A Data Warehouse-based Gene Expression Analysis Platform

T. Kirsten, H.-H. Do, E. Rahm University of Leipzig, Germany www.izbi.de, dbs.uni-leipzig.de

Current Activities and Selected Publications (1)

DILS 2004

Rahm: Data Integration in the Life Sciences.
 Springer-Verlag, LNBI 2994, 2004

GenMapper

- Do, Rahm: Flexible Integration of Molecular-biological Annotation Data: The GenMapper Approach. Proc. EDBT 2004, Heraklion, Greece, March 2004
- Joint work with MPI EVA

GeWare

- Do, Kirsten, Rahm: Comparative Evaluation of Microarray-based Gene Expression Databases, Proc. 10th Conf. on Database Systems for Business, Technology, and the Web, 2003
- Kirsten, Do, Rahm: A Multidimensional Data Warehouse for Gene Expression Analysis. Poster/Abstract, Proc. German Conference on Bioinformatics (GCB), Munich, October 2003
- The IZBI Gene Expression Analysis Platform, Internal Status Report, IZBI, 2003

Current Activities and Selected Publications (2)

- GenBank Management
 - Joint work with G. Fritzsch (AG4)
- Oligo Sequence Sensitivity Analysis
 - Project involvement (coordination and main analysis by H. Binder)
 - Binder et al: The effect of base composition on the sensitivity of microarray oligonucleotide probes. In submission
 - Binder et al: Interactions in oligonucleotide duplexes upon microarray hybridization. In submission

Outline

- Motivation
- GeWare architecture
- Annotation integration
- Analysis support
- Conclusions

Gene Expression Data

- Microarrays to measure expression of thousands of genes at the same time
- Various kinds of data with different characteristics and requirements

Data		Source	Type	Characteristics	Usage
Image Data		Array scan	binary	large files	Generation of expression data
Expression Data		Image analysis	number	fast growing volume	Visualization, statistical and cluster analysis
Annotation Data	Gene	External public sources		regularly updated	Interpreting / Relating / Inferring gene
	Experiment	User input		user-specified, often free text	functions

Goals

- Central data management and analysis platform
- Data Warehouse approach
 - Expression data import, e.g. from Affymetrix system
 - Fact tables to store both raw and derived data
 - Uniform specification of experiment annotations
 - Integration of gene annotations from public sources
 - Integration of analysis and data mining algorithms/tools

System Architecture

Data Integration

Tool Integration

Data Warehouse Model

Multidimensional data model (star schema)

Annotation-related Dimensions

Facts: Expression Data, Analysis Results

Processing-related Dimensions

Analysis Workflow

Experiment Annotation (1)

- Goal: Uniform and comprehensive annotation
- Controlled annotation vocabularies
 - Sets of predefined terms
- Annotation templates
 - Collections of annotation categories for which the annotation values has to be captured
 - Hierarchical arrangement of categories
 - Definition of MIAME compliant templates (Human biopsy, Human cell line, ...) in cooperation with biologists
- MAGE-ML export (data exchange)

Experiment Annotation (2)

- Template specification
 - Easy specification and adaptation
 - Automatically generated web GUI

Category Definitions

Page: culture conditions

Please note: Select boxes, check boxes and radios have to possess a vocabulary. All other types don't have a predefined vocabulary.

Name	Position	Туре	Vocabulary	Mandatory	
		check box 🔻	•	○ yes ⊙ no	New
medium	1	heading 2		○ yes ⊙ no	Save
medium type	2	select box	medium type	• yes	₩E
serum	3	radio button	serum	os O no	Save
antibiotics	4	check box	antibiotics	○ yes ⊙ no	Save
atmosphere	5	heading 2		○ yes ⊙ no	Save
oxygen	6	input field		○ yes ⊙ no	Save
carbondioxide	7	input field		○ yes ⊙ no	Save
	-				. 1

Experiment Groups

Add Condition

- Collections of experiments with common patterns
- Input for reporting and further analysis

Start Query

12

Gene Annotation Integration

- Materialized integrated gene annotations
 - Source: Affymetrix Netaffx
 - Various annotation attributes (unigene, locuslink, map location, gene symbol ...)
 - Directly associated with the gene dimension
- Application
 - Gene group generation
 - Direct access in expression analysis
- Future work: More annotations from different public sources

Gene Group Generation and Usage

Gene Annotation Filter

- Application of different search types (exact / fuzzy matching)
- Combination of filter conditions using boolean operators (and, or, not)

Expression Value Reporting and Filter

- Several statistical reports used for analysis entry and outlier detection
 - Using experiment and gene groups to filter

Generation of new gene groups

Annotation attributes Downloadable results Gene Group Name: gene group Standard Reports - Mean and Standard error (SEM) o download the results please ase this li Please specify the filter criteria within the following steps: Мар Mean SEM Mean SEM Probe Set Chip Type Symbol Location (Group 1) (Group 2) (Group 2) Available 1404_r_at HG_U95Av2 CCL5 1.236 0.772 7 977 6.074 a12 1. Step:Select 1989 at HG U95Av2 BRCA2 13a12.3 1.359 0.202 1.897 0.350 annotation attributes Store as new gene group 2. Step: Choose a defined experime HK114-123 Experiment 31489_at HG_U95Av2 3.659 1.353 4.798 2.684 a32.2 3. Step: Choose a defined experim HK115-138 group filter 31496_g_at HG_U95Av2 40.369 SCYC2 22.041 11.651 1.653 4. Step: Select the report field: Signal 31586_f_at | HG_U95Av2 | 2p12 187.864 93.996 60.677 22.528 20pter 4. Step: Please, choose a gene group from the list: *** None *** 31666_f_at HG_U95Av2 RASSF2 16.729 11.591 2.586 0.369 p12.1 Mone M 31949 at HG U95Av2 RASGRF1 15a24 7.449 5.106 7.217 4.748 Process 32415 at HG U95Av2 IFNA5 16.213 7.265 9.591 5.429 Gene group filter KVSUG_WY HKvsUG WY1 32896 at HG U95Av2 1.263 0.271 1.771 0.267

Jniaene Hs.86%

22q11.1-

15q15

26.851

7,003.635 4,424.544 1,104.741 631.049

20.335

495 957

9.297

6.367.546 4.003.417 966.541

9.371

IGL

33273 f at HG U95Av2

33274 f at HG U95Av2

33291 at HG U95Av2 RASGRP1

Gene Expression Matrix Management (1)

- Gene expression matrix (GEM)
 - Genes as row, experiments as column label
 - "Standard" input format for many analysis tools
- Requirements
 - Support for different matrix types (absolute / relative values, nested, ...)
 - Input for advanced analysis, reporting and export in GeWare
 - Problem: How to manage GEM in relational databases?
 - > Complexity / size limitations of resulting SQL statements
 - > Performance aspects

Gene Expression Matrix Management (2)

Schema

- G (gene id, gene name, ...)
- E (exp id, exp name, ...)
- F (gene id, exp id, value, ...)
- M (gene id, value (exp id 1) ... value (exp id n))

Need a mapping: $F \rightarrow M$

- Virtual mapping (view)
- Materialized mapping (mat. view, table)

Example: Virtual Mapping: CREATE VIEW F M Mapping AS SELECT G.gene id, F1.value, F2.value ...Fn.value FROM G, F as F1, F as F2 ... F as Fn WHERE G.gene id = F1.gene id G.gene id = F2.gene id AND AND G.gene id = \dots G.gene id = Fn.gene id AND AND F1.exp id = 1AND F2.exp id = 2AND AND Fn.exp id = n

Gene Expression Matrix Management (3)

GEM management in GeWare

- Materialized representation of GEM due to
 - Database limitations (query size)
 - > Expected less performance using views
- Flexible generation of different GEM types
- Application of first class objects and high level operations, e.g.
 - > generateMatrix (Experiment Group, Gene Group)
 - > generateMatrix (Experiment Pairs, Gene Group)
- Matrix visualization
- Generic GEM metadata management

Analysis Coupling

- Tight integration
 - Various predefined canned queries for analysis entry and outlier detection
 - Concentration ratio (Lorenz curve, Gini-Coefficient)
 - Sequence specific database functions (UDF)
- Transparent integration (database API)
 - Oligo sequence sensitivity analysis
 - OLAP
- File-based exchange
 - Application of R / BioConductor for
 - > Intensity transformations (MAS5, RMA, LiWong R/F)
 - > Advanced analysis (Westphal/Young univariate beta test with resampling strategy, ...)
 - Import of analysis results for further analysis

Conclusions / Future Work

GeWare

- Management of a high volume of expression data
- Flexible experiment annotation
- Storing experiment and gene groups
- Management of different types of expression matrices
- Different kinds of analysis, export

Future work

- Coupling with advanced analysis/ data mining routines
- Visualization extension

Special Thanks \odot

- Database group / IZBI
 - Hans Binder
 - Martin Beck
 - Guido Fritzsch
- IZKF/Medical Dept. University of Leipzig
 - Friedemann Horn
 - Knut Krohn
 - Markus Eszlinger
- MPI for Evolutionary Anthropology
 - Philipp Khaitovich
 - Wolfgang "Wolfi" Enard
 - Björn Mützel
 - Svante Pääbo