#### C H A I R S O F Information Systems





## Convergence of classical search and topic maps – evidences from a practical case in the chemical industry

Dr. Stefan Smolnik Information Systems 2, European Business School (EBS)



11. October 2007

European 
Business School

International University · Schloss Reichartshausen



- 1. Motivation and challenges
- 2. Classical search text mining
- 3. Semantic technologies Topic Maps
- 4. Evaluations and lessons learned





- 1. Motivation and challenges
- 2. Classical search text mining
- 3. Semantic technologies Topic Maps
- 4. Evaluations and lessons learned



# **Motivation and challenges**

TMRA 2007, 11.10.2007



Focus: Information Center within the research group of a chemical firm

Overall responsibility: provision of information services and information systems

Main tasks: making inquiries as well as building and running information systems

Typical application scenarios: patent analyses, competitive analyses, product developments, opportunity discoveries, news services

Problems: very heterogeneous information and distributed information sources



#### **Technology evaluations**

|                                          | Extend of Conten                    | Full Text                 | Text + Metadata  |                            |  |
|------------------------------------------|-------------------------------------|---------------------------|------------------|----------------------------|--|
|                                          | Degree of Structur                  | weak                      | semi             |                            |  |
| Organisation of Metadata                 | Techn                               | ology                     |                  |                            |  |
|                                          | Full Text Search                    | Full Text Search          |                  | I                          |  |
|                                          |                                     | Statistical<br>Approaches | M: ●             |                            |  |
|                                          |                                     |                           | R: O             | R: O                       |  |
|                                          |                                     |                           | Q: 🛛 - 🗨         | Q: O - 🗢                   |  |
|                                          |                                     |                           | P: 🗢             | P: 🗢                       |  |
| No Metadata                              |                                     | Linguistic                | l: O             | l: O                       |  |
|                                          |                                     | Approaches                | M: 🖲             |                            |  |
|                                          |                                     |                           | R: 😐             |                            |  |
|                                          |                                     |                           | Q: ⊜<br>P: ⊚ - ● |                            |  |
|                                          |                                     |                           | l: O             |                            |  |
|                                          | Structured Search                   |                           | M: •             |                            |  |
|                                          |                                     |                           | R: 😐             | R: 🖲                       |  |
|                                          |                                     |                           | Q: 🔘             | Q: 🔵                       |  |
|                                          |                                     |                           | P: 🗢             | P: 🗢                       |  |
| Flatly or Hierarchically                 | ļ                                   |                           | l: O             | l: O                       |  |
| Organisation of Metadata                 | Taxonomies &<br>Thesaurus           |                           | M: ●             |                            |  |
|                                          |                                     |                           | R: 🔴             | R: 🔘                       |  |
|                                          |                                     |                           | Q: 🛛 - 🗨         | Q: 🛛 - 🔵                   |  |
|                                          |                                     |                           | P: ●             | P: •                       |  |
|                                          | Tanla Mana                          |                           | l: O             | 1:0                        |  |
|                                          | Topic Maps<br>n of<br>Ontologies    |                           | M: O<br>R: •     |                            |  |
| Network-like Organisation of<br>Metadata |                                     |                           |                  | a. ●<br>D: ●               |  |
|                                          |                                     |                           |                  |                            |  |
|                                          |                                     |                           | l: •             |                            |  |
|                                          |                                     |                           | M: 🛛             |                            |  |
|                                          |                                     |                           | R: 🔍             |                            |  |
|                                          |                                     |                           | Q: ●             |                            |  |
|                                          |                                     |                           | P: ●<br>I: ●     |                            |  |
|                                          |                                     |                           | I                |                            |  |
| M - Maturity                             |                                     |                           |                  | • average / $\bigcirc$ low |  |
| R - Requirements for and E               | • high / • averaqe / $\bigcirc$ low |                           |                  |                            |  |
| Q - Quality of Search Resu               | • high / • average / $\bigcirc$ low |                           |                  |                            |  |
| P - Search/Retrieval Perfor              |                                     |                           |                  | • average / $\bigcirc$ low |  |
| - Heterogeneous Informat                 | ion Repositories' Integ             | ration Capability         | high / @         | ) average / $\bigcirc$ low |  |



TMRA 2007,

11.10.2007

| © Dr. Stefan Smolnik      |
|---------------------------|
| 2 / Information Systems 2 |



- 1. Motivation and challenges
- 2. Classical search text mining
- 3. Semantic technologies Topic Maps
- 4. Evaluations and lessons learned



## Classical search – text mining: Overview and foundations

TMRA 2007, 11.10.2007

8



Information retrieval perspective: methods for text summarization and information extraction (which improve the information retrieval)

Data mining perspective: exploration of (to be interpreted) data, that could be gained from texts/documents

Methodical perspective: methods for the (semi-)automatic analysis of huge document sets

Knowledge-oriented perspective: (automatic) text-based data analysis for the exploration of "unknown" information



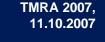

#### <u>Classical search – text mining:</u> TMRA 2007. 11.10.2007 Typical application areas Information Extraction (CA) Clustering (DA) **Topic Tracking (DA)** Concept Linkage (DA) **Typical** Information Visualization application **Text Summarization (CA)** (DA) areas **Question Answering Categorization (DA)** (CA/DA) DA – document-based applications CA - content-based applications Analyze Text Retrieve and Document Management preprocess Collection Information Information document Extraction Knowledge System Clustering Summarization Euro

Figure 1. An example of text mining.

Classical search – text mining: Possible application areas for the chemical firm

| Application areas        | Information<br>Extraction | Topic Tracking | Text<br>Summarization | Categorization | Clustering | Concept Linkage | Information<br>Visualization | Question<br>Answering |
|--------------------------|---------------------------|----------------|-----------------------|----------------|------------|-----------------|------------------------------|-----------------------|
| Patent analysis          | Х                         |                |                       |                | Х          | Х               | Х                            |                       |
| Competitive analysis     |                           | Х              | Х                     |                |            |                 |                              |                       |
| Product<br>development   | Х                         |                |                       |                | Х          | Х               |                              |                       |
| Opportunity<br>Discovery | Х                         |                |                       |                | Х          | Х               | X                            |                       |
| News service             | Х                         | Х              | Х                     | Х              | Х          | Х               |                              |                       |







# Classical search – text mining: Benefits/pros and limitations/cons

TMRA 2007, 11.10.2007

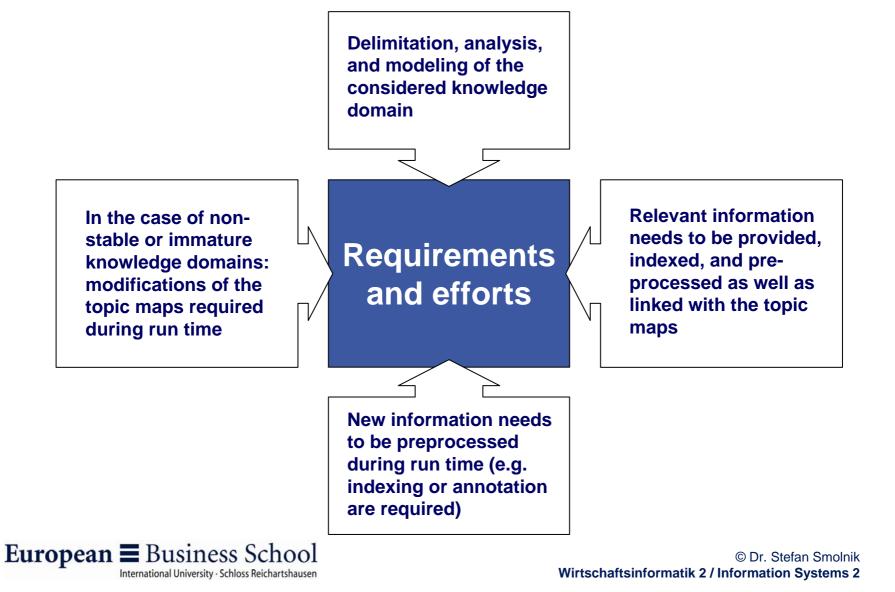
#### **Benefits/pros**

- Benefits according to the application areas
- Determination of word meanings
- Nearly independent of the document/text length
- Interpretation of the word structures
- Understanding of flexion forms and modifications of words

#### Limitations/cons

- Source language: high degree of rule-based word structures needed
- Language dependent
- Without using a thesaurus only moderate results
- Problems with ambiguity
- Moderate relevance of (automatically) identified relations
- Only limited identification of relations across distributed information repositories
- Complete automation still unrealistic

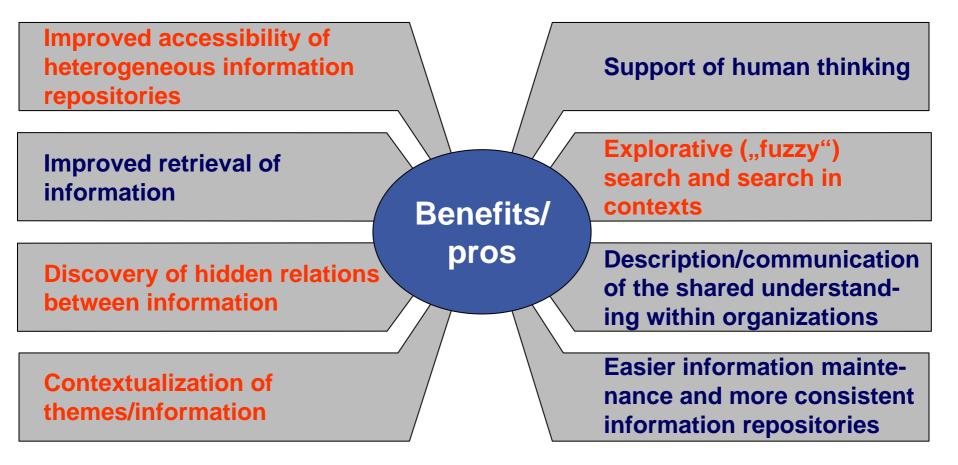



- 1. Motivation and challenges
- 2. Classical search text mining
- 3. Semantic technologies Topic Maps
- 4. Evaluations and lessons learned



## Semantic technologies – Topic Maps: Requirements and efforts

TMRA 2007, 11.10.2007






# Semantic technologies – Topic Maps: Benefits/pros

TMRA 2007, 11.10.2007







## Semantic technologies – Topic Maps: Limitations/cons

TMRA 2007, 11.10.2007



**Efforts** for the modeling, generation/creation, maintenance, and operation of the topic maps

Complete and appropriate modeling of the knowledge domain as a topic map is critical for the users' benefits ("Everything that should be found has to be modeled in advance.")

Only a few standardized or established knowledge models available (particularly for the chemical industry); therefore, such models need to be developed in-house

**Inconsistent perspectives and understandings of the Topic Maps'** concepts and terms make a positive evaluation for the organizational deployment difficult



Limitations/

cons



- 1. Motivation and challenges
- 2. Classical search text mining
- 3. Semantic technologies Topic Maps
- 4. Evaluations and lessons learned

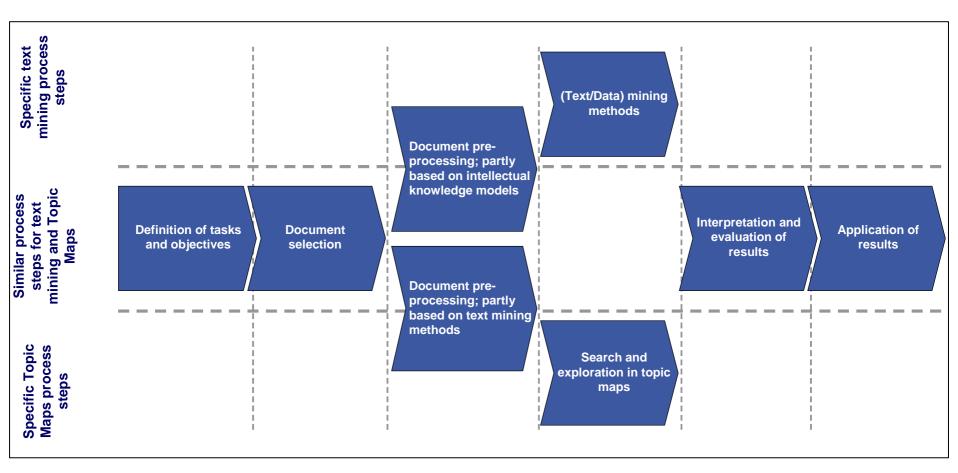


## **Evaluations – summary**

#### TMRA 2007, 11.10.2007

17




#### **Text mining**

- Automatic document processing
- Based on standard models
- "Concept Linkage"
- Dependent on concepts and relations defined in thesauruses and rule frameworks (linguistic methods)
- Efforts for both information systems and users
- Efforts for the document preprocessing
- No real integration of heterogeneous information repositories

#### **Topic Maps**

- Manual/semi-automatic knowledge modeling
- Flexible and according to specific requirements conducted knowledge modeling
- Topic associations
- Efforts for the knowledge modeling
- Efforts for the document preprocessing
- Semantic integration of heterogeneous information repositories

# Lessons learned (1/2): Information access/structuring process





TMRA 2007, 11.10.2007

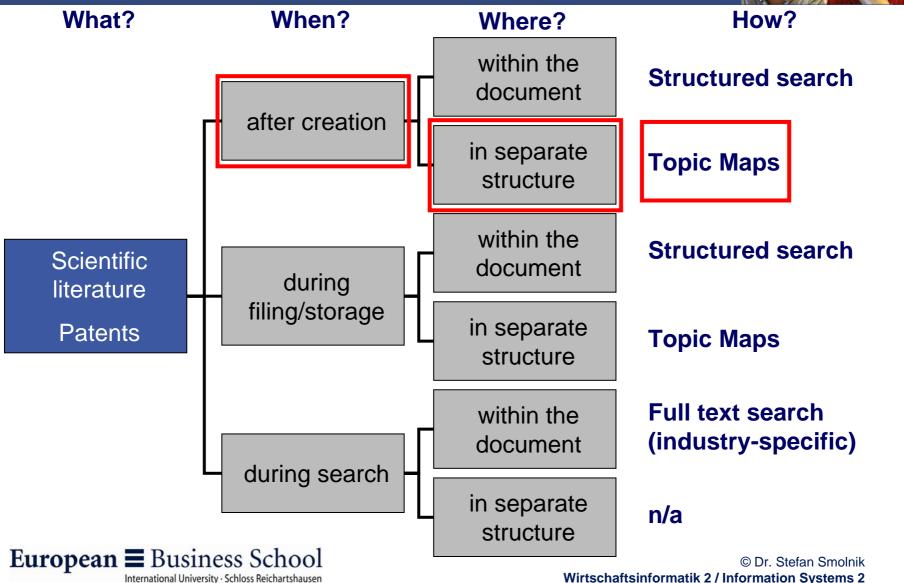
## Lessons learned (2/2): Summary



"In a nutshell": automation vs. modeling but: text mining and Topic Maps applications converge

Text mining uses semantic technologies and vice versa (particularly, with respect to the document preprocessing)

Intellectual modeling takes place during the text mining process as well


Practical experiences in a typical environment is necessary for gaining further insights and results



#### Recommendations

#### TMRA 2007, 11.10.2007





#### **Questions & discussion**

TMRA 2007, 11.10.2007



#### **Dr. Stefan Smolnik**

Chair of Information Systems 2 European Business School (EBS) International University Schloss Reichartshausen Rheingaustr. 1 65375 Oestrich-Winkel Phone: +49-6723-991-246 Fax: +49-6723-991-259 E-Mail: stefan.smolnik@ebs.edu WWW: http://www.ebs.edu/is2

