
TMAPI-implementation
for shared accessed topicmaps

Martin Krüger, Jan Hellich
Fakultät für Mathematik und Informatik,

Universität Leipzig

Abstract

Since topicmaps are an efficient way to organise informa-
tion it is important to enable concurrent and shared access
to this information for optimal use.
This project is a proof-of-concept. Therefor we chose to use
unusual ways to reach this goal.
We use a 3-tier approach to divide the tasks of interfacing
the user application, processing the topicmaps (inserting,
finding and deleting information) and persistent storage of
the information.
The pluggable part for applications implements the TMAPI
and is slim in size and function. It communicates with an
application server (Glassfish) which provides Webservices
(TM-WS). These Webservices do all operations on a top-
icmap which itself is located on a SQL-server (MySQL).

Considerations

In order to enable multiple users access to the topicmap we
found the following items important to be considered.:

• centralise the topic map storage

• connect the client to the topic maps over a network

• minimise hardware requirements for clients as much as
possible

• base the project on freely available technologies

Since this is only proof of concept we only implemented
XTM 1.0 features. We are aware that this is a limitation.
In case of further interest in this matter it should be easily
possible to implement missing features in future versions.

Technical environment

To meet the criteria to minimise client hardware require-
ments as much as possible we chose a 3-tier approach.
The program which uses the TMAPI-interface (imple-
mented in TM-Backend) accesses an application server
which runs webservices. These webservices contain the
logic necessary to insert, find and delete information in a
topicmap. The whole topicmap is stored in a SQL-server.
This should provide enough processing speed and data se-
curity.

(a) Schema of program design

The programming language of choice is Java for its wide
range of supported platforms. The application server used
is the Glassfish application server, a reference implemen-
tation of SUN. As database we chose MySQL which is also
freely available.

(a) Prossible network structure

Because of the architecture of the application server all
components a exchangeable. The design provides system
administrators with a wide range of choices for database
servers, application servers and even operating systems.
Without recompile and a minimal amount of reconfigura-
tion of the application server the administrator could change
from a MySQL-server to an Oracle based system for exam-
ple. In short.: If you prefer another database you can use it.
If you want to replace the client component (TM-Backend)
but want to use the webservices you can do so. (In case you
have other client programs accessing the webservices.) In
theory it is even possible to loadbalance the webservices in
a cluster of application servers.

Code Example

This code snippet shows the TM-Backend side (the TMAPI
implemenation). It is the function to retreave all types of a
topic in the class “Topic”.

public Set getTypes() {
Set s = new HashSet();
List l = null;

try {
l = WSCachingServiceLocator.getInstance().getTopic()

.getTypes(this.getIntObjectID());
} catch (Exception ex) {

ex.printStackTrace();
throw new TMAPIRuntimeException("A connection " +

"error has occured.");
}
int i;
for (Iterator it = l.iterator(); it.hasNext();) {

i = Integer.parseInt(it.next().toString());
s.add(new TopicImpl(i, this.getBelongingTopicMapSystem()));

}
l = null;
return(s);

}

This code snippet is the equivalent to thecode presented
above. Its functionality performs database operations and
returns all types of the specified topic.

/**
* Web service operation

*/
@WebMethod
public List getTypes(@WebParam(name = "intTopicID") int intTopicID) {

Connection conn = null;
PreparedStatement pstmt = null;
ResultSet rs = null;

List value = new ArrayList();

try {
conn = tmws.getConnection();

pstmt = conn.prepareStatement("SELECT topicTypeID "+
"FROM topicTypes "+
"WHERE topicID=? ORDER BY topicTypeID ASC;");

pstmt.setInt(1, intTopicID);

rs = pstmt.executeQuery();

while (rs.next()) {
value.add(rs.getInt("topicTypeID"));

}

[...]

return value;
}

Perfomance

Since this project had limited resources it was not possible
to run a wide variety of benchmarks.
We wrote a few testcases we belief to be common in using
topicmaps. (The source code is available in the program
package.)
First we checked how fast certain database intensive oper-
ations are. Then we stressed the system with many con-
current connections and messured what the limit of our de-
velopment machine is.
But do to the complex nature of this architecture we were
unable to produce reliable numbers. It seems to us that the
nature of the network link has a huge impact to the overall
performance of the application. Not the link speed is the
driving factor but rather the link latency.
We chose not to present numbers on this poster because
there are aspects of influences in these test setting which
we not fully understand. We guess that this is partually the
experimental nature of the Glassfish application server.

(a) Successfull TMAPI Test Suite run

(b) Example test program

Grafic a) shows the successfull run of the TMAPI Test Suite.
In grafic b) a simple example is shown which simulates 4
concurrent connections.

Outlook

Right now the code is proof-of-concept and should in no cir-
cumstances be used in any production process. We would
not recommend otherwise until further stability and perfor-
mace tests are made. The most interesting question is
how well different databases and application server play
together. This leads to the question of stability, hardware
requirements and procurement costs.
In case this concept proofs that its worth further devel-
opment additional features like XTM 1.1 could be imple-
mented.

References

• http://www.tmapi.org/ - TMAPI (implemented interface)

• http://tinytim.sf.net/ - TinyTIM (Memory based TMAPI implementation)

• http://www.mysql.com/ - MySQL server

• http://glassfish.dev.java.net/ - Glassfish application server

• http://www.http://tm4j.org/ - another topicmap engine

• http://www.topicmap.com/

• http://www.topicmaps.org/

• http://www.ontopia.net/

TMRA 06, International Conferences on Topic Maps Research and Applications, 11-12 October 2006, Leipzig, Germany

