffers, etc.

3D-geometry-based features rely upon purely 3D quantities or attributes. In
section 4.4, artificial volumes are defined, and their distributions are used as 3D-
shape features. A volumetric representation of a polygonal mesh model can easily
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be defined (sections 2.1, 2.2, 2.5, and 4.5), discretizing the model into a voxel-grid
[53]. A voxel attribute can be a binary value, a value representing the “level of
presence” of the mesh (e.g., the surface area) in certain region, a value representing
the distance to the model’s boundaries, etc. The voxel grid can directly be used as
a feature, or it can be processed further. A subset of triangles of the mesh model
can be fitted by a parametric 3D-surface, whose features are then analyzed. In the
technique presented in section 2.3, a curvature index is the feature of a parametric
3D-surface.

Certain features can be regarded as functions on a sphere. A 3D-mesh model can
be projected on an enclosing sphere (sections 4.1 and 4.6). A point on the sphere is
attributed a value, which can be a distance, surface area, information about shading,
curvature index, etc. Also, several concentric spheres can be used for defining
functions that represent voxel attributes (sections 2.5) or encode positions of points
in the 3D space R

3 (4.6.6). All functions on concentric spheres are individually
processed obtaining a signature for each function. The obtained signatures are then
combined to form a compact descriptor of the model.

Image and 3D-geometry-based features as well as features that can be regarded
as functions on a sphere have meaningful spatial interpretations. For instance, a
voxel attribute is related to a specific region in the 3D-space, a 2D-image pixel
attribute is related to the projected part of the model, a curvature index of a
parametric 3D-surface is related to a specified group of triangles, and a value of a
function on a sphere can also be interpreted. Local features of a polygonal mesh,
such as a curvature index associated to a triangle (section 2.3) or the distance of
the center of gravity of a triangle to the origin (section 2.1), are summarized by
histograms in reported techniques [103, 105, 88, 89]. We stress that local features
can be represented in a more suitable way than using histograms, where a mean-
ingful spatial interpretation is lost. However, histogram is the most prominent tool
for representing randomized features (e.g., [97, 98]). Features that are derived from
several randomly selected points on the mesh, e.g., a distance between two randomly
selected points (section 2.5), are purely statistical. We regard these quantities as
statistical features. Typically, descriptors based on statistical features have inferior
retrieval performance comparing to descriptors based on images, 3D-geometry, and
functions on a sphere.

Topological features rely upon skeletal structures, such as medial axes [12], me-
dial surfaces, Reeb graph [48], etc. Similarity between skeletal structures of different
models is measured by matching connectivity information as well as certain propor-
tions between skeletal primitives (e.g., nodes, branches, etc.). A technique of this
type, known as “topology matching”, is presented in section 2.4.

Image-based, 3D-geometry-based, statistical features and features that can be
regarded as functions on a sphere are usually represented as real valued vector of
fixed dimensions. As an exception, a voxel grid can be represented as an octree
(section 4.5). Topological features are represented by graphs.

Most of the feature vectors can be represented in both the spatial and spectral
domains. For instance, a sequence of distances, between contour pixels of a silhou-
ette to the origin, can be used as a feature vector in the spatial domain. The same
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sequence can be transformed by the discrete Fourier transform (DFT) (4.11), ob-
taining a sequence of Fourier coefficients whose magnitudes are used as components
of a feature vector in the spectral domain. Similar tools for rectangular images,
voxel grids, and functions on a sphere are the 2D-DFT (4.26), 3D-DFT (4.48),
and the Fourier transform on the sphere (spherical harmonic transform) (4.59). A
wavelet transform can be used [105], as well.

As a rule, the spectral domain representation of a feature shows better retrieval
performance than the spatial domain representation of the same feature. More
details about this fact are given in section 1.4.

1.3.4 3D-Shape Descriptors Criteria

In this section, we give the most important criteria that should be fulfilled by
definitions of 3D-shape descriptors. We consider that desirable properties of 3D-
shape descriptors are the following:

1. non-restrictiveness to closed or orientable polygonal meshes;

2. non-influence of mesh anomalies (floating vertices, multiple vertices and tri-
angles, and degenerated triangles);

3. invariance with respect to translation, rotation, scaling, and reflection of a
3D-object;

4. robustness with respect to levels-of-detail and different tessellations of a model;

5. robustness with respect to surface noise, outliers, and arbitrary topological
degeneracies;

6. multi-resolution feature representation;

7. efficient feature extraction;

8. compact representation;

9. efficient search procedure;

10. shape discrimination.

Mesh models, which are available in the Internet, are not necessarily closed
(definition 1.1) or orientable (definition 1.2). For instance, our 3D model collection is
mostly collected from www.3dcafe.com, and more than 60% of models are not closed,
while more than 30% are not orientable. Restricting a feature extraction technique
to closed or orientable meshes leads to the elimination of significant number of
available 3D-shapes. Although there are approaches for filling holes in meshes
[8, 23, 67], we prefer defining descriptors without imposing any constraint regarding
closedness or orientability. Also, mesh anomalies such as floating vertices, multiple
vertices and triangles, and degenerated triangles, must not affect extracted feature
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vectors. A relatively simple filtering of a mesh can be done, in order to eliminate
the anomalies.

Let τ be a concatenation of translations, rotations, reflections, and scaling, and
let I (1.5) be a given mesh model. Let f and f ′ be feature vectors of I and τ(I),
respectively. Then, the requirement for invariance of the descriptor with respect to
translation, rotation, scaling, and reflection of a 3D-object can be written as f = f ′.

Geometry of 3D-objects is more and more frequently acquired by 3D-scanners.
Positions of vertices can precisely be determined, while the connectivity information
might not be well formed. The most common problem with meshes generated by
3D-scanners is the presence of holes. If the same object is re-scanned, then the
second mesh will have different tessellation. Naturally, the appearances of both
3D-mesh models will be almost identical. Feature vectors should preserve the high
similarity that exists between the mesh representations. High-quality 3D-models
possess a large number of triangles (> 100000). In some applications, it is useful to
have the same 3D-object represented in different levels-of-detail. For instance, for
a 3D animation, if an object in a scene is very distant, then it is not necessary to
use a mesh representation with 100000 polygons, in order to render the scene. The
rendering complexity can be reduced by processing a less detailed polygonal mesh
model of the very distant object. In figure 1.6, a model of car is represented in four
different levels-of-detail. Feature vectors of the mesh models from figure 1.6 cannot
be identical, but they should be “reasonably” close in the search space. Moreover, if
the most complex model is used as a query, then the distances between the feature
vector of the query and the other three feature vectors should be ordered according
to the differences in complexity.

100 triangles 400 triangles

1000 triangles 10474 triangles

Figure 1.6: Triangle mesh model of a car in four levels-of-detail.
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If the vertices pi (i = 1, . . . , n) of the model I (1.5) are slightly displaced,
e.g., pi ← pi + (εx, εy, εz) with εx, εy, εz relatively small, then the descriptors of
the mesh with displaced vertices and the original one should approximately be the
same. Feature vector components should not be sensitive to a “noise” of the 3D-
surface. Also, if we add an outlier to a 3D-model, e.g., we have an original model of
car and add a long car antenna, then the descriptors of the original model and the
model with the outlier should not differ significantly. Hence, an outlier should not
affect feature vector components. Topological degeneracies such as small tunnels
and handles should not significantly disturb feature vector components.

A technique for describing 3D-shapes should provide a possibility to select the
resolution of feature representation. For a descriptor as a real-valued vector, it
should be possible to change the dimension of vector. In other words, the resolution
of a feature vector should depend on a parameter and a type of the feature.

Let fM = (f1, . . . , fM ) and fN = (f ′1, . . . , f
′
N ) be real-valued feature vectors of a

certain type in two different resolutions, withM < N . An embedded multi-resolution
feature representation is provided, if

fi = f ′i , 1 ≤ i ≤M. (1.8)

This means that the vector fN contains all lower-dimensional feature vectors of the
same type. Thus, if we search for similar models in the space of feature vectors
of the dimension M , there is no need to store fM separately, because the first M
components of fN can be used.

The feature extraction, including filtering and normalization steps, should be
efficient. In a 3D model retrieval system, feature vectors of new models (e.g., col-
lected by a Web-crawler application) can be extracted in an idle time. Nevertheless,
it is desirable that the extraction time is as small as possible. Moreover, the rep-
resentation of a feature should be concise. To represent a feature as a real-valued
vector of fixed dimension is usually more compact than to use a graph or octree
representations. However, the dimension of the vector should be reasonably small.
We consider that a feature vector should not have more than 1000 components, and
we try to keep the dimension below 500. It is crucial that the indexing of 3D-models
by shape-similarity to a given query is fast. A variety of accelerating techniques
can be engaged to speed-up the search, by pre-computing certain index structures.
The response time of a system to a given query, i.e., the elapsed time between the
moment when the query is specified and the moment when similar models are re-
trieved, should be at most several seconds. If a matching procedure of a pair of
descriptors is too time consuming, then the descriptors of that type are not suitable
for interactive retrieval applications. The l1 or l2 norms are very efficient distance
metrics for vectors.

Finally, the most important requirement is the discriminant power of descrip-
tors. By discriminant power of a descriptor we refer to the feasibility to distinguish
between similar and non-similar objects to the query. When a descriptor possesses
high discriminant power, we say that it has good retrieval performance. Occasion-
ally, a descriptor of one type is extracted faster than a descriptor of the other type,
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but the retrieval performance of the latter is significantly better. Also, the dimen-
sion of a feature vector can be lower than the dimension of the other type of feature
vector, but the latter is much more effective. In these trade-offs we consider the
retrieval performance to be more important.

1.4 Similarity Search Metrics

Since 3D-shape descriptors are usually represented as N -dimensional vectors with
real-valued components, a natural way to compute distances between feature vectors
is to use a vector norm.

Let f ′ = (f ′1, . . . , f
′
N ), f ′′ = (f ′′1 , . . . , f

′′
N ) ∈ R

N be two feature vectors. The lp
distance between f ′ and f ′′ is defined by

dp(f
′, f ′′) = ||f ′ − f ′′||p =

(
N∑

i=1

|f ′i − f ′′i |p
)1/p

, p = 1, 2, . . . . (1.9)

For p = 1, we have the l1 norm,

d1(f
′, f ′′) = ||f ′ − f ′′||1 =

N∑

i=1

|f ′i − f ′′i |, (1.10)

while for p = 2, we have the l2 norm of the difference f ′ − f ′′, which is called the
Euclidean metric,

d2(f
′, f ′′) = ||f ′ − f ′′||2 =

√
√
√
√

N∑

i=1

(f ′i − f ′′i )2. (1.11)

When p→∞, we have the l-infinity (or l∞ or l-max) norm,

d∞(f ′, f ′′) = ||f ′ − f ′′||∞ = max
1≤i≤N

|f ′i − f ′′i |. (1.12)

The lp norm is usually ineffective as the distance metric of features in the spatial
domain. From the definition of the lp norm, we observe that the component-wise
differences f ′

i − f ′′i are equally important. According to (1.9), it is assumed that
the individual components of the feature vector are independent from each other.
However, the values f ′

i and f ′′i may correspond to a feature related to a specific
region Λi of the 3D-space R

3. For instance, f ′
i may be the extent of a model

in direction ui ∈ R
3 (see section 4.1). Let Λi, Λj , and Λk be three regions in

the 3D-space such that Λi is very close (neighbor) to Λj and distant to Λk. In
this case, instead of computing differences only between feature values in the same
region, the distribution of the values across the neighboring regions should be taken
into account, too. Generally, the retrieval effectiveness of vectors in the spatial
domain can be improved by accounting the distribution of regions Λi (i = 1, . . . , n)
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corresponding to vector components f ′
i . In other words, it is desirable to account

the degree of correlation between vector components.
As an example, suppose that f ′, f ′′, f ′′′ ∈ {0, 1}16 are three feature vectors corre-

sponding to the images depicted in figure 1.7. Relative positions of the dark fields
(pixels), which are attributed a value of 1, are identical for f ′ and f ′′. Thus, if f ′

is a query object, then f ′′ should be ranked above f ′′′. However, both the l1 and l2
norms give the undesired ranking, since

d1(f
′, f ′′) = 8 > d1(f

′, f ′′′) = 6 and d2(f
′, f ′′) =

√
8 > d2(f

′, f ′′′) =
√

6. (1.13)

f ′ f ′′ f ′′′

Figure 1.7: Visualizations of three feature vectors (dark fields denote the value of
1, white fields denote the value of 0). According to (1.9), dp(f

′, f ′′) > dp(f
′, f ′′′) =

dp(f
′′, f ′′′), which is in a contradiction to a human perception.

An approach to solve the problem is presented in [2, 43]. A quadratic form
distance function is defined in terms of a similarity matrix S of type N ×N . The
element sij of the matrix S represents the similarity (correlation) between the com-
ponents fi and fj of the feature vector f = (f1, . . . , fN ). The Euclidean distance
(l2) is modified as follows

dS
2 (f ′, f ′′) =

√

(f ′ − f ′′)T · S · (f ′ − f ′′) =

√
√
√
√

N∑

i=1

N∑

j=1

sij(f ′i − f ′′i )(f ′j − f ′′j ), (1.14)

where S is a positive definite matrix.
In order to avoid the constraint regarding the definiteness of matrix S, we modify

(1.14), which is proposed in [2], by

dS
2 (f ′, f ′′) =

√
√
√
√

N∑

i=1

N∑

j=1

sij |f ′i − f ′′i | |f ′j − f ′′j |, (1.15)

Obviously, the Euclidean distance is a special case of the quadratic form distance
(when S = IN , IN is the identity matrix of order N). Besides introducing sim-
ilarities between components, it is possible to specify the “importance” of each
component, e.g., S = diag(ω1, . . . , ωN ). Moreover, the elements of matrix S can
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be determined by using a relevance feedback [113]. A new level of flexibility intro-
duced by the quadratic form distance causes an increase of computational costs.
The computational cost of computing dS

2 is O(N2), while in the case of the lp norm
it is O(N). In order to reduce the cost to O(N), the matrix S should be sparse,
i.e., only a small number of elements should be nonzero.

An example of defining the correlation matrix S = [sij ]N×N , which can be
applied for obtaining the expected ranking of features visualized in figure 1.7, is the
following

si,j =

{
e−DN (i,j), DN (i, j) ≤ 2,
0, DN (i, j) > 2,

DN (i, j) = (ix − jx)2 + (iy − jy)2,
ix = i mod N, jx = j mod N,
iy = i div N, jy = j div N,

(1.16)

where ’mod’ and ’div’ denote the remainder and the integer quotient.
If we apply (1.15) and (1.16) to compute distances between feature vectors f ′,

f ′′, and f ′′′ (N = 16), then we get

dS
2 (f ′, f ′′) = 1.93 < dS

2 (f ′, f ′′′) = 2.75 < dS
2 (f ′′, f ′′′) = 2.88. (1.17)

Hence, the quadratic form distance between feature vectors of the first and sec-
ond images in figure 1.7 is the smallest, which is the result that complies with
human perception. Thus, the undesired ranking (1.13) can be avoided by using the
quadratic form distance.

In most cases, spatial domain features can be transformed into the spectral
(frequency) domain. One of the goals of this transform is to correlate vector com-
ponents. The transform is also used for providing a mechanism to generate vectors
with an embedded multi-resolution representation (1.8). For instance, if we apply
the 2D Fast Fourier Transform (2D-FFT), which is defined in section 4.3 by (4.26),
to the vectors f ′, f ′′, and f ′′′, then we obtain complex Fourier coefficients, whose
magnitudes can be used for representing the feature vectors in the spectral domain.
For the example in figure 1.7, the transformation from the spatial to the spectral
domain is given by (1.18).

Spatial domain Spectral (frequency) domain

f ′ =







1 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0






−→







1 1/
√

8 1/2 1/
√

8

1/
√

8 1/2 1/
√

8 0

1/2 1/
√

8 1 1/
√

8

1/
√

8 0 1/
√

8 1/2







= f̂ ′

f ′′ =







0 0 0 0
1 0 1 0
0 1 0 0
1 0 0 0






−→







1 1/
√

8 1/2 1/
√

8

1/
√

8 1/2 1/
√

8 0

1/2 1/
√

8 1 1/
√

8

1/
√

8 0 1/
√

8 1/2







= f̂ ′′

f ′′′ =







0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0






−→







0 0 0 0

0 1/2 1/
√

2 1/2

0 1/
√

2 1 1/
√

2

0 1/2 1/
√

2 1/2







= f̂ ′′′

(1.18)
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As a contrast to the spatial domain, the lp norms are reasonably effective in the
spectral domain. Indeed,

d1(f̂
′, f̂ ′′) = 0 > d1(f̂

′, f̂ ′′′) = 3+2
√

2, and d2(f̂
′, f̂ ′′) = 0 > d2(f̂

′, f̂ ′′′) =
√

3. (1.19)

Note that the feature vectors from the spatial domain whose nonzero components
have identical relative distributions (f ′ and f ′′) are transformed into identical vectors

in the spectral domain (f̂ ′ = f̂ ′′).
The computation of the lp (1.9) norm is less expensive than the computation of

the quadratic form distance (1.15). Since the correlation between vector components
in the spatial domain is reflected by a spectral domain representation, we consider
that the lp norm is a suitable distance metric for feature vectors in the spectral
domain. Besides being efficient, the lp distance is also effective (see results from
section 5.2).

We also tested certain minimizations of the l1 and l2 distances, whose definitions
are given in a sequel. Generally, if f ′ ∈ R

N is a feature vector of a query model and
f ′′ ∈ R

N is a feature vector of a matching candidate, then we want to determine a
parameter α ∈ R so that the distance dmin

p (f ′, f ′′) is minimal.

Definition 1.3 The minimized lp (1.9) distance dmin
p between vectors f ′ ∈ R

N and

f ′′ ∈ R
N is defined by

dmin
p (f ′, f ′′) = min

α∈R
dp(f

′, αf ′′) = min
α∈R
||f ′ − αf ′′||p.

For p = 2, the parameter α is computed using

d(d2(f
′, αf ′′))

dα
=

d

(√
∑N

i=1(f
′
i − αf ′′i )2

)

dα
= 0⇒ α =

f ′ · f ′′
f ′′2

. (1.20)

For p = 1, the computation of the parameter α is more complex, since we want to
find

min
α∈R

d1(f
′, αf ′′) = min

α∈R

{
N∑

i=1

|f ′i − αf ′′i |
}

.

The distance d1(f
′, αf ′′) is a piecewise linear function of variable α, in the intervals

(−∞, g1], [g1, g2], . . . , [gM−1, gM ], [gM ,+∞) (M ≤ N), where

g1 ≤ g2 ≤ . . . ≤ gM , {g1, . . . , gM} = {f ′i/f ′′i | f ′′i 6= 0, 1 ≤ i ≤ N}.

Therefore, it holds α ∈ {g1, . . . , gM}, whence

dmin
1 (f ′, f ′′) = min

1≤i≤M
d1(f

′, gif
′′). (1.21)

Note that the computational complexity of dmin
1 is O(M · N), if a brute force is

applied. The complexity of our calculation of dmin
1 , which is given by the pseudocode

in figure 1.8, is O(N logN).
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f ′ = (f ′

1
, . . . , f ′

N ), f ′′ = (f ′′

1
, . . . , f ′′

N );
Form an array m = {m1, . . . , mM}, mi = (gi, ni, si) ∈ R× N× {−1, 1},

gi = f ′

i/f ′′

i , (f ′′

i 6= 0), ni = i, si = sign(f ′′

i );
Sort m so that gi ≤ gi+1 (1 ≤ i < M) – complexity O(M log M);

a =
∑M

i=1
sni

f ′

ni
+
∑

f ′′

i
=0
|f ′

i |, b =
∑M

i=1
|f ′′

ni
|;

dmin
1

= a− g1b;
for i = 2, . . . , M

a← a− 2sni
f ′

ni
, b← b− 2|f ′′

ni
|;

if (dmin
1

> a− gib)⇒ dmin
1

= a− gib;

Figure 1.8: Algorithm of complexity O(N logN) for computing the minimal l1
distance.

Our experimental results (section 5.2) show that retrieval performance of some
feature vectors in the spatial domain (e.g., the ray-based approach from section 4.1)
is better when the minimized l1 distance (1.21) is used instead of the l1 (1.10). This
also holds for certain feature vectors in the spectral domain.

We consider that the presented distance calculations are reasonably suitable for
our application. Nevertheless, we do not exclude that, e.g., modifications of the
Hausdorff distance, the Earth Mover’s distance [21], the Bhattacharyya distance
[75], or the Kullback-Leibler distance [148] might be more effective for certain fea-
ture vectors. Similarity measures and algorithms suitable for content-based search
are also addressed in [139, 9, 38, 36].

1.5 Tools for Evaluation of Retrieval Effectiveness

We use common tools from information retrieval theory [7] to evaluate retrieval
performance of descriptors. The tools are based on precision and recall values. The
construction precision-recall diagrams as well as computations of the R-precision
[7] and the Bull’s Eye Performance [87] values, which we use to compare competing
feature vectors, are given in this section.

Let Σ be a collection of 3D-objects. Let C1, . . . , CK ⊂ Σ be disjunctive classes
of similar objects so that

Ci = {c(i)1 , . . . , c(i)ni
}, c(i)k ∈ Σ (1 ≤ k ≤ n1), and i 6= j ⇒ Ci ∩ Cj = ∅. (1.22)

Let C and U be the sets of all classified and unclassified objects, respectively,

C =

K⋃

i=1

Ci, U = Σ \ C. (1.23)

Models belonging to the same class are regarded as relevant to each other. The
categorization of similar (relevant) objects into classes serves as a ground truth.
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Suppose that q ∈ Ci is a query model and

R = {s1, . . . , sr} (1.24)

is the set of objects retrieved by using a selected descriptor and matching criterion.
The object s1 is regarded as the first (best) match (or nearest neighbor), s2 is the
second match, etc. We consider that relevant models to the query q are in the same
class with the query, i.e., the set of relevant objects is Ci \ {q}. The set of retrieved
models that are relevant (hits) is denoted by M ,

M = (Ci \ {q}) ∩R = {h1, . . . , hm}. (1.25)

The objective evaluation is based on the ground truth defined by (1.22) and (1.23).

Figure 1.9: For a given query model, a fraction of retrieved models is relevant.

Precision is the proportion of retrieved models that are relevant and recall is the
proportion of the relevant models actually retrieved,

precision =
|M |
|R| =

m

r
, recall =

|M |
|Ci \ {q}|

=
m

ni − 1
. (1.26)

If figure 1.9, four sets of models are illustrated, the entire collection, the set of
retrieved models (R), the set of relevant objects (Ci \ {q}), and the set of retrieved
relevant objects (M).

The construction of the precision-recall diagrams, which are widely used in sec-
tion 5.2, is demonstrated by the following example.

Let Ci \ {q} = {c1, c2, c3, c4, c5, c6, c7}, i.e., there are 7 objects relevant to
the query q. Firstly, we rank all objects form the collection Σ using the selected
descriptor and matching criterion. Suppose that

R = {c4, r1, c2, c7, r2, c1, r3, r4, c6, r5, c5, r6, r7, r8, c3, . . .}
is the ranking of all models from Σ according to the similarity to q, where ri ∈ Σ\Ci,
i = 1, 2, . . .. Thus, the last relevant model lies at position 15 (match number 15).
Next, we construct the table 1.1.

The number of columns in table 1.1 depends on the size of the class of relevant
models. In order to average values of precision over classes of different sizes, we
estimate precision at standard recall values

recallk =
k

G
, 1 ≤ k ≤ G, G ∈ N,
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Match no. 1 3 4 6 9 11 15
Object c4 c2 c7 c1 c6 c5 c3
Recall 1/7 2/7 3/7 4/7 5/7 6/7 7/7
Precision 1/1 2/3 3/4 4/6 5/9 6/11 7/15

Table 1.1: An example of computing precision and recall values using the ranking
of relevant objects.

by applying linear interpolation to the values from table 1.1. Interpolation results
for G = 5 and G = 10 are shown in table 1.2.

Recall 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Precision (G = 5) - 0.87 - 0.73 - 0.64 - 0.55 - 0.47
Precision (G = 10) 1.00 0.87 0.68 0.73 0.71 0.64 0.57 0.55 0.52 0.47

Table 1.2: Interpolation of precision at standard recall values recalli = i/G (1 ≤
i ≤ G) using data from table 1.1, for G = 5 and G = 10.

The precision-recall diagrams for the values from table 1.1 and the interpolations
for G = 5, G = 10, and G = 20 are shown in figure 1.10, where both recall and
precision are expressed in percentages. Obviously, the higher the value of G, the
better the interpolation. In section 5.2, all precision recall curves possess G = 20
standard recall values.
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Figure 1.10: Original and three interpolated precision-recall curves.

Values in table 1.1 describe ranking results for a single query. In order to
evaluate a descriptor and matching criterion for a selected query set Q 3 q, we take
each object from the set Q as a query, retrieve models, compute and interpolate
precision vs. recall for the single query, and average the results. By examining
averaged precision/recall diagrams for different queries (and classes) we estimate
the retrieval performance of descriptor for selected settings (e.g., type, parameters,
representation, and matching criterion).
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We also compute two cumulative parameters, the average precision p̄100 over
the whole recall range 1/G ≤recall≤ 1 and the average precision p̄50 over the recall
range 1/G ≤recall≤ 0.5. We consider these values to be useful for comparing
overall performance of different descriptors. For the interpolated values from table
1.2 obtained for G = 10, we have

p̄100 =
1.00 + 0.87 + 0.68 + 0.73 + 0.71 + 0.64 + 0.57 + 0.55 + 0.52 + 0.47

10
= 0.674 (or 67.4%)

and p̄50 =
1.00 + 0.87 + 0.68 + 0.73 + 0.71

5
= 0.798 (or 79.8%).

The MPEG-7 has adopted the Bull’s Eye Performance (BEP ) [87] as the eval-
uation tool for retrieval performance of visual descriptors (section 1.2). For a query
q ∈ Ci (1.22), the BEP score is defined as the percentage of all relevant objects
that are retrieved among the top 2(ni − 1) ranked objects, where ni is the size of
the class Ci. In other words, the BEP is the value of recall when 2(ni − 1) objects
are retrieved. Thus, using (1.22), (1.25), and (1.24) we write

BEP =
|(Ci \ {q}) ∩R|
|Ci \ {q}|

=
|M |

|Ci \ {q}|
=

m

ni − 1
, when r = 2(ni − 1). (1.27)

We also use the R-precision (RP ) [7], which is the fraction of relevant objects
that are retrieved, when the number of retrieved is equal to the number of relevant
objects. Using (1.22), (1.25) and (1.24), we have

RP =
|M |
|R| =

m

r
, when r = ni − 1. (1.28)

Note that r = ni − 1⇔ Precision = Recall (1.26).
Some authors [97, 98, 129] refer to the values of RP and BEP as the “First

Tier” and “Second Tier”, respectively.
For the example in table 1.1, since ni = 8, we observe that the number of hits

among the first 7 (resp. 14) objects is 4 (resp. 6), whence

BEP = 6/7 = 0.857 (or 85.7%) and RP = 4/7 = 0.571 (or 57.1%).

In order to obtain a measure of retrieval performance on a set of queries, the
values of BEP and R-precision are averaged. We consider that an absolute differ-
ence of at least 0.02 (or 2%), between average values of BEP (or R-precision) for
two competing descriptors, is significant.

As an example, in figure 1.11 two descriptors are compared by averaging preci-
sion at standard recall values (G = 20) using a given set of queries. Since for all
recall values the precision-recall curve of descriptor 1 is clearly above the precision-
recall curve of descriptor 2 and all values of p̄50, p̄100, BEP , and R-precision are
significantly higher for the descriptor 1, we conclude that the descriptor 1 possesses
superior retrieval performance with respect to the descriptor 2.

Besides comparing competing descriptors, precision-recall diagrams can be used
for estimating the number of retrieved objects in order to find a desired number



Tools for Evaluating Retrieval Effectiveness 33

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

Descriptor 1 (50.3,36.3,44.0,33.3)
Descriptor 2 (43.2,29.8,36.3,28.0)

Figure 1.11: Comparison of performance of two descriptors each of which uses
specific settings (type, parameters, matching criterion, etc.). The values of p̄50,
p̄100, BEP , and R-precision are given in the brackets, respectively.

of relevant items, assuming that the total number of relevant models is known.
For instance, suppose we use a model of car as the query and we want to retrieve
10 relevant models from a collection containing K >> 10 models of cars. Then,
we calculate the recall value (10/K) and find the corresponding value of precision
p, using a precision-recall diagram of the engaged descriptor. The precision-recall
diagram should be averaged for queries of cars. We estimate that if we retrieve
around 10/p models, 10 of them should be cars.

An ideal precision-recall curve is constant, having precision=100% for the whole
recall range. In practice, precision is well below 100% even at small recall values,
and there is a decreasing tendency with the increase of recall values. A precision-
recall curve for a single query model (e.g., figure 1.10) appears to be “broken”.
An average precision-recall curve (for the whole query set) is usually monotonically
non-increasing, i.e., for two points belonging to a curve, (p1, r1) and (p2, r2), we
have

r1 < r2 ⇒ p1 ≥ p2.

In [7], it is recommended to force this monotonicity by setting p2 ← min{p1, p2}.
Nevertheless, in results presented in section 5.2 the monotonicity is not forced.





Chapter 2

Related Research Work

In this chapter, we describe several 3D-shape descriptors proposed by other authors.
We focus the related work on the same topic as ours – description of 3D-shape of
mesh models. We stress that there is a significant work (e.g., [9, 10, 150, 25, 64, 68,
69, 22], etc.) in the area of Computer Vision, which can be regarded as a somewhat
similar topic. However, we do not need to infer all the information about 3D-shape
from one or more 2D-images. We deal with 3D-objects represented as polygonal
meshes (section 1.3.1), and we use the lists of geometry (1.3) and topology (1.2) to
extract descriptors.

As far as we know, the first papers on content-based retrieval of polygonal mesh
models appeared in 1997. Therefore, we decided to describe the pioneering work
of Paquet [101, 103, 105, 102, 104, 100, 99], cords and moments-based descriptors.
Then, we present a descriptor based on equivalence classes proposed by Suzuki
[126, 125, 127, 124], followed by the MPEG-7 shape spectrum descriptor [89]. An
interesting technique, called topology matching [48], is also presented. Finally,
several descriptors have recently been proposed by the Princeton Shape Analysis
and Retrieval Group, shape distributions [97, 98], the reflective symmetry descriptor
[56, 55], and descriptors based on concentric spheres [57, 36].

The criteria for selecting the descriptors that are presented in this chapter
are historical reasons and the impact on the area of retrieval of polygonal mesh
models. However, more and more researchers are attracted by the topic. A va-
riety of approaches for describing shape of a 3D mesh model can be found in
[2, 72, 153, 151, 95, 27, 28, 19, 77, 11, 110, 65, 129, 93, 91, 92].

In our experiments (section 5.2.12), we tested Paqeut’s cords-based and moments-
based descriptors, Suzuki’s descriptor based on equivalence classes, MPEG-7 shape
spectrum descriptor, and descriptors based on shape distributions and functions on
concentric spheres. The program code for feature extraction of the shape spectrum
approach is taken from the MPEG-7 eXperimentation Model [84]. A descriptor
reported in [58] is extracted using binaries (executables) provided by the authors
[108]. Implementation of feature extractors for other approaches has been done by
ourselves. Certain feature extraction techniques are underspecified [126, 125] or

35
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ambiguous [56, 55]. In order to reduce the probability of missing the correct fea-
ture extraction procedure, we implemented several variants of feature extractors, in
cases of non-complete descriptor specifications.

2.1 Cords and Moments-Based Descriptors

One of the first works on shape-similarity search for 3D-mesh models was reported
in 1997 [101] by Paquet and Rioux. In this section we review three 3D-shape
descriptors proposed by these authors, cords-based, moments-based, and wavelet
transform-based.

In order to secure rotation invariance of descriptors, a 3D-object, represented
as a triangle mesh, is rotated first, by applying the Principal Component Analysis
(PCA) [51] to the centers of gravity of triangles (3.15) [103, 105]. More details
about the normalization of rotation are given in section 3.3. The normalization of
reflection (flipping) is presented in [105]. After orienting the model, i.e., securing
invariance with respect to rotation and reflection of a mesh model, the feature
extraction follows.

In [103, 105], a cord ci is defined to be a vector that goes from the center of
gravity mI of a mesh model to the center of gravity gi of a triangle Ti (i = 1, . . . ,m)
(1.2). The center of gravity of the point set I (1.5) is computed by

mI = (mx,my,mz) =
1

S

m∑

i=1

Sigi, gi = (gxi
, gyi

, gzi
), (2.1)

where S and Si are defined by (1.6). Thus, the number of cords is equal to the
number of triangles of the mesh model. The cords-based descriptor consists of
three histograms. The first histogram represents the distribution of the angles αi

between the cords and the first principle axis, while the second histogram provides
the distribution of the angles βi between the cords and the second principle axis,
where 0 ≤ αi, βi ≤ π. The third histogram describes the distribution of the norms
of cords ||ci|| so that the smallest value is zero and the largest value corresponds to
the norm M of the longest cord. In order to provide independence with respect to
the number of cords, all three histograms are normalized using the total number of
cords m. Therefore, for each triangle we compute

ci = gi −mI , ||ci|| =
√

(gxi
−mx)2 + (gyi

−my)2 + (gzi
−mz)2,

M = max
1≤i≤m

||ci||, αi = arccos

(
gxi
−mx

||ci||

)

, βi = arccos

(
gyi
−my

||ci||

)

.
(2.2)

The number of bins in each histogram is equal N , whence the dimension of the
cords-based feature vector f is equal 3N ,

f = (h
(1)
1 , . . . , h

(1)
N , h

(2)
1 , . . . , h

(2)
N , h

(3)
1 , . . . , f

(3)
N ). (2.3)
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The forming of the the feature vector f is described by the following pseudocode

h
(k)
i = 0, i = 1, . . . , N, k = 1, 2, 3;

for i = 1, . . . ,m

k = dN · αi/πe; h
(1)
k ← h

(1)
k + 1/m;

k = dN · βi/πe; h
(2)
k ← h

(2)
k + 1/m;

k = dN · ||ci||/Me; h
(3)
k ← h

(3)
k + 1/m;

(2.4)

Besides possessing rotation and reflection invariance (normalization), the cords-
based feature vector is invariant with respect to translation of a mesh model, because
cords are determined relatively to the center of gravity mI . Invariance with respect
to scaling is provided by binning cord norms ||ci|| so that the highest value corre-
spond to the maximal cord norm M . The average extraction time of this descriptor
is extremely low. On a PC with an 1.4 GHz AMD processor running Windows
2000, the cords-based descriptor of a model from the MPEG-7 set (section 5.1) is
extracted in less than 9ms, on average. The computational complexity is O(m).
The authors suggested to use N = 40 as the best choice for the number of bins.

The discriminant power of the cords-based descriptor is not high, mostly because
differing sizes of triangles are not taken into account. Even if the area of triangle Ti

is significantly larger than the area of triangle Tj , the corresponding cords ci and cj

are equally important. Different tessellations as well as different levels-of-detail of a
3D-mesh model usually have significantly different descriptors. As a trivial example,

if one takes a triangle Ti of a mesh and replaces it with k triangles {T (1)
i , . . . , T

(k)
i }

so that for a 6= b, it holds T
(a)
i ∩ T (b)

i = ∅ and Ti = ∪k
j=1T

(j)
i , then we will have

absolutely the same appearance of the object, but the corresponding cords-based
feature vectors will be different (the number of cords will be m + k − 1 instead of
m). This example is illustrated in figure 2.1, where Ti is replaced by 27 smaller
triangles.

Figure 2.1: Triangle Ti is replaced by 27 smaller triangles, whence the number of
cords is increased by 26. The endpoints of cords are denoted by the dots.

Moreover, the cords-based descriptor is sensitive to surface noise and topological
degeneracies. Although the authors regard a cord as a ”slowly varying normal vector
that capture regional characteristics” [105], the overall retrieval performance of this
descriptor is not good (see section 5.2.12).
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The feature vector based on statistical moments is proposed in [105]. After
normalizing rotation and reflection of mesh vertices, a 3D-statistical moment Mqrs

is defined as

Mqrs =

m∑

i=1

Si(gxi
−mx)q(gyi

−my)r(gzi
−mz)

s, q, r, s ≥ 0, (2.5)

where Si (1.6) denotes the surface area of triangle Ti (1.2). The authors did not
give any details how to organize the moments Mqrs in order to compose a feature
vector. Therefore, we tested this approach in the following manner. Firstly, we
observe that M000 =

∑m
i=1 Si = S (1.6) and M100 = M010 = M001 = 0. Indeed,

from (2.1) and (2.5), we obtain for M100 (similar for M010 and M001)

M100 =

m∑

i=1

Si(gxi
−mx) =

m∑

i=1

Sigxi
−mx

m∑

i=1

Si =

m∑

i=1

Sigxi
−mxS = 0.

We regard the sum q + r + s as the order of the moment, and form the feature
vector using all moments of order 2 to N , i.e., 2 ≤ q+ r+ s ≤ N . The dimension of
the moments-based feature vector f is equal to (N + 1)(N + 2)(N + 3)/6− 4. The
vector is formed as described by the algorithm in figure 2.2. Note that an embedded
multi-resolution representation is provided (1.8).

dim = (N + 1)(N + 2)(N + 3)/6− 4;
f = (f1, . . . , fdim);
i=1;
for k = 2, . . . , N // k–order

for q = 0, . . . , k
for r = 0, . . . , k − q

s = k − r − s;
fi ←Mqrs;
i← i + 1;

Figure 2.2: Algorithm for forming the feature vector based on statistical moments.

The computation of the dimension dim, when the vector is composed according
to the algorithm in figure 2.2, is given by

dim =

N∑

k=2

k∑

q=0

(k − q + 1) =

N∑

k=2

k2 + 3k + 2

2
=

(N + 1)(N + 2)(N + 3)

6
− 4.

We set N = 12 and obtain the feature vector of dimension 451, thereby all lower-
dimensional vectors (for N = 2, . . . , 11) are contained in the largest vector. The
average extraction time of the feature vector with 451 components is 84ms, for a
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model from the MPEG-7 set (section 5.1), on a PC with an 1.4 GHz AMD processor
running Windows 2000.

The authors [105] considered the scale of a model as a feature and they did
not provide any mean to secure scaling invariance. This is a contradiction to the
invariance requirement 3 in section 1.3.4. Consequently, the retrieval performance
is very poor (see section 5.2.12). However, even if we fix the scale (section 3.4), the
effectiveness is not god enough. Therefore, we conclude that the approach based on
statistical moments possesses rather theoretical than practical significance.

We implemented both cords and moments-based descriptors and evaluated their
performance (section 5.2.12).

The same authors proposed a wavelet transform-based descriptor [105], which
is rather underspecified. The main idea is to voxelize a 3D-model and to apply a
wavelet transform in each dimension. However, no information about the voxeliza-
tion is given, i.e., it is not specified what is the region of voxelization as well as how
voxel attributes are computed. The authors proposed to use Daubechies-4 (DAU4)
wavelets. After performing the wavelet transform, the obtained coefficients are pro-
cessed further. Firstly, the logarithm of each coefficient is computed, in order to
enhance the coefficients corresponding to fine details, whose magnitudes are usually
small. Then, the sums of logarithms at each level of resolution are computed and
regarded as components of the wavelet transform-based feature vector.

The web-based 3D model retrieval system [99] uses methods presented in [103,
105].

2.2 Descriptor based on Equivalence Classes

In [126, 125], Suzuki et al. proposed a 3D-shape descriptor, which they regard as
“rotation invariant shape descriptor”. Originally, the descriptor presented in [126]
is not invariant with respect to rotation for an arbitrary angle around an arbitrary
axis, but only with respect to rotation of 90 degrees around the coordinate axes.
However, the Principal Component Analysis (PCA) [51] is used in [125] for finding
a canonical orientation of a model. Since no details about how the PCA is applied
to triangle meshes are given, we apply our Continuous PCA (see section 3.4) to
rotate an arbitrary triangle mesh model.

After the rotation, a unit cube is formed. The unit cube is not defined neither
in [126] nor [125]. Moreover, it is not specified if the unit cube encompasses the
whole object. Therefore, we tested three possibilities for defining the unit cube,
using cuboid regions that are originally defined for our methods (chapter 4). The
tested definitions of the unit cube are the following:

• CBC: the unit cube is the tightest enclosing cube so that the center of the cube
coincides with the center of gravity of the mesh model (see definition 4.1);

• EBB: the tightest bounding box is extended to the unit cube so that the centers
of both coincide and the length of edge of the cube is equal to the length of the
longest edge of the bounding box (see definition 4.3);
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• CC2: the center of the unit cube coincides with the center of gravity of a mesh
model, while the length of edge is four times the average distance of points on
the model’s surface to the center of gravity (see definition 4.4).

All cubes, CBC, EBB and CC2, have faces parallel to the coordinate hyper-planes.
Note that CBC and EBB encompass the whole object, while there might be some
parts of the model outside the CC2. The CC2 is created in order to improve the
robustness with respect to outliers (requirement 5 in section 1.3.4).

The unit cube, which is determined by its diagonal points bmin = (bx,by,bz) ∈
R

3 and bmax = (b̄x, b̄y, b̄z) ∈ R
3 (bx < b̄x, by < b̄y, and bz < b̄z), is subdivided into

(2N + 1)3 (N ∈ N) cubes γijk ⊂ R
3 (−N ≤ i, j, k ≤ N). The cube γijk is defined

by its diagonal points pijk and pijk + d, where

pijk = bmin + d · (i+N, j +N, k +N), d = (dx, dy, dz) =
bmax − bmin

2N + 1
.

The 3D-space R
3 is discretized by associating a point (i, j, k) ∈ Z

3 to the cube γijk.
The point (i, j, k) is attributed a real value vijk ∈ R. Thus, vijk attributes the cube
γijk.

Next, a point cloud of a mesh model is created so that the points are uniformly
distributed on the surface of the object. Each attribute vijk is equal to the fraction
of points belonging to the cube γijk. Hence,

N∑

i=−N

N∑

j=−N

N∑

k=−N

vijk = 1.

The authors defined equivalence classes in Z
3. Points x = (xi, xj , xk) ∈ Z

3 and
y = (yi, yj , yk) ∈ Z

3 belong to the same equivalence class if and only if there is
a finite concatenation ρ of rotations ρx, ρy, and ρz (2.6) of 90 degrees around the
coordinate axes such that y = ρ(x).

ρx =





1 0 0
0 0 1
0 −1 0



 , ρy =





0 0 −1
0 1 0
−1 0 0



 , ρz =





0 −1 0
1 0 0
0 0 1



 .

(2.6)
Hence, if it is possible to transform x into y by applying a finite sequence of rotations
of 90 degrees around the coordinate axes, then x and y are in the same equivalence
class.

The equivalence classes are initially used to secure invariance with respect to
rotations of 90 degrees around the coordinate axes [126]. The invariance of the
feature vector was attained using a well known general principle. Any feature vector
can be made invariant with respect to a finite group of transformations of space by
summing or averaging feature vectors computed from all possible transformations
of an object.

For the set of points {(i, j, k) ∈ Z
3 | − N ≤ i, j, k ≤ N}, the total number of
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equivalence classes is calculated by

dim=

N∑

i=0

N−i∑

j=0

N−i−j
∑

k=0

1 +

N∑

i=3

N−i∑

j=3

N−i−j
∑

k=3

1

=
(N + 3)(N + 2)(N + 1) +N(N − 1)(N − 2)

6
.

(2.7)

The dimension of the feature vector, which is proposed in [126, 125], is equal to
the total number of equivalence classes, dim. The value of the component fi (i ∈
{1, . . . , dim}) of the feature vector f = (f1, . . . , fdim) is associated to an equivalence
class and is equal to the sum of all attributes vijk of the points belonging to the
equivalence class. We refer to the approach presented in [126, 125] as descriptor
based on equivalence classes.

As an example, for N = 1 we have a 3 × 3 × 3 grid with dim = 4 equivalence
classes (figure 2.3). The components of the feature vector f = (f1, f2, f3, f4) are
computed by summing up the attributes vijk in corresponding classes.

f1 = v0,0,0,
f2 = v−1,0,0 +v0,−1,0 +v0,0,−1 +v1,0,0 +v0,1,0 +v0,0,1,
f3 = v−1,−1,0 +v−1,1,0 +v1,−1,0 +v1,1,0 +v−1,0,−1 +v−1,0,1 +v1,0,−1 +v0,1,1

+v0,−1,−1 +v0,−1,1 +v0,1,−1 +v0,1,1,
f4 = v−1,−1,−1 +v−1,−1,1 +v−1,1,−1 +v−1,1,1 +v1,−1,−1 +v1,−1,1 +v1,1,−1 +v1,1,1.

↓
↓ ↓ ↓ ↓

f1 f2 f3 f4

Figure 2.3: Equivalence classes of the 3× 3× 3 grid (N = 1).

The average extraction times, for various dimensions of the feature vector based
on equivalence classes, are given in table 2.1. The descriptors are extracted using
our implementation of the approach. The results are obtained on a PC with an
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1.4 GHz AMD processor running Windows 2000, using the MPEG-7 set of models
(section 5.1).

N 1 2 3 4 5 6 7 8 9 10 11
dim 4 10 21 39 66 104 155 221 304 406 529
Time [ms] 17 26 34 45 53 63 74 86 100 117 135

Table 2.1: Average extraction times (in milliseconds) of the descriptor based on
equivalence classes.

According to our evaluation (section 5.2.12), the best choice of the unit cube is
EBB (definition 4.3). The feature vector based on equivalence classes of dimension
406 (N = 10, i.e., 21× 21× 21 grid) possesses better overall retrieval performance
than vectors of lower dimensions. However, the vector of dimension 155 is just
slightly less effective, whence if there is a strong requirement for a compact feature
representation, then we recommend dim = 155. The descriptor based on equiv-
alence classes significantly outperforms the cords and moments-based descriptors
from section 2.1.

2.3 Shape Spectrum Descriptor

The MPEG-7 shape spectrum descriptor [88, 89] is extracted without any normal-
ization of polygonal mesh model. This descriptor can be interpreted as a histogram
of curvature indices. A curvature index is associated to each triangle of a mesh and
is obtained by local parametric surface fitting around a triangle.

In this approach, mesh models are supposed to be regular enough, i.e., without
multiple edges, floating (isolated) faces or vertices, or any other topological degen-
eracies. If such degeneracies occur, a preliminary filtering step of the 3D mesh
model is highly recommended before applying the feature extraction. There is also
a requirement for orientability of a triangle mesh (see definition 1.2).

The curvature index Γj ∈ [0, 1] (2.8), associated to the triangle Tj , 1 ≤ j ≤ m,
of a mesh model (1.2), is defined using the two principal curvatures k′j and k′′j .

Γj =
1

2
− 1

π
arctan

k′j + k′′j
k′j − k′′j

, k′j ≥ k′′j . (2.8)

Before computing Γj , a checking for singularities is performed.
Two triangles Ti and Tj are considered to be adjacent if they share a common

vertex. Let Λj be the set of indices of all triangles adjacent to Tj and σj be the
sum of surface areas given by

Λj = {i | Ti adjacent to Tj}, σj = Sj +
∑

i∈Λj

Si. (2.9)

If the number of triangles adjacent to Tj (the cardinality of the set Λj) is less than
5, then the area σj is regarded as an area of singular surface.
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If no singularity is stated, then the computation of the curvature index Γj pro-
ceeds in the following steps:

1. Computation of the mean normal vector of the triangle Tj ;

2. Local parametric surface fitting around Tj ;

3. Calculation of the principal curvatures k′j and k′′j .

4. Checking for planar surfaces.

The mean normal vector n̄j (2.10) of the triangle Tj is defined as the weighted
average of normal vectors of adjacent triangles to Tj ,

n̄j =
s

||s|| , s =
∑

i∈Λj

Sini, (2.10)

where Si and ni are the surface area and normal vector of triangle Ti, while Λj is
given by (2.9). Obviously, inconsistent orientations of triangles lead to wrong values
of the mean normal vectors. Hence, the triangle mesh supposed to be orientable
(definition 1.2) in order to enable the correct estimation of the mean normal vector.

The authors stress [88] that adjacent triangles of the second order (adjacent
to adjacent) and higher order (further recursion) can be considered. In that case,
the computational complexity increases proportionally to the size of the set Λj .
However, retrieval performance will not be improved [88].

Local fitting of a parametric 3D-surface is performed through the centers of
gravity of the triangle Tj and the adjacent triangles Ti (i ∈ Ai). The parametric
surface is quadratic, expressed as a second order polynomial,

z = f(x, y) = a0x
2 + a1y

2 + a2xy + a3x+ a4y + a5, a0, . . . , a5 ∈ R. (2.11)

The equation 2.11 can be expressed as a scalar product of vectors,

f(x, y) = a·b(x, y), a = (a0, a1, a2, a3, a4, a5), b(x, y) = (x2, y2, xy, x, y, 1).
(2.12)

A new Cartesian coordinate system is defined so that its origin coincides with
the center of gravity gj of triangle Tj and the mean normal vector n̄j (2.10) is
taken as the z-axis. In the rest of this section, coordinates (x, y, z) are assumed to
be expressed in the new frame.

Let G = {gi = (gxi
, gyi

, gzi
) | i ∈ Λj} be the set of centers of gravity of

the triangles adjacent to Tj . A linear regression procedure is applied in order
to determine the vector a (2.12). The optimal fit of the quadratic surface (2.12)
through the points gi (i ∈ Λj), which minimizes the mean square error, is secured
if the vector a is computed by

a =

∑

i∈Λj

gzi
b(gxi

, gyi
)

∑

i∈Λj

b(gxi
, gyi

) · b(gxi
, gyi

)
. (2.13)
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After determining the parametric surface approximation, the principle curva-
tures k′j and k′′j are computed using the shape operator (also known as the Wein-
garten map or the second fundamental tensor) [148]. Namely, k′j and k′′j are eigen-
values of the shape operator W defined by

W = I−1II, I =

[
1 + f2

x fxfy

fxfy 1 + f2
y

]

, II =
1

√

1 + f2
x + f2

y

[
fxx fxy

fxy fyy

]

,

(2.14)
where I and II denote the first and the second fundamental differential form [148].
We use the standard Monge notation for partial derivatives, i.e.,

fx =
∂f

∂x
, fy =

∂f

∂y
, fxx =

∂2f

∂x2
, fyy =

∂2f

∂y2
, and fxy =

∂2f

∂x∂y
.

Hence, by combining (2.12), (2.13), and (2.14), we compute k′j and k′′j . Finally,
a surface is declared as planar if the following condition is fulfilled

σj

√

(k′j)
2 + (k′′j )2 < t,

where t is a given threshold (recommended 0.1 ≤ t ≤ 0.4) and σj is the total area
of local surfaces defined by (2.9).

After all triangles Tj of the mesh are processed, the shape spectrum descriptor
f is composed from a histogram of curvature indices Γj (2.8) and two additional
components describing the proportion of planar and singular surfaces f(x, y) (2.11).
If N is the number of histogram bins, then the dimension of the feature vector f

is dim = N + 2. The exact algorithm for populating feature vector components is
given by the following pseudocode.

dim = N + 2; // N - the number of histogram bins
f = (h1, . . . , hN , planar, singular);
Initialize: h1 = . . . = hN = planar = singular = 0;
for j = 1, . . . , m // m - the number of triangles (1.2)

Find Λj and compute σj (2.9);
if σj is a singular surface

singular ← singular + σj/S; // S - the total surface area of the mesh
else

Compute k′

j , k′′

j , and Γj ;

if
(

σj

√

(k′

j)
2 + (k′′

j )2 < t
)

// e.g., t = 0.25

planar ← planar + σj/S;
else

i = dΓjNe; // d·e is the ceiling function
hi ← hi + σj/S;

The MPEG-7 eXperimentation model [84] includes a C++ source code that
we use for generating the shape spectrum descriptor. On average, a descriptor is
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extracted for 1.92s on a PC with an 1.4 GHz AMD processor running Windows
2000, using the models from the MPEG-7 collection (section 5.1). The extraction
time does not depend on the dimension of the feature vector, but on the complexity
of models. We also tested the extraction when adjacent triangles of the second
order are used for forming the set Λj (2.9). In this case, the average extraction time
amounts 5.37s. However, our tests confirm the claim from [88] that the retrieval
performance is not better if adjacent triangles of the second order are considered.

The descriptor is particularly effective in the case of articulated modifications
of models (e.g., different poses of a model of human), while its major drawback is
a high sensitivity with respect to the levels of detail or different tessellations of an
object. Also, there is a requirement for meshes to be orientable. An inconsistent
orientation of triangles of a mesh deteriorates the discriminant power of the shape
spectrum descriptor.

In [88], it is stated that a pre-processing step consisting of a mesh subdivision
algorithm (up to 2 subdivision levels) could strongly increase the accuracy of the
curvature estimation. However, our experience suggests that the increase of the
accuracy of the curvature estimation will not lead to the increase of retrieval per-
formance, because the feature vector will still be sensitive to different tessellations
and inconsistent orientation. Our evaluation results (section 5.2.12) show that the
shape spectrum descriptor is generally the most inferior descriptor, which is tested
in this thesis.

2.4 Topology Matching

An interesting and sophisticated technique, called topology matching, is presented
in [48]. The technique relies upon matching graph representations of 3D-objects.
A novel graph structure, multiresolutional Reeb graph (MRG), is introduced and
used for representing 3D-mesh models. The graph representation of a mesh model
is regarded as a descriptor. The topology matching technique can be subdivided
into two phases:

1. Generation of graph representation (descriptor), and

2. Computation of similarity between two graphs.

The method does not require any pose normalization step, because the invariance
with respect to similarity transforms is provided by the definition of descriptor. No
restrictions regarding closedness or orientability of the mesh models are imposed.

The main idea of the approach is to represent topology information by the MRG.
The MRG is generated using a suitable function µ(u), which approximates integral
of geodesic distances between a point u ∈ I on the surface of 3D-model to all other
points of the point set I (1.5), defined by

µ(u) =

∫

p∈I

g(u,p)dv, (2.15)
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where g(u,p) denotes the geodesic distance between the point u and the point p

on the surface of model I. Obviously, the value of µ(u) depends on the scale of the
object. To avoid the scale dependency, the function µ is normalized as

µn(u) =
µ(u)−min

p
µ(p)

max
p

µ(p)
. (2.16)

In order to balance the trade-off between the computational costs and the qual-
ity of the approximation of µ, certain pre-processing steps, aimed at reorganizing
topology and geometry of the mesh, are performed. The feature extraction algo-
rithm can be summarized into the following steps:

• Resampling of a triangle mesh model;

• Generation of short-cut edges;

• Selection of base vertices;

• Computation of geodesic distances;

• Construction of the multiresolutional Reeb graph;

• Representation of the multiresolutional Reeb graph.

Since a value of the function µn is assigned to each vertex of the mesh, the distri-
bution of the vertices should be fine enough and as uniform as possible. Therefore,
it is usually necessary to resample the triangles (figure 2.4) until all edge lengths are
less than a threshold τ . The authors do not specify how to determine the threshold.

Figure 2.4: Resampling until all edge lengths are less than a threshold τ .

The computation of the geodesic distance between two vertices is approximated
using the set of all edges E (1.7) of the mesh model. Since the triangle inequality
may deteriorate the quality of approximation, the authors recommend to add short-
cut edges to the set E. The generation of the short-cut edges is depicted in figure 2.5.
A triangle and three neighboring triangles are unfolded first, i.e, each neighboring
triangle is rotated around the common edge with the triangle in the middle so that
all triangles are coplanar. A diagonal of the unfolded polygon is added to the set
of edges E, if it is completely inside the polygon. In figure 2.5, the line connecting
two vertices denoted by squares is not considered as a short-cut edge, because it
is not inside the unfolded polygon. The lengths of the generated edges are the
Euclidean distances between the corresponding vertices of the unfolded polygon.
Thus, a short-cut edge is weighted by the geodesic distance between its points.

After the resampling and generation of short-cut edges, the set of vertices V
along with the set of edges E are treated as a weighted graph (V,E). A weight
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Figure 2.5: Generation of short-cut edges.

associated to an edge is the geodesic distance between the end points of the edge.
Therefore, the problem of finding the geodesic distance between two vertices of the
mesh can be interpreted as the problem of finding the shortest path from a point
in the graph (the source) to a destination. An efficient algorithm, proposed by
Dijkstra [24], can be used for computing simultaneously shortest paths from a fixed
point (node) bi to all other nodes of the graph (see the algorithm in figure 2.6).

bi – is the base vertex (source node);
V = {v1, . . . ,vm} – is the set of vertices;
LIST – is an ordered binary tree;
Initialize g(bi,vj) = +∞, for all vertices vj ∈ V ;
Set g(bi,bi) = 0 and insert bi to LIST ;
while (LIST is not empty)

Take v ∈ LIST so that g(bi,v) = min{g(bi,vj) | vj ∈ LIST};
Remove v from LIST ;
for each vertex va adjacent to v

if g(bi,va) > g(bi,v) + weight(v,va);
g(bi,va) = g(bi,v) + weight(v,va);
Insert va to LIST ; (∗)

Figure 2.6: Dijkstra’s algorithm for finding the shortest path from a base vertex
(source node) bi to all other nodes (vertices) v1, . . . ,vm.

The set of base vertices B = {b1, . . . ,bN}, which are scattered almost equally on
the surface of the model, is selected using a modification of the Dijkstra’s algorithm.
Firstly, an arbitrary vertex is selected as b1 and taken as the base point of the
Dijkstra’s algorithm. The original Dijkstra’s algorithm (figure 2.6) is modified as
follows:

• Step (∗) is changed to:

if g(bi,va) < tr, then insert va to LIST ;

where tr is a threshold.

• If the LIST is empty, then an arbitrary unvisited vertex is selected as a new base
vertex bi+1 (bi is the current base vertex), inserted in LIST , set g(bi+1,bi+1) =
0, and the while loop is repeated.
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The number of base vertices, N , depends on the threshold tr. It is recommended
to set tr =

√
0.005S, whereby the average number of base vertices N is around 150.

We recall that S denotes the surface area of the mesh model (1.6).
After the set B is selected, the original Dijkstra’s algorithm is applied for each

base vertex bi ∈ B (N times in total). As a result, all the values g(bi,vj), bi ∈ B,
vj ∈ V , are determined. The integral (2.15) is approximated by

µ(vj) =

N∑

i=1

g(bi,vj) · σi, (2.17)

where σi is the sum of areas of faces composed of vertices whose distances from bi

are less than tr. It holds,
∑N

i=1 σi = S. The specification how to select areas in
order to compute the value of σi is not given. In particular, we consider that the
handling of special cases is important. The special cases include:

• Vertices of triangle Tj are closest to different base vertices;

• A vertex v satisfies g(bi,v) < tr and g(bj ,v) < tr.

Typically, for tr =
√

0.005S around N = 150 base vertices are selected, and the
approximation (2.17) achieves sufficient accuracy.

After computing values of the function µn (2.16) at all vertices v1, . . . ,vm, the
multiresolutional Reeb graph is generated. Construction of the MRG is depicted
using the example in figure 2.7. For simplicity, a height function is used as the
function µn on a 2D-triangle mesh. In figure 2.7(a), an example 2D-triangle mesh
is visualized and four ranges of values of the function µn (briefly, µn-ranges) are
marked. If a triangle is spread across two or more µn-ranges, then a subdivision is
necessary (figure 2.7(b)). For instance, if v1, v2, and v3 are vertices of a triangle
and 0.25 < µn(v1) < 0.50 < µn(v2) < 0.75, then a new vertex v is inserted so that

v =
(µn(v2)− µn(v))v2 + (µn(v)− µn(v1))v1

µ(v2)− µ(v1)
,

where µn(v) = 0.50. The triangle 4v1v2v3 is subdivided into triangles 4v1vv3

and 4vv2v3. This process is repeated until each edge lies in one µn-range. Then,
the nodes of the MRG are identified (bold polygonal lines in figure 2.7(c)). The
nodes and edges of the MRG at the finest resolution (level 2) are visualized in figure
2.7(d), while the other two resolutions are shown in figure 2.7(e-f). Note that there
is a parent-child relationship between nodes at different levels, e.g., n6 is parent of
n0, n1, and n2, etc.

Finally, certain attributes of all nodes from the MRG are computed and stored
together with both the connectivity and parental information. The stored repre-
sentation of the MRG is regarded as a 3D-shape descriptor. As a first approach,
the authors suggested to use a pair of values (a(ni), l(ni)) to attribute the node ni.
The value of a(ni) is the quotient of the area of triangles related to ni and the total
area S, while l(ni) is the ratio of the length len(ni) of the node ni to the sum of
lengths

∑

j len(nj), where nj are the nodes at the finest level. The length of a node
is defined in [48]. The recommended number of µn-ranges is 64, i.e., an MRG with
7 resolution levels (26 = 64) is tested in [48].
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Figure 2.7: Construction of a multiresolutional Reeb graph using four ranges of
function values. Visualizations include: (a) original mesh, (b) subdivision of trian-
gles spread over two or more ranges, (c) identification of nodes, (d) the finest level
of the MRG – level 2, (e) MRG level 1, (e) the coarsest level of the MRG – level 0.

An original similarity measure between two descriptors (MRGs with attributes)
is used in the search procedure. The matching procedure, which is based on a
coarse-to-fine strategy, starts with finding pairs of nodes whose similarity can be
computed. The similarity computation starts at the coarsest level. A rule is that
nodes are matching candidates only if they have the same µn-range. An additional
condition for matching candidates, which are not at the fines level, is that their
parents are matched. There are other rules concerning propagation of matched
nodes along branches. For more details, we refer to [48].

One of the drawbacks of the topology matching approach is the sensitivity of
MRG construction at boundaries of µn-ranges. The problem is depicted in figure 2.8.
Two almost identical objects have different MRGs, because of small differences at
the boundaries of µn-ranges. The authors proposed to allow simultaneous matching
of sets of nodes, if all the nodes from a set are adjacent to the same node. For
example, the node n′

1 can match n1 and n2 simultaneously, because n1 and n2

are adjacent to the same node n0. In this case, the node n′
1 have three matching

candidates n1, n2, and n1 +n2, where the sign + denotes the addition of attributes.

Figure 2.8: Sensitivity at boundaries of µn-ranges. Small differences may signifi-
cantly disturb the MRGs.

In the results presented in [48], the average feature extraction time, i.e., the
average time for constructing a MRG, is around 15s, for a triangle mesh of 10000
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vertices. The results are obtained on a PC with an 400 MHz Pentium II processor
running Linux. For 64 µn-ranges, the average number of nodes in the MRG is
around 300. The average matching between two MRGs is approximately 0.05s,
which the authors regard as a quick procedure. We consider that the extraction
procedure takes reasonable amount of time, because in a retrieval system features
can be extracted at idle time. However, we disagree with the authors regarding the
quickness of the matching procedure. For a given query, if the matching procedure
has to be performed 1000 times, then the retrieval system responds after 50 seconds.
We consider this amount of time to be unacceptable for interactive applications.

We also feel that the effectiveness of the topology matching breaks down when
models are complex (geometrically and topologically). We expect more frequent
occurrences of the problem depicted in figure 2.8 as well as unexpected matching
pairs during the similarity calculation procedure. Our assumptions comply with
remarks presented in [11].

2.5 Shape Distributions, Reflective Symmetry, and

Descriptors Based on Concentric Spheres

In this section, we describe four 3D-shape descriptors introduced in [97, 98, 36,
57, 55, 56, 58]. The first descriptor is based on a technique called shape distribu-
tions and is essentially a statistical approach [97, 98]. A descriptor based on binary
voxel grids [36, 57], in which the fast Fourier transform is applied to functions on
concentric spheres, utilizes a property of spherical harmonics (see property 4.1 in
section 4.6.1). We stress that only the use of the property of spherical harmon-
ics is introduced in [36, 57] in order to secure rotation invariance, while spherical
harmonics as a tool for 3D-model retrieval are introduced in [147]. Reflective sym-
metry descriptor [55, 56] relies on the computation of a symmetry measure using
a negatively exponentiated Euclidean distance transform. By replacing the binary
voxel grid with the negatively exponentiated Euclidean distance field and using the
approach presented in [36, 57], a more powerful descriptor is created in [58]. A com-
mon characteristic of all four descriptors is that the Principal Component Analysis
(PCA) (section 3.4) is not used for securing rotation invariance. Two approaches
for achieving rotation invariance of 3D-shape descriptors, the PCA vs. the property
of spherical harmonics, are compared in section 5.2.13. We believe that it is better
to use the Continuous PCA (section 3.4) than the property of spherical harmonics
to accomplish rotation invariance.

2.5.1 Shape Distributions

The shape distributions approach, which is presented in [97, 98], does not require
any normalization of a 3D-mesh model. The main idea is to randomly select points
on the surface of a 3D-object, compute certain geometric property, and create a
histogram of obtained values. Thus, the approach is purely statistical.
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A point v on the surface of a 3D-mesh, v ∈ I (1.5), is randomly selected using
the following procedure. A vector σ = (σ1, . . . , σm) of cumulative surface areas is
created, where the elements σj are defined by

σj =

j
∑

i=1

Si, (Si is the surface area of triangle Ti). (2.18)

Then, a random value ρ ∈ [0, S] (1.6) is generated to select the triangle Tj by
performing a binary search on the array σ. Namely, the index j of the selected
triangle is defined as

j = min{i | ρ ≤ σi}.
Note that the probability of selecting the triangle Tj is proportional to its area Sj .

The selection of a uniform random point v ∈ Tj with respect to surface area is
done by generating two random numbers r1 ∈ [0, 1] and r2 ∈ [0, 1] and computing
v by

v = (1−√r1)pAj
+
√
r1(1− r2)pBj

+
√
r1r2pCj

. (2.19)

The following geometric properties (functions), which are based on random
points on the surface of a 3D-object, are considered:

• A3 – the angle between three random points;

• D1 – the distance between the center of gravity of the model (3.11) and one
random point;

• D2 – the distance between two random points;

• D3 – the square root of the area of the triangle determined by three random
points;

• D4 – the cube root of the volume of the tetrahedron determined by four random
points.

A chosen function is randomly sampledN times. The sample values {s1, . . . , sN}
are used to construct a histogram h of B ∈ N bins, defined by

h = (h1, . . . , hB), hi =




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∣
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∣
∣
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B
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)}∣
∣
∣
∣
, i = B,

(2.20)
where |{. . .}| denotes the cardinality the underlying set, and s̄ = (s1 + . . .+ sN )/N
is the mean value of samples si ≥ 0. Thus, the value of hi is the count of samples
belonging to a given range of values. Note that scaling invariance is provided by
defining the ranges of values using the mean value s̄.

A piecewise linear function g with dim ≤ B equally spaced vertices is constructed
from the histogram h. There are several possibilities to determine the ordinate
values of the vertices gi, 1 ≤ i ≤ dim. The approach used by the authors [35] is the
following

gi = hk, k =

⌈

i
B

dim

⌉

, (2.21)
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where d·e is the ceiling function. The components of the feature vector based on
shape distributions, f = (f1, . . . , fdim), are defined by

fi =

[
106

Σ
gi

]

, Σ = g1 + . . .+ gdim (2.22)

where [·] denotes the rounded value. Thus, the dimension of the feature vector f is
determined by the number of vertices of the piecewise linear function g. The factor
106/Σ normalizes the values o fi so that the vector components do not depend on
the number of samples N .

The authors suggest that the best choice of the geometric function is D2, while
N = 10242 samples, and dim = 64 are recommended parameter settings. The
number of bins B is tested for values 1024 and 64 (B = dim). The feature extraction
procedure for the case B = dim, when the D2 function is used, is summarized in
the algorithm shown in figure 2.9. Note that B = dim⇒ Σ = N .

N = 10242; // the number of samples
dim = 64; // dimension of the feature vector
f = (f1, . . . , fdim); // the feature vector
Initialization: fi = 0 (i = 1, . . . , dim);
s̄← 0;
for i = 1, . . . , N

Select random points v1 ∈ I and v2 ∈ I (2.19);
si = ||v1 − v2||; // Euclidean distance between 3D points
s̄← s̄ + si;

s̄← s̄/N ;
for i = 1, . . . , N // form histogram

j = min{dsidim/(3s̄)e, dim}; fj ← fj + 1;
for i = 1, . . . , dim // normalize values

fi ←
[

10
6

N
fi

]

;

Figure 2.9: Feature extraction algorithm of the shape distribution descriptor, for
the case B = dim, when the D2 function is used.

The average extraction time of the shape distribution descriptor is around 1.12s,
when the algorithm from figure 2.9 is used for generating descriptors of the models
from the MPEG-7 collection (5.1), on a PC with an 1.4 GHz AMD processor running
Windows 2000.

This approach satisfies all requirements listed in section 1.3.4. In spite of satis-
fying the desirable requirements, the discriminant power of the shape distribution
descriptor is poor (see section 5.2.12 as well as [36]). In general, purely statistical
shape feature vectors do not have sufficient discriminant power, because compo-
nents of the vector are not related to a specific spatial region. The results and
examples given in [97, 98] are based on a very small collection of only 133 3D-
models. Some examples show a good discrimination between shape distributions
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for cubes, spheres, cylinders, and other geometric primitives. However, the situ-
ation is totally different when dealing with complex 3D-meshes, i.e., the retrieval
performance of descriptors based on shape distributions is not good enough.

2.5.2 Descriptor Based on Binary Voxel Grids

A 3D-shape descriptor based on a binary voxel grid is proposed in [36, 57]. The
descriptor is defined by sampling functions on concentric spheres. The sample val-
ues are determined using the binary voxel grid. The sample points of functions on
concentric spheres are chosen so that the fast Fourier transform on the sphere (see
section 4.6.1) can be applied. In the normalization step, a 3D-model is translated
and scaled only, while the invariance with respect to rotation and reflection is se-
cured by relying on a property of spherical harmonics (see property 4.1). Spherical
harmonics as a tool for 3D-model retrieval are introduced in [147]. More details
about the generation of the descriptor are given in a sequel.

Firstly, a model I (1.5) is translated so that the center of gravity mI (3.11) lies
at the coordinate origin and the model is scaled by dividing by the average distance
davg (3.25) of a point on the surface of the model to the center of gravity. Hence,
a set I ′ is formed,

I ′ = {v′ | v′ = (v −mI)/davg, v ∈ I}. (2.23)

Next, the cubic region −2 ≤ x, y, z ≤ 2 in the 3D-space R
3 is rasterized into a

2R × 2R × 2R voxel grid in the discrete space Z
3. A voxel cell ηabc ⊂ R

3 (a, b, c ∈
{1, . . . , 2R}) corresponds to the cuboid region

ηabc =

{

(x, y, z)

∣
∣
∣
∣
∣
a =

⌊
x+ 2

2
R

⌋

+ 1, b =

⌊
y + 2

2
R

⌋

+ 1, c =

⌊
z + 2

2
R

⌋

+ 1

}

.

(2.24)
The voxel cell ηabc is attributed a binary value vabc, defined by

vabc =

{
0, I ′ ∩ ηabc = ∅,
1, I ′ ∩ ηabc 6= ∅. (2.25)

Note that some points of the point set I ′ lay outside the region of voxelization. Those
points are ignored as outliers. The binary voxel grid of a model of an airplane is
shown in figure 2.10.

Then, a function fr(θ, ϕ) (θ ∈ [0, π], ϕ ∈ [0, 2π]) on the sphere Ωr with the
center at the origin and radius r, is defined using (2.24) and (2.25)

fr(θ, ϕ) = vabc, whereby ηabc 3 (r sin θ cosϕ, r cos θ, r sin θ sinϕ). (2.26)

Note that fr(θ, ϕ) is a binary function [36].
Totally R functions on concentric spheres Ω1, . . . ,ΩR with radii r = 1, . . . , R

are sampled at 4B2 sample points u′
ab = (xab, zab, yab) (0 ≤ a, b ≤ 2B − 1), where

xab, yab, and zab are defined by (4.63). In [57], it is recommended to set R = 32.
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In our implementation of this approach, we use B = 64, i.e., we have 16384 sample
values fr,a,b for each function fr(θ, ϕ). The samples obtained using the binary voxel
grid are visualized on the right side of figure 2.10. In this visualization, neighboring
samples whose values are equal 1 are treated as vertices of triangles. Samples
whose values are 0 are not visualized. Functions on successive concentric spheres
are differently colored.

Figure 2.10: Approach based on a binary voxel grid: a 3D model (left) is repre-
sented by a binary voxel grid (middle), which is used to define binary functions on
concentric spheres (right).

For each function fr (2.26), the fast Fourier transform on the sphere Ωr (see
section 4.6.1) is applied to the sample values fr,a,b ∈ {0, 1}. As a result, we obtain

B2 complex coefficients f̂r,l,m ∈ C (0 ≤ |m| ≤ l ≤ B). A signature sr of the function
fr is defined using the property 4.1, in order to attain invariance of the signature
with respect to rotation of the underlying object (see remark 4.1). The signature is
generated using the first L bands of spherical harmonics, i.e.,

sr = (||fr,0||, . . . , ||fr,L−1||), where ||fr,l|| =

√
√
√
√

l∑

m=−l

|f̂r,l,m|2. (2.27)

The feature vector f based on a binary voxel grid is formed by concatenating the
signatures of spherical functions,

f = (s1|s2| . . . |sR) = (||f1,0||, . . . , ||f1,L−1||, . . . , ||fR,0||, . . . , ||fR,L−1||). (2.28)

Thus, the dimension of the feature vector is dim = R ·L. In [57], it is recommended
to set R = 32 and L = 16, i.e., dim = 512. Hence, a rough representation of
a 3D model by a 64 × 64 × 64 binary grid is used for defining 32 functions on
concentric spheres, while 16 bands of spherical harmonics are used in forming the
feature vector.

In [36], the authors state that the motive for using the binary voxel grid is
to achieve a better robustness with respect to variances of the polygonal surface.
However, we feel that many fine details are lost in a rough binary voxel grid. We
expect that a better choice is to have many samples of a model (i.e., of spherical
functions), and let the Fourier transform reduce the variance (high-frequency noise),
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than filtering the noise by voxelizing the model. The results presented in [142], where
the descriptor based on a binary voxel grid is compared to a descriptor formed using
a ray-casting technique (see section 4.6.6), comply with our assumptions.

The discriminant power of the descriptor based on a binary voxel grid is limited
because of the following reasons:

• If the resolution of voxelization R is low, than the representation of the model
by a binary voxel grid is too rough (coarse);

• If we increase R, then the functions on concentric spheres, corresponding to
similar models whose scaling factors are slightly different, can be mismatched.

The problem of mismatched binary functions is illustrated in figure 2.11. For
simplicity, a 2D case is depicted, i.e., instead of voxels we have square fields and
instead of functions on spheres we have functions on circles. At the resolution R,
functions on the circle (analogous to (2.26)) of both objects are identical. However,
at the resolution 2R the functions are almost complementary. The depicted example
represents an extreme situation, which rarely happens. Nevertheless, a similar
mismatching is present, because the method relies upon the center of gravity of a
3D-mesh model (center of concentric spheres) and the average distance of a point
on the surface to the center of gravity (scaling factor). We anticipate that similar

objects may have slightly different scaling factors so that the function f
(a)
r of the

model Ia matches f
(b)
r±1 of the model Ib.

Object Ia Object Ib

Figure 2.11: At the resolution R, the functions on the circle are identical for both
objects, while at the resolution 2R, the functions are almost complementary. Darker
parts of the circles denote the value of 0, while brighter parts denote the value of 1.

We object to the choice to use binary functions fr (2.26) for characterizing
binary voxel grids, because the number of voxels whose attributes are used to de-
termine the sample values of fr increases with the increase of r. Thus, only 8 voxel
attributes determine all sample values of f1, while 10496 voxels (according to our
implementation) determine samples of f32. Therefore, we believe that it is mean-
ingful to specify the “importance” of the function fr. A possible way to modify
(2.26) is just to multiply the voxel attribute by r,

fr(θ, ϕ) = r · vabc, whereby ηabc 3 (r sin θ cosϕ, r cos θ, r sin θ sinϕ). (2.29)
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The experimental results (section 5.2.12) show that (2.29) is significantly better
choice of defining fr than (2.26).

2.5.3 Reflective Symmetry Descriptor

A descriptor based on calculation of a symmetry measure, with respect to a plane
cutting a 3D-model, is presented in [55, 56]. The model is cut by many planes
passing through the center of gravity of the model. For each plane, a symmetry be-
tween parts of the model, being on the opposite sides of the plane, is estimated. The
symmetry estimation relies upon a suitable representation of the object by a voxel
grid, whose voxels are attributed values computed by a negatively exponentiated
Euclidean distance transform.

Hence, a 3D-model is voxelized first. The voxelization starts with generating
the binary voxel grid V = {vabc | 1 ≤ a, b, c ≤ 2R, vabc ∈ {0, 1}} (2.25), which is
described in the previous subsection. The Euclidean distance transform is applied
to the 3D-array V , and new attributes v′abc satisfy the condition

v′abc = min
{
(a− x)2 + (b− y)2 + (c− z)2

∣
∣ vxyz = 1, 1 ≤ x, y, z ≤ 2R

}
, (2.30)

Thus, the value of the attribute v′abc represents the square of the shortest distance
to a voxel whose attribute is 1. This can also be interpreted as an approximate
squared distance from a point x ∈ ηabc (2.24) to the nearest point on the model I ′

(1.5). The Euclidean distance transform is computed using the algorithm proposed
by Saito and Toriwaki [115], whose computational complexity is O(N 3) for an N ×
N × N voxel grid. Finally, the attributes v′′abc are computed using a negatively
exponentiated distance transform,

v′′abc = exp

(−v′abc

r2I

)

, (2.31)

where rI is the average distance from a point on the surface of a model I to the
center of gravity of the mesh model (3.11). Having in mind the normalization of
translation and scale (2.23), we observe that rI = 1 for the point set I ′.

A point ni on a sphere of radius 1, with the center at the origin, is considered as
the normal vector of the plane containing the origin. Let πi be the plane containing
the origin and having ni as the normal vector. The plane πi cuts the underlying
model into two parts. An approach for measuring the symmetry distance, between
parts of the model lying on the opposite sides of the cutting plane, is presented in
[55, 56]. The method relies on the voxelized model, whereby the attributes defined
by (2.31) are used. The problem of computing the symmetry measure of a voxel grid
is transformed into a problem of computing the similarity measure of a collection
of functions defined on concentric spheres. The computational complexity of the
algorithm is O(N4 log2N), for an N×N×N voxel grid. Since the method relies on
reflection of the model with respect to πi, the authors called the technique reflective
symmetry descriptor.

Let σi ∈ R be the symmetry measure between parts of a model lying on the
opposite sides of πi. Since all parts of the 3D-model are used to computes the



Shape Distributions, Reflective Symmetry, and Ds on Concentric Spheres 57

value of σi, the reflective symmetry distance σi is a global feature. The reflective
symmetry feature vector f is formed by treating σi as components, i.e.,

f = (σ1, . . . , σdim). (2.32)

The authors do not specify how the points (i.e., normal vectors) ni on the unit
sphere are chosen. Also, the vector dimension dim is not suggested. We assume
that the normal vectors are uniformly distributed across the unit sphere.

According to [56], for an 64 × 64 × 64 voxel grid (R = 32), the voxelization
(2.25) takes between 0.2 and 3.5 seconds, the computation of the exponentially de-
caying distances (2.31) takes 1.2 seconds, and the estimation of reflective symmetry
distances takes 5 seconds. Hence, the feature extraction lasts between 6.4 and 9.7
seconds. The results are obtained on an 800 MHz Athlon processor with 512 MB
of RAM.

The reflective symmetry descriptor is invariant with respect to translation, scal-
ing, and reflection, while the invariance with respect to rotation is not provided.
The evaluation results in [55, 56] are based on a 3D-model collection of manually
oriented objects. In practice, such a 3D-shape descriptor, which is highly sensitive
even to rotation of a mesh model for a very small angle around a coordinate axis,
cannot be useful. Hence, the importance of the approach presented in [55, 56] is
mainly theoretical.

Figure 2.12: Models that are considered similar may have significantly different
components of the reflective symmetry feature vector.

The authors stress that because of the global nature of the reflective symmetry
distance, a large difference in the values for a single component of the feature vector
(2.32) “provides a provable indication that two models are significantly different”.
However, we disagree with this statement because of two reasons. First, since
rotation invariance is not provided, models should be perfectly aligned (oriented).
Obviously, if a model is rotated for an angle around an arbitrary axis, then the
reflective symmetry descriptor will be significantly different. Second, a counter-
example to the claim is depicted in figure 2.12. Namely, we have models that are
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considered relevant (similar) to each other, which are articularly modified. Since
there is no perfect alignment for these models, a number of components of the
corresponding reflective symmetry feature vectors of similar models will always be
significantly different.

Limitations of retrieval effectiveness of the reflective symmetry descriptor are
also commented in [56]. Instead of 3D-model retrieval, registration is considered as
another possible usage of the presented technique.

2.5.4 Descriptor Based on Exponentially Decaying EDT

A very effective 3D-shape descriptor, which we call descriptor based on exponen-
tially decaying Euclidean distance transform (EDT), is defined in [58] by merging
the techniques presented in subsections 2.5.2 and 2.5.3. Instead of using a binary
voxel grid to define functions on concentric spheres by (2.26), the following modifi-
cation is used [54],

fr(θ, ϕ) = r · exp

(−v′abc

16

)

, whereby ηabc 3 (r sin θ cosϕ, r cos θ, r sin θ sinϕ).

(2.33)
where v′abc is defined by (2.30), and 1 ≤ r ≤ R. The rest of the extraction procedure
presented in subsection 2.5.2 is applied. Each function fr is sampled and the Fourier
transform on the sphere is applied to the sample values. The first L bands of the
obtained complex coefficients are used to form the signature sr (2.27) of the function
fr.

In [58], the obtained signatures sr (1 ≤ r ≤ R) are post-processed further, by
substituting the constant and the second order harmonic norms, ||fr,0|| and ||fr,2||,
with three real values c1, c2, c3 ∈ R. The motivation for this post-processing step
is the minimization of the L2 difference between the quadratic components of two
functions on a sphere. The sum ψr of the constant (fr,0) and the quadratic (fr,2)
components of a function on sphere can be expressed as

ψr(x, y, z) = fr,0(x, y, z) + fr,2(x, y, z)

= a0 + a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz + a6yz

= [ x y z ]





m1 m4 m5

m4 m2 m6

m5 m6 m3



 [ x y z ]T ,

(2.34)

where x2 + y2 + z2 = 1 and

m1 = ψr(1, 0, 0), m4 = ψr

(
1/
√

2, 1/
√

2, 0
)
− m1 +m2

2
,

m2 = ψr(0, 1, 0), m5 = ψr

(
1/
√

2, 0, 1/
√

2
)
− m1 +m3

2
,

m3 = ψr(0, 0, 1), m6 = ψr

(
0, 1/
√

2, 1/
√

2
)
− m2 +m3

2
.
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Then, the symmetric matrix M is regarded as a covariance matrix (see equation
(3.4)) and the singular value decomposition is performed (see section 3.2). After
the transformation into a new coordinate frame, whose axes are denoted by X, Y ,
and Z, we obtain

ψr(X,Y, Z) = b1X
2 + b2Y

2 + b3Z
2 = (b1, b2, b3).

Any function on a sphere spanned by X2, Y 2, and Z2 can be represented using an
orthonormal bases E = {e1, e2, e3}. The suggested choice of E can be expressed in
the basis {X2, Y 2, Z2} as follows

e1 = (α+ β, α, α) = (α+ β)X2 + αY 2 + αZ2,
e2 = (α, α+ β, α) = αX2 + (α+ β)Y 2 + αZ2,
e3 = (α, α, α+ β) = αX2 + αY 2 + (α+ β)Z2,

where

α =

√

1

3
−
√

5

6
,

β =

√

15

2
.

Finally,
[ c1 c2 c3 ]T = [ e1 | e2 | e3 ]−1 [ b1 b2 b3 ]T (2.35)

and the new signature is formed by

s′r = (c1, c2, c3, ||fr,1||, ||fr,3||, ||fr,4|| . . . , ||fr,L−1||). (2.36)

The feature vector f is obtained by concatenating signatures s′r, and is normalized
by dividing by ω so that ||f || = 1,

f = (s′1|s′2| . . . |s′R)/ω ⇒ dim(f) = R(L+ 1). (2.37)

Thus, the feature vector is normalized to the Euclidean unit length. The suggested
parameter settings are R = 32 and L = 16, whence dim = 544.

The feature vector based on the exponentially decaying EDT significantly out-
performs (see section 5.2.12) the descriptor based on a binary voxel grid (subsec-
tion 2.5.2). Note that in both cases, almost the same concept is used to represent
features. The only difference is the post-processing, which actually does not sig-
nificantly improve retrieval effectiveness, but is regarded as a valuable theoretical
result.

The significantly better retrieval performance of the approach based on the
exponentially decaying EDT, comparing to the approach based on a binary voxel
grid, can easily be explained. Namely, if a voxel attribute describes how far an
arbitrary point is from the model, then the problem of mismatched functions on a
sphere (see figure 2.11) is almost eliminated. The extracted feature, the voxel grid
with attributes defined by (2.33) represented in the described manner, satisfies
all the requirements on 3D-shape descriptors, which are listed in section 1.3.4.
In general, the descriptor based on the exponentially decaying EDT significantly
outperforms all other descriptors presented in this chapter.





Chapter 3

Pose Estimation

Objects represented as polygonal meshes are given in arbitrary orientation, scale,
and position in the 3D-space R

3. 3D-shape descriptors can be defined in such a
way that invariance with respect to translation, rotation, scaling, and reflection of
a mesh model is provided. Examples of such descriptors are the shape spectrum
descriptor (section 2.3), topology matching (section 2.4), and shape distributions
(section 2.5.1). If the invariance of descriptor with respect to similarity transforms
is not provided by the representation of a feature, pose estimation (normalization)
is necessary as a step preceding the feature extraction (see section 1.3.2). The
pose normalization procedure is a transformation of a 3D-mesh model I (1.5) into a
canonical coordinate frame by translating, rotating, scaling, and reflecting (flipping)
the original set of vertices (1.3).

In section 3.1, we describe the problem of finding the canonical coordinates of
a mesh. The most prominent tool for solving the problem is the Principal Compo-
nent Analysis (PCA) [51], also known as the discrete Karhunen-Loeve transform,
or the Hotelling transform, which is described in details in section 3.2. Since ap-
plying the PCA to the set of vertices (1.3) of a mesh model can produce undesired
normalization results, two modifications of the PCA are given in section 3.3. Both
modifications approximate the application of the PCA to the point set I (1.5) of an
object. In section 3.4, we present our original method for analytical computation
of various parameters needed to analyze the set of infinitely many points. This
computation enables application of the PCA to an infinite point set represented as
a union of triangles. We called the approach the Continuous Principal Component
Analysis (CPCA). Examples as well as an evaluation of the continuous approach
are given in section 3.5.

3.1 Problem Description

Polygonal mesh models can be generated using a variety of techniques, e.g., 3D
designers use CAD software, optical devices of 3D scanners determine positions of
vertices and capture the connectivity information, range images are processed in

61
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order to obtain 3D-mesh representations, etc. Consequently, 3D-models are given
in arbitrary units, position, and orientation. The majority of our 3D-shape feature
vectors (chapter 4) depend on the absolute position of triangles of the underlying
object (1.2). In order to fulfill the invariance criteria 3 from section 1.3.4, these
features need to be extracted in a canonical coordinate frame, i.e., a coordinate
system determined by the relative position of triangles of the object. An example
of pose estimation (normalization) is depicted in figure 3.1. Three 3D-models of
cars are shown in the original position, orientation, and scale (a, b, and c), while
the corresponding appearances in the canonical frame are displayed in the second
row (d, e, and f). The models are viewed from the positive side of the z-axis while
the positive side of the x-axis is turned to the right.

Figure 3.1: Models of cars are initially given in arbitrary units, position, and orien-
tation (a,b, and c). The outcome of the pose estimation procedure is the canonical
positioning of each model (d, e, and f).

To find the canonical coordinate frame of a given 3D-object we derive an affine
map τ : R

3 → R
3 in such a way that for an arbitrary concatenation σ of translations,

rotations, reflections, and scaling the desired invariance property of τ holds, namely

τ(I) = τ(σ(I)), (3.1)

where the point set I is given by (1.5). We have set σ(I) := {σ(v)|v ∈ I} and
similarly for τ .

There have been several approaches for estimating the pose of a 3D mesh model
[52, 103, 105, 143, 147, 91], the most prominent one being the Principal Component
Analysis (PCA) that produces an affine transformation of the space R

3. The basics
as well as certain extensions of the PCA are given in the next sections.

Pose estimation of a 3D-mesh model based on the Extended Gaussian Images
(EGIs) is one of the first approaches reported in the literature. An EGI defines a
function on a unit sphere, by using normal vectors of faces of the mesh. The method
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is sensitive to polygon tessellations of a 3D-shape, noise, and face orientation. More
details about the technique can be found in [52].

In [91], the pose estimation is also based on the PCA wherein the underlying
3D-model is supposed to be a solid. However, 3D-models are not guaranteed to
consist of closed surfaces bounding one or more solids, and it would be a difficult
and questionable undertaking to enforce objects to be solids by stitching up surfaces
with boundaries. Therefore, the approach is suitable only for a small class of 3D-
models. The other significant drawback lies in the fact that the procedure is time-
consuming.

We consider that the pose normalization should be both efficient and effective.
Also, meshes in different levels-of-detail representing the same real-world object,
e.g., a car represented by a mesh of 100 polygons and by a mesh of 10000 polygons,
should be reasonably aligned in the canonical frame. Then, different tessellations of
an object must not significantly affect the canonical coordinates. Next, if an arbi-
trary number of vertices are added to the set of vertices (1.3) and a retriangulation
of a mesh is done so that the point set I (1.5) is unchanged, then the canonical
coordinates should remain the same. Moreover, the normalization should be robust
with respect to outliers, noise, and arbitrary topological degeneracies of a model.
Finally, the pose estimation should not be restricted to closed or orientable mesh
models.

3.2 Principal Component Analysis

The Principal Component Analysis (PCA) [41, 51, 106], is widely used in signal
processing, statistics (data analysis), compression, and neural computing. In some
application areas, the PCA is also called the (discrete) Karhunen-Loeve transform,
or the Hotelling transform. The following presentation of the original PCA analysis
is adopted from [41]. The PCA is based on the statistical representation of a random
variable. Suppose we have a finite set of data vectors V , where

V = { v | v = (v1, v2, . . . , vn) = [v1, v2, . . . , vn]T ∈ R
n, n ∈ N}. (3.2)

Let mV be the mean of the set V

mV = E{V } =
1

|V |
∑

v∈V

v, (3.3)

where |V | denotes the number of elements of the set V (i.e., the cardinal number).
The associated covariance matrix of the same data set is given by

CV = [cij ]n×n = E{(v −mV )(v −mV )T } =
1

|V |
∑

v∈V

(v −mV )(v −mV )T . (3.4)

Matrix CV is, by definition, symmetric real matrix with non-negative elements.
Elements cij (i 6= j) represent the covariances between the components vi and
vj (3.2). If two components vi and vj of the data are uncorrelated, then their
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covariance is zero (cij = cji = 0). The element cii represents the variance of the
component vi, which indicates the spread of the component values around its mean
value. Eigenvalues and eigenvectors of the covariance matrix are used to form an
orthonormal basis of the space R

n. We recall that the eigenvectors ei (||ei|| = 1)
and the corresponding eigenvalues λi are the solutions of equations

CV ei = λiei (i = 1, . . . , n). (3.5)

We stress that in the case of a symmetric non-negative matrix all eigenvalues are
non-negative real numbers. By ordering the eigenvectors according to the order of
descending eigenvalues, we obtain an orthonormal basis with the first eigenvector
coinciding with the direction of largest variance of the set V (3.2). Directions of
largest variance are usually regarded as directions in which the original data set
possesses the most significant amounts of energy.

Let A be a matrix consisting of ordered eigenvectors of the covariance matrix as
the row vectors. The ordered eigenvectors can be seen as basis of a new coordinate
frame with the origin placed at the point mV . We regard the new coordinate
system as the PCA coordinate system (frame). A data vector v ∈ V from the
original system is transformed into the vector p in the PCA frame,

p = A(v −mV ). (3.6)

In the PCA frame data are uncorrelated, i.e., the non-diagonal elements of the
covariance matrix are equal to zero.

Before explaining how we engage the PCA for 3D-model retrieval purposes, we
present applications of the PCA in data compression and image processing. These
applications are motivation for a set of experiments aimed at reducing dimension-
ality of 3D-shape feature vectors, without significant loss in retrieval effectiveness
(section 5.3).

Data can be compressed using the PCA in the following manner. The original
vector v, which is projected on the coordinate axes of the PCA frame (3.6), can be
reconstructed by applying an affine map to the projection p given by,

v = AT p + mV , (3.7)

where we used the property of an orthogonal matrix A−1 = AT (AT denotes the
transpose of matrix A). If we do not use all the eigenvectors of the covariance
matrix, the data can be represented in a lower dimensional space, whose dimension is
determined by the number of used eigenvectors, i.e., basis vectors of the orthonormal
basis.

Let Ak be the matrix consisting of the first k (ordered) eigenvectors as the row
vectors. By substituting A with Ak in equation (3.6), we obtain

p = Ak(v −mV ) and v̂ = AT
k p + mV . (3.8)

Hence, we project the original data vector from an n-dimensional linear metric space
R

n on a new k-dimensional vector space R
k, whose orthonormal basis consists of
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the first k eigenvectors of the covariance matrix. Then, we perform a kind of
reverse transform similar to (3.7). However, we cannot reconstruct the original data
vector, i.e., v̂ 6= v, because the matrix Ak of the type k× n possesses the following
properties: A · AT = Ik, but AT · A 6= In, where In denotes the identity matrix of
type n×n. We regard v̂ as an approximation of v, which is represented in a lower-
dimensional space. If we choose k � n, then the original data is compressed by a
factor of k/n. It can be proven [51] that the described linear dimension reduction
technique is optimal in the mean-square sense. In other words, the mean-square
error between the original data v and the reconstructed data v̂ (3.8) obtained by
using a given number of eigenvectors is minimized.

Data compression using the PCA possesses the following useful properties:

• The computational costs of the subsequent processing steps are reduced;

• The presence of noise in original data will be reduced, because the directions of
largest spreads (the first components) are more robust to noise than directions
of lowest variance;

• By setting k = 3 (or k = 2), a high-dimensional space is projected so that data
can be visualized.

The values of sorted eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn carry a useful information.
Namely, the value of λi is proportional to the variance (energy) along the direction
determined by the eigenvector ei. For applications in which a varying amount
of energy of the original data should be preserved, we simply fix the number of
used eigenvectors. Alternatively, the total amount of energy carried by the first k
eigenvectors can be used to determine the dimensionality. For instance,

k = max

{

j

∣
∣
∣
∣

j
∑

i=1

λi ≤ t
n∑

i=1

λi

}

, (3.9)

where t ∈ [0, 1] is a threshold. In this case, the total amount of energy (information)
is approximately consistent with a varying dimensionality k. Both alternatives are
applied to concatenated 3D-shape feature vectors and tested in section 5.3.

Thus, dealing with a lossy compression gained by the PCA introduces a trade-off
between the reduction of vector dimension (we want to simplify the representation
as much as possible) and the loss of information (we want to preserve as much as
possible of the original information content). The PCA offers convenient mecha-
nisms (fixed k vs. fixed t) to control this trade-off.

Properties of the PCA can be depicted using an application in image processing.
Suppose that we have a color image of dimensions M×N . Each pixel is represented
by a triplet of red, green, and blue (RGB) component values. We consider that each
image consists of three bands, i.e., three grayscale images each of which represents
pixel values of the corresponding color. If we want to generate a single grayscale
image so that the most details are shown, then we apply the PCA to the set of 3D
points, which are obtained by treating color triplets of pixels as points in R

3. An
example RGB image and the outcome of the PCA are shown in figure 3.2. Pixels
of the given image are represented as points in a 3D space, where x, y, and z
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axes represent values of red, green, and blue components, respectively. The first
eigenvector (P1) having the largest eigenvalue points to the direction of largest
variance (spread) whereas the second (P2) and the third (P3) eigenvectors are
orthogonal to the first one.

Figure 3.2: The analyzed image (left) and the pixels of the image in the color space
(right). Axes x, y, and z represent values of red, green, and blue components,
respectively. The PCA coordinate axes are denoted by P1, P2, and P3.

In this example the first eigenvalue corresponding to the first eigenvector is
λ1 = 9211.79 while the other eigenvalues are λ2 = 437.38 and λ3 = 74.29. Hence,
the first eigenvector contains almost all the energy. This means that the data could
be well approximated with a one-dimensional representation. The result is depicted
in figure 3.3. In the first row, red, green, and blue bands of the original image
(figure 3.2) are represented by grayscale images. The first image in the second row
(P1) is created by normalizing the first coordinate of each point in the PCA frame.
In this example, we deal with 8-bit gray scale and the pixel values are normalized
so that the lowest value of the first PCA coordinate is mapped to 0, the highest
to 255, while the values in between are proportionally set. The last two images in
figure 3.3 are obtained analogously. Because of the largest variance, the maximum
contrast is contained in image 3.2d.

The example of finding largest spreads of a point set (right-hand side in figure
3.2) suggests an analogous application to the point set I (1.5) of a mesh model. In
our 3D model retrieval algorithm we find the canonical coordinate frame of a 3D
object (1.5) by applying the following sequence of transformations:

• Translation of the set I (1.5) moving its center of mass to the origin of the
coordinate system;

• Rotation is applied so that the largest spread of the transformed points (the
variance) is along the x-axis. Then a rotation around the x-axis is carried out
so that the maximal spread in the yz-plane occurs along the y-axis (PCA);

• Scaling to a certain unit size; and

• Reflection with respect to xy coordinate plane is performed if the sum of certain
moments is negative. Reflections with respect to yz and zx planes are fixed
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Figure 3.3: The grayscale images formed from the red, green, and blue band are
shown in the first row, while the grayscale images in the second row are formed by
normalizing coordinates in the PCA frame.

analogously.

Let Si and gi be the area of the triangle Ti (1.2) and the center of gravity,
respectively. For simplicity of notation we may assume that the triangles of a 3D-
model intersect only on subsets of measure zero so that we may write the overall
surface in the model as (compare (1.6))

S := S1 + . . .+ Sm =

∫∫

I

ds. (3.10)

Then, the center of gravity of a model, mI , is calculated by

mI =
1

S

m∑

i=1

Sigi (3.11)

and the translation invariance is secured by forming the point set

I1 := I −mI = {p′ | p′ = p−mI , p ∈ I}. (3.12)

Having in mind that sizes of triangles of a mesh model (1.2) significantly differ,
the PCA should not be applied to the set of vertices (1.3). If the differing sizes of
triangles are not taken into account, then we may obtain widely varying normalized
coordinate frames for models that are identical except for finer triangle resolution
in some parts of the model. This fact induced modifications of the standard PCA,
which are described in the following section.
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3.3 Modifications of the PCA

We addressed the problem of differing sizes of triangles in [143], where we introduced
appropriately chosen vertex weights wk (k = 1, . . . , n). Differing sizes of triangles
are taken into account by applying the PCA to the set of weighted vertices. The
weights are used to approximate the covariance matrix CI of the point set I (1.5).
Using the notation introduced in section 1.3.1, the equation (3.11) can be written
in the following way

mI =
1

S

m∑

i=1

Sigi =
1

n

m∑

i=1

n Si

S

pAi
+ pBi

+ pCi

3
=

1

n

n∑

i=1

n S′
i

3S
pi =

1

n

n∑

i=1

wkpi,

where S′
i is the sum of surfaces of all triangles that have pi as a vertex.

Hence, the weights wk are defined by wk =
n S′

k

3S
. Obviously,

n∑

k=1

wk = n.

The covariance matrix (3.4) of the set I is approximated as follows

CI ≈
1

n

n∑

i=1

wi(pi −mI)(pi −mI)
T . (3.13)

The rest of the PCA procedure remains the same, i.e., after forming the rotation
matrix A we transform the set of vertices P (1.3)

p′
i = A(pi −mI), i = 1, . . . , n. (3.14)

In this way, translation and rotation invariance, as well as robustness with respect
to levels of detail and different tessellations of a mesh model, are achieved.

Paquet et al. [105] used centers of gravity of triangles to form the input for the
PCA. Each center of gravity is multiplied by the area of surface of the corresponding
triangle, applying the PCA to the obtained set of vectors. Thus, the matrix CI is
approximated by

CI ≈
1

m

m∑

i=1

Si(gi −mI)(gi −mI)
T . (3.15)

Both approaches (3.13) an (3.15) represent reasonable solutions to the problem.
However, the matrix CI is only approximated, i.e., not all the points of the set I
are treated in the same way. Thus, the principal directions cannot be computed
exactly and, for instance, the orientation of a symmetrical object can deviate from
the desired one (see figure 3.5).

In order to secure reflection (flipping) invariance, we compute values fx, fy, and
fz. The value of fx (similar fy and fz) is defined by

fx =
1

S

m∑

i=1

sign
(
x′Ai

+ x′Bi
+ x′Ci

)
Si

(
x′Ai

+ x′Bi
+ x′Ci

3

)2

, (3.16)
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where p′
i = (x′i, y

′
i, z

′
i) (3.14). Then, we form a diagonal matrix

F = diag (sign(fx), sign(fy), sign(fz)) .

We calculate a scale factor s by

s =
1

S

m∑

i=1

Si

∣
∣
∣
∣

∣
∣
∣
∣

p′
Ai

+ p′
Bi

+ p′
Ci

3

∣
∣
∣
∣

∣
∣
∣
∣
, (3.17)

where Ai, Bi, Ci ∈ {1, . . . , n} are given by the list of topology (1.4).
Finally, the point p′′

i = s−1Fp′
i (3.14) is invariant with respect to translation,

rotation, reflection, and scaling of the original mesh model point pi.
Our method of applying the PCA, so that all of the (infinitely many) points of

a mesh object I (1.5) are equally relevant for the transformation [147], is presented
in the following section.

3.4 “Continuous” PCA

We regard a triangle mesh model as a union of all triangles. The continuous point set
I (1.5) of the model consists of infinitely many points. In this section, we describe
our approach to compute the covariance matrix of the point set I by a suitable
integration. Moreover, we present a general concept for computing an integral of a
function on the model’s surface.

We consider a function f : T 7→ M, where T is the set of all triangles in R
3,

and M can be a set of scalars (e.g., R), vector space (e.g., R
3), or space of matrices

(e.g., matrices of the type 3× 3) depending on the function f . We treat a triangle
Ti (1.2) of the mesh I as an element of T, i.e., Ti ∈ T. We recall that a triangle
Ti is determined by its vertices pAi

, pBi
, and pCi

. For a given affine map τ , the
transformed triangle τ(Ti) is determined by vertices τ(pAi

), τ(pBi
), and τ(pCi

).
The surface area of Ti is denoted by Si (1.6).

By representing a point v of the triangle Ti ∈ T by barycentric coordinates we
define an operator `f of the function f on the set T,

`f (Ti) =

∫∫

v∈Ti

f(v)ds = 2Si

∫ 1

0

dα

∫ 1−α

0

f (αpAi
+ βpBi

+ (1− α− β)pCi
) dβ.

(3.18)
Then,

`f (I) =
m∑

i=1

`f (Ti) =

∫∫

v∈I

f(v)ds. (3.19)

Equations (3.18) and (3.19) enable calculation of different parameters (values)
of the set I by selecting the appropriate function f . For instance, f = f1(v) = 1
leads to the calculation of the surface area of the 3D mesh model (3.10), while for
f = f2(v) = v we have (3.11)

mI =
1

S

m∑

i=1

∫∫

v∈Ti

vds =
1

S

m∑

i=1

Si
pAi

+ pBi
+ pCi

3
=

1

S

m∑

i=1

Sigi.
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The covariance matrix CI can be computed by setting

f = f3(v) = (v −mI) · (v −mI)
T . (3.20)

We used this approach for the first time in [145], while we presented more details
in [147]. By combining (3.18) and (3.20), the formula for calculating CI can be
written as

CI =
1

S

∫∫

v∈I

(v −mI) · (v −mI)
T ds

=
1

12S

m∑

i=1

(f3(pAi
) + f3(pBi

) + f3(pCi
) + 9f3(gi))Si.

(3.21)

After the exact computation of CI (in section 3.3 the covariance matrix is just
approximated), the remaining part of the PCA follows the standard procedure.
Since the matrix CI is a symmetric real matrix its eigenvalues are real and the
eigenvectors orthogonal. We calculate the eigenvalues of CI , sort them in decreasing
order, compute the corresponding eigenvectors and scale them to the Euclidean unit
length. We form the rotation matrix A, which has the scaled eigenvectors as rows.
We regard the described approach of applying the PCA to the whole point set I as
the Continuous PCA (CPCA).

A new point set I2 is obtained by translating (3.12) and rotating the set I using
the vector mI (3.11) and matrix A,

I2 := A · (I −mI) = {v | v = A · (u−mI), u ∈ I}. (3.22)

To ensure the reflection invariance we multiply points in I2 by a diagonal matrix
F = diag(sign(fx), sign(fy), sign(fz)), where fx is computed by

fx =
1

S

∫∫

v′∈I2

sign(v′x)|v′x|pds, p = 2, 3, . . . (fy, fz similar), (3.23)

and v′ = (v′x, v
′
y, v

′
z) ∈ I2. Thus, we set f(v′) = sign(v′x)|v′x|p in (3.18).

We performed tests for p = 2 and p = 3 and concluded that better results were
obtained for p = 2. For p = 2, the value of fx is analytically computed by

fx =
1

6S

m∑

i=1

F x
i Si,

F x
i =







Jx
i , x′Ai

, x′Bi
, x′Ci

≥ 0
Jx

i − 2Lx
i , x′Ai

< 0, x′Bi
, x′Ci

≥ 0
−Jx

i + 2Lx
i , x′Ai

≥ 0, x′Bi
, x′Ci

< 0
−Jx

i , x′Ai
, x′Bi

, x′Ci
< 0

Jx
i = (x′Ai

)2 + (x′Bi
)2 + (x′Ci

)2 + x′Ai
x′Bi

+ x′Ai
x′Ci

+ x′Bi
x′Ci

,

Lx
i =

(x′Ai
)4

(x′Bi
− x′Ai

)(x′Ci
− x′Ai

)
,

(3.24)
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where A(pi−mI) = (x′i, y
′
i, z

′
i) ∈ I2. Note that the conditions x′Ai

< 0, x′Bi
, x′Ci

≥ 0
are interpreted as “two x-coordinates of triangle vertices are non-negative and one
is negative”, while x′Ai

≥ 0, x′Bi
, x′Ci

< 0 is the opposite. This means that if we
originally have, for example, x′Bi

< 0, x′Ai
, x′Ci

≥ 0, then we exchange the values of
x′Ai

and x′Bi
and the condition x′Ai

< 0, x′Bi
, x′Ci

≥ 0 is fulfilled. The exchange of
values corresponds to the renaming (reordering) of vertices.

Scaling invariance is achieved by scaling the set I2 by the inverse of a scaling
factor s. We have four approaches for calculating the scaling factor s. As the first
approach, we take

s = davg, (3.25)

where davg is the average distance of a point p on the surface of a model I to
the center of gravity of the model (i.e., the new coordinate origin). By setting
f(v′) = ||v′|| =

√
v′ · v′ in (3.18), v′ = (v′x, v

′
y, v

′
z) ∈ I2 (3.22), we obtain,

davg =
1

S

∫∫

v′∈I2

√
v′ · v′ds

=
2

S

m∑

i=1

Si

∫ 1

0

dα

∫ 1−α

0

√
(
αp′

Ai
+ βp′

Bi
+ (1− α− β)p′

Ci

)2
dβ,

(3.26)

where p′
Ai

= (x′Ai
, x′Bi

, x′Ci
) = A(pAi

−mI), and similarly for p′
Bi

and p′
Ci

.
Since the computation of the integrals in (3.26) is too expensive, we approximate

the value of davg by sampling the surface of the mesh uniformly. The following
pseudocode describes our algorithm for approximating davg:

pmin = 64000; // – the minimal number of samples
davg = 0; // – the approximation of average distance
for j = 1, . . . , m // m – the number of triangles (1.2)

pj =
⌈√

pminSj/S
⌉

; // see (1.6) and (4.38), d·e is a ceiling function

dAB = (p′

Bj
− p′

Aj
)/pj ;

dAC = (p′

Cj
− p′

Aj
)/pj ;

dg = (dAB − dAC)/3;
δ = Si/p2

j ;
for x = 0, . . . , pj − 2

for y = 0, . . . , x
g = p′

Aj
+ (x− y)dAB + ydAC + dg;

davg ← davg + δ(||g||+ ||g + dg||);
for y = 0, . . . , pj − 1

g = p′

Aj
+ (pj − 1− y)dAB + ydAC + dg;

davg ← davg + δ||g||;
davg ← davg/S;

This approximation is based on a subdivision of a triangle Tj ≡ 4pAj
pBj

pCj
into

p2
j coincident triangles (see figure 4.18). It is also possible to approximate the
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average distance of a point on the surface from the center of gravity by randomly
selecting N >> 0 points vi ∈ I, 1 ≤ i ≤ N , using (2.19), and computing davg ≈
∑N

i=1 ||vi||/N . The approximation obtained by using the presented pseudocode
provides a better trade-off between accuracy and efficiency than the approximation
by random sampling.

As the second method, we calculate a continuous scaling factor

s =

√

s2x + s2y + s2z
3

, (3.27)

where sx, sy, and sz denote the average distances of points v ∈ I2 (3.22) from the
yz-, xz-, and xy-coordinate hyperplanes, respectively, i.e., by setting f(v′) = |v′x|
in (3.18), we have

sx =
1

S

∫∫

v′=(v′

x,v′

y,v′

z)∈I2

|v′x|ds and likewise for sy, sz. (3.28)

Analytically, sx is computed by

sx =
1

3S

m∑

i=1

Mx
i Si,

Mx
i =

{
|x′Ai

+ x′Bi
+ x′Ci

|, x′Ai
x′Bi

, x′Bi
x′Ci

, x′Ai
x′Ci
≥ 0

|x′Ai
+ x′Bi

+ x′Ci
| − 2Kx

i , x′Ai
x′Bi

, x′Ai
x′Ci
≤ 0, x′Bi

x′Ci
≥ 0

Kx
i =

x3
Ai

(x′Bi
− x′Ai

)(x′Ci
− x′Ai

)
,

(3.29)

where A(pi −mI) = (x′i, y
′
i, z

′
i) ∈ I2.

The third choice for the scaling factor s is to set

s = sx, (3.30)

i.e., to make the average distance (3.28) from the yz-coordinate hyperplane constant,
equal to 1.

Finally, as the fourth option, we take

s =
√

λ1, (3.31)

where λ1 is the largest eigenvalue of the covariance matrix CI (3.21). Thus, the
energy of the first principal component is averaged.

Our experiments (see section 5.2) suggest that the first approach, s = davg, is
the best choice.

Putting all the above together, the affine map τ (3.1), defined by

τ(v) = s−1 · F ·A · (v −mI) (3.32)

is applied to all points of the original object I (1.5). In practice, it suffices to
transform only the set of vertices P (1.3).
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3.5 Evaluation of the Continuous Approach

In contrast to the usual application of the PCA, we work with sums of integrals
over triangles (3.19) in place of sums over vertices which makes our approach more
complete taking into account all points of the model I (1.5) with equal weight. The
calculation of the integrals is only slightly more expensive. The time needed to
calculate parameters and transform an object into the canonical frame (normaliza-
tion time) linearly depends on the complexity of the object. Figure 3.4 comprises
scatter plots of normalization time vs. complexity of 3D-mesh models, using the
CPCA (section 3.4), when (3.27) is used to fix the scale, and the two modifications
of the PCA (section 3.3). We selected the number of triangles as a parameter that
denotes the complexity of a 3D-model (x-axis) and measured normalization times
(in milliseconds) for each of the three cases. The tests were carried on a computer
running Windows 2000 Professional, with 1GB RAM and an 1.4 GHz AMD pro-
cessor. The most complex model consists of 215473 triangles and the continuous
normalization step of this model takes 589ms. Each scatter plot is approximated
by a line y = α x + β representing the optimal approximation in the mean-square
sense. The values of α are the following: in the case of the CPCA, k = 0.00277; the
modification with the weights associated to centroids (3.15) k = 0.00189; and the
modification with the weights associated to vertices (3.13) k = 0.00146. This means
that the time needed for normalization step when we use the CPCA is approximately
twice the time needed for normalization when the modification proposed in [143]
is used. The method based on weights associated to vertices (3.13) is faster than
then the approach based on weights assigned to centroids (3.15), because a triangle
mesh model possesses more triangles than vertices, on average (see section 5.1).
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Figure 3.4: Scatter plots of normalization time vs. complexity of 3D-mesh models,
using the CPCA and modifications with weights associated to centroids and vertices.
Average normalization times are given in the brackets
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The average normalization time of the continuous approach is 28.5ms, while the
normalization based on weights assigned to vertices is completed in 15.0ms. We
consider the average difference of 13.5ms to be slight.

To demonstrate differences between the three presented normalization methods
we give examples in figure 3.5. As expected, the CPCA is the most stable. However,
in figure 3.5c the canonical frame obtained by using the modification with weights
associated to vertices produces better positioning of the model, because of the
method’s inability to treat equally all the points of the set I (1.5). The better
performance of the discrete approach than the continuous method is just a spacial
case. A different tessellation of the model in figure 3.5c may cause varying principal
directions P′

1, P′
2, and P′

3. To explore the stability of all three approaches, we
inserted k ·m (k ∈ {1, 3, 10, 30, 100}) random vertices in triangles Ti (1 ≤ i ≤ m),
and performed a re-triangulation. For instance, if p ∈ Ti is inserted in the list
of vertices V (1.3), then the triangle Ti = 4pAi

pBi
pCi

is erased from the list
of triangles T (1.2) and the new triangles 4pAi

pBi
p, 4pBi

pCi
p, and 4pCi

pAi
p

are added to T . As the number (k ·m) of inserted vertices increases, P′
1 and P′′

1

converge to P1. The continuous principal axis P1 remains invariant with respect
to the number of inserted vertices.

a) b) c)

Figure 3.5: Examples of pose estimation using three presented approaches. The
CPCA axes are denoted by P1, P2, and P3, the axes obtained by using the modifi-
cation with weights associated to vertices are denoted by P′

1, P′
2, and P′

3, and the
axes obtained by using the modification with weights associated to centroids are
denoted by P”1, P”2, and P”3.

Our normalization method is very efficient and rather effective for many cat-
egories of 3D-objects. However, it is not perfect. Examples of pose estimation
using the continuous approach for categories of cups, cars, and models of humans
are depicted in figure 3.6. Models of cups in the first row have different rotations,
reflections, and assignments of principle axes. In a way, the category of cups is
sub-classified by our normalization step. However, models of cars in the second row
are almost ideally transformed. The outcome of our normalization step for mod-
els of humans is also satisfying, regardless the presence of outliers (third model in
the last row). Our approach based on the CPCA is suitable for categories of 3D-
objects such as cars, bottles, humans, missiles, swords, ships, glasses, dogs, horses,
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etc. Conversely, categories of models of chairs, cups, airplanes, trees, etc., are not
consistently aligned in the canonical coordinates, whence these categories are sub-
classified. Moreover, examples given in figure 3.6 motivate us to improve the scaling
factor (third model in the last row) as well as to fix the reflection invariance in a
more stable way (last model in the second row).

Figure 3.6: Examples of pose estimation using the continuous approach. All models
are visualized from positive sides of the z-axis, while the x-axis travels to the right-
hand side.

Since our pose normalization step does not align all models in an ideal way, a
natural question is:

Should we eliminate 3D-shape descriptors that require the use of the PCA, and
focus only those in which the invariance with respect to similarity transforms
is provided by the definition of descriptor?

Shape descriptors that are presented in sections 2.3, 2.4, and 2.5 do not require
the use of the PCA. We recall that the topology matching (section 2.4) relies on a
graph representation, which is invariant with respect to rotation of a mesh model.
The MPEG-7 shape spectrum descriptor (section 2.3) is based on local features
(curvature indices). Shape distributions (subsection 2.5.1) are extracted from rela-
tive features. Both the shape spectrum and shape distributions are represented in
a form of histogram. Finally, in section 2.5.2 a technique that uses certain math-
ematical properties to secure rotation invariance is presented. As a contrast to all
these approaches, our feature vectors (chapter 4) heavily rely upon the pose nor-
malization step, because we mostly consider absolute features. In section 5.2.13, we
compared approaches that use the CPCA vs. approaches that avoid the PCA, and
the results show that descriptors that use the PCA outperform the others.

Explanations for these results are the following:

• For categories of models that are suitable for the PCA, good object alignments
make absolute feature effective;

• When a class of models is not uniformly oriented by the CPCA, then it is usually
subdivided into classes of consistently oriented models. Absolute features are
effective on a subclass of consistently oriented models;
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• Certain descriptors based on absolute features possess specific invariance prop-
erties, which compensate different orientations in specific cases. For example, a
feature vector may be inherently invariant with respect to rotations around the
z-axis (see remark 4.2). Suppose that the z-axis is correctly determined for a
pair of similar objects (e.g., airplanes, cups, desks), but the models are differ-
ently rotated around the z-axis. Then, the resulting feature vectors will not be
affected by the non-consistent alignment. A proof-of-concept is demonstrated in
figure 3.7 (relevant models that are differently rotated around the z-axis in the
canonical frame are still among the top matches);

• Local and relative features represented by histograms, as well as features ob-
tained by averaging (or summing up), form descriptors whose elements (vector
components) are not related to specific parts of a model. Usually, statistical
features are inferior to the absolute features, which can be used to reconstruct
the model (i.e., vector components are related to specific parts of the model);

Figure 3.7: Shape-similarity search for a cup and desk using a descriptor that is
inherently invariant with respect to rotations around the z-axis. In this case, the
task of the CPCA is to fix the z-axis correctly. The models are visualized from the
positive side of the z-axis in the canonical coordinate frame, while the x-axis travel
to the right.

Since no reported technique that avoids the use of the PCA shows better perfor-
mance (see section 5.2) than our best methods relying upon the CPCA, we consider
that the use of the PCA is justified. Moreover, we expect that further improvements
of the normalization step will result in increased retrieval performance of methods
relying upon pose estimation.



Chapter 4

3D-Shape Feature Vectors

In this chapter, we present our original methods for describing 3D-shape, which are
listed in table 4.1. Since the optimal way of encoding information about 3D-shape is
not prescribed, we consider a variety of different features to define shape descriptors
(feature vectors). The approaches range from considering 2D rectangular images
(SIL,DBD) and images on a sphere (RAY,RSH,SSH,CSH) to exploiting 3D-features
(VOL) and volumetric data (VOX). Besides, we define moments (MOM) and a novel
data structure – layered depth sphere (LDS,RID), which are used for describing
shape. Finally, a concept of hybrid descriptors (HYB), obtained by crossbreeding
complemental feature vectors, is introduced.

Approach Section Abbreviation
Ray-based (icosahedron) 4.1 RAY
Silhouette-based 4.2 SIL
Depth buffer-based 4.3 DBD
Volume-based 4.4 VOL
Voxel-based 4.5 VOX
Ray-based with spherical harmonic representation 4.6.2 RSH
Moments-based 4.6.3 MOM
Shading-based 4.6.4 SSH
Complex 4.6.5 CSH
Layered depth sphere-based 4.6.6 LDS
Rotation invariant 4.6.6 RID
Hybrid 4.7 HYB

Table 4.1: Our 3D-shape descriptors.

We follow the general 3D-model retrieval algorithm 1.1, and most of our feature
vectors are extracted in the canonical coordinate frame of a 3D-model. In other
words, feature extraction follows after the complete normalization step (see section
3.4). The only exception is the rotation invariant feature vector based on layered
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depth spheres (RID), where we use certain properties to provide rotation invariance
of the descriptor without orienting the model using the CPCA.

We stress that our techniques are not restricted to closed and orientable polygonal
meshes (see definitions 1.1 and 1.2). Since we consider a 3D-model to be the point
set I (1.5), we do not introduce a constraint that the polygonal mesh need to be
closed or orientable, in order to extract any of descriptors.

We describe in details all our feature vectors, in order to provide sufficient infor-
mation to a reader who wants to implement and test our methods. For each feature
vector, we give the average feature extraction time, which does not include times
needed for loading and normalizing a 3D-mesh model. Retrieval performance of the
feature vectors, which are presented in this chapter, is addressed in section 5.2.

4.1 Ray-Based Feature Vector

Information about 3D-shape of a model can be obtained by measuring the extent
of the object in given directions, i.e., along defined rays. In this section, a 3D-shape
descriptor that we call ray-based feature vector in the spatial domain [143, 141] is
presented. The feature extraction is performed in the canonical frame by probing
a 3D-mesh model along selected directional (unit) vectors. Suppose we have a
given set of N unit vectors ui, (||ui|| = 1, i = 1, . . . , N). Then, we intersect the
polygonal mesh with the ray emanating from the coordinate origin and traveling
in the direction ui. The distance ri to the farthest intersection point is taken as
the i-th component of the feature vector. If there is no intersection, then we take
ri = 0. The dimension of the vector is equal to the number of samples, N .

Let S2 be a sphere of radius 1 with the center at the origin. The directional
unit vectors ui can be interpreted as points on the sphere S2.

We define a function on the sphere r(u) (u ∈ S2)

r : S2 → [0,+∞)
r(u) = max{ r ≥ 0 | ru ∈ I ∪ {O} } (4.1)

where I is given by (1.5). The function r(u) measures the extent of the object from
the origin O in the directions given by u1, . . . ,uN . The ray-based feature vector f

of a model is composed as

f = (r1, . . . , rN ), ri = r(ui). (4.2)

In [143] the vertices of a dodecahedron, with the center at the coordinate origin,
are taken as directional vectors (N = 20). The corresponding feature vector pos-
sesses the fixed number of components. In order to provide a multi-resolution rep-
resentation of the feature, which is a desirable property of descriptors (section 1.3.4,
property 6), we engaged [141] dodecahedron’s dual solid – the icosahedron (defined
in figure 1.2). Each triangle of the icosahedron is subdivided into k2 (k = 1, 2, . . .)
coincident triangles (see figure 4.1).

A similar subdivision could be done using the dodecahedron, e.g., to subdivide
each pentagon into five coincident triangles, which could recursively be subdivided
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Figure 4.1: Icosahedron with subdivision.

further. Since the subdivision of dodecahedron is less uniform, we decided to use the
subdivision of icosahedron. Hence, after the subdivision we obtain 20k2 triangles
with totally 10k2 + 2 distinctive vertices vi (i = 1, . . . , 10k2 + 2). Each vertex vi

is projected on the sphere S2 by finding its unit vector ui = vi/||vi||. The unit
vectors ui are used as directional vectors. Thus, the changeable dimension of the
feature vector is provided, i.e., N = 10k2 + 2 (k = 1, 2, . . .).

Our feature extraction procedure is very efficient. The ray-triangle intersection
problem has been well-studied [6, 80, 40]. In figure 4.2, a ray u, cast from the
coordinate origin O, intersects the plane of triangle ABC at the point P . Using
the fact that P is collinear with u, P = d · u, and representing P by barycentric
coordinates, P = αA+βB+(1−α−β)C, we obtain the system of three equations,
with unknown quantities d, α, and β. If d > 0 and if α and β satisfy the conditions

α ≥ 0, β ≥ 0, and α+ β ≤ 1, (4.3)

then the point of intersection P belongs to the triangle. Instead of solving the system
of equations using Cramer’s rule directly and testing the conditions (4.3), we created
a faster method aimed at reducing the total number of arithmetic operations. If n

is the normal vector of the plane containing the triangle ABC and point P , then it
holds n ·P = n ·A. Therefore, we compute the value of d directly, d = n ·A / n ·u.
If d > 0, then we determine if P = d · u lies inside the triangle ABC by checking
the conditions

((A− P )× (B − P )) · n ≥ 0,
((B − P )× (C − P )) · n ≥ 0, and
((C − P )× (A− P )) · n ≥ 0,

which are similar to (4.3). Since we measure the extent r of a polygonal mesh in the
direction u, the value of r is initialized to zero, r = 0. If a triangle is intersected by
the ray travelling along u, then we check if the computed extent d is greater that the
current one, r = max{r, d}. Our ray-triangle intersection method is described by
the pseudocode in figure 4.3, as algorithm 1. The algorithm deals also with special
cases, i.e, it examines if the triangle is degenerated (surface area equal to zero) as
well as if the triangle plane is parallel to u.

Möller and Trumbore [80] proposed a method that is believed to be the fastest
ray-triangle intersection routine for triangles, which do not have precomputed plane
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O = (0, 0, 0) - the coordinate origin

P = d · u = α(A− C) + β(B − C) + C

d > 0 ∧ α ≥ 0 ∧ β ≥ 0 ∧ α + β ≤ 1⇒ P ∈ 4ABC

[ −u | A− C | B − C ] ·





d
α
β



 = −C





d
α
β



 =
1

−u · ((A− C)× (B − C))





−C · ((A− C)× (B − C))
−u · (−C × (B − C))
−u · ((A− C)× (−C))





=
1

(A− C) · p





(B − C) · q
−C · p
u · q



 , p = u× (B − C), q = (A− C)× C.

Figure 4.2: Ray-triangle intersection.

equations. Their method is depicted in figure 4.2. Instead of solving the system
of equations directly by Cramer’s rule, the number of arithmetic operations is re-
duced by appropriate reordering of computations. Besides, the statistical analysis
presented in [80] suggests that it is better to test first if the point P belongs to
the triangle ABC (4.3), and then to calculate the extent d. In order to reduce the
number of operations further, we slightly modified the algorithm given in [80] by
eliminating two divisions. The modified method is described by the pseudocode in
figure 4.3, as algorithm 2. Obviously, the algorithm 1 performs more arithmetic
operations than the algorithm 2. Note that if the normal vector of the triangle is
precomputed, the average operation count of algorithm 1 drops.

The ray-based feature vector of a 3D-model with m triangles can be extracted
using a brute force method, by intersecting 10k2 + 2 rays with all m triangles. The
brute force approach (”exhaustive search”) was used in [141]. In order to accelerate
the feature extraction procedure, we created an algorithm, which is more suitable
for our application than previously presented methods [39, 13, 3, 40, 1]. There is a
variety of accelerated ray-casting techniques, which use various data structures in-
cluding octrees, bounding volume hierarchies, spatial partitions, and uniform grids.
For complex 3D-scenes with a lot of objects, a binary space partitioning tree (or
BSP Tree) [34] is a frequently used data structure that organizes objects within a
space. A common problem of techniques that use 3D-space subdivision [39] is that
a ray which misses everything must still be checked against contents of each region
or voxel it intersects. The idea of space subdivision was extended in [3] by including
ray direction. The space of all rays is adaptively subdivided into equivalence classes
E1, . . . , El. Candidate object sets C1, . . . , Cl are constructed in such a way that
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// r – the current extent in the direction u

// ε = 10−10 (a small positive value)

h = (B −A)× (C −A);
// Is the triangle degenerated?
if ||h|| > ε // NON degenerated

// Calculate the normal unit vector
n = h/||h||;
// Is u orthogonal to n?
if |n · u| > ε // NON orthogonal

d = n ·A / n · u;
if (d > r)

P = d · u;
// Is P inside 4ABC ?
if ( ((A− P )× (B − P )) · n ≥ 0 ∧

((B − P )× (C − P )) · n ≥ 0 ∧
((C − P )× (A− P )) · n ≥ 0 )

r = d;

d = 0, CA = A− C, CB = B − C;
p = u× CB;
det = CA · p;
if det > ε

αs = −C · p; // α = αs/det
if αs ≥ 0 ∧ αs ≤ det

q = CA× C;
βs = u · q; // β = βs/det
if βs ≥ 0 ∧ αs + βs ≤ det

d = (CB · q)/det;
else if det < −ε

αs = −C · p; // α = αs/det
if αs ≤ 0 ∧ αs ≥ det

q = CA× C;
βs = u · q; // β = βs/det
if βs ≤ 0 ∧ αs + βs ≥ det

d = (CB · q)/det;
if d > r

r = d;

Algorithm 1. Algorithm 2.

Figure 4.3: Ray-triangle intersection algorithms.

Ci contains all objects that can be intersected by a ray from Ei. A method for
ray tracing triangular meshes presented in [1] requires preprocessing and a complex
data structure is attached to each triangle. The most significant drawback of the
approach [1] is the exhaustive search. Another problem of the method is a require-
ment that all triangles of mesh models must be correctly oriented, which is usually
not the case if the models are retrieved from the Internet.

Our technique for ray-casting triangular meshes does not need any preprocessing
step for triangles and there are no restrictions regarding orientations of triangles.
The number of ray-triangle intersections is significantly reduced compared to the
brute force method. Therefore, we consider that our technique is very suitable for
extracting the ray-based feature vector. The key idea of the method is finding a set
of rays that are candidates to intersect a triangle under consideration. Firstly, all
directional unit vectors

ui = ui(ϕi, θi) = (cosϕi sin θi , sinϕi sin θi, cos θi), i = 1, . . . , N,
−π < ϕi ≤ π, 0 < θi ≤ π, (4.4)

are sorted in the non-decreasing order of ϕi and θi. More precisely,

ui(ϕi, θi) < ui(ϕj , θj)⇐⇒ ϕi < ϕj ∨ ( ϕi = ϕj ∧ θi < θj ).

We stress that the sorting of directional vector is not performed for each 3D-model,
but only once. The quicksort algorithm sorts an array of n elements with O(n log n)
comparisons on average. In the worst case, the complexity is O(n2). However, we
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use the intrasort algorithm, which is a part of the SGI Standard Template Library
(STL) [42]. Intrasort is very similar to quicksort, and is at least as fast as quicksort
on average. A characteristic that makes the intrasort more prominent is that the
worst case complexity is equal to the average case complexity, O(n log n).

As a contrast to all previously mentioned techniques, our algorithm efficiently
determines a set of rays which are candidates for intersection with a given triangle.
We simply calculate the range of angles ϕi and θi of directional vectors, which could
intersect the triangle. For a triangle T , we analytically determine ϕmin, ϕmax, θmin,
and θmax, where

ϕmin = min Φ, ϕmax = max Φ, Φ = { ϕ | p(θ, ϕ, ρ) ∈ T },
θmin = min Θ, θmax = max Θ, Θ = { θ | p(θ, ϕ, ρ) ∈ T },

p(θ, ϕ, ρ) = ρ(cosϕ sin θ , sinϕ sin θ, cos θ).

Then, a necessary condition that the ray ui(ϕi, θi) can intersect the triangle T is:

ϕmin ≤ ϕi ≤ ϕmax ∧ θmin ≤ θi ≤ θmax. (4.5)

We efficiently determine (using binary search) the subset CT of sorted directional
vectors ui (4.4), which satisfy (4.5). We apply the ray-triangle intersection algo-
rithm to each directional unit vector from CT , whence the number of ray-triangle
intersections is significantly reduced. The reduction is depicted in figure 4.4, where
the ratio of the total number of performed ray-triangle intersections using our ap-
proach and using the brute force is shown, for various numbers of rays, N = 102k+2,
k = 1, . . . , 8. For k ≥ 2, our approach performs less than 1% of the number of ray-
triangle intersections performed by the exhaustive search. The results are obtained
by extracting features from the collections of 3D-models described in section 5.1.

0
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0.015
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Figure 4.4: Ratio of the number of ray-triangle intersections using our approach
and using the brute force vs. parameter k. The number of rays is equal to 10k2 +2.

The speed-up of our approach over the brute force method for ray-casting trian-
gular meshes is shown in table 4.2, where the average extraction times for various
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dimensions of the ray-based feature vector are obtained using the official MPEG-
7 collection (section 5.1). The results are obtained on a PC with an 1.4 GHz
AMD processor running Windows 2000. The brute force method is used with the
ray-triangle intersection algorithm 1, while our method for ray-casting triangular
meshes is tested with both algorithm 1 and algorithm 2. We observe that the most
efficient way of extracting the ray-based descriptor is to combine our ray-casting
approach with the algorithm 2.

Dimension 12 42 92 162 252 362 492 642
Brute force (ms) 11.8 42.6 91.8 161.8 252.1 361.9 491.9 641.5
Algorithm 1 (ms) 16.0 18.2 19.2 21.8 22.6 25.3 26.8 30.4
Algorithm 2 (ms) 14.6 16.0 17.0 19.6 20.4 23.2 24.7 28.1

Table 4.2: Average extraction times for various dimensions of the ray-based feature
vector using the brute force method, our approach combined with the algorithm 1,
and our approach combined with the algorithm 2 (figure 4.3).

In order to visualize the feature vector and to depict characteristics of the ray-
based descriptor, we give two examples in figure 4.5. Examples of feature extraction
for vectors of dimension N = 42 (k = 2) are shown, where wire-frame representa-
tions of triangular meshes are visualized. The model on the left side possesses 400
triangles and is obtained by simplifying the model with 800 triangles using QSlim
1.0 simplification software [37]. For each model, rays are emanated from the origin
(center of mass) in given directions, and the furthest points of intersections with
the underlying mesh-model are found, i.e., the function r (4.1) is sampled at points
ui (4.4).

The ray-based 3D-shape descriptor in the spatial domain is suitable for retrieving
some categories of 3D models (e.g., missiles, cars, swords, etc.). However, we noticed
certain properties of the feature vector that aggravate its retrieval performance:

• Low-dimensional vectors do not capture sufficient information about the object;

• The lp metric (1.9) is not effective in the spatial domain;

• Very similar 3D-models can have large differences between specific feature vector
components.

Indeed, if we take a small number of samples (e.g., k = 2, N = 42), then not all the
parts of a model are captured. For instance, in figure 4.5 the front legs of models are
missed in both examples. However, if we increase the number of samples (i.e., the
dimension of feature vector), then, in spite of capturing more information about the
model, the retrieval performance usually decreases or stagnate (see section 5.2.1).
As mentioned in section 1.4, the reason for the decrease of retrieval performance
with the increase of vector dimension (the number of samples) is the ineffectiveness
of the lp (1.9) metric in the spatial domain.

Another problem is depicted in figure 4.5. Since the same model is represented in
two levels of detail, the triangle meshes differ slightly. Therefore, the corresponding
components of their feature vectors should approximately be the same. However, the
back left leg of the bull is missed by all rays in one case (right), while it is intersected
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400 triangles 800 triangles

f400 = (2.33, 1.15, 1.12, 0.84, 0.97, 0.67, 1.80, 0.67, 0.62, 1.09, 1.23, 1.63, 2.62, 1.39,
3.00, 2.16, 1.10, 1.22, 1.02, 1.19, 1.26, 1.10, 0.96, 1.14, 0.79, 0.89, 0.76, 2.84,
1.18, 1.75, 1.67, 1.65, 0.60, 1.07, 0.66, 0.56, 0.93, 0.61, 0.56, 1.29, 0.93, 1.83),

f800 = (2.30, 1.16, 1.14, 0.83, 0.90, 0.64, 1.77, 0.69, 0.62, 1.09, 1.23, 1.65, 2.57, 1.43,
1.20, 2.19, 1.15, 1.22, 1.04, 1.17, 1.25, 1.08, 0.97, 1.15, 0.76, 0.88, 0.72, 2.80,
1.09, 1.73, 1.62, 1.64, 0.61, 1.10, 0.65, 0.53, 0.86, 0.60, 0.54, 1.29, 0.85, 1.82),

( |f1
400
− f1

800
|, . . . , |f42

400
− f42

800
| ) =

(0.03, 0.01, 0.02, 0.01, 0.07, 0.03, 0.03, 0.02, 0.00, 0.00, 0.00, 0.02, 0.05, 0.04,
1.80, 0.03, 0.05, 0.00, 0.02, 0.02, 0.01, 0.02, 0.01, 0.01, 0.03, 0.01, 0.04, 0.04,
0.09, 0.02, 0.05, 0.01, 0.01, 0.03, 0.01, 0.03, 0.07, 0.01, 0.02, 0.00, 0.08, 0.05).

Figure 4.5: A problem of the ray-based shape descriptor in the spatial domain. Ray-
based feature vectors (N = 42) of models with 400 and 800 triangles are visualized.
The feature vector instances of both models as well as componentwise differences
are given. Regardless of high similarity between the models, vector components
may significantly differ (bold values).

with one of the rays in the other case (left). This implies a large difference between
the corresponding components of the feature vectors as shown in figure 4.5, where
the component corresponding to the ray traveling in the direction of the back left
leg is in bold.

Hence, it is desirable to increase significantly the number of samples of a model,
but still to characterize its shape with feature vectors of reasonable dimensions.
Also, large differences between components of feature vectors of very similar models
should be avoided. To achieve these goals as well as to strengthen the discriminant
power of the descriptor, we use a different representation of the ray-based feature.
For instance, spherical wavelets [118] or spherical harmonics [45, 78] can be engaged.
Spherical wavelets presented in [118] are based on the geodesic sphere construction
starting with an icosahedron using the same subdivision as in figure 4.1. The ray-
based feature with spherical harmonic representation is described in section 4.6.2.
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4.2 Silhouette-Based Feature Vectors

Content-based image retrieval methods have intensively been studied in recent years
[64, 15, 16, 109, 61, 62, 38, 63]. Various techniques have been explored, e.g., global
color histograms [109], modifications of global histograms taking into account the
structure of an image [89], edge histograms [89], automatic segmentation by color
[15, 16], etc. However, none of these methods can be extended and applied to
retrieve 3D-mesh models by shape. An approach to capture shape characteristics
of objects in 2D-images is to analyze silhouettes (contours). According to [64], a
definition of a silhouette might be:

The word silhouette indicates the region of a 2D-image of an object Ω, which
contains the projections of the visible points of Ω.

A silhouette can also be defined as an outline of a solid object. We regard a
contour as a collection of boundary points of a silhouette.

In [38] a contour is approximated by a polygonal line whose vertices are either
points of extreme curvature or points which are added to refine the polygonal ap-
proximation. The obtained polygonal lines can be used for both global and local
similarity search. For global matching of two contours all polygonal vertices are
taken into account, while subsets of polygonal vertices obtained by an adequate
processing step are used for finding local similarity between two contours. An ex-
ample of local similarity search is matching of human limbs at different body poses.
A dual approach to contour matching is based on medial axes of the silhouette
boundary, e.g., “the chain of circles” presented in [18]. Both methods concern a
typical computer vision problem where all the information is contained in a single
2D image of a 3D object. The image is usually taken from an arbitrary viewpoint.
The techniques can be very effective in certain special cases, e.g., matching contours
of a dog and a horse, which are regarded as similar, on images taken from differ-
ent (but suitably chosen) viewpoints [38]. The disadvantage of both approaches
is sensitivity to small perturbations of contour points, which represent “noise” in
the polygonal approximation as well as medial axes. Besides, a matching of two
images takes a few seconds, whence the techniques cannot be applied to searching
collections with thousands of images interactively.

Silhouettes of 2D-shapes have a natural arc length parameterization. Since the
parameterization cannot be extended to 3D surfaces of arbitrary genus, we define a
3D-shape descriptor based on 2D silhouettes. In our approach, a 3D-object in the
CPCA frame (section 3.4) is projected perpendicularly on the coordinate hyper-
planes, in order to generate three monochrome images as depicted in figure 4.6.
The silhouette images are formed using a canonical bounding cube of 3D-model.

Definition 4.1 The canonical bounding cube (CBC) of a 3D-mesh model, which
is transformed into a canonical coordinate frame, is a cube whose set of vertices is
given by {(x, y, z) | x, y, z ∈ {−amax, amax}}, with

amax = max
{

max
1≤i≤n

|xi|, max
1≤i≤n

|yi|, max
1≤i≤n

|zi|
}

, (4.6)

where xi, yi, and zi denote vertex coordinates (1.3) in the canonical frame.
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Figure 4.6: Silhouette images of an airplane model obtained by projecting the model
on the coordinate hyper-planes yOz, zOy, and xOy, respectively.

Perpendicular projections of the CBC on the coordinate hyper-planes determine
regions that are rasterized into images of dimensions N ×N . The coordinate origin
O always lies at the center of the image. An example of rasterization as well as
generation of a silhouette image of a triangle are depicted in figure 4.7. Suppose that
triangle vertices are given by Cartesian coordinates so that A = (ax, ay, az), B =
(bx, by, bz), and C = (cx, cy, cz). If the silhouette is generated on the yOz hyper-
plane, then the vertex coordinates of the projected triangle are (ay, az), (by, bz), and
(cy, cz). The silhouette image of the triangle is obtained by filling the interior of the
projected triangle. The union of silhouette images of all triangles of a mesh-model
defines the silhouette image of the 3D-model.

Figure 4.7: Generating a silhouette of a triangle.

The next step is finding the outer contour. We consider the image as an N ×N
matrix C = [cij ], where the elements cij (i, j = 1, . . . , N) denote pixel attributes of
a monochrome image. Attribute 1 denotes background pixels (white) and attribute
0 denotes silhouette pixels (black). For fixed i and j, pixel cij is a contour point
if its attribute is 0 and at least one of its four closest neighbors (east, south, west,
and north pixels) belongs to the background. A contour Γ is made up of a cyclic
sequence of contour points,

Γ = [ ci0j0 , . . . , ciL−1jL−1
], L ∈ N,
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where L denotes the length of the contour, which depends on the silhouette image.
Moreover, it holds

( ip 6= iq ∨ jp 6= jq ) ∧ max{ |ip − iq|, |jp − jq| } = 1,

where indices p and q can take values

q = (p+ 1) mod L, p = 0, . . . , L− 1.

For simplicity of notation, we associate a two-dimensional vector cp to the contour
point (pixel) cipjp

at position (ip, jp). We can also represent the contour Γ using
the arc length parameterization,

Γ : {0, 1, 2, . . . , L− 1} → R
2, Γ(p) ≡ (ip, jp) = cp. (4.7)

In the case that there is more than one contour in the silhouette image, which may
occur either if the object possesses holes or is composed from disjoint parts, we
process the longest contour (with the largest L).

Since the contour length L is non constant, we select K points to process further,
where K is fixed. The selected points are used for forming a sequence SK defined
by

SK = { s0, . . . , sK−1 }, si ∈
{ amax

N
(c1 −O), . . . ,

amax

N
(cL −O)

}

∪ {(0, 0)},
(4.8)

where O = (N/2, N/2) is the center of the image and amax is defined by (4.6). The
multiplication of contour points by amax/N is necessary in order to provide invari-
ance with respect to outliers. We tested the following two methods for selecting
points from the set Γ ∪ {O}, in order to generate the sequence SK (4.8):

a) Adjacent selected points have constant distance along the contour.

The points si (4.8) are determined by

si =
amax

N

(

Γ

(⌊
iL

K

⌋)

−O
)

, (4.9)

where btc ∈ N denotes the greatest integer that is not greater than t ∈ R.

b) Polar angles of adjacent selected points differ by a constant.

Let ( ρ(cp), ϕ(cp) ), ρ(cp) ≥ 0, −π < ϕ(cp) ≤ π, be coordinates of the contour
point cp = (ip, jp) in the polar coordinate system with the origin O, i.e.,

cp = (ip, jp) = O + ρ(cp) (cosϕ(cp), sinϕ(cp)) .

The points si (4.8) are determined by

si =

{
(0, 0), Ψi = ∅,
amax

N
(cp −O), ρ(cp) = max Ψi,

Ψi =

{

ρ(cq)

∣
∣
∣
∣
ϕ(cq) ≈

2iπ

K

}

.

(4.10)
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Basically, we apply a similar approach as in the case of the ray-based fea-
ture vector, but in the two-dimensional space. We intersect the contour
with the ray emanating from the origin O and traveling in the direction
( cos (2iπ/K), sin (2iπ/K) ). If the intersection exists, then the furthest inter-
section point of contour is selected to form si. Otherwise we set si = (0, 0).

Note that the coordinates of si (0 ≤ i ≤ K − 1) are given in the coordinate system
with the origin O.

Both approaches are visualized in figure 4.8. Each silhouette is approximated
by a polygonal line formed by the points, which are used for forming the sequence
SK (4.8). As it can be seen, polygonal approximations significantly deviate from
the contour, when points are selected by (4.10). Nevertheless, experimental results
(see section 5.2.2) suggest that selecting the contour points that have uniform polar
angles (4.10) is the better choice. The results are expected because method (4.9) is
more sensitive to local deformations of contours (noise).

a)

b)

Figure 4.8: Extraction of the silhouette-based shape descriptor: a) adjacent selected
points have constant distance along the contour (4.9), b) polar angles of adjacent
selected points differ by a constant (4.10).

Points si = ρi( cosϕi, sinϕi ) (4.8) represent the contour as a feature in the
spatial domain. There are several possibilities to process the information contained
in them. Two sets of contour points can be matched in the spatial domain using
an appropriate similarity measure. Some authors [95] use values ρi to form a his-
togram for each contour engaging the l1 distance (1.10) to calculate dissimilarity
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between two histograms. However, experimental results presented in [95] show a
very poor performance of this approach. Intuitively, this is expected, because by
binning distances of contour points to the origin we loose information about their
relative positions. We recall that the l1 norm is usually not effective distance metric
for features represented in the spatial domain (see section 1.4). Our choice is to
represent the feature in the spectral domain using the discrete Fourier transform
(DFT). The transform of a discrete sequence of complex values {f0, f1, . . . , fK−1}
is given by

f̂p =
1√
K

K−1∑

i=0

fie
−j 2π

K
i · p

, p = 0, . . . ,K − 1, (4.11)

where j is the imaginary unit and f̂p ∈ C are Fourier coefficients. If K is a power
of 2, then a fast Fourier transform (FFT) algorithm [148] can be used. The com-
plexity O(K2) of the DFT can significantly be reduced with the FFT algorithm
(O(K log2K)). We tested the following three possibilities for defining the values fi

using the selected contour points si:

1. Consider si as points in the complex plane,

fi = ρi · ejϕi ; (4.12)

2. Transform only distances of si from the origin,

fi = ρi; (4.13)

3. Transform x-coordinates and y-coordinates of si separately, i.e.,

first we transform fi = ρi cosϕi and then fi = ρi sinϕi. (4.14)

After the evaluation (section 5.2.2), we decided to use the second approach (4.13).

The absolute values of the obtained coefficients, |f̂p| (4.11), are used to form the
silhouette-based feature vector. Namely, for each of the three contours, we take
the first k absolute values of coefficients as components of the vector, whence

the dimension of the vector is equal to 3k. More precisely, if {f̂ (1)
0 , . . . , f̂

(1)
K−1},

{f̂ (2)
0 , . . . , f̂

(2)
K−1}, and {f̂ (3)

0 , . . . , f̂
(3)
K−1} are the coefficients obtained from three sil-

houettes, then the components of the corresponding feature vector f (dim(f) = 3k)
are defined in the following way

f =
(

|f̂ (1)
0 |, |f̂

(2)
0 |, |f̂

(3)
0 |, |f̂

(1)
1 |, |f̂

(2)
1 |, |f̂

(3)
1 |, . . . , |f̂

(1)
k−1|, |f̂

(2)
k−1|, |f̂

(3)
k−1|

)

. (4.15)

By forming vector components according to (4.15), an embedded multi-resolution
representation (1.8) of the feature is provided, i.e., the vector of dimension 3k con-
tains all vectors of lower dimensions. Note that, from (4.11), we have

{ f0, . . . , fK−1 } ∈ R =⇒ f̂p = f̂K−p, p = 1, . . . ,K/2− 1, (4.16)
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i.e, the coefficients f̂p and f̂K−p are complex conjugate, whence their absolute values

are equal, |f̂p| = |f̂K−p|. Thus, we propose to choose the values of k and K so that
k ≤ K/2.

We stress an interesting property of the DFT, which makes the magnitudes
of obtained coefficients (approximately) invariant with respect to rotation of the
underlying silhouette image. Suppose that {f0, . . . , fK−1} is the original sequence
of samples, and {g0, . . . , gK−1} is a sequence of samples after rotating the original
silhouette image for an arbitrary angle φ. Approximately, the original samples are
shifted so that

gi′ ≈ fi, 0 ≤ i, i′ ≤ K − 1, (4.17)

where

i′ = (i− t) mod K, t =

[
Kφ

2π

]

∈ N, (t is a rounded value).

Then, the absolute values of Fourier coefficients f̂p, obtained by transforming the
original sequence, are approximately equal to the absolute values of coefficients ĝp,
obtained by transforming the shifted sequence. The higher the value of K, the
better the approximation. Indeed, using (4.11) and (4.17), we have

f̂p =
1√
K

K−1∑

i=0

fie
−j2πip/K

= e−j2πtp/K 1√
K

K−1∑

i=0

fie
−j2π(i− t)p/K

≈ e−j2πtp/K 1√
K

K−1∑

i=0

gie
−j2πip/K

= e−j2πtp/K · ĝp

⇒ |f̂p| ≈ |ĝp|. (4.18)

As an example, the rotated silhouette images, which are shown in figure 4.9, will
be characterized by approximately the same magnitudes of Fourier coefficients. We
stress that it can also be proven that the magnitudes of obtained coefficients are
invariant with respect to reflections of a mesh around the coordinate hyper-planes.
Therefore, it is not necessary to reflect a mesh model by multiplying its vertices
with the matrix F (3.23), during the normalization procedure (section 3.4).

We tested the presented approach for N,K ∈ {128, 256, 512, 1024} (16 different
settings), and we suggest to take N = 256 and K = 256 (see section 5.2.2). In
our implementation, we set k = 100, i.e., the largest dimension of the vector is
300, embedding the vectors of dimensions 297, 294, . . . , 3. With these settings, the
average feature extraction time for models from the MPEG-7 collection (section 5.1),
which have already been positioned in the canonical coordinate frame, amounts 33.4
ms (on a PC with an 1.4 GHz AMD processor running Windows 2000).

The silhouette-based 3D-shape feature vector fulfills the requirements described
in section 1.3.4. We stated that, if it is not possible to determine a single unique
contour of the silhouette image (for 3D-models with holes or disjoint parts), only
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Figure 4.9: If a silhouette image is rotated, the magnitudes of Fourier coefficients
remain the same 4.18.

the longest contour is processed. Therefore, certain parts of 3D-objects might not
be described. We stress that method (4.10) can successfully be applied to models
whose silhouettes comprises more than one contour. Instead of a single contour, the
union of all contours is processed, while the presented procedure remains the same.

4.3 Depth Buffer-Based Feature Vector

When we create silhouette images of 3D-objects all the information about shape is
contained in contour points, because each interior point of the silhouette has the
same attribute. Therefore, we considered other approaches for creating 2D images
from 3D-objects in order to capture 3D-shape characteristics. We define another
feature vector, which is obtained from six depth-buffer (or Z-buffer) images. Depth-
buffers are formed using the faces of an appropriate cuboid region. We use the
depth-buffer algorithm which is described in [30]. Each depth-buffer is associated
to one face of the cuboid region, belonging the front clipping plane, while the back
clipping plane contains the parallel face. Initially, all values of the depth-buffer are
set to 0, representing the value at the back clipping plane. The largest value that
can be stored in the depth-buffer is 1 and represents the value at the front clipping
plane. The exact way of forming the depth buffer images is given in a sequel.

Let ρ be a cuboid region, whose faces are used for defining depth buffer images,

ρ = { (x, y, z) | xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax }. (4.19)

Let the face, determined by vertices

(xmin, ymin, zmin), (xmin, ymin, zmax), (xmin, ymax, zmax), and (xmin, ymax, zmin),
(4.20)

belong to the front clipping plane. The depth-buffer image, which corresponds to the
face (4.20), is formed in the following way. Firstly, the face is subdivided (rasterized)
into N×N coincident rectangles (or squares, if ρ is a cube). Each rectangle (square)
corresponds to a pixel of a gray scale image of dimensions N ×N .
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Let vab be the attribute of the pixel at position (a, b), 0 ≤ a, b ≤ N − 1. The
value of vab is associated to the rectangle (square) νab determined by

νab = {(xmin, y, z) | ya ≤ y < ya + dy, zb ≤ z < zb + dz}, (4.21)

where
ya = ymin + a · dy, dy = (ymax − ymin)/N,
zb = zmin + b · dz, and dz = (zmax − zmin)/N.

All pixel attributes are set to an initial value (vab = 0). A point P = (xP , yP , zP ) ∈ I
of a 3D-mesh model I (1.5), which lies inside the region ρ (P ∈ ρ), is orthogo-
nally projected on the face (4.20). The projection P ′ is determined by coordinates
(xmin, yP , zP ). If P ′ ∈ νab, then the attribute vab is updated,

vab ← max

{

vab,
xmax − xp

xmax − xmin

}

. (4.22)

Note that vab ∈ [0, 1]. An example of the depth buffer image of a single triangle
is depicted in figure 4.10. Black pixels correspond to the value of 0, white pixels
are attributed the value of 1. Since the pixel corresponding to the point A is
almost white, the point A is the closest to the front clipping plane (x = xmin).
The depth buffer image of a single triangle is formed by computing the attributes
corresponding to the vertices of the triangle, and by filling the interior points. The
depth-buffer image of the whole 3D-mesh model is obtained by taking maximal
values vab (0 ≤ a, b ≤ N − 1) of depth-buffer attributes of all triangles. The
remaining five depth buffer images are analogously generated, by substituting the
front clipping plane (4.20).

Figure 4.10: Generation of a depth-buffer image of a triangle (right), using the face
determined by (4.20).

The choice of the cuboid region ρ (4.19) is an interesting problem. Note that
only the part of a 3D-mesh model being inside ρ is processed, while a subset of
I (1.5), which is outside ρ, is ignored. As a first choice, we take the canonical
bounding cube (CBC) (see definition 4.1) as the region ρ. We also use faces of two
other cubes, extended bounding box and canonical cube, to form the depth buffer
images. Firstly, we define the bounding box of a 3D-model.
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Definition 4.2 The bounding box (BB) of a model I (1.5) is the tightest box, with
the faces parallel to the coordinate hyper-planes, which encloses the whole model.
The set of vertices of the bounding box is defined by

{ (x, y, z) | x ∈ {x1, x2}, y ∈ {y1, y2}, z ∈ {z1, z2} },

x1 = min
1≤i≤n

xi, y1 = min
1≤i≤n

yi, z1 = min
1≤i≤n

zi,

x2 = max
1≤i≤n

xi, y2 = max
1≤i≤n

yi, z2 = max
1≤i≤n

zi,

(4.23)

where (xi, yi, zi) are the vertices of the model (1.3).

It is desirable that the region ρ (4.19) is a cube, in order to keep the correct
aspect ratio of depth buffer images. Hence, the bounding box is not suitable for
forming depth buffer images, because its faces are rectangular, in general. Therefore,
we extend the bounding box to a cube, whose center coincide with the center of
bounding box.

Definition 4.3 The extended bounding box (EBB) of a 3D-model I (1.5) is defined
by the set of vertices

{ (x, y, z) | x ∈ {cx − w, cx + w}, y ∈ {cy − w, cy + w}, z ∈ {cz − w, cz + w} },

w = max

{
x2 − x1

2
,
y2 − y1

2
,
z2 − z1

2

}

,

cx =
x1 + x2

2
, cy =

y1 + y2
2

, cz =
z1 + z2

2
,

(4.24)
where x1, x2, y1, y2, z1, and z2 are given by 4.23.

Using the CBC (definition 4.1) or EBB (definition 4.3), for forming depth buffer
images, leads to potential problems with outliers. Obviously, an outlier affects the
dimensions of both CBC and EBB, whence the depth buffer images are affected
by the outlier, as well. In order to reduce the influence of outliers, we define the
canonical cube of a 3D-model.

Definition 4.4 The canonical cube (CC) of a 3D-model I (1.5) is a cube in the
canonical coordinate frame, defined by the set of vertices

{ (x, y, z) | x, y, z ∈ {−w,w} }, w ∈ R. (4.25)

Thus, the length of edges of the CC is fixed (constant), 2w, the center of the
CC lies at the origin of the canonical coordinate frame, and the faces are parallel
to the coordinate hyper-planes. Note that both the CBC and EBB are specific for
each 3D-model, while the CC is constant, i.e., equal for all models. Using the cube
of constant size in the canonical frame, for forming the depth-buffers, lessens the
impact of outliers on extracted feature vectors. A difficult problem is the selection
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of the constant value w. If we choose w to be large enough so that all models lie
inside the cube, then the depth-buffer images are mostly black, i.e., models occupy
only a small area in the middle of each image. We expect that discriminant power
of descriptors, relying upon depth buffer images that are mostly black, is poor. On
the other hand, if w is too small, then a significant part of a model may lie outside
the canonical cube, whence the most of model is clipped. Consequently, the feature
vector cannot capture information about all parts of the model. An experimental
analysis for w = 2, w = 4, w = 8, and w = 16 is presented in section 5.2.3.

The depth-buffer images of dimensions N × N pixels can directly be used as
a feature in the spatial domain. An example is shown in figure 4.11, where the
underlying model is the same as in figure 4.8. The six depth-buffers are visualized
in the first row as the grayscale images. The attributes of all six N ×N images can
be taken as components of a feature vector. The dimension of the corresponding
feature vector is 6N2. As mentioned in section (1.4), the l1 or l2 norms are not
suitable for calculating distances between feature vectors in the spatial domain. In
order to correlate components of vectors in the spatial domain, a suitable distance
metric need to be defined. Another solution is to correlate spatial features by
transforming them into the spectral domain. Therefore, we use the two-dimensional
discrete Fourier transform (2D-DFT) of depth-buffers to represent the feature in
the spectral domain. Briefly, for a two-dimensional sequence of complex numbers
fab ∈ C, a = 0, . . . ,M − 1, b = 0, . . . , N − 1, the Fourier coefficients f̂pq ∈ C are
calculated by

f̂pq =
1√
MN

M−1∑

a=0

N−1∑

b=0

fabe
−j2π(pa/M + qb/N), (4.26)

where j is the imaginary unit and p = 0, . . . ,M − 1, q = 0, . . . , N − 1. If we apply
the formula (4.26) directly, then the computational complexity of the 2D-DFT is
O(M2N2). Because of the separability, we can reduce the DFT from a 2-dimensional
operation to two 1-dimensional operations. Separability can be expressed by re-
writing (4.26),

f̂pq =
1√
M

M−1∑

a=0

(

1√
N

N−1∑

b=0

fabe
−j2πqb/N

︸ ︷︷ ︸

)

e−j2πpa/M ,

1D-DFT (4.11)

Hence, we should not apply the formula (4.26) directly, but rather two consecu-
tive 1D-DFTs (4.11). First we compute the DFT of the columns of an image and
then follow up with the DFT of the rows (or vice versa). Therefore, the com-
plexity is reduced to O(MN(M + N)). If M and N are powers of two, then the
FFT can be applied speeding up the computation additionally. The computational
complexity of the 2D-FFT (when two consecutive FFTs are applied) is of order
O(MN log(MN)). The achieved speed up of computation using the 2D-FFT over
the approaches when two consecutive DFTs are performed, and when the formula
(4.26) is directly applied, is depicted in table 4.3.
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M N
O(MN(M + N))

O(MN log(MN))

O(M2N2)

O(MN log(MN))
64 64 10.7 341.3

128 128 18.3 1170.3
256 256 32.0 4096.0
512 512 56.9 14563.6

1024 1024 102.4 52428.8

Table 4.3: Approximate speed up for various image dimensions when two FFTs are
used instead of other two approaches for computing the 2D-DFT.

In our case, the attributes vab ∈ [0, 1] (4.22) of a square image of type N × N
(M = N) serve as the input for the 2D-FFT. We stress that N should be a power
of 2, in order to apply the fast Fourier transform. Before the 2D-FFT (4.26) is
applied, we set

fab = va′b′ , (4.27)

where a = (a′ + N/2) mod N , b = (b′ + N/2) mod N , and 0 ≤ a′, b′ ≤ N − 1.
Practically, the new array fab is obtained by cyclically shifting the original one
vab so that f00 = vN/2,N/2. After applying the 2D-FFT, the obtained array of

complex coefficients f̂pq is also shifted so that v̂N/2,N/2 = f̂00. The new array v̂pq

(0 ≤ p, q ≤ N − 1) represents the feature in the spectral (frequency) domain. The
visualizations of arrays v̂pq by the grayscale images in the second row of figure
4.11, each of which corresponds to the depth-buffer image above, is done by taking
min{1, |v̂pq|} as pixel attributes (grayscale values). Thus, Fourier coefficients with
lower-frequencies are depicted by pixels that are located in the middle of the image.

Figure 4.11: Extraction of the depth buffer-based shape descriptor. In the first row,
the depth-buffer images are formed using the canonical bounding cube (definition
4.1). In the second row, each depth-buffer is transformed using the 2D-FFT (4.26).

Since the input sequence of the 2D-DFT consists of real numbers vab, the ob-
tained coefficients v̂pq possess the symmetry property, similar to (4.16), which fol-
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lows from (4.26),

vab ∈ R⇒ v̂pq = v̂p′q′ , (p+ p′) mod N = 0, (q + q′) mod N = 0, (4.28)

where v̂p′q′ is the complex conjugate of v̂p′q′ , 0 ≤ a, b, p, q, p′, q′ ≤ N − 1. The
distribution of symmetrical Fourier coefficients of an N×N image is shown in figure
4.12. The coefficients marked by gray color can be calculated using the symmetry
property.

Figure 4.12: Coefficients marked by gray color can be calculated using the symmetry
4.28 of the 2D-DFT. The coefficients that are included in the feature vectors are
located inside the denoted boundaries.

The depth-buffer feature vector is represented in the spectral domain as follows.
The absolute values of coefficients v̂pq corresponding to the white area in figure 4.12,
whose indices satisfy the inequality

|p−N/2|+ |q −N/2| ≤ k ≤ N/2, (k ∈ N), (4.29)

are taken as components of the feature vector. The coefficients are located inside
the boundaries depicted in figure 4.12. The total number of coefficients inside the
marked area is k2 + k + 1, whence the dimension of the vector obtained using the
six depth-buffers is 6(k2 + k + 1). For k = 8, the vector possesses 438 components.
Note that the vectors with 342, 258, 186, 126, 78, and 42 components (i.e., for
k = 7, 6, 5, 4, 3, 2) can easily be embedded in the vector of dimension 438.

Let the six depth-buffer images be uniquely indexed by i ∈ {1, . . . , 6}, and let

v̂
(i)
pq (0 ≤ p, q ≤ N − 1) be the Fourier coefficients of the depth-buffer image indexed

by i. As an example, the components of the feature vector f of dimension 78 (k = 3)
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are defined in the following way

f = ( |v̂(1)
c,c |, . . . , |v̂(6)

c,c |, |v̂(1)
c,c−1|, . . . , |v̂(6)

c,c−1|, |v̂(1)
c+1,c|, . . . , |v̂(6)

c+1,c|,
|v̂(1)

c,c−2|, . . . , |v̂(6)
c,c−2|, |v̂(1)

c+1,c−1|, . . . , |v̂
(6)
c+1,c−1|, |v̂

(1)
c+2,c|, . . . , |v̂(6)

c+2,c|,
|v̂(1)

c+1,c+1|, . . . , |v̂
(6)
c+1,c+1|, |v̂

(1)
c,c−3|, . . . , |v̂(6)

c,c−3|, |v̂(1)
c+1,c−2|, . . . , |v̂

(6)
c+1,c−2|,

|v̂(1)
c+2,c−1|, . . . , |v̂

(6)
c+2,c−1|, |v̂

(1)
c+3,c|, . . . , |v̂(6)

c+3,c|, |v̂(1)
c+2,c+1|, . . . , |v̂

(6)
c+2,c+1|,

|v̂(1)
c+1,c+2|, . . . , |v̂

(6)
c+1,c+2| ),

(4.30)
where c = N/2. Thus, the embedded multi-resolution representation (1.8) is pro-
vided, as it is the case with the silhouette-based descriptor (section 4.2).

We set the parameter N to 64, 128, 256, and 512, whereby the average feature
extraction times of the depth-buffer descriptor, for models from the MPEG-7 col-
lection (section 5.1), are 41.6 ms, 85.6 ms, 262,8 ms, and 1048.1 ms, respectively
(on a PC with an 1.4 GHz AMD processor running Windows 2000). Since N is a
power of 2, the 2D-FFT can be used producing a fast feature extraction. According
to the evaluation results (section 5.2.3), we recommend to set N = 256 and to use
depth buffer-based vectors of dimension 438.

The choice of the region ρ (4.19), CBC (definition 4.1), EBB (definition 4.3), or
CC (definition 4.4), is an interesting problem. As stated earlier, the negative influ-
ence of outliers is present when the CBC or EBB are used. Thus, the requirement
5 from section 1.3.4 is fulfilled only if the CC is used. To demonstrate the problem,
we give three retrieval examples in figure 4.13, where the query model possesses
an outlier. The query model is obtained by adding a long antenna to the original
model of car. When the CBC and EBB are used for forming depth buffer images,
the top ranked models are not relevant to the query. However, if CC with w = 2
is used, robustness with respect to outliers is achieved, and all top ranked models
are relevant. Note that the first match is the original model, which has been used
to create the query object. We stress that the displayed thumbnail images in figure
4.13 serve just to visualize the models, i.e., they do not correspond to depth buffer
images. Models in figure 4.13 are visualized from the positive side of the z-axis in
the canonical coordinate frame, while the x-axis travels to the right. The distance
of a viewpoint is selected so that the corresponding thumbnail image captures the
whole 3D-object, whence the canonical scale is not depicted in figure 4.13. The l1
distances between the query and the top ranked models are given, as well.

Regardless of the demonstrated sensitivity with respect to outliers, the results
(section 5.2.3) suggest that it is better to use the EBB, than the CC, for any value of
w. We assume that these results are caused by non-significant presence of outliers in
the 3D-mesh models from collections, which are described in section 5.1. If outliers
are more frequent, then we recommend to use the CC for generating depth buffer
images.
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Figure 4.13: When the CBC (definition 4.1) and EBB (definition 4.3) are used for
forming depth buffer images, the descriptor is sensitive with respect to outliers. In
the case when the CC (definition 4.4) is used, robustness with respect to outliers is
achieved.

4.4 Volume-Based Feature Vector

As mentioned in section 4.1 (see figure 4.5), if the ray-based approach is used in the
spatial domain, very similar 3D-models may have feature vectors whose components
significantly differ. We recall that the problem is caused by relying upon a one-
dimensional feature – extent along a given direction. The problem is also depicted
in figure 4.14a). The triangles T and T ′, which belong to two very similar objects,
are positioned at slightly different locations in the canonical coordinate frame. The
ray, emanated from the origin O in the direction u, intersects only the triangle T
at the point p. If the components of a feature vector are formed using distances
from intersection points to the origin, as it is the case with the ray-based approach,
the values of the components corresponding to the directional vector u significantly
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differ.
A similar problem may occur when calculating surface area inside certain re-

gions. For instance, let the plane δ in figure 4.14b) separate two regions and let
the triangles T and T ′ be almost parallel to δ, but located on the opposite sides of
the plane. If we have a feature vector in the spatial domain, defined by accumulat-
ing the areas of triangles inside the regions and attributing the obtained values to
corresponding vector components, then the areas of T and T ′ are accumulated in
different components of the feature vectors. As a result, we can have a gap between
vector components of very similar models.

a) Distance b) Surface area c) Volume

Figure 4.14: Large differences of sample values occur mostly when intersecting rays
with triangles (a) and rarely when calculating the surface area inside certain regions
(b). The differences cannot be large when relying upon volumes (c).

Hence, in the spatial domain, the gaps between corresponding sample values of
similar 3D-objects are the most frequent when calculating features based on one-
dimensional properties (e.g., ray casting), and are potentially present when com-
puting features based on two-dimensional characteristics (e.g., surface area). This
fact motivates us to define a feature relying upon a three-dimensional characteristic,
volume. Since a 3D-mesh model is not necessarily a solid object, we define artificial
volumes as shown in figure 4.14c). Namely, each triangle of the mesh is considered
to be the base of a pyramid having the top vertex at the coordinate origin. We cal-
culate the volume of each pyramid taking into account the orientation of the base,
i.e., the volume can be negative. The signed volume VTj

, which is associated to the
triangle Tj (1.2) with the vertices pAj

, pBj
, and pCj

(j = 1, . . . ,m), is calculated
by

VTj
= pAj

· ((pBj
− pAj

)× (pCj
− pAj

)) (4.31)

The reason to determine the sign of pyramid’s volume is depicted in figure 4.15.
Triangles 4p1p2p3 and 4p2p4p3 belong to a mesh model. For simplicity of illus-
tration, the points O, p4, and p1 are taken to be co-linear. The volume limited by
the triangles, which is ”inside” the model, is depicted on the right side of the figure.
The value of volume is computed by summing appropriate scalar triple products of
three vectors being the signed values of volumes.
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Figure 4.15: Calculation of volume.

In order to form a feature vector from the calculated volumes, the whole 3D
space (in the CPCA frame) is subdivided into N disjunctive regions ν1, . . . , νN .
Our volume based feature vector in spatial domain

f = ( f1, . . . , fN ) (4.32)

is formed by calculating distribution of VTj
(j = 1, . . . ,m) across the regions so that

the vector component fi is equal to the total (artificially defined) volume belonging
to the region νi. It holds,

Vtotal =
N∑

i=1

fi =
m∑

j=1

VTj
. (4.33)

We subdivide the 3D-space into N = 6k2 disjunctive regions by using the canon-
ical cube with w = 1 (see definition 4.4). We regard the CC with w = 1 as the
unit cube. Each face of the unit cube is subdivided into k2 coincident squares,
each of which represents the base of a pyramid with the top vertex at the origin,
as depicted in figure 4.16. By scaling each pyramid by a large factor w → ∞, the
whole 3D-space is subdivided into 6k2 pyramid-like regions.

Figure 4.16: Subdivision of the 3D-space into 6k2 regions νi (i = 1, . . . , 6k2).

Analytical definition of the region νi (i = 1, . . . , 6k2) can be formulated as
follows. Let c ∈ {0, 1, 2, 3, 4, 5} denote the faces of the unit cube, so that faces lying
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in the planes x = 1, x = −1, y = 1, y = −1, z = 1, and z = −1, are indexed by 0,
1, 2, 3, 4, and 5, respectively. We compute c by

c =

⌊
i− 1

k2

⌋

. (4.34)

Let s1, s2, s3 ∈ {1, 2, 3} denote the coordinate axes, so that the axes x, y, and z are
indexed by 1, 2, and 3, respectively. We compute

s1 = bc/2c+ 1, s2 = s1 mod 3 + 1, s3 = s2 mod 3 + 1. (4.35)

We define two auxiliary variables a, b ∈ {0, . . . , k − 1} by

a =

⌊
i− c · k2

k

⌋

, b = i− c · k2 − a · k. (4.36)

Finally, we define the region νi as

νi =

{

p

∣
∣
∣ p = (p1, p2, p3) ∈ R

3 ∧ (1− 2(c mod 2))ps1
> 0 ∧

2
a

k
− 1 ≤ ps2

|ps1
| < 2

a+ 1

k
− 1 ∧ 2

b

k
− 1 ≤ ps3

|ps1
| < 2

b+ 1

k
− 1

}

.

(4.37)

We use two algorithms for finding the distribution of VTj
(j = 1, . . . ,m) across the

regions νi (i = 1, . . . , 6k2): approximative and analytical.
Our approximative algorithm is based on partitioning each volume VTj

into p2
j

(pj ∈ N) partitions (pyramids) of equal volume, by subdividing the triangle Tj , as
depicted in figure 4.17. Having in mind that areas of triangles of a mesh model
significantly differ, we use an adaptive partitioning of VTj

in which the number of
partitions depends on the area of Tj . The parameter pj that fixes the number of
partitions of VTj

is defined by

pj =

⌈√

pmin
Sj

S

⌉

, (4.38)

where Sj is the surface area of triangle Tj , S is the surface area of the whole mesh
(3.10), pmin is a parameter used for setting the fineness of approximation, and
dte ∈ Z (t ∈ R) denotes the ceiling function (dte is the first integer greater than
t). The parameter pmin is used to specify the lower bound of the total number of
partitions ptotal of all volumes VTj

(i = j, . . . ,m), i.e.,

ptotal =

m∑

j=1

p2
j >

m∑

j=1

pmin
Sj

S
= pmin

∑m
j=1 Sj

S
= pmin. (4.39)

The whole volume δ = VTj
/p2

j of a pyramid-like partition is accumulated in a single
component of the feature vector. The component is determined using the center of
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gravity of the base of the pyramid. Centers of gravity are marked with bold dots
in figure 4.18, and are denoted by the variable G in the algorithm given by the
pseudocode in figure 4.18. For each partition, we determine the region containing
the center of gravity of the base triangle (function ’vector index’), and accumulate
the whole volume δ of partition in the corresponding component of the feature
vector. Note that we first check if the whole triangle is located in a single region νi

(4.37). In that case, there is no need for subdivision.

Figure 4.17: Subdivision of a triangle.

pos = vector index(Aj , k);
if pos = vector index(Bj , k) ∧ pos = vector index(Cj , k)

fpos ← fpos + VTj
;

else // There is a need for subdivision
dAB = (Bj −Aj)/pj ;
dAC = (Cj −Aj)/pj ;
dG = (dAB + dAC)/3;
δ = VTj

/p2
j ;

for x = 0, . . . , pj − 2
for y = 0, . . . , x

G = Aj + (x− y)dAB + ydAC + dG;
pos = vector index(G, k);
fpos ← fpos + δ;
pos = vector index(G + dG, k);
fpos ← fpos + δ;

for y = 0, . . . , p− 1
G = Aj + (p− 1− y)dAB + ydAC + dG;
pos = vector index(G, k);
fpos ← fpos + δ;

Figure 4.18: Approximation of volume distribution.

We recall that the parameter k fixes the dimension of the feature vector, which
is equal to the number of regions subdividing the 3D-space. The regions νi (4.37)
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are indexed with an integer from the range [1, 6k2], representing the position of
the vector component. The function ’vector index’, used for determining the region
containing a point A = (a1, a2, a3), is described by the following pseudocode:

// Returned value: the position of the vector component (integer) from the range [1, 6k2]
// Argument A = (a1, a2, a3) ∈ R

3 represents a 3D-point
// Argument k ∈ N is the subdivision parameter
int vector index(A, k)

s1, s2, s3, a, b, c ∈ Z;
s1 = 1;
if |a1| < |a2| ⇒ s1 = 2;
if |as1

| < |a3| ⇒ s1 = 3;
s2 = s1 mod 3 + 1;
s3 = s2 mod 3 + 1;
a = bk(as2

/|as1
|+ 1)/2c;

b = bk(as3
/|as1

|+ 1)/2c;
if as1

< 0⇒ c = 2s1 − 1;
else c = 2s1 − 2;
vector index = c · k2 + a · k + b + 1;

,

where c, s1, s2, s3, a, and b are defined by (4.34), (4.35), and (4.36). Hence, we
determine the region where the point A is located by finding a central projection
of A on the unit cube. The central projection from the center O onto the unit cube
projects any point A onto a corresponding point A′ belonging to the closest face of
the unit cube such that O, A and A′ are collinear. The projection is obtained by
intersecting the unit cube with the ray emanated from the origin O and traveling in
the direction A. We recall that each face of the unit cube is rasterized into a k × k
grid. Then, we find the grid location (a, b) containing the projection of the point.
Finally, the index of the vector component is computed (c · k2 + a · k + b+ 1).

Since the whole volume δ of a partition is not necessarily contained in a single
region of the 3D-space, an error is introduced by accumulating the whole volume in
a single vector component. By choosing larger values of pmin, we obtain a finer ap-
proximation, whence the introduced error is smaller. However, there is a trade-off
between the approximation error and the computational complexity of our algo-
rithm. With the increase of pmin, the approximation errors of vector components
decrease, but the computation time rises.

We also implemented another feature extraction algorithm that analytically
computes components of the feature vector. With this algorithm, the distribu-
tion of the volume VTj

over the regions νi (4.37) is exactly calculated. Briefly, our
analytical algorithm consists of the following steps:

1. We find the central projection of each point P ∈ Tj on the unit cube.

2. If the face c (4.34) of the unit cube contains projected points, then the set
of all (infinitely many) projected points form a polygon on the face c. We
determine the vertices of the polygon obtaining the polygonal line.

3. The polygonal line is used to determine a set of regions Ω = {νc1
, . . . , νcq

}
that contain parts of the volume VTj

.
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4. For each region ν ∈ Ω, we intersect the pyramid, formed by Tj and the origin
O, with the region ν, and compute the portion of VTj

being inside ν.

In practice, finding the vertices of projected polygons (steps 1 and 2) is realized as
follows:

• A list L of points, which are used to determine the set Ω of regions containing
parts of the volume VTj

, is initialized, so that L consists of the triangle vertices,
i.e., L = {Aj , Bj , Cj}.

• The vertices of the unit cube are centrally projected on the plane of triangle Tj .
The projections that are inside the triangle are added to the list L.

• Triangle edges AjBj , BjCj , and CjAj are intersected with all planes containing
two adjacent vertices of the unit cube and the origin O. Let P1 and P2 be two
adjacent vertices of the unit cube, and let the plane ρ be determined by P1, P2,
and O. Let the line containing Aj and Bj intersect the plane ρ at the point PAB .
We can write

PAB = tAj + (1− t)Bj , t ∈ R.

If t ∈ [0, 1], then PAB lies on the edge AjBj , and the intersection between ρ and
the edge AjBj exists. If t /∈ [0, 1], then there is no intersection between ρ and
the edge AjBj , because PAB is not between Aj and Bj . The example in figure
4.19 depicts the plane ρ, where intersections PAB and PBC exist, while there is
no intersection between the edge CjAj and the plane ρ. The intersection points
lying inside the area marked in figure 4.19 are added to the list L. The marked
area is bounded by rays cast from the origin O and traveling in the directions
P1 and P2. Conditions, which are used to check if a point of the plane ρ belongs
to the marked area, are also given in figure 4.19.

• All points from the list L are centrally projected on the unit cube.

Determining the set Ω of regions containing VTj
(step 3) is done by analyzing

the projected polygonal lines for each face of the unit cube. The set of regions
Θ = {νp1

, . . . , νpr
} (4.37) containing the polygonal line is determined. Finally, the

set Ω ⊃ Θ consists of all regions bounded by Θ. By finding the set Ω, we minimize
the number of volume intersections (step 4).

A visualization of the extracted feature for k = 4 (dim = 96) is shown in figure
4.20. Volumes of the depicted 96 pyramids, each of which belongs to a different
region νi, are equal to the values of feature vector components corresponding to
specific regions.

Feature extraction times of the volume-based feature vector of various dimen-
sions using both the approximative and the analytical approach are given in table
4.4. The results are obtained on a PC with an 1.4 GHz AMD processor running
Windows 2000. We used the MPEG-7 collection (section 5.1) to measure efficiency
of our extraction algorithms. The computational complexity of the approximative
algorithm depends on both the fineness of the approximation (parameter pmin) and
the vector dimension (lower-dimensional vectors require less subdivisions), while
the analytical algorithm depends on the vector dimension (parameter k). Our ex-
perimental results (5.2.4) show that the approximative algorithm for pmin = 64000
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P1P2 – an edge of the unit cube
cos ∠P1OP2 = 1/3

||P1|| = ||P2|| =
√

3

PAB , PBC – intersection points with edges AB and BC

P1 · PAB

||P1|| · ||PAB ||
> 1/3 ∧ P2 · PAB

||P2|| · ||PAB ||
< 1/3⇒ PAB /∈ L

P1 · PBC

||P1|| · ||PBC ||
> 1/3 ∧ P2 · PBC

||P2|| · ||PBC ||
> 1/3⇒ PBC ∈ L

Figure 4.19: Checking if the intersection points lie in the marked area of the plane.

Figure 4.20: A visualization of the volume-based feature vector.

extracts feature vectors of nearly the same retrieval performance as feature vectors
extracted by the analytical algorithm. Hence, in practice we use the approximative
algorithm for a fast feature extraction, while the analytical method is used only for
verifying results in a testing phase.

The volume-based feature vector possesses many desirable properties (section
1.3.4), e.g., translation, rotation, scale, and reflection invariance, robustness with
respect to level-of-details, different tessellations, and outliers, and multi-resolution
feature representation (adjustable dimensionality). Also, in the case of consistent
orientation of polygons, vector components of very similar objects cannot signifi-
cantly differ (figure 4.14). However, the constraint that all the models should con-
sistently be oriented is too stringent. Many 3D-mesh models, which are available on
the Internet, are non-orientable polygonal meshes (see also [49]). Therefore, as long
as we rely on the orientation of polygons of a mesh model, we should not extract
the volume-based descriptor without filtering (re-orienting) the mesh model. Since
we do not deal with complex filtering of models, we slightly modify the method
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Algorithm Approximative Analytical
pmin [in 1000s] 32 64 128 256 512 1024 —

Average ptotal [in 1000s] 45.3 80.7 149.0 284.5 549.6 1075.9 —
dim = 24 (k = 2) 20.2 26.7 39.2 63.8 112.5 208.9 39.3
dim = 54 (k = 3) 20.8 27.7 41.0 67.6 120.0 223.4 44.8
dim = 96 (k = 4) 21.6 29.5 44.4 74.1 132.6 247.9 54.4
dim = 150 (k = 5) 22.0 30.1 45.7 76.5 137.2 256.9 60.7
dim = 216 (k = 6) 22.5 31.1 47.3 80.1 144.0 270.3 70.4
dim = 294 (k = 7) 22.8 31.5 48.3 81.7 147.3 276.3 77.7
dim = 384 (k = 8) 23.0 32.1 49.5 83.8 151.5 284.5 86.8
dim = 486 (k = 9) 23.1 32.3 50.0 84.9 153.4 288.4 95.4

Table 4.4: Feature extraction times (in milliseconds) for various dimensions of the
volume-based feature vector, using both the approximative and analytical algo-
rithm.

in order to avoid the orientation constraint. Instead of VTj
(4.31), which can be

negative, we take the absolute value |VTj
|, in order to eliminate the problem of

non-consistent orientation of polygons. All other aspects of the presented technique
remain the same. Note that by taking non-negative values of volumes |VTj

|, we do
not calculate volume as depicted in figure 4.15, but we accumulate all non-negative
volumes being inside regions νi (4.37).

We also introduce an additional modification by normalizing the feature vector
f (4.32) so that ||f ||1 = 1 (1.10). This normalization makes the computed distri-
bution of volumes VTj

or |VTj
| independent of scale of the object. In this case, no

scaling during the normalization step (section 3.4) is necessary. Thus, there are four
variants of the volume-based feature vector in the spatial domain, which are given
in table 4.5.

Variant Signed VTj
(4.31) Scaled (||f ||1 = 1)

V1 yes no
V2 no no
V3 yes yes
V4 no yes

Table 4.5: Four variants of the voxel-based feature vector in the spatial domain.

Note that spectral representations of all variants of the feature vector f (4.32)
can easily be obtained by applying the 2D-DFT (4.26) to 6 2D-arrays F (0), . . . , F (5),
defined using f ,

F (i) = [f
(i)
ab ]k×k, f

(i)
ab = fck2+ka+b+1, 0 ≤ a, b ≤ k − 1, c = 0, . . . , 5.

The arrays F (i) of volume values are transformed into arrays F̂ (i) = [f̂
(i)
pq ]k×k of

complex Fourier coefficients. Next, we apply exactly the same approach as it is the
case with the depth-buffer feature vector in the spectral domain. The magnitudes of

the obtained coefficients |f̂ (i)
pq |, whose indices satisfy the following inequality, which
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is similar to (4.29),

|p− k/2|+ |q − k/2| ≤ l ≤ k/2, (l ∈ N),

are taken as components of the feature vector (for more details see section 4.3).
In practice, we extract this feature vector using the approximative algorithm with
k = 128. We recall that the dimension of the feature vector in the frequency domain
is 6(l2 + l + 1), where l < k/2 (l ∈ N) is the highest order of harmonics that are
used to form the vector. Also, an embedded multi-resolution representation (1.8) is
provided, by forming the vector according to (4.30).

We compared all variants of the volume-based method in both spatial and spec-
tral domains (see section 5.2.4). Because of the fact that 3D-models are not neces-
sarily orientable, the variants V2 and V4 (table 4.5) outperform the variants V1 and
V3. Retrieval effectiveness can slightly be improved by representing the volume-
based feature in the spectral domain. Nevertheless, the overall retrieval performance
of the volume-based descriptor is inferior to the silhouette-based and depth buffer-
based descriptors presented in this chapter, regardless of a high stability of the
volume-based approach with respect to variations of the polygonal surface (high-
frequency noise of the surface), different tessellations, as well as levels-of-detail.
After evaluation (section 5.2.4), we suggest to use the variant V4 of the volume-
based descriptor in the spectral domain of dimension 438.

4.5 Voxel-Based Approach

Polygonal mesh is the most common way of representing 3D-objects, and all the
models that we analyze are represented as polygonal meshes (1.5). However, in
order to define a new 3D-shape descriptor, we represent models as volumetric data
by voxelizing polygonal meshes. We define a specific volumetric representation of
a mesh model, which can be either directly used as a feature vector in the spatial
domain or further processed to generate a descriptor in the spectral domain [144].
In what follows, we mostly adopt the terminology given in [53].

Voxelization transforms the continuous 3D-space R
3, which contains models rep-

resented as polygonal meshes, into the discrete 3D voxel space Z
3. The voxelization

proceeds in three steps: discretization, sampling, and storing. Discretization yields
the cellular subdivision of the continuous 3D-space into voxels (volume elements).
Generally, a cuboid region ρ ⊂ R

3 (4.19), is discretized into an N ×M × P grid of
voxels, which are defined as follows.

Definition 4.5 A voxel µabc ⊂ ρ (4.19) is a continuous cuboid region of dimensions
dx × dy × dz contained by a 3D discrete point (a, b, c) ∈ Z

3 such that

µabc =
{

(x, y, z)
∣
∣
∣ (x, y, z) ∈ R

3, a ≤ x− xmin

dx
< a+ 1,

b ≤ y − ymin

dy
< b+ 1, c ≤ z − zmin

dz
< c+ 1

}

,
(4.40)
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where

dx =
xmax − xmin

M
, dy =

ymax − ymin

N
, dz =

zmax − zmin

P
, (4.41)

and
a = 0, . . . ,M − 1, b = 0, . . . , N − 1, c = 0, . . . , P − 1.

After the sampling, which is application specific, the voxel µabc is attributed a
value vabc ∈ K depending on positions of the polygons of a 3D-mesh model. In
other words, vabc depends on the point set I (1.5) of the model. Usually, vabc is a
scalar value, and we deal either with a binary voxel grid (K = {0, 1}) or real voxel
grid (K ≡ R). In the binary case, the voxel value vabc is defined by

vabc =

{
0 (or 1), I ∩ µabc = ∅
1 (or 0), I ∩ µabc 6= ∅ (4.42)

Thus, if there is a point p ∈ I laying inside µabc, then we set vabc = 1, otherwise
vabc = 0, or vice versa. There are several choices to attribute a voxel with a real
value. For instance, the voxel attribute vabc might be a color value. Also, the voxel
grid might be used for storing 3D distance fields [33, 56].

Voxel values are usually stored in a 3D-array [vabc]M×N×P . If the 3D-array is
mostly populated with zeros, the space needed for storing a voxel grid can signifi-
cantly be reduced by using an octree structure [116].

A voxelization method is defined by specifying the region ρ (4.19), the dimen-
sions of voxel grid M , N , and P (or voxel dimensions dx, dy, and dz), and the exact
calculation of voxel attributes. In what follows, we always use cubic voxel grids of
type N ×N ×N (M = N = P ). We use several definitions of the cuboid region ρ
(4.19), which is voxelized:

1. ρ is the canonical cube (CC) (definition 4.4);

2. ρ is the canonical bounding cube (CBC) of a model (definition 4.1);

3. ρ is the bounding box (BB) of a model (definition 4.2);

4. ρ is the extended bounding box (EBB) of a model (definition 4.3).

In our approach, a 3D-mesh model I (1.5) is voxelized so that the voxel attribute
vabc is equal to the fraction of the total surface area S of the mesh, which is inside
the region µabc (4.40), i.e,

vabc =
area{ µabc ∩ I }

S
, 0 ≤ a, b, c ≤ N − 1. (4.43)

We created both approximative and analytical algorithm for computing the voxel
attributes vabc (4.43).

The approximative algorithm is given in figure 4.21, and is based on the same
idea as the algorithm described in figure 4.18. Each triangle Tj of a mesh model is
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subdivided (figure 4.17) into p2
j coincident triangles each of which has the surface

area equal to δ = Sj/p
2
j , where Sj is the area of Tj . If all vertices of the triangle

Tj lie in the same cuboid region µabc (4.40), then we set pj = 1, otherwise we use
(4.38) to determine the value of pj . For each newly obtained triangle, the center of
gravity G is computed, and the voxel µabc 3 G is determined. Finally, the attribute
vabc is incremented by δ. As mentioned in section 4.4, the quality of approximation
is set by the parameter pmin (4.38). For clarity, several lines are separated as the
procedure inc att in the pseudocode in figure 4.21. In our implementation, we do
not have procedure calls as well as the computation of centers of gravity is done
without multiplications.

set all voxel attributes vabc to 0;
for each triangle Tj (with vertices Aj , Bj , and Cj) do

// S and Sj are defined by (1.6)
// pj is the parameter given by (4.38)
// dx, dy , and dz are defined by (4.41)
if Aj , Bj , and Cj belong to the same voxel =⇒ pj = 1;
dAB = (Bj −Aj)/pj ;
dAC = (Cj −Aj)/pj ;
dG = (dAB + dAC)/3;
δ = Sj/(p2

jS);

for x = 0, . . . , pj − 2
for y = 0, . . . , x

inc att(Aj + (x− y)dAB + ydAC + dG, δ);
inc att(Aj + (x− y)dAB + ydAC + 2dG, δ);

for y = 0, . . . , pj − 1
inc att(A + (pj − 1− y)dAB + ydAC + dG, δ);

// The following procedure determines indices (a, b, c) of the voxel region
// that contains the point G = (gx, gy , gz), and increments vabc by δ
inc att(G, δ)

a = b(gx − xmin)/dxc, b = b(gy − ymin)/dyc, c = b(gz − zmin)/dzc;
// xmin, ymin, and zmin are given in (4.19)
// dx, dy , and dz are defined by (4.41)
vabc ← vabc + δ;

Figure 4.21: Approximation of voxel attributes.

The analytical algorithm for calculating the attributes vabc (4.43), for a given
mesh model I (1.5), also starts with initializing voxel values to 0. Next, for each
triangle Tj (1.2) of the mesh, we determine a set of voxels Vj intersected by Tj ,
using a very efficient algorithm presented in [53]. We recall that the triangle Tj

is defined by its vertices Aj , Bj , and Cj , and 1 ≤ j ≤ m (1.2). Then, for each
µabc ∈ Vj , we compute the area δabc of the triangle Tj , which is inside µabc (4.40).
The value of δabc = area{ µabc∩Tj } is computed by performing the following steps:

1. Check if the triangle vertices Aj, Bj, and Cj lay inside µabc. The vertices
being inside µabc are inserted in a list L, which is initially empty.
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The point Aj = (axj
, ayj

, azj
) (similarly Bj and Cj) is processed as follows:

a ≤ axj
− xmin

dx
< a+ 1

∧
Aj ∈ µabc ⇐⇒ b ≤ ayj

− ymin

dy
< b+ 1

∧
c ≤ azj

− zmin

dz
< c+ 1

, Aj ∈ µabc =⇒ Aj ∈ L.

2. If L = {Aj , Bj , Cj}, then δabc = Sj (Sj is the surface area of Tj). Otherwise,
the algorithm proceeds with the next step.

3. Check if the edges AjBj, BjCj, and CjAj intersect the boundaries of µabc.
The intersection points are added to the list L.

The cuboid region µabc is bounded by 6 rectangles (or squares) each of which
is intersected with the three edges. Suppose that the edge AjBj is intersected
with the rectangle R

x−

abc, which is defined by

R
x−

abc =
{

(xmin + a dx, y, z)
∣
∣
∣ b ≤ y − ymin

dy
< b+ 1, c ≤ z − zmin

dz
< c+ 1

}

,

where dx, dy, dz, xmin, ymin, and zmin are given by (4.41) and (4.19). Firstly,
we find the intersection point p = (px, py, pz) of the line AjBj and the plane
π

x−

abc ⊃ R
x−

abc. Since the plane π
x−

abc 3 p is determined by equation x = xmin +
a dx, we have px = xmin + a dx. The point p also lies on the line AjBj , i.e.,
p = α(Aj −Bj) +Bj . We directly compute the value of α by

px = α(axj
− bxj

) + bxj
=⇒ α =

xmin + a dx − bxj

axj
− bxj

.

If 0 ≤ α ≤ 1, then p ∈ AjBj . Finally, we compute py and pz (α is known),
and check if p ∈ Rx−

abc, i.e.,

b ≤ py − ymin

dy
< b+ 1 ∧ c ≤ pz − zmin

dz
< c+ 1

If p ∈ AjBj and p ∈ Rx−

abc, we insert p into the list L.

4. Check if voxel edges intersect the triangle Tj, and add the intersection points
to the list L.

Let p0p1 be one of 12 voxel edges, e.g.,

p0 = (xmin + adx, ymin + bdy, zmin + cdz),
p1 = (xmin + adx, ymin + bdy, zmin + (c+ 1)dz).
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Let p be the intersection point of the line p0p1 and the plane of the triangle
Tj . We have

p = (xmin + adx, ymin + bdy, pz) = α(Aj − Cj) + β(Bj − Cj) + Cj ,

whence we form a system of two equations with unknowns α and β,

α(axj
− cxj

) +β(bxj
− cxj

) = xmin + adx − cxj
,

α(ayj
− cyj

) +β(byj
− cyj

) = ymin + bdy − cyj
.

(4.44)

After solving the system, we check if p ∈ Tj (α ≥ 0, β ≥ 0, and α + β ≤ 1),
compute pz, and check if p ∈ p0p1 (c ≤ (pz − zmin)/dz < c+ 1).

If p ∈ Tj and p ∈ p0p1, we insert p into the list L.

Note that we could also use the ray-triangle intersection algorithms (figures
4.2 and 4.3). However, the ray-triangle intersection algorithm for a general
case is less effective, because x and y coordinates of the points p, p0, and p1

are the same. Therefore, this special case is better handled by the presented
approach (4.44).

5. The list L = {t1, . . . , tl} contains coplanar points. If the size of the list is
greater than 3 (l > 3), then the list is sorted so that t1 . . . tl form a convex
polygon.

The list is sorted using the following procedure. Firstly, a new 2D-coordinate
system is set. The origin m, the abscissa x, and the ordinate y are computed
by

m =
1

l

l∑

i=1

ti, x =
t′ −m

||t′ −m|| , y =
x× (t′′ −m)

||x× (t′′ −m)|| × x,

where t′, t′′ ∈ L are chosen so that ||t′ −m|| and the angle ∠(x, t′′ −m) are
maximal, i.e.,

||t′ −m|| = max
1≤i≤l

{||ti −m||}, |x · (t∗ −m)|
||t∗ −m|| = min

1≤i≤l

{ |x · (ti −m)|
||ti −m||

}

.

The points ti are represented in the new coordinate system

ti = (xi, yi) ≡m + xix + yiy, xi = (ti −m) · x, yi = (ti −m) · y.

The points ti are reordered in the non-decreasing order of the polar coordinate
ϕi = arctan (yi/xi).

6. The surface area δabc of the polygon t1 . . . tl is calculated by summing up
areas of l − 2 triangles, 4t1t2t3,. . . , 4t1tl−1tl. The voxel attribute vabc is
incremented by δabc/S (1.6).

In the case when the CBC, BB, and EBB are used, a 3D-model I is completely
located inside the region ρ. If the CC is used as the cuboid region ρ (4.19), the
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underlying model might be clipped, when the parameter w is small. If we want to
enclose the whole 3D-model into the CC, then we take an empirically determined
value w = 32. For such a large value of w, the model is relatively small comparing
to the region ρ. In order to obtain a decent shape representation of the model,
we recommend N ≥ 32w. Such a voxel grid has more than 109 voxels, but only a
very small fraction of them has non-zero values. In this case, an octree is a very
suitable structure for an effective storing of voxel attributes. As it is the case with
the depth-buffer method (section 4.3), the CC is used in order to make the voxel
representation more robust with respect to outliers. Namely, if we add an outlier to
a model, then the CBC, BB, and EBB can significantly change, resulting in a totally
different voxel representation (figure 4.22), while the CC will remain approximately
the same, resulting in very slight changes of voxel attributes. We recall that the
CC with w = 2 is used for generating depth buffer images (section 4.3), producing
good shape descriptors.

Note that when the BB is used, voxelized models are deformed, i.e., the aspect
ratio of the model is not preserved by the voxel grid. Nevertheless, our tests (section
5.2.5) show that engaging the BB to form the voxel-based feature vector in the
spatial domain is a good choice.

Usually, we set N ∈ {3, 4, 5, 6, 7, 8}, and treat the obtained voxel grids as feature
vectors of dimensions N 3. The experiments (section 5.2.5) show that we get a better
retrieval performance for odd values of N . This can be explained by the fact that
the coordinate hyper-planes of the CPCA frame (section 3.4) intersect the middle
parts of voxel regions, when N is an odd number. We recall that a model in the
canonical frame is positioned so that the largest spreads of its point set I (1.5)
coincide with the coordinate axes. When N is even, a number of voxel regions is
bounded by the coordinate hyper-planes. For small values of N , the information
about distribution of the point set I is captured in a more useful way if no voxels
are bounded by the coordinate hyper-planes.

If a voxel grid is stored in an octree structure, we set N = 2r, where r ∈ N

is the maximal depth (level) of the octree. We regard the parameter r as the
resolution of voxelization. Note that all octrees with the depth less than r are
included, whence an embedded multi-resolution representation is provided. The
attributes stored in an octree can be regarded as a descriptor in the spatial domain.
A specific characteristic of this descriptor is the non-constant size. We created an
efficient algorithm for traversing two octree descriptors in order to compute the lp
distance (1.9). Nevertheless, the time needed to compute the l1 distance between
two octrees of depth 6, formed using the CBC, is approximately 21ms on a PC with
an 1.4 GHz AMD processor running Windows 2000. For comparison, this time is
300 times greater the time needed to compute the l1 distance between two vectors
of dimensions 400. Hence, some important requirements for 3D-shape descriptors
(section 1.3.4), such as compact representation and efficient search, are not fulfilled.
We consider that an octree is not appropriate representation of a feature. However,
octrees can be engaged for processing voxel grids of higher resolutions. Then, we
benefit by using such an efficient structure for storing a voxel grid.

As it is the case with other descriptors in the spatial domain, the increase of the
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a) b)

c) d)

e) f)

Figure 4.22: The impact of outliers on voxel representations. The only difference
between the original models a) and b) are positions of the antennas. The models
are voxelized at the same resolution and visualized from the same viewpoint using
the CBC (c,d) and CC (e,f).
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vector dimensionality (resolution of voxelization) leads to a lower effectiveness of
the lp norms (1.9). A simple example, shown in figure 4.23, illustrates the trade-off
between the resolution of voxelization (level of details or the depth of the octree)
and the effectiveness of the lp distance. Only three voxels vabc, wabc, and uabc of
different feature vectors v, w, and u are considered. Note that the voxels lay at the
same position in the Z

3 space. Let vabc ≈ wabc ≈ δ and uabc = 0 at the resolution

r. At the resolution r+ 1, each voxel is subdivided into 8 new voxels, v
(1)
abc, . . . , v

(8)
abc

(similarly for wabc and uabc). Let v
(1)
abc ≈ v

(4)
abc ≈ v

(5)
abc ≈ v

(8)
abc ≈ w

(2)
abc ≈ w

(3)
abc ≈ w

(6)
abc ≈

w
(7)
abc ≈ δ/4, while the remaining attributes are equal 0 at the resolution r+1. If the

lp norm (1.9) is applied for calculating the dissimilarity between the voxel attributes
at the position (a, b, c) and resolution r, then we have

dvw = ||vabc − wabc||p = 0, dvu = ||vabc − uabc||p = δ ⇒ dvw < dvu. (4.45)

However, at the resolution r+1 the dissimilarity measure gives the opposite result,

dvw =

(
8∑

t=1

∣
∣
∣v

(t)
abc − w

(t)
abc

∣
∣
∣

p
)1/p

>

(
8∑

t=1

∣
∣
∣v

(t)
abc − u

(t)
abc

∣
∣
∣

p
)1/p

= dvu. (4.46)

Hence, from (4.45) it follows dvw < dvu, while (4.45) gives the opposite conclusion,
dvw > dvu. This situation may happen when corresponding parts of two models
(e.g., doors of car models) are just slightly displaced in the CPCA frame, and the
displacement is registered at the resolution r + 1. From a user’s aspect, voxels
vabc and wabc are identical at the resolution r and very distinctive from uabc. This
impression should be somehow preserved at the resolution r + 1. Obviously, it can
not be done with the lp norm.

Figure 4.23: The increase of the resolution of voxelization reduces the effectiveness
of the lp norm in the spatial domain.

The information contained in a voxel grid can be processed further, in order
to obtain both correlated information and more compact representation of voxel
attributes as a feature. In [144], we applied the 3D Discrete Fourier Transform (3D-
DFT) to obtain a spectral domain feature vector. Briefly, a 3D-array of complex
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numbers F = [fabc]M×N×P (fabc ∈ C) is transformed into another 3D-array F̂ =

[f̂pqs]M×N×P (f̂pqs ∈ C) by

f̂pqs =
1√

MNP

M−1∑

a=0

N−1∑

b=0

P−1∑

c=0

fabc e
−2πj(ap/M+bq/N+cs/P ), (4.47)

where j is the imaginary unit and 0 ≤ p ≤M − 1, 0 ≤ q ≤ N − 1, 0 ≤ s ≤ P − 1.
Since we apply the 3D-DFT to an N × N × N voxel grid with real-valued

attributes vabc, we shift the indices (i.e., the space Z
3) so that (a, b, c) is translated

into (a−N/2, b−N/2, c−N/2). We introduce the following abbreviation

v′a−N/2,b−N/2,c−N/2 ≡ vabc.

Thus, the origin (0, 0, 0) is shifted to (N/2, N/2, N/2). Therefore, we adjust the
formula (4.47),

f̂pqs =
1√
N3

N
2
−1
∑

a=−N
2

N
2
−1
∑

b=−N
2

N
2
−1
∑

c=−N
2

v′abc e
−2πj(ap+bq+cs)/N , (4.48)

where −N/2 ≤ p, q, s ≤ N/2− 1. Usually, we use octrees to store voxel attributes,
which are used as the input for the 3D-DFT.

To form a shape descriptor, we apply a similar approach as in the previous
sections. We take magnitudes |f̂pqs| of low-frequency coefficients as components of
the feature vector. Since the 3D-DFT input is a real-valued 3D-array, the symmetry
is present among obtained coefficients (compare (4.16) and (4.28)),

v′abc ∈ R =⇒ f̂pqs = f̂p′q′s′ =⇒ |f̂pqs| = |f̂p′q′s′ |,

(p+ p′) mod N = 0, (q + q′) mod N = 0, (s+ s′) mod N = 0.

(4.49)

The feature vector is formed from all non-symmetrical coefficients f̂pqs so that

1 ≤ |p|+ |q|+ |s| ≤ k ≤ N/2. (4.50)

The coefficient f̂000 is not included, because it is always equal to 1, when the CBC,
BB, or EBB are used. However, if the CC is engaged, then f̂000 ≤ 1, because a model
may be cropped. Since we are interested in distribution of voxel attributes as a
feature, we normalize f̂pqs by dividing by |f̂000|. By suitably choosing the component
values, an embedded multi-resolution feature representation (1.8) is provided. The
exact way of forming the feature vector f = (f1, . . . , fdim) is described by the
pseudocode in figure 4.24.

For a fixed value of h (the outer loop in the pseudocode in figure 4.24), the total
number of taken coefficients d(h) can be computed by

d(h) = 3 + 6(h− 1) + 2(h− 1)(h− 2) = 2h2 + 1. (4.51)
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i = 1;
scale = 1;

if |f̂0,0,0| > 0⇒ scale = |f̂0,0,0|;
for h = 1, . . . , k

fi = |f̂h,0,0|/scale, i← i + 1;

fi = |f̂0,h,0|/scale, i← i + 1;

fi = |f̂0,0,h|/scale, i← i + 1;
for x = 1, . . . , h− 1

fi = |f̂0,x,h−x|/scale, i← i + 1;

fi = |f̂0,x,x−h|/scale, i← i + 1;

fi = |f̂x,0,h−x|/scale, i← i + 1;

fi = |f̂x,0,x−h|/scale, i← i + 1;

fi = |f̂x,h−x,0|/scale, i← i + 1;

fi = |f̂x,x−h,0|/scale, i← i + 1;
for x = 1, . . . , h− 2

for y = 1, . . . , h− 1− x

fi = |f̂x,y,h−x−y |/scale, i← i + 1;

fi = |f̂x,y,x+y−h|/scale, i← i + 1;

fi = |f̂x,−y,h−x−y |/scale, i← i + 1;

fi = |f̂x,−y,x+y−h|/scale, i← i + 1;

Figure 4.24: The forming of the voxel-based feature vector f = (f1, . . . , fdim), in
the spectral domain.

The dimension dim of the feature vector, i.e., the total number of all taken coeffi-
cients, is determined by

dim =
k∑

h=1

d(h) = k(2k2 + 3k + 4)/3. (4.52)

We recommend to set k = 8 so that the vectors of dimensions 12, 31, 64, 115, 188,
and 287 (k = 2, . . . , 7) are embedded in the feature vector of 416 components.

The efficiency of the analytical and approximative algorithms are compared
using the results from table 4.6. The results are obtained on a PC with an 1.4
GHz AMD processor running Windows 2000. The MPEG-7 collection (section
5.1) is used for measuring times and statistics. The voxel-based descriptor in the
spatial domain is extracted for N = 2, . . . , 8, producing the vectors of dimensions
8, 27, 64, 125, 216, 343, and 512. The approximative extraction algorithm (figure
4.21) is tested for pmin ∈ {16000, 32000, 64000, 96000}. For each value of pmin, the
average number of samples ptotal (4.39) is also given. Since we set pj = 1, when
the whole triangle attributes a single voxel, the total number pinc att of executions
of the procedure inc att (figure 4.21) is significantly lower than ptotal, for small
N . The computational complexity linearly depends on pinc att. Since there is a
certain amount of processing time, which does not depend on pinc att, but on the
number of triangles m of the mesh, the computational complexity can be written
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as O(c · m + pinc att), where c is a constant. As an example of interpreting the
results from table 4.6, we read that, on average, the voxel-based feature vector of
dimension 343 is extracted in 12.5ms, when the approximative algorithm is used
with pmin = 32000, while the average pinc att is equal to 34180. For pmin = 32000,
the average value of ptotal is 45311, which means that 45311-34180=11131 executions
of the procedure inc att are saved (on average) by checking if the whole triangle
attributes a single voxel.

Algorithm Approximative Analytical
pmin (4.38) 16000 32000 64000 96000 -
Average ptotal (4.39) 27179 45311 80734 114814 -
Voxel grid N = 2 (dim = 8) [ms] 9.7 11.3 14.4 17.3 17.5
Average pinc att 18312 27257 44716 61899 -
Voxel grid N = 3 (dim = 27) [ms] 9.7 11.1 14.1 16.9 15.5
Average pinc att 17954 26498 43314 59837 -
Voxel grid N = 4 (dim = 64) [ms] 10.1 11.9 15.6 19.1 22.6
Average pinc att 20195 30935 51890 72419 -
Voxel grid N = 5 (dim = 125) [ms] 10.1 11.9 15.7 19.3 22.8
Average pinc att 20349 31228 52567 73387 -
Voxel grid N = 6 (dim = 216) [ms] 10.3 12.5 16.7 20.8 29.6
Average pinc att 21875 34196 58339 81914 -
Voxel grid N = 7 (dim = 343) [ms] 10.3 12.5 16.7 20.8 30.0
Average pinc att 21858 34180 58274 81781 -
Voxel grid N = 8 (dim = 512) [ms] 11.6 12.8 17.4 21.8 36.0
Average pinc att 22905 36263 62308 87655 -

Avg. no. of octree nodes (depth=6) 8643 9733 10432 10733 11561
Oct6 (octree with depth=6) [ms] 28 36 49 61 523
3D-DFT dim = 416 (with Oct6) [ms] 153 178 192 199 224
Total time (Oct6 + 3D-DFT) [ms] 181 214 241 260 747

Avg. no. of octree nodes (depth=7) 21967 28389 34609 37665 47391
Oct7 (octree with depth=7) [ms] 53 68 89 110 2273
3D-DFT dim = 416 (with Oct7) [ms] 339 470 604 671 887
Total time (Oct7 + 3D-DFT) [ms] 392 538 693 781 3160

Table 4.6: Average feature extraction times of the approximative and analytical
algorithms for generating voxel-based feature vectors in the spatial domain, octree
voxel grids, and spectral representations using the 3D-DFT. In all cases, the CBC
is used. The number of executions of the procedure inc att (figure 4.21) is denoted
by pinc att.

The octree-based representation is tested with two maximal depths, 6 and 7.
An octree with the depth r stores a 2r×2r×2r voxel grid. Thus, we voxelized each
model into 64 × 64 × 64 and 128 × 128 × 128 grids using four different settings of
the approximative algorithm and the analytical algorithm. The average number of
octree nodes increases with the quality of approximation. For these dimensions of
grids, ptotal ≈ pinc att. The given extraction times of the octree-based representa-
tions take into account memory allocations of octree nodes. The complexity of the
3D-DFT applied to an octree is directly proportional to the number of nodes in the
octree. The total extraction time of the voxel-based descriptor in the spectral do-
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main is obtained by adding times needed for generating the octree and performing
the 3D-DFT. The extraction times in table 4.6 are obtained when the CBC is used.

We observe that the approximative method is significantly faster than the analyt-
ical algorithm, in particular for larger values of N . Our experiments (section 5.2.5)
show that feature vectors extracted by the approximative method for pmin = 32000
possess almost the same retrieval effectiveness as vectors obtained by the analytical
approach. We tested all presented choices for fixing the region of voxelization. In
the spatial domain, we suggest to use the BB for voxelization and dimension 343.
In the spectral domain, we recommend the vector of dimension 417 obtained by
applying the 3D-DFT to an octree of depth 7, which represents a voxel grid formed
using the CC with w = 2 (definition 4.4). The scale should be fixed by the average
distance (3.25), if the CC is used. Note that, if the voxel attributes are defined by
(4.43) and CBC, BB, or EBB are used, there is no need to fix the scale of an object
during the normalization step (section 3.4).

4.6 Describing 3D-Shape with Functions on a Sphere

Certain features aimed at describing 3D-shape [147, 117, 146, 142] can be considered
as samples of a function on a sphere S2. The sphere S2 ⊂ R

3 is a sphere of an
arbitrary radius with the center at the origin. For example, for a (normalized)
model I (1.5) define a function f on the sphere S2,

f : S2 → K

u 7→ f(u),
(4.53)

where K = {0, 1}, K ≡ R or K ≡ C. This function f(u) measures a property of the
object in the directions given by

u = u(θ, ϕ) = (cosϕ sin θ, sinϕ sin θ, cos θ) ∈ S2, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (4.54)

Hence, f depends only on angular coordinates θ and ϕ. The angle θ is measured
down from the z-axis, while ϕ is measured counterclockwise off the x-axis in the
plane xOy.

We can take a number of samples f(u) as components of a feature vector in the
spatial domain. However, such a descriptor is sensitive to small perturbations of
the model, because a property along given direction is measured (see examples in
figures 4.5 and 4.14a).

In [147], we introduced a concept that improves the robustness of the descriptor
by sampling the spherical function f(u) at many points but characterizing the map
by just a few parameters, using either spherical harmonics [45, 128, 78] or moments
[117].

In this section, we give a brief introduction to the Spherical Fast Fourier Trans-
form (SFFT) and describe our general approach for generating 3D-shape descriptors
based on a function on the sphere S2. Then, the ray-based approach (section 4.1) is
used to generate 3D-shape descriptors based on spherical harmonic representation
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and to define our moments-based feature vector. Next, we present several 3D-shape
descriptors that are based on various definitions of the function f(u). We also ex-
plore the idea to define functions on concentric spheres and to use a property of
spherical harmonics to obtain a rotation invariant descriptor, where the invariance
is achieved not using the PCA, but by the definition of descriptor.

4.6.1 Spherical Harmonics

The need for numerical computation of Fourier series of functions on the sphere S2 is
present in many areas of applied science [45, 60], e.g, astronomy, image understand-
ing, physics, biology, chemistry, etc. As far as we know, spherical harmonics are
introduced as a tool for 3D model retrieval in [147]. In what follows, we summarize
some basic facts from the theory of spherical harmonic adopting the terminology
and results given in [45]. We also present our approach of generating 3D-shape
feature vectors using spherical harmonics.

Let L2(S2) be the Hilbert space [148] of square integrable (complex) functions
on the sphere S2. In this case, the inner product of two functions f, g ∈ L2(S2) is
given by

〈f, g〉 =

∫ π

0

[∫ 2π

0

f(θ, ϕ)g(θ, ϕ)

]

sin θdθ. (4.55)

The Fourier transform on the sphere uses the spherical harmonic basis functions
Y m

l (θ, ϕ) to represent any spherical function f ∈ L2(S2) as

f =
∑

l≥0

∑

|m|≤l

f̂l,mY
m
l , (4.56)

where f̂l,m denotes the (l,m)-Fourier coefficient. Hence, spherical harmonics provide
an orthonormal basis for L2(S2). The (l,m)-spherical harmonic Y m

l (l ≥ 0, |m| ≤ l)
is a harmonic homogeneous polynomial of degree l, which has a factorization

Y m
l (θ, ϕ) = kl,mP

m
l (cos θ)ejmϕ, (4.57)

where j is the imaginary unit, kl,m is a normalization constant, and Pm
l is the

associated Legendre polynomial of degree l and order m that satisfies the following
characteristic three-term recurrent relation

(l −m+ 1)Pm
l+1(t)− (2l + 1)tPm

l (t) + (l +m)Pm
l−1(t) = 0. (4.58)

A visualization of real combinations Sm
l of spherical harmonics Y m

l , for |m| ≤ l ≤ 3,
is shown in figure 4.25.

By using (4.57) to separate the longitudinal coordinate ϕ and latitudinal θ, the
computation of the spherical harmonic coefficients can be performed as a common
Fourier transform followed by a projection on the corresponding Legendre functions,

f̂l,m = 〈f, Y m
l 〉 = kl,k

∫ π

0

[
∫ 2π

0

f(θ, ϕ)e−jmϕdϕ

︸ ︷︷ ︸

]

Pm
l (cos θ) sin θdθ.

1D-FT

(4.59)
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Courtesy of Quantum Chemistry Group, University of Oviedo

Figure 4.25: Spherical harmonic basis functions: a visualization of real combinations
Sm

l (l = 0, 1, 2, 3, −m ≤ m ≤ l). The surfaces have been colored according to the
value of the ϕ spherical coordinate of the points.

A very important property of spherical harmonics, which can be used for defining
rotation invariant 3D-shape descriptors, is the following:

Property 4.1 A subspace of L2(S2) of dimension 2l + 1, which is spanned by the
harmonics Y m

l (−l ≤ m ≤ l) of degree l, is invariant with respect to rotation of the
sphere S2.

The SFFT method proposed in [45] and the corresponding software Spharmon-
icKit [59] deal with band-limited functions.

Definition 4.6 A function f ∈ L2(S2) is band-limited with band-width or bandlimit

B ≤ 0 iff f̂l,m = 0 for all l ≥ B.

In the case of band-limited functions, the integrals (4.59) can be reduced to
finite weighted sums of a sampled vector obtained from the integrand. We give the
sampling theorem which is stated in [45] as theorem 1.

Theorem 4.1 [Sampling Theorem] Let f ∈ L2(S2) have bandwidth B. Then, for
each |m| ≤ l < B,

f̂l,m =

√
2π

2B

2B−1∑

a=0

2B−1∑

b=0

c(B)
a f(θa, ϕb)e

−jmϕbPm
l (cos θa), (4.60)
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where the sample points are chosen from the equiangular grid:

θa =
(2a+ 1)π

4B
, ϕb =

2bπ

2B
, (4.61)

and the weights c
(B)
a play a role analogous to the sin θ factor in the integrals (4.59).

Property 4.2 Let f ∈ L2(S2) be a real-valued function, i.e., f : S2 → R. Let the

SFFT coefficients f̂l,m be obtained by applying the sampling theorem (4.1). Then,
the following symmetry between the coefficients exists

f̂l,m = (−1)mf̂l,−m =⇒ |f̂l,m| = |f̂l,−m|, (4.62)

i.e., f̂l,m and (−1)mf̂l,−m are conjugate complex numbers.

The complex Fourier coefficients f̂(l,m) can efficiently be computed by the
spherical FFT (SFFT) algorithm (B is a power of 2) presented in [45], applied
to samples taken at points uab (4.54) defined using (4.61)

uab = u(θa, ϕb) = (xab, yab, zab) = (cosϕb sin θa, sinϕb sin θa, cos θa),

θa =
(2a+ 1)π

4B
, ϕb =

2bπ

2B
, 0 ≤ a, b ≤ 2B − 1, B is a power of 2.

(4.63)

Hence, we need 4B2 samples (complex values) as the input for the SFFT, but we get

B2 complex coefficients f̂l,m (|m| ≤ l < B). In the case of the band-limited func-
tions, we can reconstruct the original sample values by applying the inverse SFFT
to the coefficients. If the function f is not band-limited and the forward SFFT is
performed, then we cannot recover the original samples by performing the inverse
transform of the obtained coefficients. However, the recovered samples can be re-
garded as an approximation to the original values. The quality of approximation is
better for larger values of B.

As a general principle, our algorithm for defining 3D-shape descriptors based on
a function on the sphere S2 proceeds as follows.

Algorithm 4.1 A 3D-shape feature vector based on a function on the sphere S2 is
extracted by the following steps:

1. Define a function f(u) on the S2;

2. Sample f at 4B2 points uab defined by (4.63), B ∈ {32, 64, 128, 256, 512};

3. Perform the SFFT to obtain B2 complex coefficients f̂l,m (|m| ≤ l < B);

4. Find the magnitudes |f̂l,m| of the obtained coefficients;

|f̂0,0|
|f̂1,−1| |f̂1,0| |f̂1,1|

|f̂2,−2| |f̂2,−1| |f̂2,0| |f̂2,1| |f̂2,2|
|f̂3,−3| |f̂3,−2| |f̂3,−1| |f̂3,0| |f̂3,1| |f̂3,2| |f̂3,3|

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(4.64)
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5. If f is a complex-valued function, then take the magnitudes |f̂l,m| from the
first k rows of coefficients (|m| ≤ l < k) as components of the feature vector
f ;

f = (|f̂0,0|, |f̂1,−1|, |f̂1,0|, |f̂1,1|, . . . , |f̂k−1,−k+1|, . . . , |f̂k−1,0|, . . . , |f̂k−1,k−1|)

=⇒ dim(f) = k2,
(4.65)

6. If f is a real-valued function, then the symmetry (4.62) exists (property 4.2).

The feature vector f is composed by taking the magnitudes |f̂l,m| with positive

values of the index m and half of the magnitudes |f̂l,0| from the first k rows
of the obtained coefficients (l < k);

f = (|f̂0,0|/2, |f̂1,0|/2, |f̂1,1|, . . . , |f̂k−1,0|/2, . . . , |f̂k−1,k−1|)

=⇒ dim(f) = k(k + 1)/2.
(4.66)

Note that a feature vector formed either using (4.65) or (4.66) contains all feature
vectors of the same type of smaller dimension, thereby providing an embedded
multi-resolution representation (1.8) for 3D shape feature vectors.

Remark 4.1 The property 4.1 can be used to achieve rotation invariance of feature
vectors without normalizing the orientation (rotation) of a 3D-mesh model I (1.5).
Our normalization technique is described in section 3.4. After applying the first 4
steps of the algorithm 4.1, we can form the feature vector f so that

f = (||f0||, . . . , ||fdim−1)||), ||fl|| =

√
√
√
√

l∑

m=−l

|f̂l,m|2, dim ≤ B. (4.67)

If Irot is the point set of a 3D-model obtained by rotating the points I around an
arbitrary axis for an arbitrary angle, and frot = (||f ′0||, . . . , ||f ′dim−1)||) is the feature
vector of Irot, extracted without the normalization step using (4.67), then it holds
||fl|| ≈ ||f ′l ||.

Remark 4.2 Suppose that I (1.5) is a given point set of a mesh model and Iz

is the point set obtained by rotating the set I around the z-axis for an arbitrary
angle. Let f̂l,m and f̂ ′l,m (|m| ≤ l ≤ B) be complex Fourier coefficients obtained
after the step 3 of the algorithm 4.1, associated to I and Iz. If the number of
samples is large enough (B >> 0) and the sample points are defined by (4.63), then
the magnitudes of the obtained coefficients are approximately the same. Thus, a
feature vector formed by the algorithm 4.1 is invariant with respect to rotations of
a model around the z-axis. The property directly follows from the equation (4.60).
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Remark 4.3 The users of the SpharmonicKit (version 2.5 and earlier) should cor-
rect the normalization problem that exists. Namely, after the SFFT, the obtained
coefficients f̂l,m should be scaled as follows

f̂l,m ← 2
√
πf̂l,m, f̂l,0 ←

√
2πf̂l,0, 1 ≤ |m| ≤ l, 0 ≤ l < B.

The inverse scaling should be performed before the inverse transform. Note that
without the scaling, the property 4.1 is not valid. We informed the authors of the
SpharmonicKit about the problem, and the following versions will probably include
the correction.

4.6.2 Ray-Based Approach

with Spherical Harmonic Representation

The function r(u) on the sphere S2 defined by (4.1) is used to form the ray-based
feature vector in the spectral domain [147]. We recall that r measures the extent of a
model in the direction uab (4.63). After sampling the function r at 4B2 points and
performing the forward SFFT, we obtain B2 complex coefficients (theorem 4.1).
One may use the spherical harmonic coefficients to reconstruct an approximation
of the underlying object at different levels (figure 4.26). In the first row of figure
4.26, the extent function of the original model is sampled at 10242 points and
all 5122 obtained coefficients are used to reconstruct the sampled model. In the
second row, the number of samples is 1282 and when the model is reconstructed
using all 642 coefficients some artifacts are visible. We recall that the function
r on the sphere S2 is not necessarily band-limited (see definition 4.6), thus, we
cannot precisely reconstruct the original samples. We observe that, for the larger
number of samples, the reconstruction introduces very slight artifacts. Nevertheless,
if we use both sets of coefficients (5122 and 642) to reconstruct the samples using a
significantly smaller number of spherical harmonics, then the reconstructed sample
values are almost identical. In figure 4.26, the first 42, 82, 122, 162, 202, and 242

harmonics are used to reconstruct the sampled function.
Since r (4.1) is a real-valued function, the symmetry in the rows of the coefficients

exists (see property 4.2). Therefore, the feature vector is formed using (4.66). An
example output of the absolute values of the spherical Fourier coefficients (up to
l = 4) is given in table 4.7. The feature vector is composed from the coefficients
with m ≥ 0.

l \ m -4 -3 -2 -1 0 1 2 3 4
0 4.448
1 0.139 0.754 0.139
2 0.589 0.111 1.202 0.111 0.589
3 0.051 0.041 0.056 0.057 0.056 0.041 0.051
4 0.060 0.053 0.369 0.004 0.554 0.004 0.369 0.053 0.060

Table 4.7: An example output of magnitudes |r̂l,m| of spherical harmonic coeffi-
cients, when function r (4.1) is used to sample the original model from figure 4.26.
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Original 10242 samples 5122 coefficients

1282 samples 642 coefficients 42 coefficients 82 coefficients

122 coefficients 162 coefficients 202 coefficients 242 coefficients

Figure 4.26: Multi-resolution representation of the function r(u) (4.1) used to derive
feature vectors from Fourier coefficients for spherical harmonics.

We recommend to take the magnitudes |f̂l,m| from the first k ≥ 19 rows of
coefficients as components of the feature vector. We usually extract the descriptor
for k = 29 (0 ≤ m ≤ l < 29), whence the maximal dimension of the vector is
435 and all lower-dimensional vectors are embedded. We apply the ray-triangle
intersection algorithm presented in section 4.1 (algorithm 2 in figure 4.3) to sample
the function r at 4B2 points, and use the program code [59] to perform the SFFT.
We tested our feature extraction algorithm for B ∈ {32, 64, 128, 256, 512} and the
extraction times are shown in table 4.8. The results are obtained on a PC with an
1.4 GHz AMD processor running Windows 2000, using the MPEG-7 collection of
3D-models (section 5.1). In section 5.2.6, we compare how the number of samples
affects retrieval performance. The effectiveness between tested numbers of samples
is not significantly different, for B ≥ 64. The vectors of dimensions from the range
91 ≤ dim ≤ 190 (4.66) outperform vectors of dimensions outside of the range.

As mentioned in section 4.1, spherical harmonics can be used to eliminate sig-
nificant component-wise differences (gaps) between feature vectors of very similar
models. We recall that the ray-based descriptor is used also in the spatial domain
(section 4.1). The extent function r (4.1) is sampled at only a few points, and the
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Band-limit (B) 32 64 128 256 512
No. of samples (4B2) 4096 16384 65536 262144 1048576
No. of coefficients (B2) 1024 4096 16384 65536 262144
Extraction time [ms] 28.0 68.6 266.8 1311.2 7816.0

Table 4.8: Extraction times of the ray-based feature vector with spherical harmonic
representation, for various numbers of sample points. In each case, dim = 435.

f400 = (1.22, 0.13, 0.15, 0.25, 0.03, 0.29, 0.02, 0.01, 0.01, 0.15, 0.06, 0.03, 0.07, 0.03, 0.04,
0.00, 0.03, 0.01, 0.07, 0.01, 0.10, 0.02, 0.03, 0.03, 0.00, 0.02, 0.03, 0.03, 0.00, 0.01,
0.02, 0.03, 0.01, 0.02, 0.01, 0.02, 0.01, 0.02, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.03),

f800 = (1.21, 0.13, 0.15, 0.25, 0.02, 0.29, 0.02, 0.01, 0.02, 0.15, 0.06, 0.02, 0.07, 0.03, 0.04,
0.00, 0.03, 0.01, 0.07, 0.00, 0.10, 0.02, 0.02, 0.03, 0.00, 0.02, 0.03, 0.04, 0.00, 0.01,
0.02, 0.03, 0.01, 0.02, 0.01, 0.03, 0.01, 0.02, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.02),

( |f1
400
− f1

800
|, . . . , |f45

400
− f45

800
| ) =

0.00, 0.00, 0.00, 0.00, 0.01, 0.00, 0.00, 0.00, 0.01, 0.00, 0.00, 0.01, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.01, 0.00, 0.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.01, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01).

Figure 4.27: The ray-based feature vectors (dim = 45) in the spectral domain of
the models in figure 4.5. The maximal difference between component is equal 0.01.

sample values are directly used as components of the feature vectors. One of the
problems of such a descriptor is depicted in figure 4.5, where a ray does not hit the
bottom-left part of the model on the right-hand side. As a result, there is a gap
between the corresponding vector components. When we sample the function r at
many points (4.63), we also have many gaps between sample values for models in
figure 4.5. However, when we apply the SFFT to the samples and form the vector
in the spectral domain, then the component-wise differences between the similar
models from figure 4.5 are negligible (see figure 4.27). The SFFT filters differences
caused by local variances of models’ surfaces.

Therefore, the spectral representation of the ray-based feature vector eliminates
drawbacks that are present in the spatial domain (see section 4.1):

• Many samples capture sufficient information about the underlying object;

• The l1 norm is a reasonably effective distance measure in the spectral domain,
because the values of samples are correlated;

• Different levels of detail as well as different tessellations of a model introduce a
noise among samples. Feature vectors in the spatial domain are not affected by
the noise, which is filtered by the Fourier transform.
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4.6.3 Moments-Based Feature Vector

An alternative to the representation of a spherical function by spherical harmonics
is given by moments [117]. To be consistent we sample the spherical function r(u)
(4.1) at the same sample points uab (4.63) as for the representation by spherical
harmonics. As moments we define

Mm1,m2,m3 =
2B−1∑

a=0

2B−1∑

a=0

r(uab)∆sa x
m1

ab ym2

ab zm3

ab , m1,m2,m3 = 0, 1, 2, . . . ,

(4.68)
where the factor ∆sa represents the surface area on the sphere corresponding to the
sample point uab (4.63) and compensates for the non-uniform sampling,

∆sa =
2π

B

(

cos
(

θa −
π

2B

)

− cos
(

θa +
π

2B

))

. (4.69)

To compose the feature vector, we ignore M 0,0,0, and use the values of moments
Mm1,m2,m3 so that 1 ≤ m1+m2+m3 ≤ k. For a fixed k, the forming of the moments-
based feature vector f = (f1, . . . , fdim) is described by the following pseudocode,

i = 0;
for m = 1, . . . , k

for m1 = 0, . . . , m
for m2 = 0, . . . , m−m1

fi = Mm1,m2,m−m1−m2 ;
i← i + 1;

whence the embedded multi-resolution representation is also provided (1.8). The
calculation of moments Mm1,m2,m−m1−m2 (4.68) is implemented so that the op-
eration count is minimized. The dependency of the vector dimension dim on the
parameter k is given by

dim =
(k + 1)(k + 2)(k + 3)

6
− 1. (4.70)

Usually, we set k = 11.
In order to measure extraction times of various dimensions of the vector, we

computed feature vectors for k = 2, . . . , 11 using three different numbers of samples,
642, 1282, and 2562. The average feature extraction times, which are shown in table
4.9, are obtained on a PC with an 1.4 GHz AMD processor running Windows 2000,
and using the 3D-mesh models from the MPEG-7 set (section 5.1). We recall that
the vector of dimension 363 (k = 11) contains all lower-dimensional vectors (for
k = 2, . . . , 10).

Hence, the feature extraction consists of two steps: sampling and computing
moments. For a given complexity of a 3D-model (number of triangles), the sampling
time ts is proportional to the number of samples, ts = O(B2), while the time tm
needed for computation of moments can be expressed as tm = O(dim ·B2). We can
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k 2 3 4 5 6 7 8 9 10 11
dim 9 19 34 55 83 119 164 219 285 363
B = 32 27.1 27.9 28.9 30.6 32.6 35.2 38.5 42.0 46.3 51.3
B = 64 59.6 62.7 67.4 74.1 82.5 92.9 106.4 121.0 138.5 158.4
B = 128 184.2 197.5 214.7 240.1 272.2 311.8 365.4 423.6 490.9 570.0

Table 4.9: Average extraction times (in milliseconds) of the moments-based feature
vectors for various dimensions and B ∈ {32, 64, 128}.

write the total time complexity as O((cf + dim)B2), where cf is a constant. The
dimensionality vs. time complexity diagrams for three different numbers of samples
(4B2) are shown in figure 4.28.
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Figure 4.28: Dimensionality vs. extraction times for B ∈ {32, 64, 128}.

The results (see section 5.2.7) show that dim ≥ 363 is the best choice of dimen-
sion for the moments-based feature vector. Hence, in practice, we extract only one
feature vector of dimension dim > 363, embedding all lower-dimensional vectors.

4.6.4 Shading-Based Feature Vector

As another possibility to define a function on the sphere (4.53), which can be used
for describing 3D-shape, we consider a rendered perspective projection of the object
on an enclosing sphere [146]. We define a function s(u) on the sphere S2 relying
upon the definition of r(u) (4.1)

s : S2 → [0, 1]

s(u) =

{
0, if r(u) = 0
|u · n(u)|, if r(u) 6= 0

, u ∈ S2,
(4.71)

where n(u) is the normal unit vector of the triangle containing the point r(u)u
(r(u) 6= 0). The computation of values of the function s(u) is illustrated in figure
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4.29. The triangle 4ABC contains the furthest point of intersection along the di-
rectional unit vector u. Since ||u|| = ||n(u)|| = 1, the value u·n(u) = cos ∠(u,n(u))
is regarded as information about flat shading [30]. Therefore, we call this descriptor
shading-based.

For a given u = (ux, uy , uz) ∈ S2, ||u|| = 1,

find r(u) and determine 4ABC 3 r(u)u,

n(u) =
(B −A)× (C −A)

||(B −A)× (C −A)|| = (nx, ny , nz),

s(u) = |u · n(u)| = |uxnx + uyny + uznz |.

Figure 4.29: Calculation of s(u) (4.71) when r(u) 6= 0.

The feature extraction procedure of the shading-based vector follows the algo-
rithm 4.1. In order to sample the function s (4.71) at 4B2 points uab (4.63), we
sample the function r (4.1) at these points, populating an additional array of 4B2

integers by storing the ordinal numbers of triangles containing points r(uab)uab.
Then, we compute the normal vectors of triangles whose indices are stored in the
array, and calculate the sample values according to (4.71). The point r(uab)uab is
the furthest point of the mesh model I (1.5) in the direction uab from the origin O.
However, r(uab)uab is the closest point of the model I to an enclosing sphere along
the ray emanated from the origin and traveling in the direction uab. Therefore,
we regard this technique as a rendered perspective projection of the object on an
enclosing sphere. Note that the rendered perspective projection is independent of
the scale of the underlying 3D-mesh model. Therefore, it is not necessary to scale
the model during the normalization step (section 3.4). After the sampling, we apply
the SFFT, and form the vector according to (4.66). The feature extraction time
of this vector is slightly greater than the extraction time of the ray-based feature
vector in the spectral domain (see table 4.8). We suggest to set B = 64 and use
dim = 91, i.e., k = 13 in (4.66). Evaluation results for the shading-based descriptor
with spherical harmonic representation are given in section 5.2.8.

The shading-based feature vector possesses an embedded multi-resolution rep-
resentation (1.8). A drawback of the shading-based approach is sensitivity with
respect to levels of detail and different tessellations of a model. Since we rely upon
normal vectors, if we have a model in different levels of detail, then sample values
(4.71) of a very simple model (small number of triangles) significantly differ from
the samples of a very complex model (large number of triangles). This difference is
reflected in vector components. Therefore, the requirement 4 in section 1.3.4 is not
fulfilled.

As an example, we consider the models of cow in figure 4.30. The original model
consists of 5804 triangles, while the other models are obtained by simplifying, using
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88 100 250 400 5804

Figure 4.30: A model of cow in 5 different levels of detail. The numbers of triangles
are given below corresponding models.

QSlim 1.0 software [37]. All 5 models are included in our 3D model collection (see
section 5.1). Suppose the shading-based descriptor is used and the l1 metric is
selected as the distance measure to rank the models. If the model with 88 triangles
is taken as a query, then the models with 100, 250, 400, and 5804 triangles are
retrieved as 1st, 2nd, 4th, and 23rd match, respectively. If the model with 5804
triangles serves as a query, then the models with 400, 250, 100, and 88 triangles are
at positions 1, 5, 123, and 143. Note that in both examples the retrieved models
are order according to the level of detail (complexity). All the other feature vectors,
which are presented in this chapter so far, do not suffer from the described problem.
In other words, if we use any other feature vector and any of the five cow-models
as a query, then the first four matches are the remaining cow-models.

The problem of non-robustness with respect to levels of detail and tessellations
reduces discriminant power of the shading based descriptor. However, the functions
r(u) and s(u) can be combined to define a 3D-shape descriptor, which possesses
better retrieval performance than the ray-based and shading-based descriptors. The
combined descriptor is presented in a sequel.

4.6.5 Complex Feature Vector

We presented two approaches (sections 4.6.2 and 4.6.4) of defining functions on
the sphere S2 (4.53), which are used for generating shape descriptors according to
the algorithm 4.1. In both cases, we have a real-valued function and use (4.66) to
compose vector components. In [146], we merged two features, the extent measure r
(4.1) and information about shading s (4.71), by defining a complex-valued function
zα(u),

zα(u) =
1

α
r(u) + j s(u), u ∈ S2, zα(u) ∈ C, (4.72)

where α is a parameter used for weighting the importance of functions r and s, and
j is the imaginary unit. For α → 0, the extent-based feature prevails, while for
α→∞ the shading-based feature is predominant.

We apply the algorithm 4.1 to zα(u). Sample values of the function zα(uab)
(4.63) are simply obtained by combining samples of r(uab) and s(uab). Then, the
SFFT is applied to the complex-valued samples. Since zα(u) ∈ C, we use (4.65) to

form the feature vector from the first k rows of spherical harmonic coefficients f̂l,m
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(4.64). We recall that the vector of dimension k2 embeds all lower-dimensional vec-
tors. An example output of the absolute values of the spherical Fourier coefficients
(up to l = 4) is given in table 4.10. The feature vector is composed from all coeffi-
cients, because the symmetry (see property 4.2 and table 4.7) between coefficients
does not exist. As far as we know, this is the first attempt to describe a 3D-shape
by using a complex function. Therefore, we refer to the descriptor as complex.

l \ m -4 -3 -2 -1 0 1 2 3 4
0 4.041
1 0.093 0.554 0.095
2 0.451 0.073 0.859 0.076 0.450
3 0.041 0.030 0.052 0.189 0.053 0.031 0.039
4 0.063 0.038 0.272 0.026 0.399 0.027 0.272 0.040 0.062

Table 4.10: An example output of magnitudes r̂l,m of spherical harmonic coeffi-
cients, when function z0.8 (4.72) is used to sample the original model from figure
4.26.

The average extraction time of the complex feature vector is almost identical to
the average extraction time of the shading-based descriptor (section 4.6.4), i.e., it
is slightly greater than the average extraction time of the ray-based feature vector
in the spectral domain (see table 4.8).

We tested (section 5.2.9) the complex feature vector of maximal dimension 484
(k = 22) for B ∈ {32, 64, 128, 256}, while the parameter α (4.72) took values 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, and 6.0. We recommend the
following settings: B = 64, α = 0.4, dim = 196.

Thus, the descriptor obtained by combining two features (extent and shading)
shows better retrieval performance than both the ray-based and the shading-based
descriptors. Intuitively, we expect that such a combination of two features result in
a descriptor, whose discriminant power is higher than the discriminant power of the
shading-based, and lower than discriminant power of the ray-based descriptor in the
spectral domain. However, it appears that the weaker descriptor, the shading-based,
can be used to improve retrieval performance of the better descriptor, the ray-
based. We explain this result by a king of “orthogonality” (complementarity) that
exists between combined features. In other words, some 3D-shape characteristics,
which are not captured by one of descriptors, are recorded by the other, whence the
combination gives better results. This result motivates us to create other definitions
of complex functions as well as to try to merge several descriptors in an appropriate
way (section 4.7).

There are other possibilities to define a complex function (4.72) on the sphere S2

in order to combine different features by using the presented concept. For instance,
the curvature index (2.8) can be used in the same way as the information about the
shading (4.71). Let c(u) be a real-valued function on the sphere S2

c(u) =

{
0, if r(u) = 0
Γj , if r(u) 6= 0

, u ∈ S2, (4.73)
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where Γj is the curvature index (2.8) of triangle Tj 3 r(u)u, 1 ≤ j ≤ m (1.2). Then,
we form another complex function on the sphere S2 in the same way as (4.72),

z′α(u) =
1

α
r(u) + j c(u), u ∈ S2, z′α(u) ∈ C, (4.74)

and perform the previously described extraction procedure. However, we find that
using (4.72) produces better descriptors than (4.74).

4.6.6 Feature Vectors Based on Layered Depth Spheres

The ray-based descriptor (section 4.1) is defined using a single function (4.1) on
the sphere S2 so that the most distant points of a mesh model I (1.5), measured
from the origin in certain radial directions (4.54), determine values of the function.
Hence, a number of outlying points of the model I is directly used for computing
the feature vector, while all other points are used only during the normalization
step. We expect that information about the interior structure of a 3D object can
enhance the performance of descriptor that relies upon the extent function (4.1),
which describes the distribution of outer points. By interior structure of a model,
we refer to polygons whose points are not used for determining the function values,
e.g., polygons closer to the origin or polygons bounded by other polygons.

In order to collect more data about a 3D-mesh object, than it is the case with the
function (4.1), we introduce Layered Depth Spheres (LDSs). The concept of LDS is
analogous to the concept of layered depth images (LDIs) [120], which are used as
a rendering tool for 3D-scenes. An arrangement of three orthogonal LDIs is called
a layered depth cube (LDC) [107] and is also used for rendering. As a contrast to
both LDI and LDC, we use LDSs for describing 3D-shapes. The structure of an
LDS is summarized by the conceptual representation given in figure 4.31.

To generate an LDS, we cast rays from the origin traveling in the directions uab

(4.63), 0 ≤ a, b,≤ 2B − 1. For fixed values of a and b and a given model I, we find
all intersection points {ta,b,0, . . . , ta,b,nab−1} with I. It holds

ta,b,i = |ta,b,i|uab, ta,b,i ∈ I ∪ {O}, 0 ≤ i ≤ nab − 1,

where |ta,b,i| denotes the distance of the point ta,b,i from the origin. Then, we sort
the values |ta,b,i| in the non-increasing order, |ta,b,i−1| ≤ |ta,b,i| (1 ≤ i ≤ nab − 1).
Hence, along the direction uab there are nab ≥ 0 points of intersection between
the ray and the model I. A structure that we call layered depth ray (figure 4.31)
consists of the longitudinal index a, latitudinal index b, number nab of points ta,b,i

intersecting the ray, and the sorted array of values |ta,b,i|. Finally, we define an
LDS to be a structure containing a 2D-array of layered depth rays as well as the
longitudinal and latitudinal dimensions, which are both equal 2B (4.63) in our
implementation. The example in figure 4.31 depicts the concept of LDS. All points
ta,b,i of the model of human that are used to form the LDS are marked either by
dots (points that are not furthest along rays) or by small squares (furthest points
along rays). We recall that only points marked with small squares are taken into
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LayeredDepthRay { LayeredDepthSphere {
LatitudinalIndex: integer LatitudinalDim: integer
LongitudinalIndex: integer LongitudinalDim: integer
NoOfValues: integer Rays[0..LatitudinalDim,0..LongitudinalDim]:
Values[0..NoOfValues]: array of LayeredDepthRay objects

sorted array of real numbers }
}

Figure 4.31: Concept of the Layered Depth Sphere with an example in the 2D-space.

account when forming the ray-based feature vector (section 4.6.2), by sampling the
function r (4.1).

We define a function rk (k ∈ {1, . . . , R}) on the sphere S2 by restricting codomain
of the function r given by (4.1),

rk : S2 → [gk, gk+1) ∪ {0}
rk(u) = max{ {0} ∪ {rk | gk ≤ rk < gk+1, rku ∈ I }}. (4.75)

The the lower bound gk and the upper bound gk+1 restrict function values.
In our feature extraction procedure, we consider R concentric spheres S1, . . . , SR

to define the bounds gk of functions rk (k = 1, . . . , R). The sphere Sk has the center
at the origin and the radius equal to k ·M/R, where M is an empirically determined
constant value. The bounds gk of function values are given by

gk =







0, k = 1
(

k − 1

2

)
M

R
, 2 ≤ k ≤ R , gR+1 → +∞. (4.76)
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We use the LDS structure to form sample values of R functions r1, . . . , rR on
the sphere S2,

rk,a,b = rk(uab) = max
{
{0} ∪

{
|ta,b,i|

∣
∣ gk ≤ |ta,b,i| < gk+1, 0 ≤ i ≤ nab − 1

}}
,

(4.77)
where uab is a sample point given by (4.63) and rk,a,b is the sample value of the
function rk at the point uab.

An example of sampling using (4.77) is depicted in figure 4.32. In this example,
which is given in the 2D-space, there are three functions r1, r2, and r3 (R = 3),
defined using spheres S1, S2, and S3. There are three rays cast in the directions
u1, u2, and u3. The ray ru1 intersects the underlying model of a plane at the point
t1,0, while the intersection points with rays ru2 and ru3 are t2,0, t2,1, and t2,2, and
t3,0, t3,1, and t3,2, respectively. The sample values are shown on the right-hand
side of figure 4.32.

S1 : r1(u1) = 0
r1(u2) = |t2,1|
r1(u3) = |t3,2|

S2 : r2(u1) = 0
r2(u2) = |t2,2|
r2(u3) = 0

S3 : r3(u1) = |t1,0|
r3(u2) = 0
r3(u3) = 0

Figure 4.32: An example of sampling functions r1, r2, and r3, in the 2D-space.

For each function rk, we apply the SFFT to the samples rk,a,b (0 ≤ a, b ≤ 2B−1).
As the result, we obtain spherical harmonic coefficients r̂k,l,m (0 ≤ l ≤ B − 1,
−l ≤ m ≤ l). Having in mind that rk,a,b ∈ R, we use (4.66) to form a signature
of the function rk from the first L rows (bands) of spherical harmonic coefficients.
Finally, we collect the signatures of all functions r1, . . . , rR to form a feature vector
based on LDS,

f = ( |r̂1,0,0|/2, . . . , |r̂R,0,0|/2, |r̂1,1,0|/2, . . . , |r̂R,1,0|/2, |r̂1,1,1|, . . . , |r̂R,1,1|,
. . .
|r̂1,L−1,0|/2, . . . , |r̂R,L−1,0|/2, . . . , |r̂1,L−1,L−1|, . . . , |r̂R,L−1,L−1| ).

(4.78)

The dimension of this feature vector is dim(f) = R · L(L+ 1)/2. For a fixed value
of R, an embedded multi-resolution representation is provided (1.8).

Regarding the implementation of the feature extraction procedure, we use the
same ray-casting method that is used for extracting the ray-based feature vector
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(section 4.6.2, algorithm 2 in figure 4.3). Distances to the origin of all found in-
tersection points are stored in 4B2 sorted arrays, which are implemented using the
STL [42]. Extraction times for various numbers of functions are given in table 4.11.
The number of functions (R) takes values between 1 and 10, while the number of
bands (L) is adjusted so that the vector dimension does not exceed the value of
550. The number of samples is 16384 (B = 64) and the constant M is set to 4.
The results are obtained on a PC with an 1.4 GHz AMD processor running Win-
dows 2000, extracting features of the 3D-mesh models from the MPEG-7 collection
(section 5.1). Note that for R = 1 we obtain the feature vector presented in section
4.6.2. In table 4.8, the extraction time is equal to 68.6ms, while the same feature
vector is extracted for 105.7ms (table 4.11), when the LDS is used. The difference
of ∼37ms is the time needed for managing the LDS structure.

R 1 2 3 4 5 6 7 8 9 10
L 25 22 18 15 14 13 12 11 10 9

dim 325 506 513 480 525 546 546 528 495 450
Time 105.7 118.4 131.1 134.1 158.0 164.1 181.5 188.1 204.7 212.0

Table 4.11: Average extraction times (in milliseconds) of feature vectors based on
LDS for various numbers of functions on the sphere S2. The number of functions is
denoted by R, the number of bands of spherical harmonics used to form a feature
vector is L. In all cases, M = 4 and B = 64.

Thus, we encode the spatial distribution of the point set I (1.5) by consider-
ing regions of the 3D-space, which are between concentric spheres. The presented
feature vector based on LDS follows the standard algorithm for extracting descrip-
tors with spherical harmonic representation, i.e., after the normalization step, the
signature of the function rk is extracted using algorithm 4.1. However, we can use
property 4.1 to form a rotation invariant feature vector without normalizing the
orientation of a 3D-model. We recall that the canonical orientation of a model
is determined by using the CPCA (see section 3.4). An alternative is to fix only
translation and scaling during the normalization step, and after finding the spher-
ical harmonic coefficients r̂k,l,m (1 ≤ k ≤ R, |m| ≤ l ≤ B − 1), instead of using
(4.78), we form a rotation invariant feature vector based on LDS according to 4.67
(see remark 4.1),

f = ( ||f1,0||, . . . , ||fR,0||, . . . , ||f1,L−1||, . . . , ||fR,L−1|| ), (4.79)

where

||fk,l|| =

√
√
√
√

l∑

m=−l

|r̂k,l,m|2.

The dimension of this feature vector is dim(f) = R · L. Note that the ordering of
feature vector components provides an embedded multi-resolution representation,
for a fixed value of R. The average extraction times (for 1 ≤ R ≤ 10) of the rotation
invariant feature vector (4.79) are almost identical to the times in table 4.11.
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For the descriptor formed by (4.78), we suggest to set M = 4 (or M = 6),
R = 8, L ≥ 9, and dim = 360. As the settings for the approach (4.79), we suggest
M = 6, R = 8, L ≥ 16, and dim = 128. By comparing retrieval performance
of (4.78) and (4.79), we actually compare the two approaches for accomplishing
rotation invariance of feature vectors, PCA vs. property 4.1. At the same time, we
compare two different representations of the feature based on the LDS, (4.78) vs.
(4.79). In section 5.2.10 (see also [142]), our results suggest that it is better to use
our full normalization step (section 3.4), i.e., to form descriptors using (4.78).

4.7 Hybrid Descriptors

In this section, we present a concept of hybrid descriptors. Our experience suggests
that no single descriptor is absolutely the best. If we manually classify 3D-models
by shape-similarity, then for different categories different descriptors are the most
suitable. For instance, the MPEG-7 shape spectrum descriptor (section 2.3) is the
most suitable for the category of models of humans (see section 5.2.13), while its
general retrieval performance is inferior to other descriptors. Thus, a natural idea
is to try to merge descriptors whose performance is generally satisfying. We regard
a descriptor obtained by merging (i.e., crossbreeding) two or more feature vectors
(parents) as hybrid. Naturally, the goal of crossbreeding is to create a descriptor
that possesses better retrieval performance than all parental feature vectors. Our
general concept of crossbreeding is given in a sequel.

Let f (1), f (2), . . . , f (k) (k ∈ N) be crossbreeding feature vectors of dimensions
dim1, dim2, . . . , dimk, respectively,

f (i) =
(

f
(i)
1 , f

(i)
2 , . . . , f

(i)
dimi

)

, 1 ≤ i ≤ k ∈ N.

A hybrid feature vector h of dimension dim = dim1 + dim2 + . . .+ dimk is defined
by crossbreeding f (1), f (2), . . . , f (k),

h =
(

ω1f
(1)
1 , . . . , ω1f

(1)
dim1

, ω2f
(2)
1 , . . . , ω2f

(2)
dim2

, . . . , ωkf
(k)
1 , . . . , ωkf

(k)
dimk

)

, (4.80)

where ωi is a weighting factor associated to the elements of the feature vector f (i).
The value of ωi specifies the “importance” of the vector f (i). The vector dimension
dim =

∑

i dimi should be kept in a reasonable limit (e.g., dim < 1000).
The question is how to select good candidates for crossbreeding. We can apply

an exhaustive approach, i.e., to try all possible combinations of available feature
vectors (types, variants, representations, and dimensions) with a variety of different
combinations of values for the weighting factors. As the opposite approach to the
exhaustive method, we use our study of techniques for describing 3D-shape to antic-
ipate how retrieval performance can be improved. We consider that feature vectors,
which possess an embedded multi-resolution representation (1.8), are suitable for
crossbreeding. We recall that an embedded multi-resolution representation is usu-
ally provided by transforming a feature representation from the spatial domain into
the spectral domain, using an appropriate transform, e.g., 1D-FFT (4.11) in section
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4.2, 2D-FFT (4.26) in sections 4.3 and 4.4, 3D-FFT (4.48) in section 4.5, or the FFT
on a sphere (see section 4.6). First components of feature vectors in the spectral
domain correspond to the low-frequency Fourier coefficients, which carry the most
important information. By increasing the dimension of a feature vector with an
embedded multi-resolution representation, we actually add information about fine
details. Thus, the fact that low-dimensional feature vectors contain useful informa-
tion, as well as the requirement to keep the dimension of a hybrid feature vector
inside a reasonable limit, motivate us to try crossbreeding of feature vectors with
an embedded multi-resolution representation.

We also consider that crossbreeding candidates should describe features that are
complemental (“orthogonal”). For instance, the ray-based feature (section 4.6.2)
gives information about the extent of an object from the center of gravity along a
radial direction, while the depth buffer-based approach (section 4.3) describes how
distant is the object from a face of a cuboid by measuring the distance along a
direction that is perpendicular to the face of the cuboid.

Instead of testing different choices of the weights ωi and dimensions dimi, we
define the weighting factors by

ωi =
dimi

∣
∣
∣f

(i)
1

∣
∣
∣+
∣
∣
∣f

(i)
2

∣
∣
∣+ . . .+

∣
∣
∣f

(i)
dimi

∣
∣
∣

⇒
∣
∣
∣

∣
∣
∣ωif

(i)
∣
∣
∣

∣
∣
∣
1

= dimi, 1 ≤ i ≤ k, (4.81)

so that “importance” of the vector f (i) is specified by its dimension dimi. Note that
from (4.80) and (4.81), it follows ||h||1 = dim (1.10).

As a first choice, we combine only two descriptors (k = 2), the depth buffer-based
feature vector of dimension 258, where the extended bounding box (EBB) is used
(section 4.3), and the ray-based vector of dimension 190 with spherical harmonic
representation (section 4.6.2). Hence, the obtained hybrid feature vector possesses
448 components. The reason for choosing the larger dimension for the depth buffer-
based descriptor is to weight the depth buffer-based method as the more important
than the ray-based approach. Since depth buffer-based descriptors possess better
retrieval performance than the ray-based feature vectors (see sections 5.2.3 and
5.2.6), the hybrid obtained by crossbreeding should inherit more information from
the superior parent.

An example of improving performance of original descriptors by crossbreeding
is shown in figure 4.33. The ray-based, depth buffer-based, and hybrid descriptors
are used to rank models by shape-similarity to the query model of bunny. There are
only three more models of bunnies, which are considered relevant to the query, in a
collection of 907 models. Only the hybrid approach retrieves a relevant object as the
first match, which is ranked at positions 6 (ray-based) and 13 (depth buffer) when
other approaches are engaged. The models of bushes, which are matches 1 and 4
in the second row, are ranked as matches 59 and 120, when the hybrid descriptor
is used. Therefore, not only that relevant objects are ranked as higher matches,
but some non-relevant objects, which have a high rank by a parent descriptor, are
ranked significantly lower by the hybrid vector. Besides, top matches ranked by the
hybrid descriptor are more coherent than top matches ranked by a parent descriptor.
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More details about the given example can be seen by visiting the Web-based search
engine CCCC presented in appendix.

Ray-based feature vector with spherical harmonic representation (dim = 190)

Depth buffer-based feature vector with 2D-FFT representation (dim = 258)

Hybrid feature vector (dim = 448)

Figure 4.33: An example of improving performance of original descriptors by cross-
breeding. The l1 distances between the query model and the matches are displayed.

The example given in figure 4.33 does not represent a special case. The evalua-
tion, which is presented in section 5.2.13, confirms that top ranked models retrieved
by the hybrid descriptor are more relevant, whence the retrieval effectiveness is in-
creased. In our experiments (section 5.2.11), we tested crossbreeding of the following
four descriptors:

1. Depth buffer-based descriptor (section 4.3) based on the EBB (definition 4.3);

2. Silhouette-based descriptors (section 4.2) with equiangular sampling (4.10);

3. Ray-based descriptor with spherical harmonic representation (section 4.6.2);

4. Voxel-based descriptor in the spectral domain (section 4.5) based on the CC
(definition 4.4) with w = 2.
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We performed crossbreeding of two, three, and all four descriptors. We suggest to
use the hybrid obtained by crossbreeding the depth buffer-based feature vector of
dimension 186, the silhouette-based feature vector of dimension 150, and the ray-
based feature vector of dimension 136. The resulting hybrid feature vector, formed
using (4.80) and (4.81), possesses 472 components. Having in mind that we used
heuristics (i.e., we expected that complemental descriptors with an embedded multi-
resolution representation are good candidates for crossbreeding), rather than an
exhaustive approach for determining the best crossbreeding combination (number
of descriptors k, types, and dimensions), we assume that the chosen hybrid vector of
dimension 472 is not optimal. Thus, the exhaustive approach might result in even
better hybrid. Nevertheless, the experimental results (section 5.2.13) show that
the hybrid feature vector of dimension 472, obtained by crossbreeding the depth
buffer-based descriptor, the silhouette-based descriptor, and the ray-based feature
vector with spherical harmonic representation, significantly outperforms the state
of the art.



Chapter 5

Experimental Results

In this chapter, we evaluate retrieval performance of 3D-shape descriptors presented
in chapters 2 and 4. Firstly, we describe 3D-model collections that are used for ex-
periments (section 5.1). Then (section 5.2), we compare retrieval performance, using
tools presented in section 1.5, for different normalization parameters, dimensions,
and types of feature vectors as well as different similarity metrics defined in section
1.4. The use of the PCA as a data compression tool, which is described in section
3.2, is engaged for reducing dimensionality of combinations of feature vectors (sec-
tion 5.3). Finally, all the results are summarized and the best choices for describing
3D-shape are recommended (section 5.4).

5.1 3D Model Datasets

The evaluation tools, which are defined in section 1.5, heavily rely upon the classifi-
cation (1.22) of 3D-models, which is regarded as the ground truth. Unfortunately, a
uniquely defined ground truth does not exist, because shape similarity is subjective.
If all tests are done using a single categorization of 3D objects, then the obtained re-
sults depend on the specific 3D-model collection and the criterion of categorization.
Since the topic of the thesis is retrieval of 3D-mesh models by shape similarity, the
criterion of the categorization should be the 3D-shape of models, rather than se-
mantics. In order to make our evaluation as general as possible, we use six different
classifications of 3D-models (1.22) in our experiments.

Our 3D-model collection consists of 1841 mesh models in the OFF file for-
mat [96]. The models are mostly collected in the Internet (e.g., www.3dcafe.com,
www.viewpoint.com, etc.). Some of them are generated by using QSlim [37] or modi-
fied by inserting or displacing vertices. The first classification (O1) of our collection
consists of only five categories of models. The categories are 26 bottle models,
20 missiles, 63 airplanes, 33 cars, and 28 swords. In the first classification, 170
models are classified, while the rest 1671 models are left unclassified. The second
classification (O2) of the same 3D data set has been performed by our colleagues,
without our influence. In the second classification, 473 models are classified into 55
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categories, 1362 models are left unclassified, while 6 models are considered as not
suitable and are removed from the collection. The smallest class contains only 2
models, while the largest consists of 56 objects. The second classification is strictly
shape-based, e.g., limousines and convertible cars are not in the same category as
well as commercial airplanes, biplanes, and fighters are separated. A 3D-model from
our collection possesses 5653 vertices and 10304 triangles, on average.

We also use the official MPEG-7 test set [87]. The MPEG-7 collection (M1)
consists of 227 models in VRML 2.0 format [14], which are classified into 15 cat-
egories. The names of the categories are: aerodynamic (35 models), balloon (7),
building (10), car (17), elm (9), finger (30), fourlimb (31), letter a (10), letter b
(10), letter c (10), letter d (10), letter e (10), missile (10), soma (7), and tree (21).
There are no unclassified object in the original MPEG-7 classification. We consider
that the MPEG-7 test set has three major drawbacks, small size, improper selection
of models, and non-consistent classification. The total number of models (227) is
to small for a reliable evaluation of descriptors. The classes “finger”, “letter a”,
“letter b”, “letter c”, “letter d”, and “letter e” contain totally 80 models (35% of
the whole set), which are almost identical to other models in the same category.
As a result, many of 3D-shape descriptors will have ideal precision-recall curves for
these 6 categories (precision=100% for the whole recall range). On the other side,
the category “fourlimb” contains models of humans, alligators, cows, dogs, horses,
reptiles, etc., while the category “aerodynamic” contains airplanes, helicopters, dol-
phins, and sharks. In order to have more consistent and shape-based categorization,
we re-classified (M2) the original MPEG-7 test set into 20 categories, so that 222
models are classified, while 5 are left unclassified. For a 3D mesh model from
the MPEG-7 collection, the average number of vertices is 6638, while the average
number of triangles is 9046.

Two 3D model collections are provided by the Princeton Shape Analysis and Re-
trieval Group [108]. The sets are called Training Database (TR) and Test Database.
Both sets consists of 907 3D-objects and all of them are classified. The training
set is subdivided into 90 classes, while the test set consists of 92 categories. In
both sets, the smallest category has 4 models, while the largest category possesses
50 meshes. Both categorizations are reasonably consistent and are mostly shape-
based. Nevertheless, a number of categories are formed using semantics (e.g., the
categories “one story home” and “fantasy animal”), rather than shape similarity.

The complexity of 3D-models inside each of the four collections is depicted by
histograms shown in figure 5.1. We take the number of vertices and triangles as
parameters denoting the complexity of a 3D-mesh. The histogram values are nor-
malized by the total number of models in the corresponding collection. We observe
that for our collection, as well as for the training and the test databases, approxi-
mately 1/3 of all models possess between 1000 and 5000 triangles.

Basic information about all six classifications of 3D-models, which are used in
experiments, are shown in table 5.1. We observe that the most vertices (206067)
possesses a model from the MPEG-7 set, while a model from the test database
is formed by tessellating 316498 triangles. The fraction of orientable models (see
definition 1.2) ranges from 64.6% (classification TR) to 100% (M1 and M2). The
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Figure 5.1: Complexity of four 3D-model collections, which are used in experiments.
The average numbers of vertices and triangles are given in brackets.

fraction of closed models (see definition 1.1) ranges from 26.6% (classification TR) to
40.1% (M1 and M2). If a 3D shape description technique is restricted only to closed
and orientable models, then 70% of the models from our collection, and more than
3/4 of the models from the training and test databases, are not suitable. Therefore,
a 3D-shape descriptor should not have any restrictions regarding closedness and
orientability. We recall that one version of our volume-based descriptor (section
4.4) relies on orientation of triangles (4.31), whence the retrieval performance of
the method is low. We stress that all other descriptors, which are presented in
chapter 4, do not depend on orientation of triangles.

We regard the classifications O2, TR, and TS as more relevant than O1, M1,
and M2.

Usually, for a given classification, we average results (precision-recall curves, p̄50,
p̄100, RP , and BEP defined in section 1.5) over all classified models, in order to
compare general retrieval performance of 3D-shape descriptors. Thus, all classified
models are used as queries. However, a descriptor of the best overall effectiveness
is not necessarily the best descriptor for a specific class of objects. Also, the RP
(1.28) and BEP (1.27) can give contradictory results, e.g., when two descriptors are
compared and the one having higher RP possesses lower BEP . Another problem
is the fact that we use six different classifications. If we compare two descriptors
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Classification O1 O2 M1 M2 TR TS
No. of models 1841 1835 227 227 907 907
No. of classes 5 55 15 20 90 92
No. of classified models 170 473 227 222 907 907
No. of unclassified models 1671 1362 0 5 0 0
Average class size 34.0 8.6 15.1 11.1 10.1 9.9
Largest class size 63 56 35 30 50 50
Smallest class size 20 2 7 3 4 4
Average no. of vertices 5653 5653 6638 6638 4071 4373
Maximal no. of vertices 107155 107155 206067 206067 92583 160940
Minimal no. of vertices 4 4 33 33 28 10
Average no. of triangles 10304 10304 9046 9046 7326 7960
Maximal no. of triangles 215473 215473 219283 219283 185092 316498
Minimal no. of triangles 4 4 57 57 30 16
Closed models [%] 31.6 31.6 40.1 40.1 26.6 27.4
Orientable models [%] 68.1 68.1 100.0 100.0 64.6 66.4
Closed and orientable [%] 30.0 30.0 40.1 40.1 22.8 24.6

Table 5.1: Basic information about 3D-model classifications: O1 (the first classifi-
cation of our collection), O2 (the second classification of our collection), M1 (the
original classification of the MPEG-7 test set ), M2 (our re-classification of the
MPEG-7 test set), TR (the Princeton training set), and TS (the Princeton test set)

on two different classifications, we might get contradictory results, as well. The
question is how to select reliable method to declare the retrieval performance of one
feature vector as better than the other. We propose a concept to compare retrieval
performance of descriptors on multiple classifications, which is given in a sequel.

Let f ′ and f ′′ be two competing descriptors (feature vectors), let (r′i, p
′
i) and

(r′′i , p
′′
i ) (1 ≤ i ≤ G, G ∈ N) be vertices of corresponding precision-recall curves

(e.g., see table 1.2), which are averaged over all classified models, and p̄′50, p̄
′′
50,

p̄′100, p̄
′′
100, RP

′, RP ′′, BEP ′, and BEP ′′ be the parameters, which are defined in
section 1.5, computed for a fixed classification. The following criteria are used to
distinguish the better approach:

1. If, for all six classifications, we have

p′i ≥ p′′i (1 ≤ i ≤ G),
p̄′50 > p̄′50, p̄′100 > p̄′100, RP ′ > RP ′′, BEP ′ > BEP ′′,

(5.1)

then the descriptor f ′ is unambiguously better than f ′′.

2. If the condition 5.1 is not fulfilled for all six classifications, but only for O2,
TR, and TS, then we also declare the descriptor f ′ as more effective than f ′′.

3. If, for at least the classifications O2, TR, and TS, we have

p′i ≥ p′′i (1 ≤ i ≤ G/2), p̄′50 > p̄′50,
p̄′100 > p̄′100 − δ, RP ′ > RP ′′ − δ, BEP ′ > BEP ′′ − δ, (5.2)

where δ is small (e.g., δ = 2%), then the descriptor f ′ is better.
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4. If the previous criteria are not satisfied, then it is difficult to distinguish which
descriptor is better, and we declare the performance of competing descriptors
as approximately equal (or similar).

5.2 Comparison of 3D-Shape Feature Vectors

In this section, we evaluate retrieval performance of descriptors presented in chapter
4 as well as the most of descriptors presented in chapter 2. The used evaluation
tools, precision-recall (1.26), p̄50, p̄100, RP (1.28), and BEP (1.27), are defined in
section 1.5. Descriptors are tested for various distance metrics (section 1.4) and
different normalization methods (chapter 3). As described in section 5.1, we use
six different classifications to compare the performance of the feature vectors. In
what follows, we use the abbreviations from table 4.1 for our methods, while the
abbreviations for implemented methods from chapter 2 are given in table 5.2.

Approach Abbreviation
Cords-based descriptor PCD
Moments-based descriptor PMD
Descriptor based on equivalence classes DEC
MPEG-7 shape spectrum descriptor SSD
Descriptor based on “shape distributions” SDD
Descriptor based on binary voxel grids BVG
Descriptor based on exponentially decaying EDT EDT

Table 5.2: Abbreviations for the descriptors from chapter 2.

Abbreviations for the six classifications of 3D-models, which are presented in
section 5.1, are given in table 5.3

Classification Abbreviation 1 Abbreviation 2
The first classification of our collection Our DB1 O1
The second classification of our collection Our DB2 O2
The original MPEG-7 set MPEG-7 DB1 M1
Our modification of the MPEG-7 set MPEG-7 DB2 M2
Princeton training database Train DB1 TR
Princeton test database Test DB1 TS

Table 5.3: Abbreviations for the classifications of 3D-models (section 5.1).

Abbreviations, which are used for denoting different scaling factors (section 3.4)
and different distance calculations (section 1.4), are given in tables 5.4 and 5.5.
Regarding the application of dissimilarity measures, we apply all distances presented
in section 1.4 directly. However, we also test the application of the l1 distance to
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re-scaled feature vectors. More precisely, each feature vector is scaled by a factor
ω defined by (4.81). The motivation for the re-scaling is to test the behavior of the
feature vectors when the l1 norm of the vector f is fixed, ||f ||1 = const. We do not
test a similar approach for the l2 norm (||f ||2 = const), because it can be proven
that the ranking of feature vectors will be the same as when the dmin

2 (minL2) is
used.

Scaling factor Abbreviation
Average distance (3.25) A
Continuous scaling factor (3.27) C
Average distance along the x-axis (3.30) X
Square root of the largest eigenvalue (3.31) L
No scaling (scaling factor is equal to 1) N

Table 5.4: Abbreviations for the scaling factors from section 3.4.

Distance calculation Abbreviation
The l1 norm (1.10) L1
The l2 norm (1.11) L2
The lmax norm (1.12) Lmax
The minimized l1 distance, dmin

1 (1.21) minL1
The minimized l2 distance, dmin

2 (1.20) minL2
The quadratic form distance dS

2 (1.15) QFD
The l1 is applied after re-scaling each feature vector by (4.81) L1, scaled

Table 5.5: Abbreviations for the distance metrics from section 1.4.

Only a fraction of all generated precision-recall diagrams is shown. The strategy
of presenting the evaluation is the following. For each descriptor, we first present
precision-recall curves for different dimensions of feature vectors, with appropriate
parameter settings, and try to infer the best resolution (dimension) of the vector.
Then, we demonstrate that certain settings are the best choice, by comparing dif-
ferent variants of the approach. Finally, we compare different distance calculations.
When the best representative (dimension and parameter settings) of a technique is
selected, for all our approaches (chapter 4), we compare the best representatives to
each other. Afterwards, we compare our best descriptors with the state of the art
(chapter 2). In most cases, we give diagrams for four classifications of 3D-models,
O1, O2, TR, and TS, while the results obtained using the classifications of MPEG-7
models, M1 and M2, are only occasionally presented.

We also stress that:

• In precision-recall diagrams, the dimension of a feature vector as well as the
values of p̄50, p̄100, BEP , and RP (section 1.5) are respectively given in brackets;

• If not explicitly stated, the normalization of a mesh model is done by our con-
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tinuous approach (section 3.4), where the average distance (3.25), from a point
on the surface to the center of gravity, is taken as the scale factor.

As an example, the caption “RAY-A, Our DB1, L1” of a precision recall diagram
is sufficient to specify the type (the ray-based feature vector in the spatial domain),
the scaling (A), the used classification (our original), and the distance calculation
(l1).

5.2.1 Ray-Based Feature Vector

In order to determine the best choice of vector dimension, we test the ray-based
feature vector in the spatial domain (section 4.1) in the following resolutions (di-
mensions): 12, 42, 92, 164, 252, 362, 492, and 642. We recall that the dimension
of the vector is given by the formula dim = 10k2 + 2, thus we took k = 1, . . . , 8.
Average precision/recall diagrams of four classifications, O1, O2, TR, and TS (table
5.3), for the selected dimensions of the ray-based feature vector, are shown in figure
5.2. For dim ≥ 42, the retrieval performance of the descriptor is similar regardless
of the dimension. Nevertheless, we consider that the ray-based feature vector of
dimension 162 (k = 4) slightly outperforms vectors of other dimensions.
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Figure 5.2: Average precision/recall diagrams of four model classifications for vari-
ous dimensions of the ray-based feature vector (section 4.1).
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As dissimilarity measures, we examine the distances discussed in section 1.4,
i.e., the l1, l2, and l∞ norms, as well as the minimized l1 and l2 distances, dmin

1

and dmin
2 (definition 1.3). We also test a version of the quadratic form distance dS

2

(1.15), so that the elements of the matrix S are defined by

sij =

{
exp (−2kD(i, j)) , k2D(i, j) < 4.8,
0, k2D(i, j) ≥ 4.8,

D(i, j) = (ui − uj)
2, (5.3)

where the directional unit vectors ui and uj (1 ≤ i, j ≤ 10k2 +2) are given by (4.4).
In figure 5.3, we compare the l1, l2, d

min
1 , and dS

2 (5.3). We observe that dS
2 gives

slightly better results than the l1 distance. The minimized l1 distance dmin
1 is more

effective than the l1 norm only when our reclassified collection is used. In all cases,
the l2 norm is the most inferior distance metric.
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Figure 5.3: Average precision/recall diagrams of the ray-based feature vector
(dim = 162) for different distance metrics (table 5.5).

On average, if the feature vector of dimension 162 is used, the ranking according
to the similarity with a query, i.e., computation and sorting of distances between the
query and all other models in the collection, is approximately two times faster when
the l1 or l2 metrics are used instead of dmin

1 and dS
2 . Relative computational costs

for calculating distances between vectors of different dimensions, without sorting,
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are given in table 5.6. We read that, e.g., for dimension 162, the computation of
the quadratic form distance dS

2 , defined by (1.15) and (5.3), is 2.24 times more
expensive than the computation of the l1 norm, which is 2.04 times (on average)
faster than the calculation of the minimized l1 distance, dmin

1 .

Dimension 12 42 92 162 252 362 492 642
l1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
l2 1.11 1.06 1.06 1.06 1.07 1.08 1.08 1.08

dmin
1

1.56 1.82 1.88 2.04 2.10 2.17 2.21 2.29
dS
2

(5.3) 1.56 2.00 2.00 2.24 2.33 2.32 2.39 4.08

Table 5.6: Average cost factors for calculating distances between ray-based feature
vectors, for different dimensions. Results are normalized by the average computa-
tional time for the l1 distance.

In order to demonstrate that the scaling by (3.25) is the best choice, we display
the precision-recall diagrams on the left side of figure 5.4. The results are obtained
using the l1 norm as distance metric. On the right-hand side of figure 5.4, the dmin

1

is used as distance metric for feature vectors, which are extracted using different
scale factors as well as without scaling. We observe that all five curves are exactly
the same. Hence, if the dmin

1 is used for measuring dissimilarity between ray-based
descriptors, we do not need to scale 3D-mesh models during the normalization step.
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Figure 5.4: Average precision/recall diagrams of our reclassified collection, when
the ray-based feature vectors are extracted using different scale normalization tech-
niques (table 5.4). Used distances are l1 and dmin

1 .

The minimization of the l1 distance (similar for the minimization of l2) can be
interpreted as an indirect rescaling of 3D-objects. We recall that the minimization of
the l1 distance dmin

1 (fq, fc) (1.21), between the feature vector fq of a query model and
the vector fc of a matching candidate, is a computation of the optimal scale factor α
for fc, so that ||fq−αfc||1 (1.10) is minimal. Since the function r (4.1) measures the
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extent of a model, along a given directional unit vector u, if the candidate model
is rescaled by α, then the ray-based feature vector fc is also rescaled by the same
factor (α). In this case, the l1 distance between the query and candidate vectors
is equal to the minimized l1 distance dmin

1 . Therefore, the results depicted on the
right-hand side of figure 5.4 are expected, because the dmin

1 (fq, fc) distances, when
different initial scaling factors are used, are proportional.

We recommend to use the ray-based feature vector in the spatial domain of
dimension 162, to fix the scale by (3.25), and to use the dS

2 , defined by (1.15) and
(5.3), as dissimilarity measure.

5.2.2 Silhouette-Based Feature Vectors

In this section, we compare different variants of the silhouette-based feature vectors
(section 4.2). If not explicitly stated, all silhouette-based descriptors are extracted
from silhouette images of dimensions 256 × 256 (N = 256), the number of sample
points is equal to 256 (K = 256), the sample points are formed using (4.10), and
the sample values are defined using (4.13).

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SIL-A, Our DB1, L1

Equiangular [300](57.4,41.1,55.5,40.5)
Equiangular [240](56.8,40.7,55.4,40.0)
Equiangular [180](56.2,40.2,54.9,39.7)
Equiangular [120](55.8,39.9,54.5,39.2)
Equidistant [300](42.1,28.0,43.1,30.8)
Equidistant [240](42.1,28.0,43.1,30.7)
Equidistant [180](42.1,28.0,43.0,30.7)
Equidistant [120](42.1,28.0,43.0,30.7)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SIL-A, Our DB2, L1

Equiangular [300](48.4,34.6,41.9,31.4)
Equiangular [240](48.2,34.5,41.7,31.4)
Equiangular [180](48.0,34.3,41.4,31.4)
Equiangular [120](47.6,34.0,40.7,31.0)
Equidistant [300](44.3,31.5,38.7,29.2)
Equidistant [240](44.3,31.5,38.6,29.2)
Equidistant [180](44.2,31.5,38.6,29.1)
Equidistant [120](44.1,31.4,38.3,29.1)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SIL-A, Train DB1, L1

Equiangular [300](49.5,35.9,43.4,32.3)
Equiangular [240](49.4,35.9,43.2,32.4)
Equiangular [180](49.3,35.7,43.2,32.3)
Equiangular [120](49.1,35.5,42.9,31.8)
Equidistant [300](46.0,32.0,39.0,29.4)
Equidistant [240](46.0,32.0,39.0,29.4)
Equidistant [180](46.0,31.9,38.8,29.3)
Equidistant [120](45.8,31.8,38.7,29.2)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SIL-A, Test DB1, L1

Equiangular [300](48.0,34.0,40.9,30.6)
Equiangular [240](48.0,34.0,41.0,30.6)
Equiangular [180](48.1,34.1,41.0,30.7)
Equiangular [120](47.9,34.0,41.1,30.8)
Equidistant [300](43.6,29.6,37.1,27.2)
Equidistant [240](43.6,29.6,37.0,27.2)
Equidistant [180](43.5,29.6,37.1,27.2)
Equidistant [120](43.4,29.5,37.0,27.1)

Figure 5.5: Average precision/recall diagrams of four model classifications, using
the silhouette-based feature vectors with different approaches for selecting contour
points: equiangular (4.10) and equidistant (4.9).
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We compared the performance of the silhouette-based feature vectors of various
dimensions (30, 60, 90, 120, 150, 180, 210, 240, 270, and 300), for both approaches of
selecting contour points, depicted in figure 4.8. In figure 5.5, we present a part of our
experimental results. Four model classifications, O1, O2, TR, and TS (table 5.3),
are used for comparing vectors of dimensions 120, 180, 240, and 300, as well as the
two proposed sampling methods, (4.10) and (4.9). The shown results suggest that
the better approach is to sample equiangular points on the contour (figure 4.8b),
than to have adjacent samples with equal arc distances (figure 4.8a). We consider
that the silhouette-based feature vector of dimension 300 slightly outperforms the
competing vectors.

In another set of experiments, we examined the influence of different normal-
ization parameters on retrieval effectiveness. On the left-hand side of figure 5.6,
average precision-recall diagrams, for the silhouette-based feature vectors of dimen-
sion 300, are shown. The feature vectors are extracted after using different scale
factors, the average distance (3.25), the continuous scale factor (3.27), the average
distance along the x-coordinate (3.30), and the square root of the largest eigenvalue
of the corresponding covariance matrix (3.31). The results show that the best choice
of fixing the scale is to use the average distance (3.25), while the continuous scale
factor is better than the remaining two approaches.
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Figure 5.6: Average precision/recall diagrams of our reclassified collection, for the
silhouette-based feature vectors. On the left-hand side, different scale normalization
techniques are used (table 5.4). On the right-hand side, different parameter settings,
image dimensions and number of sample points, are tested.

On the right-hand side of figure 5.6, we tested different parameter setting for
the silhouette-based feature vector of dimension 300, which is extracted using (3.25)
as the scale factor. We examined the following dimensions of silhouette images,
128 × 128, 256 × 256, and 512 × 512, and the following number of equiangular
sample points, 256, 512, 1024. Although the precision-recall curves look almost
the same, we consider that the descriptor extracted from 256 sample points of
silhouette images of dimensions 256× 256 is slightly better than others. Note that



150 Experimental Results

only results obtained using our reclassified 3D-model collection are shown in figure
5.6. Nevertheless, all the conclusions, which are inferred using our collection, are
also supported by the results obtained using the training and test databases. Other
precision-recall diagrams are omitted to save space.

In figure 5.7, we explore the influence of distance metric (table 5.5) on the re-
trieval performance of the silhouette based feature vector of dimension 300. Average
results of four classifications, O1, O2, TR, and TS (table 5.3), are shown. We ob-
serve that the l1 distance applied to re-scaled feature vectors (“L1, scaled”) is the
most effective for ranking the models. The dmin

1 (minL1) dissimilarity measure is
more effective than the l1 norm directly applied. Both minimized distances, dmin

1

and dmin
2 , are more effective than the original distances, l1 and l2. Finally, the

lmax norm is not appropriate distance metric. Having in mind the definition of the
descriptor, the inefficiency of the lmax norm can be anticipated.
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Figure 5.7: Average precision/recall diagrams of four model classifications, when dif-
ferent distance calculations from section 1.4 (table 5.5) are applied to the silhouette-
based feature vector.

The average computational costs for different distance metrics are compared in table
5.7 (compare to table 5.6). All average costs are normalized by the average time
needed to compute the l1 distance. The computational costs for ranking using the
l1 distance are approximately two times lower than the costs for ranking by dmin

1 .
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Distance l1 l2 lmax dmin
1

dmin
2

l1, scaled
Relative cost factor 1.0 1.1 1.0 2.3 1.2 1.0

Table 5.7: Average cost factors (normalized by the average computational time
for the l1 distance) for calculating distances (table 5.5) between silhouette-based
feature vectors of dimension 300.

If we apply the minimized distance dmin
1 to the silhouette-based feature vectors,

extracted using different scale factors (table 5.4), then we expect to obtain coinciding
precision-recall curves, because of the indirect rescaling of 3D-meshes (see remarks
about figure 5.4). Similar results are expected for the dmin

2 measure as well as for the
l1 distance applied after re-scaling each feature vector (L1 scaled). The anticipated
results are verified by the diagrams shown in figure 5.8. Thus, if “L1 scaled”, dmin

1 ,
or dmin

2 are used, no scaling is necessary.
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Figure 5.8: Average precision/recall diagrams of our reclassified collection, when the
silhouette-based feature vectors are extracted using different scaling factors (table
5.4). Dissimilarities are calculated by dmin

1 and dmin
2 (table 5.5).

Finally, we test three different choices for defining sample values, which are used
as the input for the discrete fast Fourier transform (4.11). The three different defi-
nitions of sample values are given by (4.12), (4.13), and (4.14). In figure 5.9, results
for classifications O1, O2, TR, and TS (table 5.3) are shown. We observe that, for
each classification, the average precision-recall curves of three sampling methods
are very close to each other. Nevertheless, there are slight differences, typically
less than 0.5%, between precision-recall curves. Unfortunately, these differences are
contradictory for different classifications. For instance, the method 2 (4.13) is the
best, when the training database is used, while the method 1 (4.12) is the best
for the test database. Therefore, we consider that any of three possibilities can be
engaged giving approximately the same retrieval results. We decided to use method
2, in which the values of samples are defined by (4.13).
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Figure 5.9: Average precision/recall diagrams of four classifications, when the
silhouette-based feature vectors are extracted using different definitions of sample
values: Method 1 (4.12), Method 2 (4.13), and Method 3 (4.14).

We recommend to use the silhouette-based feature vector of dimension 300,
which is extracted without scaling a 3D-model in the normalization step, and to
apply the l1 norm to re-scaled (normalized) feature vectors. We suggest the follow-
ing settings: dimensions of silhouette images – 256 × 256, the number of sample
points – 256, the sampling technique – equiangular (4.10), and the definition of
sample values given by (4.13).

5.2.3 Depth Buffer-Based Feature Vector

We explored all variants of the depth buffer-based feature vector (section 4.3). Firstly,
we test a version of the depth buffer-based descriptor, which is robust with respect
to outliers. More precisely, we use the faces of the canonical cube (CC) (definition
4.4) to form the depth buffers, where we have set w = 2. We recall that the
robustness of the descriptor relying upon the CC is demonstrated in figure 4.13.
The normalization has been done by our continuous approach (section 3.4), where
(3.25) is used to fix scale. In what follows, the 2D-FFT (4.26) is applied to depth
buffer images of dimensions 256 × 256, if not explicitly stated otherwise. In figure
5.10, we give precision-recall curves for different dimensions of the feature vector.
The tested dimensions are 18, 42, 78, 126, 186, 258, 342, and 438. Note that only
the feature vector of dimension 438 (k = 8 in (4.29)) is extracted embedding all
lower dimensional vectors. Results for classifications O1, O2, TR, and TS (table
5.3) are depicted. We conclude that the best choice of dimension is 438.
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Figure 5.10: Average precision/recall diagrams of four model classifications, for
various dimensions of the depth buffer-based feature vectors. Depth buffer images
are formed using the canonical cube, defined by (4.25), with w = 2.

A selection of results, aimed at determining the optimal choice of distance metric,
is displayed in figure 5.11. The four classifications, O1, O2, TR, and TS, are used.
The best approach for ranking the models is to apply the l1 norm after the re-
scaling (L1 scaled). As a contrast to results shown in figure 5.7, the distances l2
and dmin

2 are not inferior to l1 and dmin
1 . However, the retrieval performance is

increased if the corresponding distance is minimized. We stress that the relative
costs for computing dissimilarity between two feature vectors using the dmin

2 (1.20)
are approximately 1.2 times higher than the costs for computing the l1 distance (see
table 5.7). The dmin

1 and dmin
2 are approximately equally effective. We consider

that the l1 distance is slightly more effective than the l2 norm. Finally, the lmax

norm is not suitable and should not be used.

Next, we examine the use of different cubes for generating depth buffer images,
which are described in section 4.3. Two versions of the descriptor, which are not ro-
bust with respect to outliers, are formed using the canonical bounding cube (CBC),
defined by (4.6), and using the extended bounding box (EBB), defined by (4.24).
We tested four versions of the approach, when the canonical cube (CC), defined by
(4.25), is used (for w ∈ {2, 4, 8, 16}). In all cases, the scale is fixed by the average
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Figure 5.11: Average precision/recall diagrams of four model classifications, when
different distance metrics (table 5.5) are applied to the depth buffer-based feature
vector. Depth buffer images are formed using the canonical cube, defined by (4.25),
with w = 2.

distance (3.25). Note that there is no need for scaling during the normalization
step, when the CBC and EBB are used. The results for our reclassified collection
are shown in figure 5.12. The l1 and dmin

1 distances are used for ranking. We ob-
serve that the best version of the depth buffer approach is obtained, when the EBB
is used. As expected, the retrieval performance of the descriptor, which relies upon
the CC, deteriorates with the increase of w. We recall that, when the cube defined
by (4.25) is used, only the part of a mesh inside the cube is processed. The points
of the model I (1.5), which are outside the cube, are effectively ignored as outliers.
By setting w = 2, we practically crop certain number of models. If we increase the
value of w, the number of ignored points (parts of a mesh) decreases. However, the
increase of w deteriorates the retrieval performance of the descriptor, because the
object occupies a smaller part of the corresponding depth buffer image. In other
words, for a large value of w, the representation of a 3D-model by depth buffer im-
ages is too coarse, whence shape characteristics of the underlying 3D-model cannot
be captured in an appropriate way. Thus, the best choice is to set w = 2. The
performance of the descriptor relying upon the CBC is weaker than performance
of descriptors based on the EBB or CC with w = 2. Regardless of the obtained
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results, we suggest to use the descriptor, which is robust with respect to outliers
(requirement 5 from section 1.3.4), relying upon the CC with w = 2. The reason
for giving advantage to the CC is depicted by the example in figure 4.13.
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Figure 5.12: Average precision/recall diagrams of our reclassified collection, for
different parameter settings of the depth buffer-based feature vectors, which are
described in section 4.3. Used distance metrics are l1 and dmin

1 (table 5.5).

In figure 5.13, we test different scaling factors (table 5.4) in the normalization
procedure. After the normalization, the feature vectors are extracted from 256×256
depth buffer images, using the canonical cube defined by (4.25) with w = 2. The l1
and dmin

1 distances are used for ranking. Obviously, the average distance (3.25) is
the best choice of the scaling factor.
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Figure 5.13: Average precision/recall diagrams of our reclassified collection, when
the depth buffer-based feature vectors are extracted using different scale factors
(table 5.4). Used distance metrics are l1 and dmin

1 (table 5.5). Depth buffer images
are formed using the canonical cube, defined by (4.25), with w = 2.
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In figure 5.14, we test the influence of dimensions of the depth buffer images on
the retrieval performance. We tested images of types 64× 64, 128× 128, 256× 256,
and 512 × 512, and no significant difference in retrieval performance is present.
However, we consider that image dimensions 256 × 256 are slightly better than
other choices. We have also performed tests, which are analogous to the ones from
figures 5.12, 5.13, and 5.14, using the training (TR) and test (TS) databases. We
stress that the obtained results support conclusions, which are inferred using our
reclassified collection.
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Figure 5.14: Average precision/recall diagrams of our reclassified collection, when
the feature vectors are extracted from depth buffer images of dimensions 64 × 64,
128×128, 256×256, and 512×512. Used distance measures are l1 and dmin

1 . Depth
buffer images are formed using the canonical cube, defined by (4.25), with w = 2.

We recommend to use the depth buffer-based feature vector of dimension 438,
extracted in the canonical coordinate frame after scaling a model by (3.25), and
using the CC (definition 4.4) with w = 2 to form depth buffer images of dimensions
256× 256. We propose to rank feature vectors by applying the l1 distance after the
re-scaling (4.81).

5.2.4 Volume-Based Feature Vector

The volume-based descriptors (section 4.4) have been tested in all four variants
(table 4.5) in both spatial and spectral domains. Firstly, we determine the best
choice of dimension of the variant V4 in the spatial domain, when non-negative
volumes |VTj

| (4.31) are used and vectors f are scaled so that ||f ||1 = 1. In figure
5.15, we show results obtained using different dimensions of the feature vector on
classifications O1, O2, TR, and TS (table 5.3). We recall that the dimension dim
depends on a parameter k, so that dim = 6k2. Also, there is no need for scal-
ing during the normalization step (section 3.4), when the variant V4 is used. The
results suggest that the feature vector of dimension 294 (k = 7) outperforms the
competing descriptors of dimensions 54, 96, 150, 216, and 384. The feature vector of
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dimension 486 performs very similar to the feature vector of dimension 294. In the
case of almost identical performance of two descriptors, we give advantage to the
lower-dimensional feature vector. We also observe that the feature vectors whose
dimensions are fixed by an odd value of the parameter k perform better than the
vectors whose dimension is fixed by an even value of the parameter k. This obser-
vation can be explained by the fact that, for odd values of k, after the subdivision
of the 3D-space (figure 4.16), the coordinate hyper-planes are not boundaries of the
obtained regions νi (4.37), rather they are located in the middle of a number of
regions νi.
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Figure 5.15: Average precision/recall diagrams of four model classifications, for
various dimensions of the variant V4 (table 4.5) of the volume-based feature vector
in the spatial domain.

The four variants (table 4.5) of the volume-based approach in the spatial domain
are evaluated in figure 5.16. We recall that the variants V1 and V3 rely upon the
orientation of triangles, because the signed values of the volume VTj

(4.31) are
used, while the variants V2 and V4 deal with the non-negative volumes |VTj

|. Also,
the variants V1 and V2 are extracted after fixing the scale of a 3D-mesh model
by the average distance (3.25), while the feature vector f is “post normalized” so
that ||f ||1 = 1, when the variants V3 and V4 are used. The results obtained using
our reclassified collection (O2) and the test database (TS) are shown in figure 4.5.
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Results obtained for other classifications (O1, TR, M1, and M2) comply with the
presented results. According to the shown precision-recall diagrams, the variant
V4 is the best, while the variant V2 is better than the rest two. The variant V3
outperforms the variant V1. Thus, if we rely upon orientation of triangles and upon
a canonical scale, the feature vector shows extremely poor retrieval performance
(V1). By normalizing the values of vector components, we obtain a better descriptor
(V3). However, by having non-negative volumes without post normalization, the
retrieval performance is even better (V2). The best solution is to have both non-
negative volumes and post normalized vector components (V4).
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Figure 5.16: Average precision/recall diagrams of our reclassified model collection
and the test database, for all four variants (table 4.5) of the volume-based feature
vector in the spatial domain.
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Figure 5.17: Average precision/recall diagrams of our reclassified model collection
and the test database, obtained by applying different distance measures (table 5.5)
to the variant V4 of the volume-based feature vector in the spatial domain.
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In order to explore the influence of the distance calculation on the retrieval per-
formance of the variant V4 of the volume-based descriptor, we present the precision-
recall diagrams of our reclassified collection and the test database (figure 5.17). The
obtained results suggest that the dmin

1 (1.21) is slightly more effective than the l1
norm (1.10). Note that the L1 and “L1 scaled” give exactly the same rankings,
because the sum of components of the volume-based feature vector is equal to 1,
i.e., the l1 norm is already constant. The dmin

2 is more effective than the l2 distance,
but both of them are inferior to the l1 norm. As expected, the results show that
the use of the lmax distance should be avoided. The results shown in figure 5.17 are
obtained using classifications O2 and TS. Results for the classifications O1 and TR
(table 5.3) are similar.

Next, we want to examine if we gain in retrieval effectiveness by representing
the volume-based feature in the spectral domain. In figure 5.18, we display selected
precision-recall curves of the classifications O2 and TS (table 5.3), for the V4 vector
of dimension 294 in the spatial domain and the same variant of the volume-based
feature represented in the spectral domain (see section 4.4). For the feature vector in
the spectral domain, we tested dimensions 186, 258, 342, and 438. When the l1 norm
is applied after the re-scaling (4.81), the volume-based feature vector of dimension
438 in the spatial domain is superior to the competing descriptors. If the l1 norm is
directly used (i.e., without the re-scaling), then the spatial domain representation is
better. Hence, we conclude that in the case of the volume-based approach, we gain
in retrieval effectiveness by representing the feature in the spectral domain only if
the obtained vector are re-scaled before ranking using the l1 distance. Results for
the classifications O1, TR, and TS support this conclusion.
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Figure 5.18: Average precision/recall diagrams of our reclassified model collection,
for the variant V4 of the volume-based feature vector in both spatial and spectral
domains. The l1 norm is applied directly as well as after the re-scaling (table 5.5).

As stated in section 4.4, we created two algorithms for generating volume-
based descriptors, the analytical and the approximative. The approximative ap-
proach (see algorithm in figure 4.18), is tested for different values of the param-
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eter pmin (4.38), which specifies the fineness of approximation. We took pmin ∈
{32000, 64000, 128000, 256000}. In figure 5.19, all displayed precision-recall curves,
which are obtained for our reclassified collection and the training database, almost
coincide. Therefore, even for pmin = 32000, the approximative algorithm generates
descriptors whose performance is equal to the performance of descriptors extracted
using the analytical approach, which is more time consuming (see table 4.4). We
suggest to set pmin = 64000.
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Figure 5.19: Average precision/recall diagrams of our reclassified model collection
and the training database, for the variant V4 of the volume-based feature vector in
the spatial domain, extracted using the analytical (section 4.4) and the approxima-
tive algorithms (figure 4.18).

We recommend to use the variant V4 (table 4.5) of the volume-based feature
vector of dimension 438 in the spectral domain, to generate descriptors using the
approximative algorithm with pmin = 64000, and to engage the l1 distance to rank
feature vectors that have previously been re-scaled (L1 scaled).

5.2.5 Voxel-Based Approach

We tested all variants as well as all representations of the voxel-based descriptor
(section 4.5). We recall that the voxel-based feature can be represented in both the
spatial and spectral domains. Also, we use the CC (definition 4.4), CBC (definition
4.1), BB (definition 4.2), and EBB (definition 4.3) to voxelize a 3D-model. Firstly,
we show a part of experimental results aimed at determining the optimal dimension
of the feature vectors in both spatial and spectral domains. The results for four
classifications are shown in figure 5.20. The region of voxelization ρ (4.19) is defined
to be the CC with w = 2. In the spatial domain, the dimension dim depends on the
parameter k as dim = k3. The vector of 343 components (k = 7) shows the best
performance, while the vectors whose dimensions are fixed by an odd value of the
parameter k outperform the vectors whose dimensions are fixed by an even value of
k. In the spectral domain, the feature vector of dimension 416 (4.52) outperforms
the others. The spectral domain representation is based on 128 × 128 × 128 voxel
grids.
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Figure 5.20: Average precision/recall diagrams of four model classifications, for
various dimensions of the voxel-based feature vectors in the spatial and spectral
(FFT) domains, which are extracted using the CC with w = 2 (definition 4.4).
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The influence of the choice of the region of voxelization on the retrieval perfor-
mance is depicted in figure 5.21. We tested the CBC, BB, EBB, as well as the CC
with w = 2. Our reclassified collection and the test database are used for a series of
experiments with feature vectors in the spatial and spectral domains. In the spatial
domain, the BB is the best choice of the region of voxelization. Thus, the feature
vector that utilizes deformed representations of 3D-models (the aspect ration is not
preserved when using the BB) is better than the feature vector that is robust with
respect to outliers (using the CC with w = 2). In the spectral domain, the descrip-
tor relying upon the CC with w = 2 is the best. We observe that the performance
of the best descriptor in the spatial domain is better than the performance of the
best descriptor in the spectral domain.
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Figure 5.21: Average precision/recall diagrams of our reclassified collection and the
test database, for the voxel-based feature vectors extracted using various choices of
the region of voxelization, in the spatial and spectral (FFT) domains.

Retrieval performance depends on the applied dissimilarity measure (table 5.5)
for ranking descriptors of 3D-objects. In figure 5.22, results for the classifications
O2 and TS (table 5.3) are displayed. The best feature vectors in the spatial (BB,
dim = 343) and spectral domains (CC with w = 2, dim = 416) are used for the
experiments. In the spatial domain, the l1 distance slightly outperforms the dmin

1 ,
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which is clearly better than the dmin
2 . Since the l1 norm of the voxel-based feature

vector in the spatial domain, which is extracted relying upon the BB, is equal to 1,
the l1 distance gives always the same ranking as the “L1, scaled”. The l2 norm shows
significantly lower retrieval performance than the dmin

2 . The lmax is absolutely not
suitable distance metric. In the spectral domain, the dmin

2 is slightly better than
the dmin

1 , “L1, scaled”, and l2. The l1 norm outperforms only the lmax distance.
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Figure 5.22: Average precision/recall diagrams of our reclassified collection and
the test database, applying different distance metrics (table 5.5) to the voxel-based
feature vectors in the spatial (BB) and spectral (CC with w = 2) domains.

The results shown in figure 5.23 demonstrate that the best choice of the pa-
rameter w, which fixes the dimensions of the CC (definition 4.4), is w = 2. Also,
the the scaling factor (3.25) is the best choice. These conclusions are inferred from
the precision-recall diagrams on the left-hand side in figure 5.23. We compare de-
scriptors extracted after normalizing a 3D-model by (3.25) and using the CC with
w ∈ {2, 4, 8}. We observe that the retrieval performance deteriorates with the in-
crease of w. Also, we compare descriptors extracted after normalizing the scale of
a 3D-object by different methods (table 5.4) and using the CC with w = 2. As
expected, the average distance (3.25) outperforms other options. On the right-hand
side in figure 5.23, we examine the influence of the resolution of voxelization (di-
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mensions of the voxel grids) on retrieval effectiveness. We test voxel grids of types
32× 32× 32, 64× 64× 64, and 128× 128× 128, i.e., the octrees of depths 5, 6, and
7. The largest voxel grid shows the best performance
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Figure 5.23: Average precision/recall diagrams of our reclassified collection, for
the voxel-based feature vectors in the spectral domain. On the left-hand side, the
CC is tested for w ∈ {2, 4, 8} and for different scaling factors (table 5.4). On the
right-hand side, different resolutions (dimensions) of voxel grids are used.
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Figure 5.24: Average precision/recall diagrams of four model classifications, for
the voxel-based feature vectors in the spatial (BB) and spectral domains (CC with
w = 2). The feature vectors are extracted using the analytical algorithm (section
4.5) and the approximative algorithm (figure 4.21) with pmin = 32000.

The algorithms for generating voxel grids, the analytical (section 4.5) and the
approximative (figure 4.21), are compared in figure 5.24. We recall that the an-
alytical algorithm exactly computes the distribution of the point set I (1.5) of a
3D-mesh model across the region of voxelization ρ (4.19), while the approximative
method uses the parameter pmin to fix the fineness of approximation. The results
show that for the classifications O1, O2, TR, and TS (table 5.3), the descriptors
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extracted using the approximative algorithm with pmin = 32000 perform almost
identical as when the analytical method is used, in both spatial (BB, dim = 343)
and spectral domains (CC with w = 2, dim = 416). We recall (see table 4.6) that
the average generation time of the feature vector of dimension 343 in the spatial
domain amounts 12.5ms, when the approximative algorithm with pmin = 32000 is
used, and 30ms, when attributes of voxel grids are analytically computed. In the
spectral domain, we use octrees of depth 7 (128× 128× 128 voxel grid), and apply
the 3D-DFT. The approximative algorithm with pmin = 32000 generates a descrip-
tor in 538ms, on average, while the analytical approach takes 3160ms to produce a
feature vector. We stress that results for the training and test databases (table 5.3)
comply with the presented results obtained for our reclassified collection.

The most effective variant of the voxel-based approach is the feature vector of
dimension 343 in the spatial domain, which is extracted relying upon the BB. If the
robustness with respect to outliers is a requirement that should be fulfilled, then
we recommend the spectral representation of the voxel-based feature of dimension
416, which is obtained by applying the 3D-DFT to a 128 × 128 × 128 voxel grid
and using the CC with w = 2 as the region of voxelization. Before forming the
voxel grid, each model should be normalized (section 3.4). We recommend the
average distance (3.25) as the scaling factor. In order to gain in efficiency, we
recommend to use the approximative algorithm (figure 4.21) with pmin = 32000.
The recommended distance metrics are the l1 (1.10) in the spatial domain and the
dmin
2 (1.20) in the spectral domain.

5.2.6 Ray-Based Approach

with Spherical Harmonic Representation

The spectral representation of the ray-based feature, which we regard as the ray-
based feature vector with spherical harmonic representation (section 4.6.2), is eval-
uated in this subsection. We recall that the descriptor is formed using the first k
rows of Fourier coefficients (algorithm 4.1), obtaining the feature vector of dimen-
sion dim = k(k+1)/2 (4.66). In order to determine a good choice of dimension, we
generated descriptors for k = 29 (dim = 435) embedding all feature vectors whose
dimensions are fixed by k < 29. Our numerous test show that the ray-based fea-
ture vectors with the spherical harmonic representation whose dimensions are fixed
by 13 ≤ k ≤ 19 have similar retrieval effectiveness, while the vectors obtained for
k < 13 or k > 19 have lower performance. To demonstrate our results, we selected
precision-recall curves of four classifications, O1, O2, TR, and TS (table 5.3), in
figure 5.25. We notice that the vectors of dimensions 91, 136, 171, and 190 perform
very similar, while the vectors of dimensions 253 and 435 show that the performance
decreases with the increase of dimension. Since it is difficult to select the best choice
of vector dimension, we consider that any of the dimensions 91 (k = 13), 105, 120,
136, 153, 171, and 190 (k = 19) is acceptable. In what follows, we show results of
the ray-based descriptor in the spatial domain of dimension 136.
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Figure 5.25: Average precision/recall diagrams of four model classifications, for
various dimensions of the ray-based feature vector with spherical harmonic repre-
sentation.
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Figure 5.26: Average precision/recall diagrams of our reclassified collection and
the training database, when the ray-based feature vectors with spherical harmonic
representation are extracted using different scaling factors (table 5.4).

Next, we examine the impact of the scaling factor (table 5.4) on retrieval perfor-
mance of the ray-based descriptor with spherical harmonic representation. In figure
5.26, the precision-recall diagrams of classifications O2 and TR are depicted. We
observe that the average distance (3.25) is the best choice of scaling factor.
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We recall that the more samples (4.63) of the extent function r (4.1) are taken the
better the approximation of the underlying 3D-object (see figure 4.26). The samples
serve as the input for the Fourier transform on the sphere (section 4.6.1). Therefore,
we want to test the influence of the number of samples on the performance of
the ray-based descriptor in the spectral domain. In figure 5.27, we display results
obtained for our reclassified collection and the test database. The tested numbers of
samples are 642 (B = 32), 1282, 2562, and 5122. Having in mind the average feature
extraction times (table 4.8) and the given precision-recall diagrams, we suggest to
use B = 64, i.e., to have 1282 sample values of the function r.
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Figure 5.27: Average precision/recall diagrams of our reclassified collection and the
test database, when the ray-based feature vectors with spherical harmonic repre-
sentation are extracted using different number of samples, 4B2.
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Figure 5.28: Average precision/recall diagrams of our reclassified collection and the
test database, obtained by applying different distance metrics (table 5.5) to the
ray-based feature vector with spherical harmonic representation.

The influence of the used distance metric (table 5.5) on the performance of
the ray-based descriptors in the spectral domain is illustrated in figure 5.28. We
observe that the best performance is obtained by applying the l1 distance after
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the re-scaling so that the l1 norm of each feature vector is constant (4.81). The
differences in precision-recall values obtained applying the l1, d

min
2 , dmin

1 , and l2
are not significant. The only exception is the lmin distance, which shows the worst
performance. Hence, we suggest to use the “L1, scaled” technique, whence it is not
necessary to fix the scale invariance in the normalization step (section 3.4), because
each feature vector is re-scaled. A similar example is shown in figure 5.8.

We recommend to sample the extent function r (4.1) at 1282 points defined by
(4.63), before applying the Fourier transform on the sphere (section 4.6.1). Accept-
able dimensions of the ray-based feature vectors with spherical harmonic represen-
tation are 91, 105, 120, 136, 153, 171, and 190. We recommend to normalize the l1
length of each feature vector and to use the l1 (1.10) distance for ranking.

5.2.7 Moments-Based Feature Vector

The moments-based descriptor (section 4.6.3) is also evaluated for different dimen-
sionality, scale factor, number of samples, and distance calculations. We recall that
the dimension of the feature vector based on moments defined by (4.68) is fixed by
a parameter k according to (4.70). We tested the following vector dimensions 9, 19,
34, 55, 83, 119, 164, 219, 285, and 363 (i.e., k = 2, . . . , 11).
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Figure 5.29: Average precision/recall diagrams of four model classifications, for
various dimensions of the moments-based feature vector.
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The precision-recall curves in figure 5.29, which are selected from all generated
diagrams, demonstrate that dim = 363 (k = 11) is the best choice of dimension.

The influence of the four scaling factors (table 5.4), which are presented in
section 3.4, on the retrieval performance of the moments-based descriptor is depicted
in figure 5.30. As it is the case with all approaches tested in this section, the shown
precision-recall diagrams as well as the other evaluation parameters, p̄100, p̄50, BEP ,
and RP (section 1.5), unambiguously show that the average distance (3.25) is the
best choice of the scaling factor. The results obtained for our original classification
as well as for the test database lead to the same conclusion.
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Figure 5.30: Average precision/recall diagrams of our reclassified collection and
the training database, when the moments-based feature vectors are extracted using
different scaling factors (table 5.4).
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Figure 5.31: Average precision/recall diagrams of four classifications, when the
moments-based feature vectors are extracted using different number of samples,
4B2.

The influence of the number of samples, 4B2, on retrieval effectiveness of the
feature vector defined using moments (4.68) is illustrated in figure 5.31. Similarly
as it is the case with the ray-based descriptor in the spatial domain (figure 5.27),
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we observe that B = 64 is the best choice of the number of samples. The conclusion
is based on both the shown performance and the average extraction times given in
table 4.9.

The effectiveness of distance measures (table 5.5) used for ranking moments-
based feature vectors is depicted in figure 5.32. The l1 distance applied to nor-
malized (re-scaled) feature vectors is slightly more effective than the dmin

1 . The
minimized l1 distance dmin

1 outperforms other dissimilarity measures. The experi-
ments on our original classification and on the training database also confirm that
the dmin

1 is the best choice of distance calculation. Having in mind the definition
of moments (4.68), if the “L1, scaled” technique is applied, there is no need for
fixing the scale of a 3D-mo deli during the normalization procedure (section 3.4).
A similar example is shown in figure 5.8.
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Figure 5.32: Average precision/recall diagrams of our reclassified collection and the
test database, obtained by applying different distance metrics (table 5.5) to the
moments-based feature vector.

Thus, we recommend to use the following settings for the moments-based de-
scriptor: number of samples 1282 (B = 64), dimension dim = 363, and to normalize
the l1 length of feature vector before applying the l1 distance (L1 scaled).

5.2.8 Shading-Based Feature Vector

In this subsection, we evaluate the retrieval performance of the shading-based de-
scriptor (section 4.6.4). We recall that the used feature is a rendered perspective
projection of a 3D-object on an enclosing sphere (4.71). The vector is represented in
the spectral domain, using spherical harmonics (algorithm 4.1), with the approach
(4.66). We recall that the shading-based descriptor is invariant with respect to scal-
ing by the definition. However, it is sensitive with respect to different tessellations
and levels-of-detail of a mesh model. The dimension of the vector depends on a
parameter k as dim = k(k+1)/2 (4.66). We tested all dimensions for k = 6, . . . , 29.
An excerpt from our results is shown in figure 5.33. We declare dim = 91 (k = 13)
as the optimal choice of dimension for the shading-based method.
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Figure 5.33: Average precision/recall diagrams of four model classifications, for
various dimensions of the shading-based feature vector.
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Figure 5.34: Average precision/recall diagrams of four classifications, when the
shading-based feature vectors are extracted using different number of samples, 4B2.

In figure 5.34, we examine the dependence of retrieval performance on the num-
ber of samples (4B2) of the function s(u) defined by (4.71). There is not a significant
difference between the shown precision-recall diagrams. Nevertheless, we consider
B = 64 as the best choice.
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The l2 norm of the difference between two shading-based feature vectors outper-
forms all tested dissimilarity measures. The conclusion is based on results from a
set of experiments on all available model classifications, applying different metrics
(table 5.5) to the shading-based feature vector. Precision/recall diagrams of our
reclassified collection and the test database, obtained by applying different dissim-
ilarity measures to the shading-based descriptor, are illustrated in figure 5.35.
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Figure 5.35: Average precision/recall diagrams of our reclassified collection and the
test database, obtained by applying different distance metrics (table 5.5) to the
shading-based feature vector.

We recommend the following settings for the shading-based descriptor: the num-
ber of samples 1282 (B = 64), the dimension dim = 91, and the l2 distance for
ranking the feature vectors.

5.2.9 Complex Feature Vector

The complex feature vector (section 4.6.5) is defined using the function zα(u) given
by (4.72). We recall that the extent function r (4.1) multiplied by α−1 forms the
real part, while the shading function s (4.71) represents the imaginary part of the
function zα. The factor α balances the “importance” of functions r and s. Thus,
besides performing experiments in order to determine the best dimension, scaling
factor, and distance metric, we also have a task to suggest an acceptable value of the
parameter α. Firstly, we set α = 1, i.e., the functions r and s are equally important,
and try to find the best choice of vector dimension. In figure 5.36, precision-recall
curves of four classifications are displayed. We observe that it is not possible to state
that one value of vector dimension is absolutely better than all others. Therefore,
we suggest dim = 196 as an acceptable choice of vector dimension.

Next, we test different values of the weighting parameter α, in order to examine
its influence on retrieval effectiveness of the complex descriptor. For large values of
α, the shading-based descriptor is dominant, while the ray-based feature prevails
when α→ 0. We tested α ∈ {0.1, 0.2, 0.3, . . . , 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0}.
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Figure 5.36: Average precision/recall diagrams of four model classifications, for
various dimensions of the complex feature vector with α = 1.0.

Precision-recall diagrams of four model classifications, obtained using complex
descriptors extracted for various values of the parameter α, are displayed in figure
5.37. In all four diagrams, we observe that retrieval performance deteriorates for
α > 1. We notice that for the classifications O1 and O2 (table 5.3) the optimal
value of α is 0.6, while α = 0.4 is the best choice of the parameter value for the
classifications TR and TS. Hence, we consider both values to be acceptable. In
what follows, we show results obtained for α = 0.4. By comparing results given in
figures 5.25, 5.33, and 5.37, we observe that the ray-based descriptor in the spectral
domain is superior to the shading-based descriptor. Also, for α ∈ {0.4, 0.6}, the
complex feature vector slightly outperforms the ray-based descriptor for all four
classifications. Thus, the shading-based approach serves to refine the ray-based
feature. An acceptable choice of the value of α is expected to be less than 1,
because the better method (ray-based) should be rated as more important than the
inferior approach (shading-based).

Different approaches for fixing the scale of a 3D-mesh model are tested, as
well. The retrieval performance of the complex feature vector varies depending on
the used scaling factor. The sensitivity to scaling is inherited from the ray-based
approach, while the shading-based feature is invariant to scaling by definition.



174 Experimental Results

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

CSH-A, Our DB1, L1, different alpha

0.2 [196](58.2,38.3,51.6,38.4)
0.4 [196](59.5,39.3,52.9,39.5)
0.6 [196](59.8,39.4,53.2,40.3)
0.8 [196](59.3,38.8,53.2,39.7)
1.0 [196](58.0,37.6,52.0,38.8)
2.0 [196](50.2,32.0,45.6,33.5)
4.0 [196](44.9,28.3,42.4,30.7)
6.0 [196](43.4,27.3,41.1,29.9)

0

20

40

60

80

100

0 20 40 60 80 100
P

re
ci

si
on

 (%
)

Recall (%)

CSH-A, Our DB2, L1, different alpha

0.2 [196](45.5,31.7,38.1,29.4)
0.4 [196](46.7,32.7,39.2,29.8)
0.6 [196](47.1,32.8,40.0,30.2)
0.8 [196](47.2,32.7,39.8,30.2)
1.0 [196](47.5,32.7,39.2,30.2)
2.0 [196](43.0,29.3,36.0,27.6)
4.0 [196](39.9,26.9,33.5,25.3)
6.0 [196](39.0,26.3,32.8,24.3)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

CSH-A, Train DB1, L1, different alpha

0.2 [196](44.8,30.7,39.3,28.4)
0.4 [196](44.9,30.8,39.4,28.4)
0.6 [196](44.5,30.6,39.1,28.5)
0.8 [196](43.7,30.1,38.9,28.0)
1.0 [196](42.5,29.3,38.3,27.3)
2.0 [196](38.8,26.4,35.1,24.9)
4.0 [196](36.5,24.7,33.2,23.3)
6.0 [196](35.9,24.2,32.6,22.7)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

CSH-A, Test DB1, L1, different alpha

0.2 [196](41.7,27.9,35.0,25.5)
0.4 [196](41.5,27.9,35.6,26.0)
0.6 [196](40.7,27.5,35.4,25.9)
0.8 [196](40.1,27.0,35.2,25.4)
1.0 [196](39.3,26.5,34.3,25.1)
2.0 [196](36.5,24.4,31.7,22.9)
4.0 [196](33.7,22.4,29.9,21.2)
6.0 [196](32.7,21.8,29.2,20.7)

Figure 5.37: Average precision/recall diagrams of four model classifications, when
the complex feature vectors are extracted using different values of the parameter α.
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Figure 5.38: Average precision/recall diagrams of our reclassified collection and the
test database, when the complex feature vectors are extracted using different scaling
factors (table 5.4).
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The results presented in figure 5.38 suggest that the scaling factor defined as the
average distance (3.25) is the best choice.

The influence of dissimilarity measure on retrieval effectiveness of the complex
descriptor is depicted by precision-recall diagrams in figure 5.39. The l1 norm
slightly outperforms the “L1, scaled” approach. Evidently, other dissimilarity mea-
sures are inferior to the top two.
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Figure 5.39: Average precision/recall diagrams of our reclassified collection and the
training database, obtained by applying different distance metrics (table 5.5) to the
complex feature vector.
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Figure 5.40: Average precision/recall diagrams of our reclassified collection and
the test database, obtained by using the feature vector that combines the extent
function and shading (4.72) and the feature vector that combines the extent function
and curvature (4.74).

We also tested the complex feature vector defined using the function z ′α (4.74),
which combines the extent function r (4.1) and the function c (4.73) based on the
curvature index (2.8). A summary of obtained results is presented in figure 5.40.
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The impact of the shading-based feature on retrieval performance of the resulting
complex descriptor is compared to the impact of the curvature-based feature. The
results show that the shading function s (4.71) is significantly better choice of
the imaginary part than the curvature-based function c. Having in mind that the
curvature index (2.8) heavily rely upon the orientation of triangles of the mesh and
is sensitive to different tessellations and levels-of-detail of the model, the results in
figure 5.40 are expected.

We recommend to use the complex feature vector of dimension 196, which is
extracted after normalizing a model using the CPCA approach (section 3.4), where
the scale is fixed by the average distance (3.25). The recommended values of the
parameter α are 0.4 and 0.6 (4.72). The l1 is the recommended distance metric for
ranking the feature vectors. We also suggest to sample the function z (4.72) at 1282

points (B = 64). The results demonstrating the influence of the number of samples
on retrieval efficiency are omitted to save the space.

5.2.10 Feature Vectors Based on Layered Depth Spheres

Two descriptors based on layered depth spheres (LDSs), which are introduced in
section 4.6.6, describe the same feature in different manners. Both descriptors are
formed using R functions on concentric spheres (4.75), which are sampled using LDS
structures. The feature vector based on LDS is formed by (4.78), relying upon the
algorithm 4.1. The same feature can be represented using the property of spherical
harmonics (property 4.1) to secure rotation invariance (see remark 4.1) without
applying the PCA in the normalization step (chapter 3). The descriptor formed
by (4.79) is regarded as the rotation invariant feature vector based on LDS (RID).
We recall that dimensions of both feature vectors are fixed by two parameters, the
number R of functions on concentric spheres and the number L of used bands of
spherical harmonics. The dimension of the LDS descriptor is dim = R ·L(L+1)/2,
while the dimension of the RID feature vector is dim = R ·L. Also, the radius M of
the largest sphere is a parameter affecting retrieval performance of descriptors. Note
that by comparing LDS vs. RID descriptors, we compare different representations
of the same feature, but also different approaches for achieving rotation invariance,
the CPCA (section 3.4) vs. the property of spherical harmonics (remark 4.1).

The influence of dimension of the LDS feature vector on retrieval efficiency is ex-
amined by testing various vector dimensions for different settings for the parameters
R and M . In figure 5.41, precision-recall diagrams of four model classifications are
displayed, for various dimensions of the feature vector based on LDSs, with R = 8,
and M = 4. For the given settings, we observe that the retrieval performance of
the feature vectors of dimensions 224, 288, 360, 440, and 528 is very similar. After
studying the trade-off between the retrieval effectiveness and efficiency, we suggest
dim = 360 as the best choice of dimension of the LDS feature vector for the given
parameter settings. Thus, the feature vector should be formed using the first 9
bands of spherical harmonics (dim = 360 ∧ R = 8 =⇒ L = 9). In what follows, we
try to determine the optimal values of the parameters M and R.
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Figure 5.41: Average precision/recall diagrams of four model classifications, for
various dimensions of the feature vector based on LDSs, with R = 8 and M = 4.
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Figure 5.42: Average precision/recall diagrams of our reclassified collection and the
test database, when LDS feature vectors are extracted using different values of the
parameter M (radius of the largest sphere), with R = 8.
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Effectiveness of LDS descriptors, which are extracted using different values of
the largest radius M , for the fixed value of the number of functions on a sphere
(R = 8), is depicted in figure 5.42. The tested values of the parameter M are 2,
4, 5, 6, and 8. The precision-recall curves obtained for M = 4 lay above all the
other curves. Thus, we declare M = 4 as an acceptable choice of the parameter
value. The results shown in figure 5.42 are obtained using our reclassified collection
and the test database. The experiments on our original collection and the training
database suggest that M = 6 is also an acceptable choice of the parameter value.

Next, the influence of the number of functions on a sphere on the retrieval
performance of the feature vector based on LDSs is demonstrated in figure 5.43. The
value of the largest radius is fixed, M = 4. In separate tests, we determined the best
dimensions of feature vectors extracted using 4, 12, and 16 functions on a sphere.
The best precision-recall curves for R = 4, R = 8, R = 12, and R = 16 are displayed.
By comparing the diagrams, we conclude that the curve obtained for R = 8 is
superior to the others. Our reclassified collection and the training database are
used for deriving the conclusion, which is also supported by experiments performed
on our original classification as well as the test database.
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Figure 5.43: Average precision/recall diagrams of our reclassified collection and the
training database, when LDS feature vectors are extracted using different values of
the parameter R (number of functions on a sphere), with M = 4.

Thus, we state that the acceptable parameter settings for the LDS feature vector
are: R = 8, M = 4, and dim = 360 (L = 9). Different scale normalization factors
(table 5.4) affect the retrieval efficiency. In figure 5.44, we show the precision-recall
diagrams of our reclassified collection and the test database, when the LDS feature
vectors are extracted using different scaling factors. The results confirm that the
average distance (3.25) is the best choice of normalizing the scale of a 3D-mesh
model.

We stress that all feature vectors that are analyzed in this subsection are ex-
tracted using 1282 samples of functions on a sphere, because the results shown in
figures 5.27, 5.31 , and 5.34 suggest that having 1282 samples is a good choice.
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Figure 5.44: Average precision/recall diagrams of our reclassified collection and the
test database, when the LDS feature vectors are extracted using different scaling
factors (table 5.4), with R = 8 and M = 4.
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Figure 5.45: Average precision/recall diagrams of our reclassified collection and the
test database, obtained by applying different distance calculations (table 5.5) to the
LDS feature vector with R = 8 and M = 4.

In a set of experiments aimed at determining the best choice of distance calcula-
tion, we use the dissimilarity measures listed in table 5.5. The results obtained for
the collections O1, O2, TR, and TS (table 5.3) are consistent. The precision-recall
diagrams in figure 5.45 suggest that the most effective ranking is achieved by scaling
each feature vector by the factor ω so that the l1 norm of each vector is equal to the
vector dimension (4.81) followed by application of the l1 distance (L1, scaled). We
notice that the dmin

1 outperforms the remaining dissimilarity measures from table
5.5. We recall that the minimized l1 distance dmin

1 also re-scales feature vectors
(see comments related to figure 5.4). Thus, in the case of the LDS feature vector,
re-scaling by normalizing the l1 norm of each feature vector is a better choice than
re-scaling by minimizing the l1 norm. Note that the re-scaling does not make the
descriptors invariant to scaling without normalizing the initial scale of the model,
because the value of the largest radius M relies upon the canonical scale.
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We recommend the following settings for the LDS descriptor: the number of
functions on a sphere R = 8, the number of samples 1282, the largest radius M = 4
(or M = 6), the vector dimension dim = 360, and the average distance (3.25) as
the scaling factor in the normalization step. We recommend to scale each feature
vector f by the factor ω (4.81) so that ||f ||1 = dim, and to apply the l1 distance for
ranking the scaled feature vectors.

We also thoroughly analyzed the rotation invariant feature vector based on
LDSs. To demonstrate the obtained results, we first show the precision-recall dia-
grams of our reclassified collection and the training database, for various dimensions
of the rotation invariant feature vector based on LDSs, with R = 8 and M = 6.
By analyzing the results in figure 5.46, we state that dim = 512 (L = 64) is the
best choice of vector dimension, for the given settings. The results for our original
3D-model classification and the test database lead to the same conclusion.
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Figure 5.46: Average precision/recall diagrams of our reclassified collection and the
training database, for various dimensions of the rotation invariant feature vector
based on LDSs, with R = 8 and M = 6.

In order to show that R = 8 and M = 6 are acceptable values of the parameters,
we display the results in figure 5.47, obtained for our reclassified collection and the
training database. The following values of the parameters are tested: R ∈ {4, 8, 12}
and M ∈ {2, 4, 6, 8}. We notice that the setting R = 8 and M = 6 is evidently the
best for the training database. For our reclassified collection, the setting R = 8 and
M = 6 is the best for recall values greater than 25%, while the setting R = 8 and
M = 4 is the best for recall values less than 25%. Nevertheless, we consider that
R = 8 and M = 6 is the best overall setting. The conclusion is supported by the
results obtained for our original classification and the test database. In separate
tests, we verified that the average distance (3.25) is the best choice of the scaling
factor in the normalization step (section 3.4).
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Figure 5.47: Average precision/recall diagrams of our reclassified collection and the
training database, when the rotation invariant LDS feature vectors are extracted
using different values of the parameters M and R.
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Figure 5.48: Average precision/recall diagrams of our reclassified collection and the
test database, obtained by applying different distance calculations (table 5.5) to the
rotation invariant LDS feature vector with R = 8 and M = 6.

We performed tests, which are similar to the ones shown in figure 5.45, in order
to study the influence of distance measure on retrieval performance of the rotation
invariant LDS descriptor. In figure 5.48, the precision-recall diagrams of our reclas-
sified collection and the test database suggest that the l1 distance outperforms all
competing dissimilarity techniques, including the application of the l1 norm after
re-scaling each feature vector. We recall that the “L1-scaled” technique performs
the best in the case of the LDS feature vector.

We recommend the following settings for rotation invariant version of the LDS
descriptor: the number of functions on a sphere R = 8, the number of samples 1282,
the largest radius M = 6, the vector dimension dim = 512, the average distance
(3.25) as the scaling factor in the normalization step, and the l1 norm as distance
metric.
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Figure 5.49: Average precision/recall diagrams of four model classifications, ob-
tained by using the best choices of both variants of the descriptors based on LDSs.
Used distance metrics: L1 and “L1, scaled” (table 5.5).

Finally, we compare the best variants of two approaches for representing the
same feature, the LDS descriptor (LDS) vs. the rotation invariant version (RID).
The obtained results for four model classifications are shown in figure 5.49. We
compared approaches using the l1 norm directly and after the re-scaling of feature
vectors by ω (4.81). Evidently, for the classifications O2, TR, and TS (table 5.3),
the approach (LDS) that uses our complete normalization step (section 3.4) signifi-
cantly outperforms the approach (RID) based on avoiding the CPCA and using the
property 4.1 of spherical harmonics to secure rotation invariance of the descriptor.
Therefore, we conclude that the CPCA should not be avoided, regardless of certain
weaknesses (section 3.5), because the descriptor relying upon the CPCA possesses
higher discriminant power than the descriptor relying upon the competing technique
for achieving rotation invariance.

5.2.11 Hybrid Descriptors

The concept of hybrid descriptors (section 4.7), relies on crossbreeding of com-
plementary (“orthogonal”) feature vectors. Since descriptors with an embedded
multi-resolution representation (1.8) carry the most important information about
represented features in the first components of corresponding vectors, we consider
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such descriptors as good candidates for crossbreeding. Moreover, a mechanism to
keep the dimension of resulting hybrid feature vector inside reasonable limits (e.g.,
dim < 500) is provided. The goal of crossbreeding is to generate a descriptor that
outperforms all parental feature vectors.

In order to evaluate the concept of hybrid feature vectors, we tested crossbreed-
ing of the following four descriptors (candidates):

(C1) Depth buffer-based descriptor (section 4.3) based on the EBB (definition 4.3),
extracted from depth buffer images of dimensions 128× 128;

(C2) Silhouette-based descriptor (section 4.2) with equiangular sampling (4.10),
extracted from silhouette images of dimensions 256 × 256 using 256 sample
points, where sample values are defined by (4.13);

(C3) Ray-based descriptor with spherical harmonic representation (section 4.6.2),
obtained by sampling the extent function (4.1) at 1282 points (4.63);

(C4) Voxel-based descriptor in the spectral domain (section 4.5) based on a 128×
128×128 voxel grid, which is formed using the CC (definition 4.4) with w = 2
as the region of voxelization. Each model is scaled using the average distance
(3.25) as the scaling factor.

We performed crossbreeding of two, three, and all four candidates. We recall that
the average extraction times for the given settings of candidate descriptors C1, C2,
C3, and C4 are 85ms, 33ms, 68ms, and 538ms, respectively.

In figure 5.50, we give results for four 3D-model classifications, O1, O2, TR, and
TS (see table 5.3). We recall that the abbreviations for types of our descriptors are
given in table 4.1. The l1 norm is the best choice of distance metrics (results for
other distance measures are omitted). On the left-hand side, the precision-recall di-
agrams obtained using hybrids of two descriptors are displayed. We observe that the
descriptor denoted by “DBD258*RSH190”, which is obtained by crossbreeding the
candidate feature vector C1 of dimension 258 and the candidate feature vector C3 of
dimension 190, outperforms other descriptors obtained by crossbreeding two candi-
dates. Thus, the dimension of the obtained hybrid feature vector is equal to 448. On
the right-hand side, we compare the hybrid of all four candidates to the hybrids of
three candidate descriptors. To illustrate the introduced improvement of the overall
retrieval performance, the precision-recall curve of the candidate descriptor C1 of
dimension 438 (DBD438) is shown, as well. By comparing precision-recall curves as
well as the given evaluation parameters for each classification, we observe that we
benefit if we create a hybrid of three or four descriptors. The hybrid of all four de-
scriptors of dimension 475, denoted by “DBD186*SIL120*RSH105*VOX064”, and
the hybrid feature vector of dimension 472, denoted by “DBD186*SIL150*RSH136”,
possess very similar retrieval effectiveness and outperform all competing hybrid de-
scriptors. The hybrid descriptor DBD186*SIL150*RSH136 is obtained by cross-
breeding the candidate feature vector C1 of dimension 186, the candidate vector C2
of dimension 150, and the candidate descriptor C3 of dimension 136.
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Figure 5.50: Average precision/recall diagrams of four model classifications, ob-
tained by using various hybrid descriptors.
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Since the hybrid of four descriptors is extracted in approximately 724ms, while
the average extraction time of the hybrid DBD186*SIL150*RSH136 is 186ms, we
recommend to use the latter, i.e., the best hybrid of three candidate descriptors.
Note that the recommended hybrid is not robust with respect to outliers, because
the EBB is used for extracting the depth buffer-based descriptor (C1). As demon-
strated in figure 4.13, the robustness can be achieved by substituting the EBB with
the CC (definition 4.4).

5.2.12 Other Feature Vectors

In this section, we evaluate descriptors that are presented in chapter 2. The abbre-
viations that are used for the state-of-the-art descriptors are given in table 5.2.

Firstly, we test the performance of the cords-based descriptor and the moments-
based feature vector presented in section 2.1. A fraction of our experimental results is
shown in figure 5.51. We infer that the best dimension of the cords-based descriptor
is 120, while the dmin

1 (1.21) is the best choice of dissimilarity measure.
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Figure 5.51: Average precision/recall diagrams of our reclassified collection, ob-
tained by using the cords-based (first row) and moments-based descriptors (second
row), presented in section 2.1. Feature vectors of different dimensions (left) and
different distance measures from table 5.5 (right) are tested for both approaches.
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The descriptor based on statistical moments (2.5) shows best performance when
the vector of 31 components is first re-scaled by (4.81) and the l1 norm is used
for ranking (L1 scaled). The authors consider the original scale of an object as
a feature, whence the scale normalization is not suggested in [105]. Conversely,
we believe that all models should be scaled by the average distance (3.25), before
extracting the moments-based descriptor. In the bottom-left diagrams in figure 5.51,
the precision-recall curve of the moments-based descriptor of dimension 31, which is
extracted without normalizing the scale of a 3D-model, is shown (denoted by “Not
scaled”). Obviously, the retrieval performance is better if the scale normalization
is performed. Experimental results for the training and test databases support the
conclusions for both cords and moments-based descriptors.

We recommend the following settings for the descriptor based on equivalence
classes (section 2.2): the EBB (definition 4.3) should be taken as the unit cube, the
vector dimension should be 406, and the minimized l1 norm dmin

1 (1.21) should be
used for ranking. A part of experimental results, depicted in figure 5.52, illustrates
that the suggested settings are the best choice.
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Figure 5.52: Average precision/recall diagrams of our reclassified collection and the
test database, obtained by using the descriptor based on equivalence classes (section
2.2). Feature vectors of different dimensions (left) as well as different selections of
the unit cube and distance measures from table 5.5 (right) are tested.
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The MPEG-7 shape spectrum descriptor (section 2.3) is evaluated using the im-
plementation provided inside the eXperimentation Model [84]. We tested different
dimensions of the shape spectrum feature vector, extracted using the adjacent tri-
angles or the first (n=1) and the second order (n=2). As it can be seen in figure
5.53, the overall retrieval performance of the shape spectrum descriptor is poor.
The results suggest that the feature vector of dimension 452 slightly outperforms
descriptors of other dimensions. Our results confirm the statement from [88] that
the retrieval performance is not better if adjacent triangles of the second order are
considered. The l1 norm is the best choice of distance measure for this descriptor.

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SSD (n=1), Our DB2, L1

  [52](20.0,12.7,17.8,12.5)
  [102](20.5,13.1,17.9,12.9)
 [152](20.3,13.2,18.2,12.9)
 [202](20.3,13.2,18.4,12.9)
 [252](20.2,13.2,18.5,13.1)
 [302](20.4,13.3,18.4,13.1)
 [352](20.9,13.6,18.7,13.6)
 [402](20.2,13.2,18.5,13.4)
 [452](21.0,13.7,19.1,13.7)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SSD (n=1),  Our DB2, different distances

L1 [452](21.0,13.7,19.1,13.7)
L2 [452](16.4,11.0,14.7,10.6)

minL1 [452](19.9,12.9,17.7,13.0)
minL2 [452](17.3,11.3,16.3,11.7)

L1, scaled [452](21.0,13.7,19.1,13.7)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SSD (n=2), Our DB2, L1

  [52](19.1,12.1,16.7,11.7)
  [102](19.8,12.6,17.4,12.4)
 [152](19.8,12.7,17.3,12.6)
 [202](20.4,13.1,17.6,13.1)
 [252](20.0,12.9,17.7,13.1)
 [302](20.6,13.3,17.5,13.2)
 [352](20.4,13.2,18.0,13.4)
 [402](20.2,13.1,17.8,13.2)
 [452](20.6,13.3,18.2,13.4)

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (%

)

Recall (%)

SSD (n=2),  Our DB2, different distances

L1 [452](20.6,13.3,18.2,13.4)
L2 [452](15.0, 9.6,13.6, 9.7)

minL1 [452](20.4,13.1,18.1,12.9)
minL2 [452](17.1,10.6,14.9,10.8)

L1, scaled [452](20.6,13.3,18.2,13.4)

Figure 5.53: Average precision/recall diagrams of our reclassified collection, ob-
tained by using the shape spectrum descriptor (section 2.3). Feature vectors of
different dimensions (left) and different distance measures from table 5.5 (right) are
tested, when the adjacent triangles of the first (n=1) and the second order (n=2)
are used for computing curvature indices (2.8).

The version D2 of the descriptor based on shape distributions (section 2.5.1) is
tested for different dimensions, while the number of samples N is fixed to 41922

(compare to the algorithm in figure 2.9). The results shown in figure 5.54, suggest
that the best choices of vector dimension and distance metric are dim = 64 and l1
(1.10). We stress that the authors suggested the same dimension in [97, 98].
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Figure 5.54: Average precision/recall diagrams of our reclassified collection and
the test database, obtained by using descriptors based on shape distributions (D2)
(section 2.5.1). Feature vectors of different dimensions (left) and different distance
measures from table 5.5 (right) are tested. The number of samples is N = 41922.

We compare three variants of the descriptor based on binary voxel grids (section
2.5.2). The first variant (B1) is extracted using the original definition of binary
functions (2.26) given in [36]. The second variant (Br) relies upon the redefini-
tion of functions on a sphere given by (2.29). Both variant are extracted without
applying the CPCA (section 3.4) to the original mesh model, i.e., without finding
a canonical orientation. We recall that only translation and scale are normalized,
while the property 4.1 of spherical harmonics is used to form inherently rotation
invariant feature vectors (2.27). We implemented the third variant (Br, our ap-
proach) of the descriptor based on binary voxel grids so that each 3D-model is
normalized first, then the binary voxel grid is generated, the functions defined by
(2.29) are sampled, and the spherical Fourier transform (section 4.6.1) is applied to
each function. Instead of forming the signatures by (2.27), we used the algorithm
4.1, i.e., (4.78). The dimension of the first and the second version of the descriptor
based on binary voxel grids is dim = RL, where R is the number of function on
concentric spheres and L is the number of bands of spherical harmonics that are
used to compute the signatures. In [57, 36], the recommended settings are R = 32
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and L = 16, i.e., dim = 512. The dimension of the third version of feature vector is
dim = R ·L(L+ 1)/2. Since the number of functions on concentric spheres is fixed
to R = 32 [57, 36], we set L = 6 so that the dimension of the third variant of the
descriptor is dim = 672. Experimental results obtained for the classifications O1,
O2, TR, and TS (table 5.3), aimed at comparing the three variants of the descriptor
based on binary voxel grids, are displayed in figure 5.55. The results for all four
classifications are consistent. The variant “B1” is evidently inferior to the variant
“Br”, whence the 3D-shape is represented in a more appropriate manner if the def-
inition (2.29) is used instead of (2.26). The variant “Br, our approach” is evidently
superior to the variant “Br”. Therefore, if the binary voxel grid is considered as a
feature that describes shape of a 3D-model, than the representation relying upon
the property 4.1 of spherical harmonics and avoiding the use of the CPCA is inferior
to our method that uses the CPCA and (4.78) to form the vector.
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Figure 5.55: Average precision/recall diagrams of four model classifications, ob-
tained by using the descriptor based on binary voxel grids (section 2.5.2). The
descriptor relying on binary functions on a sphere defined by (2.26) is denoted by
“B1”, while the feature vector extracted using the redefinition (2.29) is denoted by
“Br”. The descriptor formed by using (2.29) and by applying the algorithm 4.1 (i.e.,
the CPCA and (4.78) are used instead of (2.28)) is denoted by “Br, our approach”.
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Thus, the conclusion inferred using the results in figure 5.49 is supported by
the results given in figure 5.55, i.e., the CPCA should not be avoided, regardless
of certain weaknesses (section 3.5), because the descriptor relying upon the CPCA
possesses higher discriminant power than the descriptor relying upon the competing
technique for achieving rotation invariance.
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Figure 5.56: Average precision/recall diagrams of our reclassified collection and the
test database, obtained by using descriptors based on exponentially decaying EDT
(section 2.5.4). On the left-hand side, the descriptors extracted by the executables
provided by the authors are denoted by “EDT, original”, our implementation of the
same approach is denoted by “EDT, rot. inv”, while “EDT, our approach” denotes
the application of the algorithm 4.1 (i.e., we use the CPCA and (4.78) instead of
(2.37)). On the right-hand side, the descriptors extracted using the executables
provided by the authors are tested for different distance measures from table 5.5.

The performance of the descriptor based on the exponentially decaying Euclidean
distance transform (EDT), which is described in section 2.5.4, is evaluated using
executables (binaries) that are provided by the authors [108]. When the first L = 16
bands of spherical harmonics of R = 32 functions on concentric spheres are used to
form the feature vector according to (2.37), the dimension of the resulting descriptor
is dim = R(L + 1) = 544. In figure 5.56, the precision-recall curves and the
corresponding evaluation parameters (in brackets) obtained by analyzing descriptors
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generated by using the provided executables are denoted by “EDT, original”.
We also implemented the same method using the functions on a sphere defined by

(2.33), without the postprocessing (2.36), but simply using (2.28) and normalizing
the extracted feature vector to the Euclidean unit length. Our implementation
of the method is denoted by “EDT, rot. inv”. Without the postprocessing, the
dimension of the feature vector is dim = RL = 512.

Similarly to figure 5.55, we modify the descriptor based on exponentially decay-
ing EDT, which is inherently invariant with respect to rotations of a 3D-object. The
modification consists of applying the CPCA in the normalization step and forming
the feature vector according to (4.78). Thus, the property 4.1 of spherical harmonics
is not used to form inherently rotation invariant feature vectors, but the invariance
is secured by the CPCA. In figure 5.56, the modification of the approach based on
exponentially decaying EDT is denoted by “EDT, our approach”. We recall that
the dimension of the modified feature vector is computed by dim = R ·L(L+ 1)/2.
We tested dimensions 480 (L = 5) and 672 (L = 6) of the modified descriptor.

The results depicted in figure 5.56 show that our implementation “EDT, rot.
inv” possesses lower retrieval performance than the original implementation. We
assume that this difference is not caused by the postprocessing step that is orig-
inally used, rather by certain parameter settings that are not explicitly stated in
[58]. However, we notice that “EDT, our approach” clearly outperforms “EDT, rot.
inv” (left-hand side in figure 5.56). Hence, our third comparison of approaches for
achieving rotation invariance, the CPCA vs. the property 4.1, gives the same con-
clusion as the previous two tests (see figures 5.49 and 5.55). Namely, the descriptor
relying upon the CPCA (EDT, our approach) possesses higher discriminant power
than the descriptor relying upon the competing technique (EDT, rot. inv). We
assume that if the original implementation (EDT, original) is modified in the same
way, the conclusion will still be the same. We also notice that “EDT, our approach”
outperforms “EDT, original”, when the test database is used.

On the right-hand side in figure 5.56, we examine the influence of the used
dissimilarity measure (table 5.5) on retrieval effectiveness of the original implemen-
tation of the descriptor based on exponentially decaying EDT. We observe that
the l1 norm is the best choice of distance metric. Note that the postprocessing
described in section 2.5.4 is aimed at minimizing the l2 distance of functions on a
sphere consisting of the constant and the quadratic component (2.34). However,
our experimental results show that the l2 norm does not outperform the l1 distance
as a tool for ranking the descriptors based on exponentially decaying EDT.

By comparing results given in figures 5.55 and 5.56, we observe that the discrim-
inant power of the descriptor relying upon the EDT is significantly higher than the
discriminant power of the descriptor relying upon the binary voxel grid. The binary
voxel grid as a feature is inferior to the voxel grid attributed by exponentially de-
caying EDT. By defining functions on concentric spheres using a binary voxel grid,
function-mismatching problems depicted in figure 2.11 reduce the retrieval effective-
ness of the extracted descriptor. Conversely, if a voxel attribute (EDT) describes
how far an arbitrary point is from the model, then the problem of mismatched
functions on a sphere is almost eliminated.
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5.2.13 Global Comparison

The global comparison of the best versions of all 3D-shape descriptors, which are
tested in sections 5.2.1–5.2.12, is performed in two stages, the group stage and the
final stage. Firstly, we subdivided almost all descriptors listed in table 4.1 into two
groups. The only descriptor from table 4.1 that is omitted in both groups is the
RID, because the direct comparison to the LDS (figure 5.49) showed the inferiority
of the RID descriptor. The methods listed in table 5.2 form the third group of
competing methods. The BVG descriptor is omitted from the third group, because
its inferiority to the EDT descriptor is stated in section 5.2.12. In the final stage,
the best descriptors from each group are compared to the best hybrid descriptor
(section 5.2.11). Most of the precision-recall curves, which are displayed in this
subsection, can be found in the previous subsections.
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Figure 5.57: Average precision/recall diagrams of four model classifications (table
5.3) for the best variants of descriptors (table 4.1) DBD (section 5.2.3), SIL (section
5.2.2), VOX (section 5.2.5), and VOL (section 5.2.4).

The first group of competing descriptors is made up of the best versions of the
depth buffer-based descriptors (section 5.2.3) extracted using the EBB (definition
4.3) and the CC (definition 4.4) with w = 2, the silhouette-based descriptor (section
5.2.2), the voxel-based descriptors (section 5.2.5) in the spatial domain extracted
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using the BB (definition 4.2), the voxel-based descriptor in the spectral domain
extracted using the CC with w = 2, and the volume-based descriptor in the spec-
tral domain (section 5.2.4). The recommended dimension and dissimilarity measure
(table 5.5) of each descriptor are used for creating the precision-recall diagrams in
figure 5.57. We conclude that the depth buffer-based descriptor extracted using the
EBB outperforms the competing feature vectors. As mentioned in sections 4.3 and
5.2.3 and demonstrated by the example in figure 4.13, an outlier can significantly
affect components of the vector created by relying upon the EBB, while the de-
scriptor extracted using the CC is more robust with respect to outliers. We also
notice that the silhouette-based descriptor outperforms the remaining three feature
vectors.
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Figure 5.58: Average precision/recall diagrams of four model classifications (table
5.3) for the best variants of descriptors (table 4.1) RAY (section 5.2.1), RSH (section
5.2.6), MOM (section 5.2.7), SSH (section 5.2.8), CSH (section 5.2.9), and LDS
(section 5.2.10).

The second group of competing descriptors consists of the ray-based descriptor
in the spatial domain (section 5.2.1), the ray-based feature vector in the spectral
domain (section 5.2.6), the moments-based descriptor (section 5.2.7), the shading-
based descriptor (section 5.2.8), the complex-based descriptor (section 5.2.9) ex-
tracted using the function (4.72) with alpha = 0.4, and the descriptor based on



194 Experimental Results

LDSs (section 5.2.10) defined by (4.78). For each descriptor, the recommended
dimension and distance measure (table 5.5) are used. The results in figure 5.58
suggest that the feature vector based on LDSs outperforms the competing descrip-
tors from the second group. The complex descriptor outperforms the remaining
four feature vectors. The shading-based descriptor outperforms only the moments-
based descriptor. Finally, we observe that we benefit if the ray-based feature is
represented by spherical harmonics, in the spectral domain. Thus, besides filtering
the surface noise, which is captured by measuring the extent in the spatial domain,
providing an embedded multi-resolution feature representation (1.8), and improving
robustness with respect to outliers (see figures 4.5 and 4.27), the representation in
the spectral domain possesses higher effectiveness than the representation of the
ray-based feature in the spatial domain.

The descriptors proposed by other authors (chapter 2) are compared in fig-
ure 5.59. Evidently, the descriptor presented in [58] that is based on exponentially
decaying EDT (section 2.5.4) significantly outperforms all other approaches. There-
fore, we regard the EDT descriptor as the state-of-the-art descriptor. We stress that
we use the executables (binaries) provided by the authors [108] to extract the EDT
descriptor.
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Figure 5.59: Average precision/recall diagrams of four model classifications (table
5.3) for the best variants of descriptors (table 5.2) EDT, DEC, SDD, PMD, PCD,
and SSD (section 5.2.12).
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In our final comparison, we collected the best precision-recall curves from fig-
ures 5.57, 5.58, 5.59, and 5.50 in figure 5.60. The recommended hybrid descriptor
(DBD186*SIL150*RSH136) of dimension 472 significantly outperforms all other
descriptors. We recall that the hybrid is obtained by crossbreeding the depth
buffer-based descriptor of dimension 186 (4.30) extracted using the EBB (definition
4.3), the silhouette-based feature vector of dimension 150 (4.15) extracted using the
equiangular sampling (4.10) and the definition of sample values given by (4.13), and
the ray-based descriptor of dimension 136 with spherical harmonic representation
(4.66).
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Figure 5.60: Average precision/recall diagrams of six model classifications (table
5.3), obtained by using the best descriptors in figures 5.50, 5.57, 5.58, and 5.59.
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In what follows, we will regard the hybrid descriptor DBD186*SIL150*RSH136
as the DSR472 descriptor. Note that the DSR472 fulfills the criterion (5.1). Of all
descriptors compared in figure 5.60, the descriptor based on LDSs shows the lowest
retrieval performance. We consider that the depth buffer approach slightly outper-
forms the state-of-the-art descriptor (EDT, original). The descriptor based on ex-
ponentially decaying EDT possesses higher discriminant power than the silhouette-
based feature vector.

We also computed the percentage of retrieving a relevant model as the best
match (nearest neighbor), when each classified model is used as a query (see table
5.1). The results shown in table 5.8 confirm the superiority of the DSR472 descrip-
tor. The original implementation of the descriptor based on exponentially decaying
EDT retrieves more non-relevant best matches than the depth buffer-based feature
vector, on average.

Classification O1 O2 TR TS M1 M2
DSR472 85.3% 70.1% 70.6% 66.4% 91.6% 91.0%
DBD (EBB) 81.8% 60.0% 63.1% 60.0% 90.3% 87.8%
SIL 80.6% 60.4% 59.6% 55.6% 87.2% 87.4%
EDT (original) 71.8% 62.7% 60.3% 57.8% 85.5% 85.6%
LDS 66.5% 60.8% 58.3% 60.1% 84.6% 81.1%

Table 5.8: Percentage of retrieving a relevant model as the best match to a query
(nearest neighbor) for all six collections (table 5.3), using the descriptors from figure
5.60. The DSR472 descriptor (i.e., the hybrid DBD186*SIL150*RSH136) shows the
best performance for all available collections.

We consider that our evaluation is complete, because we estimate that the ap-
proaches presented in [2, 72, 153, 151, 95, 27, 28, 19, 77, 11, 65, 129, 93, 91, 92]
as well as the topology matching technique [48] (section 2.4) are inferior to the
state-of-the-art descriptor, which is described in section 2.5.4. Our estimation is
partially based on results that are presented in the literature. For instance, the
results presented in [36] demonstrate that the descriptor based on exponentially
decaying EDT significantly outperforms descriptors proposed in [2] and [28]. The
techniques proposed in [19, 77, 11] are suitable for CAD 3D-models. The results
presented in [72, 153, 151, 95, 27, 65, 129, 93] also suggest the inferiority to the
EDT descriptor [58]. The topology matching technique is presented in [48], but
no decent evaluation has been published yet. Thus, we assume that the sensitivity
of the method, which is depicted in figure 2.8, deteriorates the overall effective-
ness. We consider that methods presented in [91, 92] have rather theoretical than
practical value. Finally, we used six different model classifications to evaluate the
retrieval performance of descriptors. Since the results are consistent for all available
ground-truth classifications, we believe that the best 3D-shape descriptor has been
found.

We stress that the DSR472 is the best descriptor in general. However, for certain
categories of 3D-models the DSR472 might not be the most suitable descriptor. An
extreme example is shown on the left-hand side in figure 5.61. Typically the most
inferior descriptor (see figure 5.59), the shape spectrum feature vector, is compared
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to the best descriptors (figure 5.60), but only for the category of models of humans.
The category belongs to our reclassified collection and consists of 56 models of hu-
mans in different poses (some of the models are articularly modified). Evidently,
generally the poorest descriptor (SSD) outperforms the best descriptors. The re-
sults are expected, because the SSD is the only descriptor robust with respect to
articular modifications of 3D-models, when the level-of-detail and tessellation are
not significantly changed. We recall that the SSD is not robust to different tessel-
lations and levels-of-details. For the category of models of fighter jets (the training
database), the most suitable descriptor is the depth buffer-based. Nevertheless, we
consider that the global results (not category-wise) suggest which descriptor is the
best for the majority of categories.
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Figure 5.61: Average precision/recall diagrams of categories “human” from our
reclassified collection and “fighter jet” from the training database, obtained by
using the best overall descriptors. For the category of human models, the shape
spectrum descriptor (sections 2.3) is compared to the best descriptors (left).

5.3 Dimension Reduction using the PCA

In this section, we demonstrate that the dimension of a feature vector can be reduced
using the PCA (section 3.2) so that the loss in retrieval effectiveness is usually not
significant. Moreover, in certain cases, the retrieval performance can be improved
by applying the standard PCA to a set of feature vectors.

We performed the PCA analysis of the four best descriptors (section 5.2.13), the
hybrid descriptor DSR472, the depth buffer-based descriptor (DBD), the silhouette-
based feature vector (SIL), and the descriptor based on exponentially decaying
Euclidean distance transform (EDT). The EDT descriptor is extracted using the
original tools provided by the authors [108]. The analysis is performed on the
descriptors associated to our reclassified collection of 1835 3D-models (see section
5.1). Thus, there are four sets (3.2) of 1835 feature vectors of dimensions 472
(DSR472), 438 (DBD), 300 (SIL), and 544 (EDT). We recall that the compression
(dimension reduction) is achieved by multiplying the original n-dimensional vectors
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in each set by the corresponding matrix Ak (3.8), obtaining k-dimensional vectors
(k < n). The value of the parameter k can be fixed or selected so that a fixed amount
of “energy” (variance) of the initial data is preserved after the transformation. We
tested the second approach by setting t = 0.95 in equation (3.9), i.e., we want to
determine the value of the parameter k so that at least 95% of energy of the original
data vectors is preserved. The following values of the parameter k are obtained:
k = 35 for the set of DSR472 descriptors, k = 25 for the set of depth buffer-based
feature vectors, k = 12 for the set of silhouette-based feature vectors, and k = 32
for the set of descriptors based on exponentially decaying EDT.
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Figure 5.62: Average precision/recall diagrams of our reclassified collection, ob-
tained by using the original descriptors and compressed feature vectors of different
dimensions generated by applying the standard PCA (section 3.2) to the corre-
sponding sets of original descriptors.

In figure 5.62, we compare the retrieval performance of the original descrip-
tors vs. the compressed descriptors. Dimensions of compressed feature vectors are
dim = k, dim = 2k, dim = 3k, dim = 4k, and dim = 125, where the parameter k
is selected using (3.9) with t = 0.95. Separate tests, which are omitted, suggested
that the l1 distance applied to normalized feature vectors (L1 scaled) is the best
choice of distance measure (table 5.5) for compressed feature vectors. The results
confirm that the standard PCA can be used for reducing dimension of feature vec-
tors without significant loss in retrieval effectiveness. The used linear dimension
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reduction technique is optimal in the mean-square sense [51]. We observe that the
retrieval performances of the hybrid DSR472 and the depth buffer-based descrip-
tors are even increased by compressing the original vectors. The explanation for the
increased retrieval effectiveness lies in the fact that the presence of noise in original
data is also reduced. Note that the feature vector of 35 components generated by
compressing the DSR472 descriptor outperforms both the depth buffer-based and
the EDT descriptors.

The compression by applying the PCA analysis to sets of feature vectors has
two goals: to preserve the retrieval performance and to reduce computational costs
of subsequent processing steps. The feasibility of the first goal is demonstrated
in figure 5.62. Obviously, the ranking of low-dimensional vectors using the dis-
similarity measures form table (5.5) is faster than the ranking of high-dimensional
feature vectors. The average ranking times (distance computations and sorting)
of our reclassified collection (1835 models) when the l1 norm (1.10) is used for
computing distances between feature vectors of dimensions 150, 300, and 500 are
50ms, 100ms, and 155ms, respectively. For the set of 1835 vectors, the computation
of the 472 × 472 covariance matrix (3.4) took 8.4 seconds, while the computation
and sorting of the eigenvalues and eigenvectors (3.5), i.e., the computation on the
transformation matrix, lasted 40.0 seconds. The results are obtained on a com-
puter running Windows 2000 Professional, with 1GB RAM and an 1.4 GHz AMD
processor.

The application of the PCA to feature vectors will be investigated further. For
instance, we plan to apply the PCA to weighted concatenations of feature vectors.
Also, an addition of a large number of similar objects to a collection of 3D-models
may significantly change the principal axes of the corresponding set of feature vec-
tors. Therefore, we expect that certain modifications of the standard PCA will be
necessary in order to provide robustness with respect to the variance of 3D-shapes in
a given collection. Finally, if a user upload a new model to our Web-based retrieval
system CCCC (see appendix), the feature vectors are automatically extracted. As-
suming that a single added feature vector cannot significantly change the computed
transformation parameters, we can use the previously calculated mean vector (3.3)
and transformation matrix Ak to reduce the vector dimension, so that a user re-
ceives a prompt response from the system. Then, the mean vector (3.3) and the
transformation matrix can be updated (re-computed) in an idle time. However,
the robustness of the computed transformation parameters to an enlargement of
the underlying set of data vectors (descriptors) by a single data vector should be
examined.

5.4 Summary of Experimental Results

In section 5.2, we analyzed retrieval effectiveness of 19 types of 3D-shape descriptors
(see tables 4.1 and 5.2). Most of the descriptors have different variants. Various
parameter settings affect the retrieval performance of descriptors. We used six 3D-
model classifications (section 5.1) to evaluate retrieval effectiveness of each type of
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descriptor, for various variants and parameter settings, using different dissimilar-
ity measures (table 5.5). A selection of more than 3000 generated precision-recall
diagrams is shown in section 5.2.

We consider that the most important state-of-the-art descriptors are included
in our tests (section 5.2.13). The results show that the DSR472 hybrid descriptor
is unambiguously the best 3D-shape descriptor, in general. However, the version of
the DSR472 feature vector that is tested in sections 5.2.11 and 5.2.13 relies upon a
parental descriptor that is not robust with respect to outliers. Namely, the depth
buffer-based descriptor extracted using the extended bounding box (definition 4.3)
is sensitive to outliers, whence a similar level of sensitivity is inherited by the hybrid.
Conversely, if the DSR472 descriptor is obtained by crossbreeding the depth buffer-
based feature vector extracted relying upon the canonical cube (definition 4.4) with
w = 2, the silhouette-based descriptor, and the ray-based feature vector in the
spectral domain, then the resulting hybrid is robust with respect to outliers, because
all parental feature vectors are not sensitive to outliers.
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Figure 5.63: Average precision/recall diagrams of six model classifications (table
5.3), obtained by using two variants of the DSR472 hybrid, the variant that is
sensitive to outliers (DBD is extracted using the EBB (definition 4.3)) and the
variant that is robust with respect to outliers (DBD is extracted using the CC
(definition 4.4) with w = 2).

In figure 5.63, we compare the variant of the DSR472 descriptor that is sensitive
to outliers (DSR472, EBB) to the variant that is robust with respect to outliers
(DSR472, CC w=2), using all available ground truth classifications (table 5.3).
The results show that the variant that is sensitive to outliers slightly outperforms
the robust variant of the DSR472 descriptor. Having in mind the example in figure
4.13, we consider that it is important to satisfy the requirement 5 from section 1.3.4.
Therefore, we recommend to use the DSR472 hybrid descriptor, which is robust with
respect to outliers, as the best choice of all tested approaches (descriptor types,
variants, and parameter settings). The instances of the DSR472 feature vector
should be ranked using the l1 distance (1.10).



Chapter 6

Conclusion

The topic of the thesis is characterization of global shape of a 3D-mesh model by
defining appropriate 3D-shape descriptors (feature vectors). The feature vectors are
used for retrieval of 3D models by shape-similarity. In this chapter, we summarize
the contribution, stress the most important results, and suggest directions for future
work.

In chapter 1, we describe the architecture of our 3D model retrieval system
(figure 1.5), discuss types of 3D-shape features, and set criteria for 3D-shape de-
scriptors. Most of the requirements are also addressed in the MPEG-7 committees
[85]. However, certain requirements are specific for 3D-mesh models, e.g., robust-
ness with respect to different levels-of-detail, tessellations, and surface noise of a
mesh model. As far as we know, the requirement for robustness with respect to
outliers is mentioned in [144] for the first time. Afterwards, other authors modified
their approaches in order to fulfill the requirement. For instance, the descriptor pro-
posed in [57] relies upon a bounding sphere, whence the corresponding descriptor is
sensitive to outliers. The same authors modified the approach in order to provide
the invariance to outliers [36]. We also formally define the properties of closedness
and orientability of polygonal meshes. We modified the quadratic form distance,
which is used in [2] for retrieving 3D-models, so that searching using certain types
of decriptors is more effective. As far as we know, the use of the minimized l1 and l2
norms as tools for ranking feature vectors has not been reported in the literature yet.
Thus, our optimized algorithm for computing the minimized l1 distance between
two n-dimensional vectors with real-valued components (figure 1.8) represents an
original result.

In chapter 2, we describe several techniques proposed by other authors. Our
contribution to the method based on equivalence classes [126, 125] is the exploration
of different parameter settings that are not addressed in the original papers. We
consider that the descriptor proposed in [58] represent the most effective 3D-shape
feature vector proposed by other authors.

In chapter 3, we present our Continuous Principal Components Analysis (CPCA)
for normalizing the pose of a 3D-mesh model. By applying the PCA to a set

201
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of vertices of a 3D-mesh, differing sizes of triangles are not taken into account.
Modifications of the PCA are introduced in [143] and [105], in order to account
different sizes of triangles by suitable weighting factors. We regard a triangle mesh
model as a union of triangles, whence the point set of the model consists of infinitely
many points. In contrast to the usual application of the PCA, we work with sums of
integrals over triangles (3.19) in place of sums over (weighted) vertices which makes
our approach more complete taking into account all points of the model with equal
weight. The formulas for computing all necessary parameters for the normalization
of translation, rotation, scale, and reflection, using the continuous approach, are
given in section 3.4.

In chapter 4, we present our original 3D-shape descriptors, which are defined
using various features and representation techniques. We considered a variety of
features for characterizing 3D-shape such as

• Extents of a model in certain directions;

• Contours of 2D projections of a model;

• Depth buffer images of a model;

• Artificially defined volumes associated to triangles of a mesh;

• Voxel grids attributed by fractions of the total surface area of a mesh;

• Rendered perspective projections of a model on an enclosing sphere;

• Layered depth spheres.

As far as we know, the layered depth spheres represent an original concept, which
is introduced in this thesis.

The used representation techniques include:

• Fourier transforms: 1D, 2D, 3D;

• Fourier transform on a sphere;

• Moments for representing the extent function (original definition).

We stress that spherical harmonics (the fast Fourier transform on a sphere) are
introduced as a tool for 3D model retrieval by ourselves in [147].

We introduced two approaches for merging appropriate feature vectors, by defin-
ing a complex function on a sphere, and by crossbreeding. The concept of complex
descriptors is proposed in [146], while the concept of hybrid feature vectors is in-
troduced in this thesis. We also present a variety of original feature extraction
algorithms and give complete specifications for forming feature vector components
for each of presented approaches.

In chapter 5, we evaluate 19 types of 3D-shape descriptors (see tables 4.1 and 5.2)
using six different classifications (ground truths) of 3D-models (section 5.1). Most
of the 3D-model classifications are not formed by ourselves, whence we consider
that our evaluation is not subjective. As tools for comparing competing descrip-
tors, we use precision-recall diagrams, the R-precision (first tier), the Bull’s eye
performance (second tier), and two other parameters that are presented in section
1.5. As far as we know, no reported results in the literature include this number of
tested techniques and this number different classifications. Since the state-of-the-art
descriptors [36, 58] are also tested, we believe that our evaluation is competent.
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The global comparison (section 5.2.13) of the best versions of all 19 descriptors
unambiguously suggest that a version of our hybrid descriptor significantly outper-
forms all competing descriptors. The best descriptor, which we called “DSR472”,
is formed by crossbreeding the following three descriptors:

1. Depth buffer-based descriptor of dimension 186 (section 4.3), extracted from
depth buffer images of dimensions 128×128, which are formed using the canonical
cube (definition 4.3) with w = 2;

2. Silhouette-based descriptor of dimension 150 (section 4.2), extracted from silhou-
ette images of dimensions 256× 256 using 256 equiangular sample points (4.10),
where sample values are defined by (4.13);

3. Ray-based descriptor of dimension 136, with spherical harmonic representation
(section 4.6.2), obtained by sampling the extent function (4.1) at 1282 points
(4.63).

The DSR472 descriptor possesses all desirable properties specified in section 1.3.4
such as robustness with respect to levels-of-detail, different tessellations, surface
noise, outliers, arbitrary topological degeneracies. The feature extraction and the
search procedure are efficient, as well. The most important, discriminant power of
the DSR472 descriptor is significantly higher than discriminant power of competing
descriptors. We recommend to use the l1 norm for computing distances between
DSR472 feature vectors.

In section 5.3, we verified that the standard PCA analysis can be applied to a
set of n-dimensional feature vectors of real-valued components to reduce dimension-
ality of the feature vectors without significant loss in retrieval effectiveness. The
reduction increases retrieval efficiency.

The invariance with respect to translation is achieved using the center of gravity
of a model, while we recommend to scale the model by the average distance davg

(3.25) of a point on the surface to the center of gravity of a model. In section 3.4,
we give an original algorithm for approximating the value of davg. We also pro-
vide a means for fixing reflections around the coordinate hyper-planes (3.23). To
attain rotation invariance, we use the CPCA. Several authors (e.g., [36, 91]) object
the use of the CPCA, because it is not an ideal tool for fixing the orientation of
a 3D-model. Statements such as “all descriptors relying upon the PCA show poor
retrieval performance” are based on wrong intuitive assumptions and are not sup-
ported by experimental results. The descriptor defined in [36] is inherently invariant
with respect to rotation, i.e., it is not necessary to apply the PCA in the normaliza-
tion step. However, we consider that the overall performance is the most important
parameter of quality of a descriptor. We compared our DSR472 descriptor to the
descriptor proposed in [58], which is extracted using the original tools provided
by the authors [108], and the results show that our approach is superior. More-
over, the DSR472 descriptor shows batter performance than the descriptor based
on exponentially decaying Euclidean distance transform (EDT) even for certain cat-
egories of models that are not well aligned in the canonical coordinate frame (e.g.,
categories “desk with hutch”, “TV”, “spider”, “handgun”, “desk lamp”, “piano”,
“palm”, “tree”, etc. from the training database [108]). The rotation invariance of
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the EDT descriptor is attained by applying a property of spherical harmonics (see
property 4.1), i.e., by summing up squares of magnitudes of spherical harmonic
coefficients in the same band. Hence, there is a trade-off, information contained in
individual coefficients is sacrificed in order to achieve rotation invariance. Instead
of using the property of spherical harmonics, we modified the approach presented in
[57, 36, 58] by applied the CPCA before the extraction and taking the magnitudes
of spherical harmonics as components of the modified feature vector. We used three
opportunities (figures 5.49, 5.55), and 5.56) to test two approaches for achieving the
rotation invariance, the CPCA vs. the property of spherical harmonics. The same
conclusion is inferred after all three experiments: the descriptor relying upon the
CPCA possesses higher discriminant power than the descriptor relying upon the
competing technique.

We invite you to visit our Web-based 3D model retrieval system, CCCC (see
appendix), and test both descriptors for different categories of models. Tools (ex-
ecutables) for generating some of our 3D-shape feature vectors are available for
download at the CCCC 3D-model search engine.

We recommend the DSR472 descriptor as currently the best 3D-shape descripor,
on average. However, this descriptor is not guaranteed to be the best for each
category (class) of query objects (see figure 5.61). Therefore, we consider that
introduction of a “query processor” would be meaningful. The query processor
will have a task to estimate the most suitable descriptor for a given query. The
estimation could be based on a measure of coherence of retrieved objects. The
hybrid DSR472 is not necessarily the best possible hybrid descriptor, because it is
created using heuristics, rather than using an exhaustive approach to find the best
combination of parental descriptors. We consider that further improvements of the
normalization step can be done by selecting a subset of all triangles of a mesh as the
input for the CPCA. Possible selection criterion might be the visibility of a triangle
from viewpoints on an enclosing sphere or cube. The creation of a query processor,
the finding of the best hybrid, and further modifications of the normalization step
are left for future work. The CCCC search engine will also be improved further.
We plan to provide a means to obtain a feedback from a user. The feedback might
be used for rating classifications (ground truths) of 3D-models as well as for finding
solutions for estimating the best descriptor for a given query model. Definition
of new 3D-shape descriptors, which will outperform currently the best approaches,
will remain the most challenging task.
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in Computer Science, R. H. Güting, D. Papadias, and F. H. Lochovsky, Eds.,
Hong Kong, China, July 1999, vol. 1651, pp. 207–226, Springer Verlag.

[3] J. Arvo and D. Kirk, “Fast ray tracing by ray classification,” in Proc. SIG-
GRAPH 1987, Anahaim, CA, July 1987, pp. 55–64, ACM SIGGRAPH.

[4] J. Ashley, M. Flickner, J. L. Hafner, D. Lee, W. Niblack, and D. Petković,
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Appendix: CCCC

Our Web-based retrieval system, called CCCC [140], serves as a proof-of-concept for
our implemented methods and tools for content-based search for 3D-mesh models.
The CCCC is also useful for obtaining a subjective impression about effectiveness
of different descriptors. In this appendix, we give an overview of the on-line system,
which is currently located at the following address:

http://merkur01.inf.uni-konstanz.de/CCCC/.

We assume that the URL of the CCCC 3D search engine will be changed in the
future. However, we expect that it will be relatively easy to locate a new address
using conventional search engines (e.g., google.com) or by visiting the original site
[140]. For the implementation, we used C++, Perl, and JavaScript. The starting
screen of the CCCC is shown in figure 6.1.

Figure 6.1: The starting screen.
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Figure 6.2: Selection of a 3D-model classification.

A user can select a classification of a 3D-model collection (figure 6.2). The
classification serves as a ground truth. Currently, the six classifications that are
described in section 5.1 are available for selection. Moreover, all the models that we
collected on the Internet (mostly on www.3dcafe.com) are available for download.
Information about the classification is attached as well. We stress that only models
from the selected classification are considered in the subsequent steps. Since there
is no classification that can be regarded as a unique ground truth, our goal is to
gather as many as possible different categorizations of 3D-models. If an approach
outperforms others for almost all categorizations, then we are more confident to de-
clare which method is the best method. In the future, an interface will be created
so that a user can alter the used classification. We consider that a new module
in our system, which will process data obtained by the feedback, can be useful for
ranking the classifications. For instance, in our reclassified collection we have a
single category of models of humans, while both the training and the test databases
contain two categories of models of humans, classified by poses (“human arms out”
and “human walking”). We expect that users’ feedback will help us determine if the
models of humans with arms out should be considered relevant to the humans walk-
ing. Feedback from users might also be used for forming weighted concatenations
of feature vectors, in order to improve the retrieval performance further.
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Figure 6.3: Browsing the selected 3D-model classification.

Browsing models from the selected classification is enabled. On the right-hand
side of the screen (figure 6.3), a classification hierarchy is displayed. The models
from the selected class are depicted using 2D thumbnail images. Initially, each
model is visualized in the original orientation, so that the viewpoint is on the pos-
itive side of the x-axis, while the y-axis travels to the right. In order to obtain
more information about a model, basic statistical data about the triangle mesh
(e.g., number of vertices, number of faces, information about the closedness and
orientability of the model, normalization parameters from section 3.4, etc.) can be
displayed in a separate window (button “STATS”). Also, a model can be rendered
in a VRML-viewer, if an appropriate plug-in is installed (button “VRML”).

As a very useful option, we provided a possibility to visualize the orientations of
the models in the canonical coordinate frame. A user can select one of four possible
views: from the positive side of the x-axis of the original coordinate frame (before
applying the CPCA from section 3.4) as well as from the positive side of each axis
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in the canonical coordinate frame. In figure 6.4, all the thumbnail images visualize
models in the canonical coordinate frame, viewed from the positive side of the z-
axis, while the x-axis travels to the right. We stress that the canonical scale cannot
be sen on the thumbnail images, which are generated using the extended bounding
box (definition 4.3).

A query is selected simply by clicking on a thumbnail image. We provided an-
other option for specifying the query, uploading from a local directory. Currently,
the CCCC can accept the following 3D-file formats: VRML (Virtual Reality Mod-
eling Language) [44, 14], DXF (Autodesk Drawing eXchange Format) [5], 3DS (3D
Studio file format) [96], OFF (Object File format) [96], OBJ (Wavefront Object
files) [96], and SMF (Simple Model Format) [37]. In the future, we will provide an
option to draw 2D sketches of a 3D-object and use them as a query.

Figure 6.4: Visualization of normalized 3D-mesh models from the positive side of
the z-axis, while the x-axis travels to the right.
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After specifying the query model, by browsing or by uploading, the parameters
for the search can be set (figure 6.5). We provide an initial setting, where our best
hybrid descriptor (see section 5.4) and the l1 distance metric (1.10) are selected by
default. A user can change both settings and try different techniques, dimensions,
and dissimilarity measures. In a very near future, we will provide a complete doc-
umentation about the offered 3D-shape descriptors as well as the references. Thus,
we anticipate that the CCCC will have an educative role. The number of displayed
thumbnail images per screen can also be set, because we consider that it is useful to
have an option to reduce the number of shown images in the case of a slow Internet
connection. After setting up the parameters, the similarity search is performed.

Figure 6.5: Setting up the parameters used for retrieval, feature vector type and
dimension, the distance metric, and the number of displayed objects per screen.

In figure 6.7, the retrieval results for the specified query model, feature vec-
tor, dimension, and distance calculation are shown. The used descriptor is the
hybrid feature vector of dimension 448, which is obtained as described in section
4.7. Objects that are relevant to the query model are denoted by the green color of
the text on the buttons for displaying the statistics and rendering the model in a
VRML-viewer. Conversely, the red color of the text denotes non-relevant objects.
The match number 6 is considered as non-relevant in the used classification (O2 in
table 5.3). We recall that the classification was not done by ourselves, but by our
colleagues, without our influence.
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Figure 6.6: Inspection of retrieved results.
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Thus, in figure 6.6, the first 29 retrieved models are airplanes, but some of them
are not considered relevant to the query, by the selected ground-truth. A type
of voting will be provided to a user, in order to alter the ground truth. Besides
inspecting the retrieved models using thumbnail images of four different views, a
user can obtain more information about the model by displaying a window with
statistics as well as by rendering the model in a VRML-viewer (figure 6.7).

Figure 6.7: Showing of the window with basic statistics about the model and ren-
dering using a VRML-viewer.

Interactive generation of precision-recall diagrams is provided, as well (figure
6.8). At the moment, two precision-recall curves can be generated, a curve for the
query model and an curve curve for the class containing the query. Hence, a user
can be informed if the class contains several models similar to the query or the query
possesses an untypical 3D-shape for the class. In the future, the average precision-
recall diagram of all queries, obtained by using the selected descriptor, dimension,
and distance measure, will also be displayed. Thus, a used will be offered to compare
descriptors at three levels: model-wise, category-wise, and global.
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Figure 6.8: Precision-recall diagrams for the used query and the average curve for
the class of 3D-models containing the query object.

Besides offering our classification of 3D-models, extraction tools for a selection
of our descriptors are also available for download. We plan to update the download
page periodically. Planned modifications of the CCCC 3D-model search engine
include: implementation of three representations of retrieval results (textual, using
thumbnail images, and using a 3D-viewer), incorporation of a Web-crawler (to enrich
the set of collected 3D-models), complete documentation for a variety of techniques,
creation of a personalized query interface (settings for a user will be stored and
continuously updated), visualization of certain feature vectors (e.g., silhouette and
depth buffer images), and implementation of an adaptive query processor.

We regard the CCCC as complementary to other 3D-model search engines such
as the 3D-model search engine of the Princeton Shape Retrieval and Analysis Group
[108], National Design Repository Drexel University [110], Nefertiti [99], and Ogden
[124].
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