
http://www.ontopia.net/© 2005 Ontopia AS 1

A Query Algebra for tolog

Formalizing tolog

TMRA '05

Lars Marius Garshol
Development Manager, Ontopia
<larsga@ontopia.net>

2005-10-05

http://www.ontopia.net/© 2005 Ontopia AS 2

Overview

• Quick introduction to tolog

• Superficial intro to the query algebra

• Conclusions and further work

http://www.ontopia.net/© 2005 Ontopia AS 3

Quick introduction to tolog

tolog in 5 minutes

http://www.ontopia.net/© 2005 Ontopia AS 4

A brief tolog history

• tmlog
– the original idea came from thinking about using Prolog to query topic maps

– this resulted in a Jython prototype in December 2000

– which again turned into a paper for XML Europe 2001 in May 2001

• tolog 0.1
– the first proper version of the language

– implemented in Java in OKS 1.3 in autumn 2002

– later also implemented in TM4J

• tolog 1.0
– first version to be able to query all of topic maps

– adds on and extends 0.1

– implemented in OKS 2.0, released December 2003

– currently used as the foundation for many commercial projects

• The query algebra covers all of tolog 1.0

http://www.ontopia.net/© 2005 Ontopia AS 5

Understanding tolog

• tolog does querying by matching a query against the data

• In this process variables are bound to values

• A tolog query result is basically a table with the variables as
columns and each set of matches as a row

• Each row represents a set of values that make the query true

Query:
Return all composers who were pupils of
another composer, plus the teacher

pupil-of($A : pupil, $B: teacher)?
Ponchielli, AmilcarPuccini, Giacomo

Ponchielli, AmilcarMascagni, Pietro

Mascagni, PietroZandonai, Riccardo

BA

http://www.ontopia.net/© 2005 Ontopia AS 6

Building queries

• AND
– born-in($PERSON : person, $PLACE : place),

located-in($PLACE : containee, italy : container)?

• OR
– { premiere($OPERA : opera, $CITY : place) |

 premiere($OPERA : opera, $THEATRE : place),
 located-in($THEATRE : containee, $CITY : container) } ?

• NOT
– born-in($PERSON : person, $PLACE : place),

located-in($PLACE : containee, italy : container),
not(instance-of($PERSON, composer))?

• OPTIONAL
– instance-of($COMPOSER, composer),

{ date-of-birth($COMPOSER, $DATE) } ?

http://www.ontopia.net/© 2005 Ontopia AS 7

Other tricks

• Projection
– select $PERSON from

born-in($PERSON : person, $PLACE : place),
located-in($PLACE : containee, italy : container)?

• Counting
– select $COMPOSER, count($OPERA) from

composed-by($COMPOSER : composer, $OPERA : opera)?

• Ordering
– instance-of($PERSON, person) order by $PERSON?

• Paging
– instance-of($PERSON, person) order by $PERSON limit 5?

– instance-of($PERSON, person) order by $PERSON limit 5 offset 5?

http://www.ontopia.net/© 2005 Ontopia AS 8

Three kinds of predicates

• Built-in predicates
– instance-of, topic-name, role-player, association-role, ...

– =, /=, <=, ...

• Dynamic predicates
– generated from association, occurrence, and name types

– born-in, located-in, ...

• User-defined predicates
– inspired-by($X, $Y) :-

composed-by($X : composer, $OPERA : opera),
based-on($OPERA : result, $WORK : source),
written-by($WORK : work, $Y : writer).

http://www.ontopia.net/© 2005 Ontopia AS 9

The query algebra

A superficial look

http://www.ontopia.net/© 2005 Ontopia AS 10

A query algebra? What's that?

• Basically, a set of mathematical operators that correspond to the
tolog language constructs

• This includes
– a mathematical model of Topic Maps,

– a mathematical model of tolog result sets,

– a mathematical notion of what predicates are,

– a set of operators on result sets

• All of this is effectively a mathematical mirroring of tolog

http://www.ontopia.net/© 2005 Ontopia AS 11

Great! So what?

• The query algebra is a formal definition of what the language does
– this did not exist before

– now we know what to implement, and other implementors know, too

• The query algebra is the key to optimizations
– query optimization is the art of automatically transforming slow queries into fast

queries that give the same result

– the algebra tells us what modifications we can make to a query without changing
the results

– this is similar to how normal algebra says that 5*3 + 5*2 = (2 + 3) * 5

• The query algebra is the key to type inferencing
– when using the built-in predicates developers would often screw up

– for example, the same variable would be used as a topic name and as a string

– type inferencing allows us to tell the developer to make his¹ mind up

– type inferencing is hard, and the query algebra tells us how to do it

¹ I've never seen a female developer have this problem

http://www.ontopia.net/© 2005 Ontopia AS 12

A formal model for Topic Maps

• In the paper I use the Q model
– this was first presented at Extreme Markup earlier this year

• How Q works
– a model instance is a set of quintuples

– (subject, property, identity, context, value)

– the first four elements are identifiers, the last can be an identifier or a value

– the identity of a quint makes it possible to talk about it (yes, reification)

– the context is the identifier of a set of topics making up a scope

• The Extreme paper contains
– a mapping from any TMDM instance to a Q instance

– a mapping from Q instances following these conventions to TMDM

– the same for RDF

– TMDM-in-Q instances can be treated as RDF

– RDF-in-Q instances can, once annotated slightly, be treated as topic maps

http://www.ontopia.net/© 2005 Ontopia AS 13

TMDM and Q

Basically, Q tells you how to implement TMDM on a quad store...

http://www.ontopia.net/© 2005 Ontopia AS 14

The formal model, formally presented

• I is the set of all identifiers

– an identifier is just an opaque token

– it doesn't mean anything by itself, it just identifies something

• L is the set of all literals

– these are data values like strings, integers, URIs, etc

• A is the union of I and L

• A model is a subset of (I x I x I x I x A)

• Constraints
– you can't have two quints in a model with the same id

– you can't use a quint id as a property

– you can't use a quint id as a context

http://www.ontopia.net/© 2005 Ontopia AS 15

tolog query results

• Matches are sets of (key, value) pairs
– the keys are tolog variables

– the values are values to which the variables are bound

– duplicate keys cannot occur in the same match

• Match sets are sets of matches
– these correspond to tolog query results

http://www.ontopia.net/© 2005 Ontopia AS 16

Match set example

• The expression date-of-birth($PERSON, DATE) would produce a
match set like this:

– {{($PERSON, lmg), ($DATE, 1973-12-25)},
 {($PERSON, stine), ($DATE, 1973-03-24)} ... }

http://www.ontopia.net/© 2005 Ontopia AS 17

Predicate applications

• Predicates become functions in the query algebra
– f(Q, s) – where Q is a topic map, and s is the argument tuple

– instance-of(Q, ($P, person))

• The result of a function is always a match set
– variables in the argument tuple are bound in the match set

– filtering by literals is already done

http://www.ontopia.net/© 2005 Ontopia AS 18

AND

• e, e' maps to e ⊕ e'

• The definition of ⊕ requires another concept

– m ~ m' if the matches are compatible

– that is, if no variables in the two matches contain different values for the same
variable

– M ⊕ M' can now be defined as the set of unions of pairs of matches in M and M'
which are compatible

• Formal definitions

http://www.ontopia.net/© 2005 Ontopia AS 19

An example

• born-in($P : person, $C : place),
located-in($C : containee, italy : container)?

• The born-in produces all (person, city) combinations where the
person is born in the city

– e = {{($P, lmg), ($C, lærdal)}, {($P, puccini), ($C, lucca)}}

• The located-in produces all cities in Italy
– e' = {{($C, lucca)}, {($C, roma)}}

• The result of e ⊕ e' is

– {($P, lmg), ($C, lærdal)} is lost, because e' has no compatible matches

– {($P, puccini), ($C, lucca)}} is compatible with {($C, lucca)} from e'

– the last two matches are unioned, which produces
• {($P, puccini), ($C, lucca)}}

• Note that if there are no common variables you get a cross-
product...

http://www.ontopia.net/© 2005 Ontopia AS 20

OR

• { e | e' } maps to e ∪ e'

• This is straightforward, but there are issues with it
– if all matches in e have variable v bound, this doesn't mean those from e' need

to

– the resulting match set can be non-homogenous

– this needs to be formalized and further described in the algebra

http://www.ontopia.net/© 2005 Ontopia AS 21

NOT

• NOT is not trivial...
– essentially, what is done is to produce all possible combinations of the variables

used in the NOT, then subtract those matched by the negated expression

• not(e) thus maps to

http://www.ontopia.net/© 2005 Ontopia AS 22

Built-in predicates

• The built-in predicates are all defined in terms of a _q predicate

• This predicate operates directly on the Q model instance

• For example:
– association-role($ASSOC, $ROLE) :-

_q($TM, ASSOCIATION, $I, Q, $ASSOC),
_q($ASSOC, $TYPE, $ROLE, $SCOPE, $PLAYER),
_q($TYPE, META_TYPE, $I2, Q, ASSOCIATION_ROLE).

• Dynamic predicates are mapped to built-in predicates

http://www.ontopia.net/© 2005 Ontopia AS 23

The _q predicate

• The definition of the _q predicate is very simple
– q(Q, p) = β(Q, p)

• The β function can take a set of tuples, and match it against a tuple
of variables and literals

– the tuple set is filtered against the literals, and then

– matches with bindings for the variables are produced

• This makes defining _q trivial

http://www.ontopia.net/© 2005 Ontopia AS 24

Finishing up

What's done, and

What's not

http://www.ontopia.net/© 2005 Ontopia AS 25

What about TMQL?

• tolog is the foundation of the OKS at the moment
– TMQL won't be here for a while yet

– meanwhile we needed a proper definition of tolog

• This work is useful input to TMQL
– I've now learned to create a query algebra without getting in anyone's way

– we now have an alternative query algebra to judge the TMQL one against

• Ontopia wants to support TMQL
– having query algebras for both tolog and TMQL makes it easier to see how to do

that
• can TMQL be compiled to tolog?

• can tolog be compiled to TMQL?

• is there a common subset?

http://www.ontopia.net/© 2005 Ontopia AS 26

Conclusion

• The query algebra is done (mostly)

• The algebraic properties are only partly known
– proving them is doable, but takes a little work

• The type inferencing is not done
– again, it's doable, but takes a little work

